JP4673825B2 - Embedded magnet rotor and manufacturing method of embedded magnet rotor - Google Patents

Embedded magnet rotor and manufacturing method of embedded magnet rotor Download PDF

Info

Publication number
JP4673825B2
JP4673825B2 JP2006318083A JP2006318083A JP4673825B2 JP 4673825 B2 JP4673825 B2 JP 4673825B2 JP 2006318083 A JP2006318083 A JP 2006318083A JP 2006318083 A JP2006318083 A JP 2006318083A JP 4673825 B2 JP4673825 B2 JP 4673825B2
Authority
JP
Japan
Prior art keywords
core
permanent magnet
magnet
embedded
embedded rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006318083A
Other languages
Japanese (ja)
Other versions
JP2008131853A (en
Inventor
祥子 川崎
篤 松岡
芳雄 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006318083A priority Critical patent/JP4673825B2/en
Publication of JP2008131853A publication Critical patent/JP2008131853A/en
Application granted granted Critical
Publication of JP4673825B2 publication Critical patent/JP4673825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

この発明は、DCブラシレスモータ等に使用される磁石埋込型ロータ及びその製造方法に関する。   The present invention relates to a magnet-embedded rotor used for a DC brushless motor or the like and a method for manufacturing the same.

電機子反作用磁束を軽減すると共に、外周部鉄心の磁束分布を改善することにより、騒音や振動の少ない高効率な永久磁石電動機を提供するために、回転子鉄心中にその軸心を中心とする略正多角形の各辺に対応する部位に形成された永久磁石収容孔と、この永久磁石収容孔にそれぞれ挿入された永久磁石と、永久磁石収容孔の外周部鉄心に形成され、径方向に細長く、かつ、永久磁石収容孔に沿って離隔配置された4個以上のスリット孔とを備え、スリット孔の径方向外側端のピッチを略等しくし、径方向内側端のピッチを永久磁石の中央部を大きくし、中央部から端部に離れるに従って小さくした永久磁石電動機が提案されている(例えば、特許文献1参照)。
特開2005−94968号公報
In order to reduce the armature reaction magnetic flux and improve the magnetic flux distribution of the outer peripheral core, to provide a highly efficient permanent magnet motor with less noise and vibration, the rotor core is centered on its axis. Permanent magnet accommodation holes formed in portions corresponding to the sides of the substantially regular polygon, permanent magnets inserted into the permanent magnet accommodation holes, and outer peripheral cores of the permanent magnet accommodation holes, and in the radial direction 4 or more slit holes that are elongated and spaced apart along the permanent magnet receiving hole, and the pitch of the radially outer end of the slit hole is substantially equal, and the pitch of the radially inner end is set to the center of the permanent magnet. A permanent magnet motor has been proposed in which the size of the portion is increased and the size is decreased as the distance from the central portion to the end portion is increased (see, for example, Patent Document 1).
JP 2005-94968 A

しかしながら、前記特許文献1に記載された永久磁石電動機は、以下に示す課題があった。
(1)永久磁石収容孔の外周部鉄心に、複数のスリットを設けることにより、永久磁石収容孔に挿入された永久磁石によって作られる磁束が途中で短絡するのを防ぎ、磁束が流れやすい方向と流れにくい方向を作るためであり、永久磁石の特性を十分生かしたトルクを得ることができるが、複数のスリットが設けられることにより、ロータの強度を犠牲にしている場合があった。
(2)電磁鋼板部の磁気抵抗と、スリット部(=空気)の磁気抵抗との差が非常に大きいため、磁束の流れが一定方向に集中しすぎるため、磁束流れのアンバランスが生じ、コギングトルクやトルクリプルの発生要因となっていた。
However, the permanent magnet motor described in Patent Document 1 has the following problems.
(1) By providing a plurality of slits in the outer peripheral iron core of the permanent magnet accommodation hole, it is possible to prevent the magnetic flux generated by the permanent magnet inserted into the permanent magnet accommodation hole from being short-circuited in the middle, and the direction in which the magnetic flux easily flows. This is to make the direction difficult to flow, and a torque that makes full use of the characteristics of the permanent magnet can be obtained. However, the provision of a plurality of slits sometimes sacrifices the strength of the rotor.
(2) Since the difference between the magnetic resistance of the magnetic steel sheet portion and the magnetic resistance of the slit portion (= air) is very large, the flow of magnetic flux is too concentrated in a certain direction, resulting in imbalance of the magnetic flux flow and cogging It was a cause of torque and torque ripple.

この発明は、上記のような課題を解決するためになされたもので、モータの特性向上、低騒音化、並びに強度を保つことができる磁石埋込型ロータ及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a magnet-embedded rotor capable of improving motor characteristics, reducing noise, and maintaining strength, and a method of manufacturing the same. And

この発明に係る磁石埋込型ロータは、内部に永久磁石を有する磁石埋込型ロータにおいて、外周に永久磁石を装着する永久磁石装着部を有し、永久磁石の磁路となる第1のコアと、永久磁石装着部に装着される永久磁石と、第1のコア及び永久磁石の外側に設けられ、比透磁率が第1のコアの比透磁率より小さく、永久磁石に対向する外周鉄心部と、永久磁石同士の間の磁極間鉄心部とを構成する第2のコアとを備えたことを特徴とする。   An embedded magnet type rotor according to the present invention is a magnet embedded type rotor having a permanent magnet inside, and has a permanent magnet mounting portion for mounting a permanent magnet on the outer periphery, and a first core serving as a magnetic path of the permanent magnet A permanent magnet mounted on the permanent magnet mounting portion; and an outer peripheral iron core portion that is provided outside the first core and the permanent magnet and has a relative permeability smaller than that of the first core and faces the permanent magnet. And a second core constituting the inter-magnetic core between the permanent magnets.

この発明に係る磁石埋込型ロータは、上記構成により、強度の確保、低振動・低騒音化、高効率、低価格化などの効果を奏する。   The magnet-embedded rotor according to the present invention has effects such as securing strength, low vibration / low noise, high efficiency, and low price due to the above configuration.

実施の形態1.
図1乃至図12は実施の形態1を示す図で、図1はモータ100の断面図、図2は磁石埋込型ロータ1の断面図、図3は磁石埋込型ロータ1を第1のコア6のみで構成した場合の磁束の流れを示す図、図4は図3の要部拡大図、図5は磁石埋込型ロータ1を第1のコア6と第2のコア7とで構成した場合の磁束の流れを示す図、図6は磁界解析により算出したモータ100のトルクを示す図、図7は第1のコア6の平面図、図8は磁石埋込型ロータ1の変形例を示す断面図、図9は第1のコア6の変形例の平面図、図10は磁石埋込型ロータ1の変形例を示す断面図、図11は磁石埋込型ロータ1の変形例を示す断面図、図12は磁石埋込型ロータ1の変形例を示す断面図である。
Embodiment 1 FIG.
1 to 12 show the first embodiment. FIG. 1 is a cross-sectional view of the motor 100, FIG. 2 is a cross-sectional view of the magnet-embedded rotor 1, and FIG. FIG. 4 is an enlarged view of a main part of FIG. 3, and FIG. 5 is a diagram illustrating a magnet embedded rotor 1 composed of a first core 6 and a second core 7. FIG. 6 is a diagram showing the torque of the motor 100 calculated by magnetic field analysis, FIG. 7 is a plan view of the first core 6, and FIG. 8 is a modified example of the magnet embedded rotor 1. FIG. 9 is a plan view of a modified example of the first core 6, FIG. 10 is a sectional view of a modified example of the magnet embedded rotor 1, and FIG. 11 is a modified example of the magnet embedded rotor 1. FIG. 12 is a sectional view showing a modification of the magnet embedded rotor 1.

図1のモータ100は、DCブラシレスモータである。このモータ100の用途は、例えば、送風機である。モータ100は、中心に軸12が嵌合した磁石埋込型ロータ1と、ステータ2と、フレーム3と、図示しない軸受、ブラケット等を備える。ステータ2は、所定の形状に打ち抜かれた電磁鋼板(板厚0.35〜0.5mm)を所定枚数積層し、かしめ等により形成される。ステータ2は、外形が略リング状で、外周部が環状のコアバック2cで構成される。環状のコアバック2cから内側に向かって、6個のティース2aが放射状に延びている。ティース2a同士の間には内周側に開口部5を有するスロット2bがあり、スロット2bの個数は、ティース2aと同数の6個である。各ティース2aには、両側のスロット2bの空間を利用して、コイル4が、例えば、集中巻方式により巻線される。集中巻方式以外に、分布巻方式もある。コイル4は、通常三相巻線が施される。   The motor 100 in FIG. 1 is a DC brushless motor. The use of the motor 100 is, for example, a blower. The motor 100 includes a magnet-embedded rotor 1 with a shaft 12 fitted at the center, a stator 2, a frame 3, bearings, brackets, and the like (not shown). The stator 2 is formed by caulking or the like by laminating a predetermined number of electromagnetic steel plates (thickness 0.35 to 0.5 mm) punched into a predetermined shape. The stator 2 is configured by a core back 2c whose outer shape is substantially ring-shaped and whose outer peripheral portion is annular. Six teeth 2a extend radially inward from the annular core back 2c. Between the teeth 2a, there is a slot 2b having an opening 5 on the inner peripheral side, and the number of slots 2b is six, which is the same number as the teeth 2a. A coil 4 is wound around each tooth 2a by, for example, a concentrated winding method using the space of the slots 2b on both sides. In addition to the concentrated winding method, there is also a distributed winding method. The coil 4 is usually provided with a three-phase winding.

ステータ2の内側に、空隙11を介して、磁石埋込型ロータ1が挿入される。磁石埋込型ロータ1は、外周部の近傍に周方向に、ここでは4個の永久磁石8が設けられる。従って、モータ100の極数は、4極である。但し、これは一例であり、4極に限定されるものではない。磁石埋込型ロータ1の中心に軸12が嵌合される。軸12には、図示しない軸受(一般的には、ボールベアリング)が装着される。   The magnet-embedded rotor 1 is inserted into the stator 2 through the gap 11. In the magnet-embedded rotor 1, four permanent magnets 8 are provided in the circumferential direction in the vicinity of the outer peripheral portion. Therefore, the number of poles of the motor 100 is four. However, this is an example and is not limited to four poles. The shaft 12 is fitted in the center of the magnet embedded rotor 1. A bearing (generally a ball bearing) (not shown) is attached to the shaft 12.

ステータ2の外周に、例えば、金属製のフレーム3が嵌合する。さらに、フレーム3の両端に図示しないブラケットが取り付けられて、モータ100が完成する。   For example, a metal frame 3 is fitted on the outer periphery of the stator 2. Furthermore, brackets (not shown) are attached to both ends of the frame 3 to complete the motor 100.

本実施の形態は、磁石埋込型ロータ1の構造に特徴がある。図2により、磁石埋込型ロータ1の構造を説明する。図2に示す磁石埋込型ロータ1は、コアが永久磁石8の主磁束が通る、略十字状の第1のコア6と、この第1のコア6の外側に設けられ、外周鉄心部7a及び磁極間鉄心部7bとからなり、磁石埋込型ロータ1の外周部を形成する第2のコア7とに分割される。   The present embodiment is characterized by the structure of the magnet embedded rotor 1. The structure of the magnet embedded rotor 1 will be described with reference to FIG. A magnet embedded rotor 1 shown in FIG. 2 is provided with a substantially cross-shaped first core 6 through which the main magnetic flux of the permanent magnet 8 passes, and an outer peripheral iron core portion 7a. And a core core portion 7b between the magnetic poles, and is divided into a second core 7 that forms the outer peripheral portion of the magnet-embedded rotor 1.

第1のコア6は、例えば、板厚0.35〜0.5mmの電磁鋼板を積層したもので、比透磁率が大きい(数千程度)。一方、第2のコア7には、比透磁率が小さい(数十乃至百程度)材料を使用する。例えば、軟質磁性粉末(例えば、鉄粉)に樹脂(熱可塑性樹脂、例えばナイロン)を混練した材料である。   The first core 6 is, for example, a laminate of electromagnetic steel sheets having a plate thickness of 0.35 to 0.5 mm, and has a high relative permeability (about several thousand). On the other hand, the second core 7 is made of a material having a small relative permeability (several tens to hundreds). For example, a material obtained by kneading a soft magnetic powder (for example, iron powder) with a resin (a thermoplastic resin, for example, nylon).

略十字状の第1のコア6は、図4に示すような形状である。外周の4箇所に永久磁石8を装着する平面形状の永久磁石装着部6fがあり、永久磁石装着部6fの両端に軸方向に延びる永久磁石位置決め突起6dが形成されている。さらに、中心部に軸孔6bが穿設されている。また、磁極間は永久磁石8からの主磁束の流れに沿うような内側に凹む円弧形状となっている。これにより、軟質磁性粉末に樹脂を混練した材料による射出成形時に、金型内での混練材料の流れが良くなる。   The substantially cross-shaped first core 6 has a shape as shown in FIG. There are planar permanent magnet mounting portions 6f for mounting the permanent magnets 8 at four locations on the outer periphery, and permanent magnet positioning projections 6d extending in the axial direction are formed at both ends of the permanent magnet mounting portion 6f. Further, a shaft hole 6b is formed at the center. Further, between the magnetic poles, an arc shape that is recessed inward along the flow of the main magnetic flux from the permanent magnet 8 is formed. This improves the flow of the kneaded material in the mold at the time of injection molding using the material obtained by kneading the resin with the soft magnetic powder.

第1のコア6の永久磁石装着部6fに、4個の永久磁石8が装着される。この場合、永久磁石8が着磁されていると、第1のコア6の永久磁石装着部6fへの装着が容易に行える。図2中、矢印は永久磁石8が作り出す磁束を示し、この磁束が第1のコア6を図に示すように滑らかに通る。   Four permanent magnets 8 are mounted on the permanent magnet mounting portion 6 f of the first core 6. In this case, if the permanent magnet 8 is magnetized, the first core 6 can be easily mounted on the permanent magnet mounting portion 6f. In FIG. 2, the arrow indicates the magnetic flux generated by the permanent magnet 8, and this magnetic flux passes smoothly through the first core 6 as shown in the figure.

第2のコア7は、永久磁石8に対向する外周鉄心部7aに、複数のスリット10が形成されている。スリット10内には、スリット10を形成するためのスリット形成部品10aがあり、スリット形成部品10aは非磁性であれば何でもよいが、例えば、ABS樹脂を用いる。スリット10は空洞ではなく、非磁性材料が挿入されている。1極当たりのスリット10の数は、特に制限はないが、スリット10の部分と、それ以外の部分が、断面で半々程度の面積であればよい。   In the second core 7, a plurality of slits 10 are formed in the outer peripheral iron core portion 7 a facing the permanent magnet 8. In the slit 10, there is a slit forming component 10a for forming the slit 10. The slit forming component 10a may be anything as long as it is non-magnetic, but for example, ABS resin is used. The slit 10 is not a cavity but a nonmagnetic material is inserted. The number of slits 10 per pole is not particularly limited, but the slit 10 portion and the other portions may have an area of about half of the cross section.

磁石埋込型ロータ1を製作する工程は、例えば、次のような工程となる。
(1)先ず、所定の形状に打ち抜いた電磁鋼板を所定枚数積層して、略十字状の第1のコア6を作る。
(2)第1のコア6の永久磁石装着部6fに装着する永久磁石8を用意する。このとき、永久磁石8を着磁しておくと便利である。
(3)射出成形用の軟質磁性粉末に樹脂を混練した材料より融点の高い非磁性材料(例えば、ABS樹脂)を用いるスリット形成部品10aがセットされた樹脂成形用金型に、第1のコア6を配置し、永久磁石8を第1のコア6の永久磁石装着部6fに、例えば、磁力を利用して装着する。
(4)軟質磁性粉末に樹脂を混練した材料を射出して成形する。
このようにして、外周部が比透磁率の小さい第2のコア7で、その内側に比透磁率の大きい第1のコア6が配置される磁石埋込型ロータ1が完成する。尚、樹脂成形用金型にセットされたスリット形成部品10aは、磁石埋込型ロータ1を金型から取り出す際にスリット10内に残る。そのため、スリット形成部品10aには、非磁性の材料を用いる必要がある。
The process for manufacturing the magnet-embedded rotor 1 is, for example, as follows.
(1) First, a predetermined number of electromagnetic steel sheets punched into a predetermined shape are laminated to form a substantially cross-shaped first core 6.
(2) The permanent magnet 8 to be mounted on the permanent magnet mounting portion 6f of the first core 6 is prepared. At this time, it is convenient to magnetize the permanent magnet 8.
(3) A first core is formed on a resin molding die in which a slit forming component 10a using a nonmagnetic material (for example, ABS resin) having a higher melting point than a material obtained by kneading a resin with soft magnetic powder for injection molding is set. 6 and the permanent magnet 8 is mounted on the permanent magnet mounting portion 6f of the first core 6 using, for example, magnetic force.
(4) A material obtained by kneading a resin in soft magnetic powder is injected and molded.
In this way, the embedded magnet rotor 1 in which the outer peripheral portion is the second core 7 having a small relative permeability and the first core 6 having a large relative permeability is disposed inside the second core 7 is completed. The slit forming component 10a set in the resin molding die remains in the slit 10 when the magnet-embedded rotor 1 is taken out of the die. Therefore, it is necessary to use a nonmagnetic material for the slit forming component 10a.

図2に示す磁石埋込型ロータ1では、永久磁石8が作り出す主磁束は、主に比透磁率が大きい第1のコア6を図中矢印で示すように通る。磁石埋込型ロータ1のコアの全体が電磁鋼板の場合は、永久磁石8の端部等で磁束の漏れが発生する。そのため、主磁束が減少してモータ特性が低下する場合がある。   In the magnet-embedded rotor 1 shown in FIG. 2, the main magnetic flux generated by the permanent magnet 8 passes through the first core 6 having a large relative permeability mainly as indicated by an arrow in the figure. When the entire core of the magnet-embedded rotor 1 is an electromagnetic steel plate, magnetic flux leaks at the end of the permanent magnet 8 or the like. As a result, the main magnetic flux may decrease and the motor characteristics may deteriorate.

また、磁石埋込型ロータ1のコアの全体が電磁鋼板で、スリット10を設けただけでは、極間部の磁気アンバランスが大きくなるため、コギングトルクやトルクリプルが大きくなり、振動・騒音の要因となる。   Further, if the entire core of the magnet-embedded rotor 1 is a magnetic steel plate and the slits 10 are provided, the magnetic unbalance between the poles increases, so the cogging torque and torque ripple increase, causing vibration and noise. It becomes.

従って、図2に示すように、磁極間の第2のコア7に、第1のコア6より磁気特性の低い(透磁率の小さい)材料(例えば、軟質磁性粉末に樹脂を混練した材料)を用い、且つ外周鉄心部7aに複数のスリット10を形成することにより、永久磁石8端部への磁束の漏れを抑制し、且つ磁束のアンバランスを解消することができる。   Therefore, as shown in FIG. 2, a material having lower magnetic properties (lower magnetic permeability) than the first core 6 (for example, a material obtained by kneading a resin in soft magnetic powder) is applied to the second core 7 between the magnetic poles. By using and forming the plurality of slits 10 in the outer peripheral core portion 7a, leakage of magnetic flux to the end portion of the permanent magnet 8 can be suppressed, and magnetic flux unbalance can be eliminated.

ここで、磁石埋込型ロータ1を第1のコア6のみで構成した場合と、本実施の形態のように磁石埋込型ロータ1を第1のコア6と、第2のコア7とで構成した場合との磁束の流れを比較する。   Here, when the embedded magnet rotor 1 is configured by only the first core 6, and the embedded magnet rotor 1 is configured by the first core 6 and the second core 7 as in the present embodiment. Compare the flow of magnetic flux with the configuration.

図3は磁石埋込型ロータ1を第1のコア6のみで構成した場合の磁束の流れを示す図で、図に示すように、永久磁石8の両端部で磁束が短絡している(図4の拡大図も参照)。そのため永久磁石8の極から極へ向かう主磁束が不十分である。   FIG. 3 is a diagram showing the flow of magnetic flux when the magnet-embedded rotor 1 is composed of only the first core 6. As shown in the figure, the magnetic flux is short-circuited at both ends of the permanent magnet 8 (FIG. (See also enlarged view 4). Therefore, the main magnetic flux from the pole of the permanent magnet 8 to the pole is insufficient.

図5は磁石埋込型ロータ1を第1のコア6と第2のコア7とで構成した場合の磁束の流れを示す図で、この構成であれば、永久磁石8の両端部における磁束の短絡が抑制され、永久磁石8の極から極へ向かう主磁束を十分に流すことができる。   FIG. 5 is a diagram showing the flow of magnetic flux when the magnet-embedded rotor 1 is composed of the first core 6 and the second core 7. With this configuration, the magnetic flux at both ends of the permanent magnet 8 is shown. The short circuit is suppressed, and the main magnetic flux from the pole of the permanent magnet 8 to the pole can be sufficiently passed.

図6は、本実施の形態の磁石埋込型ロータ1を用いたモータ100の磁界解析によりトルクを算出した結果を示す。比較のため、磁石埋込型ロータ1のコアの全体が電磁鋼板で構成され、外周鉄心部にスリット10を有する従来例のトルクを併記する。図6に示すように、本実施の形態のモータ100は、従来例のものより、トルクが大幅に大きくなり、且つトルクリップルも小さくなっている。これは、磁極間を比透磁率が小さい第2のコア7の磁極間鉄心部7bで構成し、且つ外周鉄心部7aに複数のスリット10を設けることにより、永久磁石8の磁束漏れが抑制され、且つ空隙の磁束密度波形が正弦波に近い波形になるためである。   FIG. 6 shows the result of calculating the torque by the magnetic field analysis of the motor 100 using the magnet-embedded rotor 1 of the present embodiment. For comparison, the torque of a conventional example in which the entire core of the magnet embedded rotor 1 is made of an electromagnetic steel plate and has a slit 10 in the outer peripheral iron core is also shown. As shown in FIG. 6, the motor 100 of the present embodiment has a significantly larger torque and a smaller torque ripple than those of the conventional example. This is because magnetic pole leakage of the permanent magnet 8 is suppressed by forming the inter-magnetic pole core portion 7b of the second core 7 having a small relative permeability between the magnetic poles and providing a plurality of slits 10 in the outer peripheral iron core portion 7a. This is because the magnetic flux density waveform of the air gap becomes a waveform close to a sine wave.

図8は磁石埋込型ロータ1の変形例を示す断面図、図9は第1のコア6の変形例の平面図である。図2の磁石埋込型ロータ1では、第1のコア6の極間部の形状を円弧にしたが、図8、図9に示すように、V字形状にしてもよい。   FIG. 8 is a cross-sectional view showing a modification of the embedded magnet rotor 1, and FIG. 9 is a plan view of a modification of the first core 6. In the magnet-embedded rotor 1 in FIG. 2, the shape of the interpolar portion of the first core 6 is an arc, but may be V-shaped as shown in FIGS. 8 and 9.

図10は磁石埋込型ロータ1の変形例を示す断面図である。図10のように、第2のコア7の外周鉄心部7aに形成するスリット10を、極中心に向かって斜めに傾斜するようにしてもよい。これにより、極中心に磁束が集中し、トルク特性が向上する。   FIG. 10 is a cross-sectional view showing a modification of the magnet embedded rotor 1. As shown in FIG. 10, the slit 10 formed in the outer core portion 7 a of the second core 7 may be inclined obliquely toward the pole center. Thereby, magnetic flux concentrates on the pole center, and torque characteristics are improved.

図11は磁石埋込型ロータ1の変形例を示す断面図である。図11のように、第2のコア7の外周鉄心部7aに形成されるスリット10の中の、外周鉄心部7aの周方向端部に位置する端部スリット10bを大きくすることにより、永久磁石8端部での磁束の短絡を抑制することができる。   FIG. 11 is a cross-sectional view showing a modification of the magnet embedded rotor 1. As shown in FIG. 11, a permanent magnet is obtained by enlarging the end slit 10b located at the circumferential end of the outer core portion 7a in the slit 10 formed in the outer core portion 7a of the second core 7. The short circuit of the magnetic flux in 8 edge part can be suppressed.

図12は磁石埋込型ロータ1の変形例を示す断面図である。図12のように、第2のコア7の外周が円筒形状ではなく、磁極間鉄心部7bが内側に凹み、磁極間が空間になるようしてもよい。これにより、磁極間を通る磁束がさらに少なくなり、トルク特性を改善することができる。   FIG. 12 is a cross-sectional view showing a modification of the magnet embedded rotor 1. As shown in FIG. 12, the outer periphery of the second core 7 may not be cylindrical, and the inter-magnetic core portion 7b may be recessed inward so that the space between the magnetic poles is a space. As a result, the magnetic flux passing between the magnetic poles is further reduced, and the torque characteristics can be improved.

実施の形態2.
図13、図14は実施の形態2を示す図で、図13は磁石埋込型ロータ1の断面図、図14は第1のコア6の一例を示す平面図である。
本実施の形態では、磁極間を第2のコア7で形成し、その他の部分は第1のコア6で形成する。すなわち、第1のコア6は、所定の形状に打ち抜かれた電磁鋼板を所定枚数積層して構成される。各電磁鋼板は、略十字形状で、外周鉄心部6aに複数のスリット10を有し、その内側に永久磁石挿入孔9が形成される。スリット10は空洞である。永久磁石挿入孔9の周方向両端部は、主磁束が通る磁路の部分と外周鉄心部6aとが薄肉部6cで繋がれる。第1のコア6の中心には、軸孔6bが形成される。このように第1のコア6を構成することにより、スリット10、永久磁石挿入孔9等を有するコアを一体に形成できる。
Embodiment 2. FIG.
FIGS. 13 and 14 are diagrams showing the second embodiment, FIG. 13 is a sectional view of the magnet-embedded rotor 1, and FIG. 14 is a plan view showing an example of the first core 6.
In the present embodiment, the gap between the magnetic poles is formed by the second core 7, and the other portions are formed by the first core 6. That is, the first core 6 is configured by laminating a predetermined number of electromagnetic steel plates punched into a predetermined shape. Each electromagnetic steel sheet is substantially cross-shaped, has a plurality of slits 10 in the outer peripheral iron core portion 6a, and has a permanent magnet insertion hole 9 formed therein. The slit 10 is a cavity. At both ends in the circumferential direction of the permanent magnet insertion hole 9, the portion of the magnetic path through which the main magnetic flux passes and the outer peripheral core portion 6a are connected by the thin portion 6c. A shaft hole 6 b is formed at the center of the first core 6. By configuring the first core 6 in this way, the core having the slit 10, the permanent magnet insertion hole 9, and the like can be integrally formed.

図14に示す第1のコア6を用いて、磁極間を軟質磁性粉末に樹脂を混練した材料を用いて第2のコア7を樹脂成形すると図13に示す磁石埋込型ロータ1が得られる。第1のコア6をこのように構成すると、予め永久磁石8の挿入位置が決められる。また、樹脂成形金型が簡単な構成になる。   When the first core 6 shown in FIG. 14 is used and the second core 7 is resin-molded using a material obtained by kneading a resin with soft magnetic powder between the magnetic poles, the magnet-embedded rotor 1 shown in FIG. 13 is obtained. . If the 1st core 6 is comprised in this way, the insertion position of the permanent magnet 8 will be decided previously. Further, the resin molding die has a simple configuration.

図13に示す磁石埋込型ロータ1の製造工程を以下に示す。
(1)先ず、外周鉄心部6aに複数のスリット10を有し、且つその内側に永久磁石挿入孔9を有するように打ち抜いた電磁鋼板を所定枚数積層して、略十字状の第1のコア6を作る。
(2)第1のコア6の永久磁石挿入孔9に挿入する永久磁石8を用意する。このとき、永久磁石8の着磁は不要である。
(3)樹脂成形用金型に、第1のコア6を配置し、永久磁石8を第1のコア6の永久磁石挿入孔9に、挿入する。
(4)軟質磁性粉末に樹脂を混練した材料を射出して成形する。
A manufacturing process of the embedded magnet rotor 1 shown in FIG. 13 will be described below.
(1) First, a predetermined number of electromagnetic steel plates punched so as to have a plurality of slits 10 in the outer peripheral iron core portion 6a and have permanent magnet insertion holes 9 inside thereof are laminated to form a substantially cross-shaped first core. Make 6.
(2) A permanent magnet 8 to be inserted into the permanent magnet insertion hole 9 of the first core 6 is prepared. At this time, the permanent magnet 8 need not be magnetized.
(3) The first core 6 is disposed in the resin molding die, and the permanent magnet 8 is inserted into the permanent magnet insertion hole 9 of the first core 6.
(4) A material obtained by kneading a resin in soft magnetic powder is injected and molded.

このように、図14に示す第1のコア6を使用することにより、樹脂成形用金型にスリット形成部品10aをセットする必要がなく、樹脂成形用金型が簡単になる。また、第1のコア6に永久磁石挿入孔9が形成されているので、永久磁石8の着磁が不要で、永久磁石8の位置決めも容易である。   Thus, by using the first core 6 shown in FIG. 14, it is not necessary to set the slit forming component 10a in the resin molding die, and the resin molding die is simplified. Further, since the permanent magnet insertion hole 9 is formed in the first core 6, it is not necessary to magnetize the permanent magnet 8, and positioning of the permanent magnet 8 is easy.

実施の形態1を示す図で、モータ100の断面図。FIG. 3 shows the first embodiment and is a cross-sectional view of the motor 100. 実施の形態1を示す図で、磁石埋込型ロータ1の断面図。FIG. 3 shows the first embodiment, and is a cross-sectional view of the magnet-embedded rotor 1. 実施の形態1を示す図で、磁石埋込型ロータ1を第1のコア6のみで構成した場合の磁束の流れを示す図。FIG. 5 shows the first embodiment, and shows the flow of magnetic flux when the magnet-embedded rotor 1 is composed of only a first core 6. 実施の形態1を示す図で、図3の要部拡大図。FIG. 4 shows the first embodiment and is an enlarged view of a main part of FIG. 3. 実施の形態1を示す図で、磁石埋込型ロータ1を第1のコア6と第2のコア7とで構成した場合の磁束の流れを示す図。FIG. 3 shows the first embodiment, and shows the flow of magnetic flux when the magnet-embedded rotor 1 is composed of a first core 6 and a second core 7. 実施の形態1を示す図で、磁界解析により算出したモータ100のトルクを示す図。FIG. 5 shows the torque of the motor 100 calculated by magnetic field analysis, showing the first embodiment. 実施の形態1を示す図で、第1のコア6の平面図。FIG. 5 shows the first embodiment and is a plan view of the first core 6. 実施の形態1を示す図で、磁石埋込型ロータ1の変形例を示す断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view showing a modification of the magnet embedded rotor 1. 実施の形態1を示す図で、第1のコア6の変形例の平面図。FIG. 5 shows the first embodiment, and is a plan view of a modified example of the first core 6. 実施の形態1を示す図で、磁石埋込型ロータ1の変形例を示す断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view showing a modification of the magnet embedded rotor 1. 実施の形態1を示す図で、磁石埋込型ロータ1の変形例を示す断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view showing a modification of the magnet embedded rotor 1. 実施の形態1を示す図で、磁石埋込型ロータ1の変形例を示す断面図である。FIG. 5 is a diagram illustrating the first embodiment and is a cross-sectional view illustrating a modification of the magnet-embedded rotor 1. 実施の形態2を示す図で、磁石埋込型ロータ1の断面図。FIG. 5 shows the second embodiment and is a cross-sectional view of the magnet-embedded rotor 1. 実施の形態2を示す図で、第1のコア6の一例を示す平面図。FIG. 5 shows the second embodiment and is a plan view showing an example of a first core 6.

符号の説明Explanation of symbols

1 磁石埋込型ロータ、2 ステータ、2a ティース、2b スロット、2c コアバック、3 フレーム、4 コイル、5 開口部、6 第1のコア、6a 外周鉄心部、6b 軸孔、6c 薄肉部、6d 永久磁石位置決め突起、6f 永久磁石装着部、7 第2のコア、7a 外周鉄心部、7b 磁極間鉄心部、8 永久磁石、9 永久磁石挿入孔、10 スリット、10a スリット形成部品、11 空隙、12 軸、100 モータ。   DESCRIPTION OF SYMBOLS 1 Magnet embedded rotor, 2 stator, 2a teeth, 2b slot, 2c core back, 3 frame, 4 coil, 5 opening part, 6 1st core, 6a outer periphery iron core part, 6b axial hole, 6c thin part, 6d Permanent magnet positioning projection, 6f Permanent magnet mounting part, 7 Second core, 7a Outer iron core part, 7b Inter-magnetic core part, 8 Permanent magnet, 9 Permanent magnet insertion hole, 10 slit, 10a Slit forming part, 11 Air gap, 12 Shaft, 100 motor.

Claims (14)

内部に永久磁石を有する磁石埋込型ロータにおいて、
所定の形状に打ち抜かれた電磁鋼板を所定枚数積層して形成され、外周に永久磁石を装着する永久磁石装着部を有し、前記永久磁石の磁路となる第1のコアと、
前記永久磁石装着部に装着される永久磁石と、
前記第1のコア及び前記永久磁石の外側に設けられ、軟質磁性粉末に樹脂を混練した材料で形成され、比透磁率が前記第1のコアの比透磁率より小さく、前記永久磁石に対向する外周鉄心部と、前記永久磁石同士の間の磁極間鉄心部とを構成する第2のコアとを備えたことを特徴とする磁石埋込型ロータ。
In a magnet embedded rotor having a permanent magnet inside,
A first core that is formed by laminating a predetermined number of electromagnetic steel sheets punched into a predetermined shape, has a permanent magnet mounting portion for mounting a permanent magnet on the outer periphery, and serves as a magnetic path of the permanent magnet;
A permanent magnet mounted on the permanent magnet mounting portion;
Provided outside the first core and the permanent magnet , formed of a material obtained by kneading a resin in soft magnetic powder, and having a relative permeability smaller than that of the first core and facing the permanent magnet. A magnet-embedded rotor comprising: an outer peripheral iron core portion; and a second core that forms an intermagnetic pole iron core portion between the permanent magnets.
前記第2のコアは、前記外周鉄心部に複数のスリットを有することを特徴とする請求項1記載の磁石埋込型ロータ。   The embedded magnet type rotor according to claim 1, wherein the second core has a plurality of slits in the outer peripheral core portion. 前記永久磁石装着部は、両端に永久磁石位置決め突起を備えたことを特徴とする請求項1又は請求項2記載の磁石埋込型ロータ。   3. The embedded magnet rotor according to claim 1, wherein the permanent magnet mounting portion includes permanent magnet positioning protrusions at both ends. 前記第1のコアの前記永久磁石装着部同士の間の磁極間部分を、内側に凹む円弧形状としたことを特徴とする請求項1乃至3のいずれかに記載の磁石埋込型ロータ。   4. The magnet-embedded rotor according to claim 1, wherein a portion between the magnetic poles between the permanent magnet mounting portions of the first core has an arc shape recessed inward. 5. 前記第1のコアの前記永久磁石装着部同士の間の磁極間部分を、内側に凹むV字形状としたことを特徴とする請求項1乃至4のいずれかに記載の磁石埋込型ロータ。   5. The magnet-embedded rotor according to claim 1, wherein a portion between the magnetic poles between the permanent magnet mounting portions of the first core has a V shape recessed inward. 前記第2のコアの前記外周鉄心部に設けられるスリットを、極中心に向かって斜めに傾斜させたことを特徴とする請求項2乃至5のいずれかに記載の磁石埋込型ロータ。   The embedded magnet type rotor according to any one of claims 2 to 5, wherein a slit provided in the outer peripheral core portion of the second core is inclined obliquely toward the pole center. 前記第2のコアの前記外周鉄心部に設けられるスリットの中、前記外周鉄心部の周方向端部に位置する端部スリットを他のスリットより大きくしたことを特徴とする請求項2乃至6のいずれかに記載の磁石埋込型ロータ。   7. The slits provided in the outer peripheral core portion of the second core, wherein an end slit located at a circumferential end of the outer peripheral core portion is made larger than other slits. The magnet embedded rotor according to any one of the above. 内部に永久磁石を有する磁石埋込型ロータの製造方法において、
所定の形状に打ち抜いた電磁鋼板を所定枚数積層して永久磁石装着部を有する第1のコアを形成し、
前記第1のコアの前記永久磁石装着部に装着する永久磁石を形成し、
樹脂成形用金型に、前記第1のコアを配置し、前記永久磁石を前記第1のコアの前記永久磁石装着部に装着し、
前記樹脂成形用金型に、軟質磁性粉末に樹脂を混練した材料を射出して、第2のコアを前記第1のコアと一体成形することを特徴とする磁石埋込型ロータの製造方法。
In the manufacturing method of a magnet embedded rotor having a permanent magnet inside,
Forming a first core having a permanent magnet mounting portion by laminating a predetermined number of electromagnetic steel sheets punched into a predetermined shape;
Forming a permanent magnet to be mounted on the permanent magnet mounting portion of the first core;
The first core is disposed on a resin molding die, and the permanent magnet is mounted on the permanent magnet mounting portion of the first core,
A method of manufacturing a magnet-embedded rotor, wherein a material obtained by kneading a resin in soft magnetic powder is injected into the resin molding die, and a second core is integrally formed with the first core.
前記樹脂成形用金型に、射出成形用の軟質磁性粉末に樹脂を混練した材料より融点の高い非磁性材料を用いるスリット形成部品がセットされた状態で、前記混練材料を射出することを特徴とする請求項8記載の磁石埋込型ロータの製造方法。   The kneaded material is injected in a state where a slit forming component using a nonmagnetic material having a melting point higher than that of a material obtained by kneading resin in soft magnetic powder for injection molding is set in the mold for resin molding. A method of manufacturing a magnet-embedded rotor according to claim 8. 前記第1のコアの前記永久磁石装着部に装着する永久磁石は、予め着磁しておくことを特徴とする請求項8又は請求項9記載の磁石埋込型ロータの製造方法。   The method for manufacturing a magnet-embedded rotor according to claim 8 or 9, wherein a permanent magnet to be mounted on the permanent magnet mounting portion of the first core is previously magnetized. 内部に永久磁石を有する磁石埋込型ロータにおいて、
所定の形状に打ち抜かれた電磁鋼板を所定枚数積層して形成され、外周鉄心部と、この外周鉄心部の内側に永久磁石を挿入する永久磁石挿入孔とを有し、前記永久磁石の磁路となる第1のコアと、
前記永久磁石挿入孔に挿入される永久磁石と、
軟質磁性粉末に樹脂を混練した材料により前記第1のコアの磁極間に形成され、比透磁率が前記第1のコアの比透磁率より小さい第2のコアとを備えたことを特徴とする磁石埋込型ロータ。
In a magnet embedded rotor having a permanent magnet inside,
A magnetic path of the permanent magnet is formed by laminating a predetermined number of electromagnetic steel sheets punched into a predetermined shape, and has an outer peripheral iron core portion and a permanent magnet insertion hole for inserting a permanent magnet inside the outer peripheral iron core portion. A first core that becomes
A permanent magnet inserted into the permanent magnet insertion hole;
And a second core formed between the magnetic poles of the first core by a material obtained by kneading a resin with soft magnetic powder and having a relative permeability smaller than that of the first core. Embedded magnet rotor.
前記第1のコアは、前記外周鉄心部に複数のスリットを有することを特徴とする請求項11記載の磁石埋込型ロータ。   The embedded magnet-type rotor according to claim 11, wherein the first core has a plurality of slits in the outer peripheral core portion. 前記第1のコアは電磁鋼板を積層して形成され、前記第2のコアは軟質磁性粉末に樹脂を混練した材料を射出成形して形成されることを特徴とする請求項1又は請求項11記載の磁石埋込型ロータ。   The first core is formed by laminating electromagnetic steel plates, and the second core is formed by injection molding a material obtained by kneading a resin in soft magnetic powder. The described magnet-embedded rotor. 内部に永久磁石を有する磁石埋込型ロータの製造方法において、
所定の形状に打ち抜いた電磁鋼板を所定枚数積層して永久磁石挿入孔を有する第1のコアを形成し、
前記第1のコアの前記永久磁石挿入孔に挿入する永久磁石を形成し、
樹脂成形用金型に、前記第1のコアを配置し、前記永久磁石を前記第1のコアの前記永久磁石挿入孔に挿入し、
前記樹脂成形用金型に、軟質磁性粉末に樹脂を混練した材料を射出して、第2のコアを前記第1のコアと一体成形することを特徴とする磁石埋込型ロータの製造方法。
In the manufacturing method of a magnet embedded rotor having a permanent magnet inside,
Forming a first core having permanent magnet insertion holes by laminating a predetermined number of electromagnetic steel sheets punched into a predetermined shape;
Forming a permanent magnet to be inserted into the permanent magnet insertion hole of the first core;
Placing the first core in a resin molding die, inserting the permanent magnet into the permanent magnet insertion hole of the first core,
A method of manufacturing a magnet-embedded rotor, wherein a material obtained by kneading a resin in soft magnetic powder is injected into the resin molding die, and a second core is integrally formed with the first core.
JP2006318083A 2006-11-27 2006-11-27 Embedded magnet rotor and manufacturing method of embedded magnet rotor Active JP4673825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006318083A JP4673825B2 (en) 2006-11-27 2006-11-27 Embedded magnet rotor and manufacturing method of embedded magnet rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006318083A JP4673825B2 (en) 2006-11-27 2006-11-27 Embedded magnet rotor and manufacturing method of embedded magnet rotor

Publications (2)

Publication Number Publication Date
JP2008131853A JP2008131853A (en) 2008-06-05
JP4673825B2 true JP4673825B2 (en) 2011-04-20

Family

ID=39557157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006318083A Active JP4673825B2 (en) 2006-11-27 2006-11-27 Embedded magnet rotor and manufacturing method of embedded magnet rotor

Country Status (1)

Country Link
JP (1) JP4673825B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042184B2 (en) * 2008-09-29 2012-10-03 三菱電機株式会社 Synchronous motor rotor and method of manufacturing synchronous motor rotor
JP2010193617A (en) * 2009-02-18 2010-09-02 Jfe Steel Corp Internally embedded magnet type motor having small cogging torque
JP5279794B2 (en) * 2010-10-28 2013-09-04 三菱電機株式会社 Permanent magnet embedded motor and hermetic compressor
JP5478461B2 (en) * 2010-11-09 2014-04-23 三菱電機株式会社 Electric motor and compressor
JP5811565B2 (en) * 2011-03-31 2015-11-11 株式会社富士通ゼネラル Rotor and permanent magnet motor
JP5811567B2 (en) * 2011-03-31 2015-11-11 株式会社富士通ゼネラル Rotor and permanent magnet motor
JP5929147B2 (en) * 2011-12-08 2016-06-01 マツダ株式会社 Rotor structure of rotating electrical machine
JP5743873B2 (en) * 2011-12-15 2015-07-01 三菱電機株式会社 Embedded magnet type rotor and embedded magnet type permanent magnet rotating electric machine using this rotor
JP2013247850A (en) * 2012-05-30 2013-12-09 Hitachi Appliances Inc Motor and laundry dryer machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09131009A (en) * 1995-10-31 1997-05-16 Mitsubishi Electric Corp Permanent magnet rotor
JPH11187597A (en) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd Rotor with embedded permanent magnets
JP2001037127A (en) * 1999-07-26 2001-02-09 Toshiba Corp Permanent magnet type motor
JP2006211823A (en) * 2005-01-28 2006-08-10 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type rotary electric machine and compressor using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09131009A (en) * 1995-10-31 1997-05-16 Mitsubishi Electric Corp Permanent magnet rotor
JPH11187597A (en) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd Rotor with embedded permanent magnets
JP2001037127A (en) * 1999-07-26 2001-02-09 Toshiba Corp Permanent magnet type motor
JP2006211823A (en) * 2005-01-28 2006-08-10 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type rotary electric machine and compressor using the same

Also Published As

Publication number Publication date
JP2008131853A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4673825B2 (en) Embedded magnet rotor and manufacturing method of embedded magnet rotor
JP4755117B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
JP6280970B2 (en) Rotor and motor
JP4720982B2 (en) Axial air gap type electric motor
JP5677584B2 (en) Rotor, compressor and refrigeration air conditioner for embedded permanent magnet motor
US20140084734A1 (en) Rotating Electrical Machine, Method for Manufacturing Magnetic Pole Piece
JP3602392B2 (en) Permanent magnet embedded motor
WO2004001930A1 (en) Rotor for external rotor-type permanent magnet motor
JP2015510387A (en) Electric machine
KR20180117674A (en) Electric motors and air conditioners
JP5347588B2 (en) Embedded magnet motor
CN108462268B (en) Rotor of rotating electric machine
JP2015133839A (en) Magnet-embedded rotor
JP6661939B2 (en) Rotor
JP2005110485A (en) Rotor body for motor and motor
JP5269032B2 (en) Synchronous motor rotor
JP5042184B2 (en) Synchronous motor rotor and method of manufacturing synchronous motor rotor
JP6373505B2 (en) Electric motor and air conditioner
JP4080273B2 (en) Permanent magnet embedded motor
WO2017212575A1 (en) Permanent magnet motor
JP5353804B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JP2009038897A (en) Axial gap motor
JP4706854B2 (en) Axial air gap type electric motor
KR20150090773A (en) Rotor and motor including the same
JP2003319585A (en) Permanent magnet motor and method for forming anisotropic pole magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

R150 Certificate of patent or registration of utility model

Ref document number: 4673825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250