JP4631984B2 - Circuit member connecting adhesive, circuit board, and manufacturing method thereof - Google Patents

Circuit member connecting adhesive, circuit board, and manufacturing method thereof Download PDF

Info

Publication number
JP4631984B2
JP4631984B2 JP2009158970A JP2009158970A JP4631984B2 JP 4631984 B2 JP4631984 B2 JP 4631984B2 JP 2009158970 A JP2009158970 A JP 2009158970A JP 2009158970 A JP2009158970 A JP 2009158970A JP 4631984 B2 JP4631984 B2 JP 4631984B2
Authority
JP
Japan
Prior art keywords
adhesive
circuit member
connection terminal
connection
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009158970A
Other languages
Japanese (ja)
Other versions
JP2010016383A (en
JP2010016383A5 (en
Inventor
伊津夫 渡辺
賢三 竹村
朗 永井
和博 井坂
治 渡辺
和良 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2009158970A priority Critical patent/JP4631984B2/en
Publication of JP2010016383A publication Critical patent/JP2010016383A/en
Publication of JP2010016383A5 publication Critical patent/JP2010016383A5/ja
Application granted granted Critical
Publication of JP4631984B2 publication Critical patent/JP4631984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers

Landscapes

  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)
  • Liquid Crystal (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、例えばフリップチップ実装方法により半導体チップと基板とを接着固定するとともに両者の電極どうしを電気的に接続するために使用される回路部材接続用接着剤と、回路部材どうしが接続された回路板と、その製造方法とに関する。   In the present invention, for example, a circuit chip connecting adhesive is used to bond and fix a semiconductor chip and a substrate by a flip chip mounting method and to electrically connect both electrodes to each other. It is related with a circuit board and its manufacturing method.

半導体実装分野では、低コスト化・高精度化に対応した新しい実装形態としてIC(Integrated Circuit)チップを直接プリント基板やフレキシブル配線板に搭載するフリップチップ実装が注目されている。   In the semiconductor mounting field, flip chip mounting, in which an IC (Integrated Circuit) chip is directly mounted on a printed circuit board or a flexible wiring board, is attracting attention as a new mounting form corresponding to cost reduction and high accuracy.

フリップチップ実装方法としては、チップの端子にはんだバンプを設け、はんだ接続を行う方法や導電性接着剤を介して電気的接続を行う方法が知られている。これらの方法では、各種の環境に曝した場合、接続するチップと基板の熱膨張係数差に基づくストレスが接続界面で発生し接続信頼性が低下するという問題がある。このため、一般に、接続界面のストレスを緩和する目的でエポキシ樹脂系のアンダフィル材をチップ/基板の間隙に注入する方法が検討されている。   As a flip chip mounting method, there are known a method in which solder bumps are provided on the terminals of the chip and solder connection is performed, and a method in which electrical connection is performed through a conductive adhesive. In these methods, when exposed to various environments, there is a problem that stress based on the difference in thermal expansion coefficient between the chip to be connected and the substrate is generated at the connection interface and connection reliability is lowered. For this reason, in general, a method of injecting an epoxy resin-based underfill material into the gap between the chip and the substrate for the purpose of alleviating the stress at the connection interface has been studied.

しかし、このアンダフィルの注入工程は、プロセスを煩雑化し、生産性、コストの面で不利になるという問題がある。このような問題を解決すべく、最近では、異方導電性と封止機能とを有する異方導電性接着剤を用いたフリップチップ実装が、プロセス簡易性という観点から注目されている。   However, the underfill injection process complicates the process and is disadvantageous in terms of productivity and cost. In order to solve such a problem, flip chip mounting using an anisotropic conductive adhesive having anisotropic conductivity and a sealing function has recently attracted attention from the viewpoint of process simplicity.

しかしながら、異方導電接着剤を介してチップを直接基板に搭載すると、温度サイクル試験においてチップと基板との熱膨張係数差に基づくストレスが接続部で生じることから、熱衝撃試験、PCT(Pressure Cooker Test)試験、はんだバス浸漬試験などの信頼性試験を行うと接続抵抗の増大や接着剤の剥離が生じるという問題がある。また、チップの接続端子に突起電極が形成されている場合、信頼性試験においてチップと基板との熱膨張係数差に基づくストレスが突起電極とチップとの界面に集中して、突起電極がチップ電極界面から剥離し、導通不良が生じるという問題がある。   However, when the chip is directly mounted on the substrate via the anisotropic conductive adhesive, stress based on the difference in thermal expansion coefficient between the chip and the substrate is generated in the temperature cycle test at the connection portion. Therefore, the thermal shock test, PCT (Pressure Cooker When a reliability test such as a test test or a solder bath immersion test is performed, there is a problem that the connection resistance increases or the adhesive peels off. Further, when a protruding electrode is formed on the connection terminal of the chip, stress based on a difference in thermal expansion coefficient between the chip and the substrate is concentrated on the interface between the protruding electrode and the chip in the reliability test, and the protruding electrode is the chip electrode. There is a problem that peeling from the interface causes poor conduction.

本発明は、接続部での接続抵抗の増大や接着剤の剥離がなく、接続信頼性が大幅に向上する回路部材接続用接着剤と、回路部材どうしが接続された回路板と、その製造方法とを提供するものである。   The present invention relates to an adhesive for circuit member connection that does not increase connection resistance at the connection part and does not peel off the adhesive, and greatly improves connection reliability, a circuit board to which circuit members are connected, and a method for manufacturing the circuit board And provide.

本発明の第1の回路部材接続用接着剤は、相対向する回路電極間に介在して、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続するための回路部材接続用接着剤であって、接着樹脂組成物と無機質充填材とを含み、接着樹脂組成物100重量部に対して無機質充填材を10〜200重量部含有することを特徴とする。   The first circuit member connecting adhesive of the present invention is interposed between circuit electrodes facing each other, presses the circuit electrodes facing each other, and electrically connects the electrodes in the pressurizing direction. An adhesive for use, comprising an adhesive resin composition and an inorganic filler, and containing 10 to 200 parts by weight of the inorganic filler with respect to 100 parts by weight of the adhesive resin composition.

また、本発明の第2の回路部材接続用接着剤は、相対向する回路電極間に介在させ、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続するための回路部材接続用接着剤であって、接着樹脂組成物と無機質充填材とを含み、接着樹脂組成物100重量部に対して無機質充填材を10〜200重量部含有する第1の接着剤層と、接着樹脂組成物を主成分とする第2の接着剤層とを備えた多層構成のものである。   The second adhesive for connecting a circuit member of the present invention is a circuit member for interposing between opposing circuit electrodes, pressurizing the opposing circuit electrodes, and electrically connecting the electrodes in the pressurizing direction. A first adhesive layer comprising a bonding resin composition and an inorganic filler, and containing 10 to 200 parts by weight of the inorganic filler with respect to 100 parts by weight of the adhesive resin composition; It has a multilayer structure including a second adhesive layer mainly composed of a resin composition.

また、本発明の第3の回路部材接続用接着剤は、相対向する回路電極間に介在され、相対向する回路電極の間を加圧して加圧方向の電極間を電気的に接続するための回路部材接続用接着剤であって、接着樹脂組成物と無機質充填材とを含み、上記接着剤の硬化後の110〜130℃での平均熱膨張係数が200ppm/℃以下であることを特徴とする。接着剤の硬化後の110〜130℃での平均熱膨張係数は30〜200ppm/℃であることが好ましい。   The third circuit member connecting adhesive of the present invention is interposed between the circuit electrodes facing each other, and pressurizes the circuit electrodes facing each other to electrically connect the electrodes in the pressurizing direction. An adhesive for connecting circuit members, comprising an adhesive resin composition and an inorganic filler, wherein an average coefficient of thermal expansion at 110 to 130 ° C. after curing of the adhesive is 200 ppm / ° C. or less. And The average coefficient of thermal expansion at 110 to 130 ° C. after curing of the adhesive is preferably 30 to 200 ppm / ° C.

また本発明の第4の回路部材接続用接着剤は、相対向する回路電極間に介在させ、相対向する回路電極を加圧して加圧方向の電極間を電気的に接続するための回路部材接続用接着剤であって、互いに異なる物性値を持つ第3の接着剤層と第4の接着剤層とを備えた多層構成のものである。   The fourth circuit member connecting adhesive of the present invention is a circuit member that is interposed between the opposing circuit electrodes and presses the opposing circuit electrodes to electrically connect the electrodes in the pressing direction. A connecting adhesive having a multilayer structure including a third adhesive layer and a fourth adhesive layer having different physical property values.

上記接着剤の硬化後の弾性率が、第3の接着剤層>第4の接着剤層であり、第4の接着剤層の硬化後の40℃における弾性率が100〜2000MPaであることが好ましい。   The elastic modulus after curing of the adhesive is such that the third adhesive layer> the fourth adhesive layer, and the elastic modulus at 40 ° C. after curing of the fourth adhesive layer is 100 to 2000 MPa. preferable.

また、上記接着剤の熱膨張係数が第3の接着剤層<第4の接着剤層であり、第3の接着剤層の30〜100℃までの熱膨張係数が20〜70ppm/℃であることが好ましい。   Further, the thermal expansion coefficient of the adhesive is the third adhesive layer <the fourth adhesive layer, and the thermal expansion coefficient of the third adhesive layer from 30 to 100 ° C. is 20 to 70 ppm / ° C. It is preferable.

また、接着剤のガラス転移温度が第3の接着剤層>第4の接着剤層であり、第3の接着剤層のガラス転移温度が120℃以上であることが好ましい。   Moreover, it is preferable that the glass transition temperature of an adhesive is 3rd adhesive layer> 4th adhesive layer, and the glass transition temperature of a 3rd adhesive layer is 120 degreeC or more.

上記第3及び第4の少なくともいずれか一方の接着剤層は、接着樹脂組成物100重量部に対して無機質充填材を10〜200重量部含有することができる。   At least one of the third and fourth adhesive layers may contain 10 to 200 parts by weight of an inorganic filler with respect to 100 parts by weight of the adhesive resin composition.

上記接着剤は、接着樹脂組成物100体積部に対して導電粒子を0.1〜30体積部含有することができる。   The said adhesive agent can contain 0.1-30 volume parts of electroconductive particles with respect to 100 volume parts of adhesive resin compositions.

上記接着剤では、接着樹脂組成物の硬化後の40℃での弾性率が30〜2000MPaであることが好ましい。   In the said adhesive agent, it is preferable that the elasticity modulus in 40 degreeC after hardening of an adhesive resin composition is 30-2000 Mpa.

接着剤組成物は、エポキシ樹脂、アクリルゴム、潜在性硬化剤を含有することができ、アクリルゴムとしては、その分子中にグリシジルエーテル基を含有しているものが好ましい。   The adhesive composition can contain an epoxy resin, an acrylic rubber, and a latent curing agent, and the acrylic rubber preferably contains a glycidyl ether group in the molecule.

上記接着剤は、形状がフィルム状であってもよい。   The adhesive may have a film shape.

本発明の回路板は、
第1の接続端子を有する第1の回路部材と、
第2の接続端子を有する第2の回路部材とを、
第1の接続端子と第2の接続端子とを対向させて配置し、
上記対向配置された第1の接続端子と第2の接続端子との間に接着剤を介在させ、
加熱加圧して上記対向配置した第1の接続端子と第2の接続端子とを電気的に接続させた回路板であって、
上記接着剤が本発明の回路部材接続用接着剤であることを特徴とする。
The circuit board of the present invention
A first circuit member having a first connection terminal;
A second circuit member having a second connection terminal;
The first connection terminal and the second connection terminal are arranged to face each other,
An adhesive is interposed between the first connection terminal and the second connection terminal arranged opposite to each other,
A circuit board in which the first connection terminal and the second connection terminal that are disposed opposite to each other by heating and pressing are electrically connected,
The adhesive is the adhesive for connecting circuit members of the present invention.

第1の接続端子を有する第1の回路部材が第1の接続端子を有する無機質絶縁基板であり、第2の接続端子を有する第2の回路部材が、第2の接続端子を有する有機質絶縁基板である場合、上記多層構成の接着剤の第1の接着剤層又は第3の接着剤層は、上記第1の回路部材側に接着して使用される。   The first circuit member having the first connection terminal is an inorganic insulating substrate having the first connection terminal, and the second circuit member having the second connection terminal is an organic insulating substrate having the second connection terminal. In this case, the first adhesive layer or the third adhesive layer of the multi-layered adhesive is used by being adhered to the first circuit member side.

本発明の回路部材接続用接着剤は、相対向する回路電極間に介在させ、相対向する回路電極を加圧して加圧方向の電極間を電気的に接続するための回路部材接続用接着剤であって、接着樹脂組成物と無機質充填材とを含み、接着樹脂組成物100重量部に対して無機質充填材を10〜200重量部含有する回路部材接続用接着剤、または、接着樹脂組成物100重量部に対して無機質充填材を10〜200重量部含有する第1の接着剤層と接着樹脂組成物を主成分とする第2の接着剤層とを備えた多層構成の回路部材接続用接着剤である。このような本発明の回路部材接着用接着剤において、接着樹脂組成物100重量部に対して無機質充填材を10〜200重量部含有する回路部材接続用接着剤の接着樹脂組成物は、硬化後の40℃での弾性率が30〜2000MPaであるものが好ましく、このとき接着剤の40℃での弾性率は100〜5000MPaであることができ、2000MPaを超え、3500MPa以下であることが好ましい。   The adhesive for connecting a circuit member of the present invention is interposed between circuit electrodes facing each other, presses the circuit electrodes facing each other, and electrically connects the electrodes in the pressurizing direction. An adhesive for circuit member connection containing an adhesive resin composition and an inorganic filler, and containing 10 to 200 parts by weight of the inorganic filler with respect to 100 parts by weight of the adhesive resin composition, or an adhesive resin composition For connecting a circuit member having a multilayer structure comprising a first adhesive layer containing 10 to 200 parts by weight of an inorganic filler with respect to 100 parts by weight and a second adhesive layer mainly composed of an adhesive resin composition It is an adhesive. In such an adhesive for adhering circuit members of the present invention, the adhesive resin composition of the adhesive for connecting circuit members containing 10 to 200 parts by weight of an inorganic filler with respect to 100 parts by weight of the adhesive resin composition is cured. The elastic modulus at 40 ° C. is preferably 30 to 2000 MPa. At this time, the elastic modulus at 40 ° C. of the adhesive can be 100 to 5000 MPa, preferably more than 2000 MPa and 3500 MPa or less.

接着樹脂組成物の硬化後の40℃での弾性率が30〜2000MPaのもので、無機質充填材を含有することにより接着剤の40℃での弾性率が2000MPaを超えるものは、低弾性率接着樹脂組成物による応力緩和とともに無機質充填材により熱膨張係数を小さくすることができ、接続信頼性に優れる回路部材接続用接着剤を提供することができる。   If the elastic modulus at 40 ° C. after curing of the adhesive resin composition is 30 to 2000 MPa, and an inorganic filler is contained, the elastic modulus at 40 ° C. of the adhesive exceeds 2000 MPa. The thermal expansion coefficient can be reduced by the inorganic filler as well as the stress relaxation by the resin composition, and an adhesive for connecting circuit members excellent in connection reliability can be provided.

接着樹脂組成物を主成分とする第2の接着剤層には、無機質充填材を含有しないことが望ましいが、特性を調整するため第1の接着剤層の無機質充填材の量より少ない量、例えば50重量%未満、好ましくは20重量%未満含有することができる。   The second adhesive layer containing the adhesive resin composition as a main component preferably contains no inorganic filler, but an amount smaller than the amount of the inorganic filler in the first adhesive layer in order to adjust the characteristics, For example, it can be contained in an amount of less than 50% by weight, preferably less than 20% by weight.

また、接着樹脂組成物を主成分とする第2の接着剤層は、硬化後の40℃における弾性率が100〜2000MPaの接着剤層とすることができる。   Moreover, the 2nd adhesive bond layer which has an adhesive resin composition as a main component can be made into the adhesive bond layer whose elasticity modulus in 40 degreeC after hardening is 100-2000 Mpa.

本発明に用いられる多層構成の接着剤は、相接続する回路部材の弾性率又は熱膨張係数の大小に応じて配置することが望ましい。すなわち、相対的に回路部材の弾性率が大きい又は熱膨張係数の小さい側に、相対的に弾性率の大きい又は熱膨張係数の小さい又はガラス転移温度の高い第3の接着剤層側が、相対的に回路部材の弾性率が小さい又は熱膨張係数の大きい側に、相対的に弾性率の小さい又は熱膨張係数の大きい又はガラス転移温度の低い第4の接着剤層側が接着されるように接着剤を配置することが望ましい。   The multi-layered adhesive used in the present invention is desirably arranged in accordance with the elastic modulus or thermal expansion coefficient of the circuit members to be connected. That is, the third adhesive layer side having a relatively large elastic modulus, a low thermal expansion coefficient, or a high glass transition temperature is relatively positioned on the side where the elastic modulus of the circuit member is relatively large or the thermal expansion coefficient is small. The fourth adhesive layer side having a relatively low elastic modulus, a large thermal expansion coefficient, or a low glass transition temperature is adhered to the side having a low elastic modulus or a large thermal expansion coefficient. It is desirable to arrange.

本発明に用いられる多層構成の接着剤において、例えば半導体チップと有機絶縁基板とを接続する場合、チップと有機絶縁基板との間の熱膨張係数差に基づく応力を緩和する目的では、有機絶縁基板側の面を構成する第4の接着剤層の硬化後の40℃での弾性率は100〜2000MPaであることが好ましい。半導体チップ側の面を構成する第3の接着剤層の硬化後の40℃での弾性率は、第4の接着剤層より大きく、500〜5000MPaが使用される。   In the adhesive having a multi-layer structure used in the present invention, for example, when connecting a semiconductor chip and an organic insulating substrate, the organic insulating substrate is used for the purpose of relieving stress based on a difference in thermal expansion coefficient between the chip and the organic insulating substrate. The elastic modulus at 40 ° C. after curing of the fourth adhesive layer constituting the side surface is preferably 100 to 2000 MPa. The elastic modulus at 40 ° C. after curing of the third adhesive layer constituting the surface on the semiconductor chip side is larger than that of the fourth adhesive layer, and 500 to 5000 MPa is used.

また、半導体チップと有機絶縁基板の間の熱膨張係数差に基づく応力を緩和する目的で半導体チップ側の面を構成する第3の接着剤層の30〜100℃までの熱膨張係数は20〜70ppm/℃であることが好ましく、有機絶縁基板側の面を構成する第4の接着剤層の30〜100℃までの熱膨張係数は第3の接着剤層より大きく、30〜100ppm/℃であることが好ましい。   Moreover, the thermal expansion coefficient up to 30 to 100 ° C. of the third adhesive layer constituting the surface on the semiconductor chip side is 20 to 20 for the purpose of relaxing the stress based on the difference in thermal expansion coefficient between the semiconductor chip and the organic insulating substrate. It is preferable that it is 70 ppm / ° C., and the fourth adhesive layer constituting the surface on the organic insulating substrate side has a thermal expansion coefficient of 30 to 100 ° C. larger than that of the third adhesive layer, and is 30 to 100 ppm / ° C. Preferably there is.

また、半導体チップと有機絶縁基板の間の熱膨張係数差に基づく応力を緩和する目的で半導体チップ側の面を構成する第3の接着剤層のガラス転移温度が120℃以上、更には180℃以下であることが好ましく、有機絶縁基板側の面を構成する第4の接着剤層のガラス転移温度は第3の接着剤層より小であることが好ましい。   In addition, the glass transition temperature of the third adhesive layer constituting the surface on the semiconductor chip side is 120 ° C. or higher, more preferably 180 ° C. for the purpose of relieving stress based on the difference in thermal expansion coefficient between the semiconductor chip and the organic insulating substrate. The glass transition temperature of the fourth adhesive layer constituting the surface on the organic insulating substrate side is preferably smaller than that of the third adhesive layer.

第3及び第4の少なくともいずれか一方の接着剤層は、無機質充填材を含有することができる。   At least one of the third and fourth adhesive layers can contain an inorganic filler.

接着剤の接着後の段階に相当する接着フィルム硬化物の熱膨張係数及びガラス転移温度は、例えば、真空理工(株)熱機械試験機TM−7000(引っ張りモード、荷重5gf、5℃/分で昇温)を用いて測定することができる。なお、接着フィルムの硬化は、接着工程時の加熱温度及び時間と同じ条件で行い、硬化は、接着フィルムをオイルバスに浸漬して行うことができる。このような接着フィルム硬化物は、DSC(Differential Scanning Calorimeter)を用いた測定において全硬化発熱量の90%以上の発熱を終えたものである。   The thermal expansion coefficient and glass transition temperature of the adhesive film cured product corresponding to the stage after the adhesive is bonded are, for example, Vacuum Riko Co., Ltd. thermomechanical tester TM-7000 (tensile mode, load 5 gf, 5 ° C./min. Temperature). In addition, hardening of an adhesive film is performed on the same conditions as the heating temperature and time at the time of an adhesion | attachment process, and hardening can be performed by immersing an adhesive film in an oil bath. Such a cured cured adhesive film has a heat generation of 90% or more of the total curing calorific value in measurement using DSC (Differential Scanning Calorimeter).

上述のように、本発明によれば、接続部での接続抵抗の増大や接着剤の剥離がなく、接続信頼性が大幅に向上した回路板を製造することが可能となる。   As described above, according to the present invention, there is no increase in connection resistance at the connection portion or peeling of the adhesive, and it is possible to manufacture a circuit board with greatly improved connection reliability.

本発明の電子部品装置の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the electronic component apparatus of this invention. 電子部品と実装基板との接続状態の一例を示す断面図である。It is sectional drawing which shows an example of the connection state of an electronic component and a mounting board.

本発明において用いられる接着樹脂組成物としては、エポキシ樹脂と、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等の潜在性硬化剤との混合物を用いることができ、回路部材の熱膨張係数差に基づくストレスを緩和するためには、接着後の40℃での弾性率が30〜2000MPaの接着樹脂組成物が好ましい。   The adhesive resin composition used in the present invention includes a mixture of an epoxy resin and a latent curing agent such as an imidazole series, a hydrazide series, a boron trifluoride-amine complex, a sulfonium salt, an amine imide, a polyamine salt, or dicyandiamide. An adhesive resin composition having an elastic modulus of 30 to 2000 MPa at 40 ° C. after bonding is preferable in order to relieve stress based on the difference in thermal expansion coefficient of circuit members.

例えば、接続時の良好な流動性や高接続信頼性を得られる接着樹脂組成物として、エポキシ樹脂と、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等の潜在性硬化剤との混合物に、接着後の40℃での弾性率が30〜2000MPaになるようにアクリルゴムを配合したものが好ましい。   For example, as an adhesive resin composition that can obtain good fluidity and high connection reliability at the time of connection, epoxy resin, imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, What mixed the acrylic rubber with the latent hardeners, such as dicyandiamide, so that the elasticity modulus in 40 degreeC after adhesion | attachment may be 30-2000 Mpa is preferable.

接着樹脂組成物の接着後の段階に相当する接着樹脂組成物硬化物の弾性率は、例えば、レオロジ(株)製レオスペクトラDVE−4(引っ張りモード、周波数10Hz、5℃/分で昇温、−40℃から250℃まで測定)を用いてDVE法により測定することができる。なお、接着樹脂組成物の硬化は、接着工程時の加熱温度及び時間と同じ条件で行い、硬化は、接着樹脂組成物フィルムをオイルバスに浸漬して行うことができる。このような接着樹脂組成物フィルム硬化物は、DSCを用いて測定した場合の全硬化発熱量の90%以上の発熱を終えたものである。   The elastic modulus of the cured adhesive resin composition corresponding to the stage after the adhesion of the adhesive resin composition is, for example, a rheology Co., Ltd. product Leospectra DVE-4 (tensile mode, frequency 10 Hz, 5 ° C./min. Measured from −40 ° C. to 250 ° C.) by the DVE method. In addition, hardening of an adhesive resin composition is performed on the same conditions as the heating temperature and time at the time of an adhesion | attachment process, and hardening can be performed by immersing an adhesive resin composition film in an oil bath. Such an adhesive resin composition film cured product has a heat generation of 90% or more of the total curing calorific value when measured using DSC.

エポキシ樹脂としては、エピクロルヒドリンとビスフェノールAやF、AD等とから誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックとから誘導されるエポキシノボラック樹脂やナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を単独にあるいは2種以上を混合して用いることが可能である。これらのエポキシ樹脂は、不純物イオン(Na+、Cl-等)や、加水分解性塩素等を300ppm以下に低減した高純度品を用いることがエレクトロンマイグレーション防止のために好ましい。 Epoxy resins include bisphenol-type epoxy resins derived from epichlorohydrin and bisphenol A, F, AD, and the like, epoxy novolac resins derived from epichlorohydrin and phenol novolac and cresol novolac, and naphthalene-based compounds having a naphthalene ring. Various epoxy compounds having two or more glycidyl groups in one molecule such as epoxy resin, glycidylamine, glycidyl ether, biphenyl, and alicyclic can be used alone or in admixture of two or more. . These epoxy resins, impurity ions (Na +, Cl -, etc.) or hydrolyzable chlorine and the like using a high-purity product was reduced to 300ppm or less preferred in order to prevent electron migration.

エポキシ樹脂は、熱膨張係数の低下及びガラス転移温度の向上のため、3官能以上の多官能エポキシ樹脂及び/又はナフタレン系エポキシ樹脂が好ましい。3官能以上の多官能エポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂等がある。また、ナフタレン系エポキシ樹脂は、1分子中に少なくとも1個以上のナフタレン環を含んだ骨格を有しており、ナフトール系、ナフタレンジオール系等がある。   The epoxy resin is preferably a trifunctional or higher polyfunctional epoxy resin and / or a naphthalene-based epoxy resin for decreasing the thermal expansion coefficient and improving the glass transition temperature. Examples of the trifunctional or higher polyfunctional epoxy resin include phenol novolac type epoxy resin, cresol novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylolethane type epoxy resin, dicyclopentadiene phenol type epoxy resin and the like. Naphthalene-based epoxy resins have a skeleton containing at least one naphthalene ring in one molecule, and include naphthol-based and naphthalenediol-based resins.

アクリルゴムとしては、アクリル酸、アクリル酸エステル、メタクリル酸エステル及びアクリロニトリルのうち少なくとも一つをモノマー成分とした重合体又は共重合体があげられ、中でもグリシジルエーテル基を含有するグリシジルアクリレートやグリシジルメタクリレートを含む共重合体系アクリルゴムが好適に用いられる。   Examples of the acrylic rubber include a polymer or copolymer containing at least one of acrylic acid, acrylic acid ester, methacrylic acid ester, and acrylonitrile as a monomer component. Among them, glycidyl acrylate or glycidyl methacrylate containing a glycidyl ether group is used. A copolymer-based acrylic rubber is preferably used.

これらアクリルゴムの分子量は、接着樹脂組成物の凝集力を高める点から20万以上が好ましい。アクリルゴムの接着樹脂組成物中の配合量は、15重量%以下であると接着後の40℃での弾性率が2000MPaを超えてしまい、また40重量%以上になると低弾性率化は図れるが接続時の溶融粘度が高くなって、接続電極間、又は接続電極と導電粒子との界面の溶融接着剤の排除性が低下するため、接続電極間又は接続電極と導電粒子間の電気的導通を確保できなくなる。このため、アクリル配合量としては15〜40重量%が好ましい。接着樹脂組成物に配合されたこれらのアクリルゴムは、ゴム成分に起因する誘電正接のピーク温度が40〜60℃付近にあるため、接着組成物の低弾性率化を図ることができる。   The molecular weight of these acrylic rubbers is preferably 200,000 or more from the viewpoint of increasing the cohesive strength of the adhesive resin composition. When the blending amount of the acrylic rubber in the adhesive resin composition is 15% by weight or less, the elastic modulus at 40 ° C. after bonding exceeds 2000 MPa, and when it is 40% by weight or more, a low elastic modulus can be achieved. Since the melt viscosity at the time of connection increases and the exclusion of the molten adhesive between the connection electrodes or at the interface between the connection electrodes and the conductive particles decreases, the electrical continuity between the connection electrodes or between the connection electrodes and the conductive particles is reduced. Cannot be secured. For this reason, 15-40 weight% is preferable as an acrylic compounding quantity. Since these acrylic rubbers blended in the adhesive resin composition have a peak temperature of dielectric loss tangent due to the rubber component in the vicinity of 40 to 60 ° C., the elastic modulus of the adhesive composition can be reduced.

接着樹脂組成物の硬化後の40℃での弾性率が30〜2000MPaであることが好ましく、接着剤の40℃での弾性率は100〜5000MPaであることができ、2000MPaを超えるものであることができる。   The elastic modulus at 40 ° C. after curing of the adhesive resin composition is preferably 30 to 2000 MPa, and the elastic modulus at 40 ° C. of the adhesive can be 100 to 5000 MPa, and exceeds 2000 MPa. Can do.

また、接着剤にはフィルム形成性をより容易にするためにフェノキシ樹脂などの熱可塑性樹脂を配合することもできる。特に、フェノキシ樹脂は、エポキシ樹脂と構造が類似しているため、エポキシ樹脂との相溶性、接着性に優れるなどの特徴を有するので好ましい。フィルム形成は、これら少なくともエポキシ樹脂、アクリルゴム、フェノキシ樹脂、潜在性硬化剤からなる接着組成物と導電粒子とを有機溶剤に溶解あるいは分散することにより液状化して、剥離性基材表面に塗布し、硬化剤の活性温度以下で溶剤を除去することにより行われる。この時用いる溶剤は、芳香族炭化水素系溶剤と含酸素系溶剤との混合溶剤が材料の溶解性を向上させるため好ましい。   In addition, a thermoplastic resin such as a phenoxy resin can be blended in the adhesive in order to make film forming easier. In particular, the phenoxy resin is preferable because it has a similar structure to the epoxy resin and has characteristics such as excellent compatibility with the epoxy resin and excellent adhesion. For film formation, the adhesive composition consisting of at least epoxy resin, acrylic rubber, phenoxy resin, and latent curing agent and conductive particles are liquefied by dissolving or dispersing them in an organic solvent and applied to the surface of the peelable substrate. It is carried out by removing the solvent below the activation temperature of the curing agent. As the solvent used at this time, a mixed solvent of an aromatic hydrocarbon solvent and an oxygen-containing solvent is preferable because the solubility of the material is improved.

本発明に用いられる無機質充填材としては、特に限定するものではなく、例えば、溶融シリカ、結晶質シリカ、ケイ酸カルシウム、アルミナ、炭酸カルシウム等の粉体があげられる。無機質充填材の配合量は、接着樹脂組成物100重量部に対して10〜200重量部であり、熱膨張係数を低下させるには配合量が大きいほど効果的であるが、多量に配合すると接着性や接続部での接着剤の排除性低下に基づく導通不良が発生し、配合量が小さいと熱膨張係数を充分低下できないため、20〜90重量部が好ましい。また、その平均粒径は、接続部での導通不良を防止する目的で3μm以下にするのが好ましい。また、接続時の樹脂の流動性の低下及びチップのパッシベーション膜のダメージを防ぐ目的では、球状充填材を用いることが望ましい。   The inorganic filler used in the present invention is not particularly limited, and examples thereof include powders such as fused silica, crystalline silica, calcium silicate, alumina, and calcium carbonate. The blending amount of the inorganic filler is 10 to 200 parts by weight with respect to 100 parts by weight of the adhesive resin composition, and the larger the blending amount, the more effective for reducing the thermal expansion coefficient. 20 to 90 parts by weight is preferable because poor conduction due to deterioration in adhesiveness and exclusion of the adhesive at the connection portion occurs and the thermal expansion coefficient cannot be sufficiently reduced when the blending amount is small. The average particle size is preferably 3 μm or less for the purpose of preventing poor conduction at the connection. In addition, it is desirable to use a spherical filler for the purpose of preventing a decrease in resin fluidity during connection and damage to the passivation film of the chip.

本発明の接着剤には、チップのバンプや基板電極の高さばらつきを吸収するために、異方導電性を積極的に付与する目的で導電粒子を混入・分散することもできる。本発明において導電粒子は、例えばAu、Ag、Cuやはんだ等の金属の粒子であり、ポリスチレン等の高分子の球状の核材にNi、Cu、Au、はんだ等の導電層を設けたものがより好ましい。更に導電性の粒子の表面にSn、Au、はんだ等の表面層を形成することもできる。粒径は基板の電極の最小の間隔よりも小さいことが必要で、電極の高さばらつきがある場合、高さばらつきよりも大きいことが好ましく、1〜10μmが好ましい。また、接着剤に分散される導電粒子量は、接着剤樹脂組成物100体積部に対して0.1〜30体積部であり、好ましくは0.2〜15体積部である。   In the adhesive of the present invention, conductive particles can be mixed and dispersed for the purpose of positively imparting anisotropic conductivity in order to absorb the height variation of the bumps of the chip and the substrate electrodes. In the present invention, the conductive particles are, for example, metal particles such as Au, Ag, Cu, and solder, and a polymer spherical core material such as polystyrene provided with a conductive layer such as Ni, Cu, Au, and solder. More preferred. Furthermore, a surface layer of Sn, Au, solder or the like can be formed on the surface of the conductive particles. The particle size needs to be smaller than the minimum distance between the electrodes of the substrate, and when there is a variation in the height of the electrodes, it is preferably larger than the variation in height, and preferably 1 to 10 μm. The amount of conductive particles dispersed in the adhesive is 0.1 to 30 parts by volume, preferably 0.2 to 15 parts by volume with respect to 100 parts by volume of the adhesive resin composition.

本発明の接着剤は、フィルム状接着剤として使用することができる。   The adhesive of the present invention can be used as a film adhesive.

フィルム状接着剤は、エポキシ樹脂、アクリルゴム、潜在性硬化剤等からなる接着組成物を有機溶剤に溶解あるいは分散することにより、液状化して、剥離性基材上に塗布し、硬化剤の活性温度以下で溶剤を除去することにより得ることができる。   The film adhesive is liquefied by dissolving or dispersing an adhesive composition composed of epoxy resin, acrylic rubber, latent curing agent, etc. in an organic solvent, and is applied onto a peelable substrate to activate the curing agent. It can be obtained by removing the solvent below the temperature.

多層構成のフィルム状接着剤は、例えば、第1又は第3のフィルム状接着剤と第2又は第4のフィルム状接着剤とを個々にポリエチレンテレフタレート、フッ素系樹脂等からなるセパレータフィルム(剥離性基材)の表面に塗布形成した後、第1又は第3のフィルム状接着剤と第2又は第4のフィルム状接着剤を加圧又は加圧と同時に加熱しながらラミネートして第1又は第3のフィルム状接着剤と第2又は第4のフィルム状接着剤とからなるフィルム状接着剤を得る方法、また、上記セパレータフィルム表面に第1又は第3のフィルム状接着剤(又は第2又は第4のフィルム状接着剤)を形成した上に、第2又は第4のフィルム状接着剤(又は第1又は第3のフィルム状接着剤)を重ねて塗布形成して第1又は第3のフィルム状接着剤と第2又は第4のフィルム状接着剤からなるフィルム状接着剤を得る方法等がある。   For example, the multilayered film-like adhesive is a separator film (peelable) made of polyethylene terephthalate, fluorine-based resin, or the like, separately for each of the first or third film-like adhesive and the second or fourth film-like adhesive. The first or third film adhesive and the second or fourth film adhesive are laminated while being pressurized or heated simultaneously with the pressurization. A method of obtaining a film adhesive comprising the film adhesive of No. 3 and the second or fourth film adhesive, and the first or third film adhesive (or the second or (4th film adhesive) is formed, and the second or 4th film adhesive (or 1st or 3rd film adhesive) is applied to form the first or 3rd film. Film adhesive and the first Or there is a method of obtaining a fourth made of a film-like adhesive film adhesive.

第1又は第3のフィルム状接着剤と第2又は第4のフィルム状接着剤を積層してなるフィルム状接着剤との厚さは、合計で20〜120μmとすることが好ましく、第1又は第3のフィルム状接着剤と第2又は第4のフィルム状接着剤との個々の厚さの比は、第1又は第3のフィルム状接着剤:第2又は第4のフィルム状接着剤=1:9〜9:1の範囲とすることが好ましい。特に、半導体チップと有機絶縁基板との接続においては、第1又は第3のフィルム状接着剤:第2又は第4のフィルム状接着剤=3:7〜7:3の範囲とすることがより好ましい。   The total thickness of the first or third film adhesive and the film adhesive formed by laminating the second or fourth film adhesive is preferably 20 to 120 μm in total, The ratio of the individual thicknesses of the third film adhesive and the second or fourth film adhesive is the first or third film adhesive: second or fourth film adhesive = A range of 1: 9 to 9: 1 is preferable. In particular, in the connection between the semiconductor chip and the organic insulating substrate, the first or third film adhesive: the second or fourth film adhesive = 3: 7 to 7: 3 is more preferable. preferable.

フィルム状接着剤の膜厚は、第1及び第2の回路部材間のギャップに比べ、厚いほうが好ましく、一般にはギャップに対して5μm以上厚い膜厚が望ましい。   The film adhesive is preferably thicker than the gap between the first and second circuit members. In general, the film adhesive is preferably thicker than the gap by 5 μm or more.

本発明において、回路部材としては半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、プリント基板、ポリイミドやポリエステルを基材としたフレキシブル配線板等の基板等が用いられる。   In the present invention, as the circuit member, a chip component such as a semiconductor chip, a resistor chip, a capacitor chip, a printed board, a substrate such as a flexible wiring board based on polyimide or polyester, and the like are used.

チップ部品は、シリコン、ガラス、セラミックス、化合物半導体基板等の非金属の無機質絶縁基板に多数の接続端子が形成されており、プリント基板、ポリイミドやポリエステルを基材としたフレキシブル配線板等の基板は有機質絶縁基板に多数の接続端子が形成されている。   A chip component has many connection terminals formed on a non-metallic inorganic insulating substrate such as silicon, glass, ceramics, and a compound semiconductor substrate. A printed circuit board, a substrate such as a flexible wiring board based on polyimide or polyester, Many connection terminals are formed on the organic insulating substrate.

チップ部品を実装する基板として、半導体チップ端子に対応する電極(接続端子)が形成された有機質絶縁基板が使用される。   As a substrate on which chip components are mounted, an organic insulating substrate on which electrodes (connection terminals) corresponding to semiconductor chip terminals are formed is used.

有機質絶縁基板としては、ポリイミド樹脂、ポリエステル樹脂等の合成樹脂フィルム、又はガラスクロス、ガラス不織布等のガラス基材にポリイミド樹脂、エポキシ樹脂、フェノ−ル樹脂等の樹脂を含浸し硬化させた積層板が使用される。   As an organic insulating substrate, a laminated board obtained by impregnating and curing a resin material such as a polyimide resin, an epoxy resin or a phenol resin on a glass substrate such as a polyimide resin or a polyester resin, or a glass cloth or a glass nonwoven fabric. Is used.

チップ端子と接続するための電極と、この電極が形成された表面絶縁層と、所定数層の絶縁層と、各絶縁層の間に配置される所定数層の配線層と、所定の上記電極及び配線層の間を電気的に接続する導体化された穴とを有する多層配線板が使用できる。   An electrode for connecting to the chip terminal, a surface insulating layer on which the electrode is formed, a predetermined number of insulating layers, a predetermined number of wiring layers disposed between the insulating layers, and the predetermined electrode And a multilayer wiring board having conductive holes for electrically connecting the wiring layers can be used.

このような多層配線板として、ガラスクロスを用いた絶縁層を備える基材又は1層以上の導体回路を有する配線基板の表面に、絶縁層と導体回路層とを交互に形成した、ビルドアップ多層基板が好ましい。   As such a multilayer wiring board, a build-up multilayer in which insulating layers and conductor circuit layers are alternately formed on the surface of a substrate having an insulating layer using glass cloth or a wiring substrate having one or more conductor circuits A substrate is preferred.

表面絶縁層は、樹脂フィルムを用いることができ、この樹脂フィルムはエポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、変成ポリフェニレンエーテル樹脂、フェノキシ樹脂、アミドエポキシ樹脂、フェノール樹脂やこれらの混合物、共重合物等のフィルムが、またポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、全芳香族液晶ポリエステル、フッ素系樹脂などの耐熱性熱可塑性エンジニヤリングプラスチックのフィルムが使用できる。樹脂フィルム中に有機もしくは無機の充填材を含むものが使用できる。ガラス基材で補強された樹脂よりなる絶縁層としては、ガラスクロス、ガラス不織布等のガラス基材にエポキシ樹脂、フェノ−ル樹脂等の樹脂を含浸し硬化させたプリプレグが使用できる。   A resin film can be used for the surface insulating layer, and this resin film is an epoxy resin, a polyimide resin, a polyamide-imide resin, a modified polyphenylene ether resin, a phenoxy resin, an amide epoxy resin, a phenol resin, a mixture thereof, a copolymer, or the like. A film of heat-resistant thermoplastic engineering plastic such as polysulfone, polyethersulfone, polyetheretherketone, wholly aromatic liquid crystal polyester, and fluorine resin can be used. A resin film containing an organic or inorganic filler can be used. As the insulating layer made of a resin reinforced with a glass substrate, a prepreg obtained by impregnating and curing a resin such as an epoxy resin or a phenol resin on a glass substrate such as glass cloth or glass nonwoven fabric can be used.

回路部材には接続端子が通常は多数(場合によっては単数でも良い)設けられており、上記回路部材の少なくとも1組をそれらの回路部材に設けられた接続端子の少なくとも一部を対向配置し、対向配置した接続端子間に接着剤を介在させ、加熱加圧して対向配置した接続端子どうしを電気的に接続して回路板とする。   The circuit member is usually provided with a large number of connection terminals (or a single connection terminal in some cases), and at least one set of the circuit members is disposed so as to face at least a part of the connection terminals provided on the circuit members, An adhesive is interposed between the connection terminals arranged opposite to each other, and the connection terminals arranged opposite to each other by heating and pressing are electrically connected to form a circuit board.

回路部材の少なくとも1組を加熱加圧することにより、対向配置した接続端子どうしは、直接接触により又は異方導電性接着剤の導電粒子を介して電気的に接続する。   By heating and pressing at least one set of circuit members, the connection terminals arranged opposite to each other are electrically connected by direct contact or through conductive particles of an anisotropic conductive adhesive.

半導体チップや基板の電極パッド上には、めっきで形成されるバンプや金ワイヤの先端をトーチ等により溶融させ、金ボールを形成し、このボールを電極パッド上に圧着した後、ワイヤを切断して得られるワイヤバンプなどの突起電極を設け、接続端子として用いることができる。   On the electrode pad of the semiconductor chip or substrate, the bump formed by plating or the tip of the gold wire is melted with a torch or the like to form a gold ball, and after the ball is pressed onto the electrode pad, the wire is cut. Protruding electrodes such as wire bumps obtained in this way can be provided and used as connection terminals.

無機絶縁基板からなる第1の回路部材と有機絶縁基板からなる第2の回路部材をフィルム状接着剤により接続する場合を例にとって、回路板の製造法を説明する。   A method for manufacturing a circuit board will be described by taking as an example a case where a first circuit member made of an inorganic insulating substrate and a second circuit member made of an organic insulating substrate are connected by a film adhesive.

第1の接続端子を有する、無機質絶縁基板からなる第1の回路部材と、第2の接続端子を有する、有機質絶縁基板からなる第2の回路部材とを、第1の接続端子と第2の接続端子を対向させて配置し、この対向配置させた第1の接続端子と第2の接続端子との間に、本発明の回路部材接続用接着剤を、第1又は第3の接着剤層が第1の回路部材側になるように配置して介在させ、これを加圧して、対向配置した第1の接続端子と第2の接続端子とを電気的に接続させることにより、本発明の回路板を製造することができる。   A first circuit member made of an inorganic insulating substrate having a first connection terminal, and a second circuit member made of an organic insulating substrate having a second connection terminal, the first connection terminal and the second connection member The connection terminals are arranged to face each other, and the adhesive for connecting circuit members of the present invention is provided between the first connection terminal and the second connection terminals arranged to face each other, the first or third adhesive layer. Is arranged so as to be on the first circuit member side, pressurized, and electrically connect the first connection terminal and the second connection terminal arranged opposite to each other. Circuit boards can be manufactured.

具体的には、例えば、まず、第2の回路部材にフィルム状第2又は第4の接着剤層の面を接触させフィルム状接着剤を第2の回路部材に仮固定する。続いて、第1の回路部材の電極と第2の回路部材の電極との位置合わせを行い、第1の回路部材側から一電極あたり20〜150gfの荷重を加えつつ、フィルム状接着剤が180〜200℃となるように温度を10〜20秒間加えてフィルム状接着剤を硬化させる。これによって第1の回路部材の電極と第2の回路部材の電極とを電気的に接続すると同時に、第1の回路部材と第2の回路部材間はフィルム状接着剤の硬化によって、この接続状態を保持する。   Specifically, for example, first, the surface of the film-like second or fourth adhesive layer is brought into contact with the second circuit member, and the film-like adhesive is temporarily fixed to the second circuit member. Subsequently, the electrode of the first circuit member and the electrode of the second circuit member are aligned, and the film adhesive is 180 while applying a load of 20 to 150 gf per electrode from the first circuit member side. The film adhesive is cured by applying a temperature for 10 to 20 seconds so that the temperature becomes ~ 200 ° C. As a result, the electrode of the first circuit member and the electrode of the second circuit member are electrically connected, and at the same time, the connection between the first circuit member and the second circuit member is caused by the curing of the film adhesive. Hold.

半導体チップを実装基板に接続する例について、図1及び図2を参照して説明する。図1は、半導体チップと実装基板とを、導電粒子を含まない接着剤を用いて接続した例を示す。図2は、図1の場合において、半導体チップと実装基板とを、導電粒子を含む接着剤を用いて接続する場合の接続部を示す。   An example of connecting a semiconductor chip to a mounting substrate will be described with reference to FIGS. FIG. 1 shows an example in which a semiconductor chip and a mounting substrate are connected using an adhesive that does not contain conductive particles. FIG. 2 shows a connection portion in the case of FIG. 1 when the semiconductor chip and the mounting substrate are connected using an adhesive containing conductive particles.

図1に示す電子部品装置は、実装基板20と、それに実装された半導体チップ10とで構成される。なお、図1は、電子部品装置の一部を示すもので、実際には、実装基板20上に、他の半導体チップ等の他の部品が搭載される。   The electronic component device shown in FIG. 1 includes a mounting substrate 20 and a semiconductor chip 10 mounted thereon. FIG. 1 shows a part of the electronic component device. In practice, other components such as other semiconductor chips are mounted on the mounting substrate 20.

半導体チップ10は、その一つの面に、接続電極11となる突起電極(バンプ)が形成されている。この接続電極11を介して、実装基板と電気的に接続される。   The semiconductor chip 10 is provided with protruding electrodes (bumps) to be connection electrodes 11 on one surface. The connection electrode 11 is electrically connected to the mounting substrate.

実装基板20は、複数層の絶縁層21、22と、上記各絶縁層21、22を介して配置される複数層の配線層32、33と、上記半導体チップ10の接続電極11と接続するための接続用電極端子31と、上記配線層32、33のうちの、特定の配線層間を電気的に接続するため上記絶縁層21、22を貫通して設けられる導体34とを有する。上記導体34を貫通させるため、絶縁層21、22には、必要な箇所に、スルーホールとするための孔25が設けられる。すなわち、この実装基板は、樹脂複合系多層配線板を構成する。ここで、配線層32は、内層回路として設けられ、配線層33及び接続用電極端子31は、外層回路として設けられる。接続用電極端子31は、その上にチップを搭載するための導体回路として機能する。   The mounting substrate 20 is connected to the plurality of insulating layers 21 and 22, the plurality of wiring layers 32 and 33 disposed via the insulating layers 21 and 22, and the connection electrode 11 of the semiconductor chip 10. And a conductor 34 provided through the insulating layers 21 and 22 in order to electrically connect a specific wiring layer of the wiring layers 32 and 33. In order to penetrate the conductor 34, the insulating layers 21 and 22 are provided with holes 25 for forming through holes at necessary places. That is, this mounting substrate constitutes a resin composite multilayer wiring board. Here, the wiring layer 32 is provided as an inner layer circuit, and the wiring layer 33 and the connection electrode terminal 31 are provided as an outer layer circuit. The connection electrode terminal 31 functions as a conductor circuit for mounting a chip thereon.

半導体チップ10に設けた接続電極11である突起電極(バンプ)は、実装基板20の表面に設けた接続用電極端子31と位置合わせされる。半導体チップ10と実装基板20間に、接着のためのフィルム状の接着剤40が配置される。この状態で、半導体チップ10側から加圧加熱することにより、接着剤40は、流動し、硬化することにより、半導体チップ10に設けた接続電極11と実装基板20表面に設けた接続用電極端子31とが直接機械的に接して、電気的な接続を得る。   The protruding electrodes (bumps) that are the connection electrodes 11 provided on the semiconductor chip 10 are aligned with the connection electrode terminals 31 provided on the surface of the mounting substrate 20. A film-like adhesive 40 for adhesion is disposed between the semiconductor chip 10 and the mounting substrate 20. In this state, by pressing and heating from the semiconductor chip 10 side, the adhesive 40 flows and hardens, whereby the connection electrode 11 provided on the semiconductor chip 10 and the connection electrode terminal provided on the surface of the mounting substrate 20. 31 is in direct mechanical contact to obtain an electrical connection.

導電粒子41を分散させた異方導電性接着剤等の接着剤40を用いる場合には、図2に示すように、接続電極11と接続用電極端子31が、それらの間に導電粒子41が介在した状態で接続されると共に、接着固定される。異方導電性接着剤40を用いる場合、接続すべき対向する電極面を圧接させるようにした状態では、対向電極間では、それらの間に存在する導電粒子を介して導通が行われる。また、隣接する電極間では、接着剤は、導電粒子を内包するものの、導電粒子の密度が低いため、導電性を示さない。   In the case of using an adhesive 40 such as an anisotropic conductive adhesive in which conductive particles 41 are dispersed, as shown in FIG. 2, the connection electrode 11 and the connection electrode terminal 31 have a conductive particle 41 between them. They are connected in an intervening state and are bonded and fixed. When the anisotropic conductive adhesive 40 is used, conduction is performed between the opposing electrodes through the conductive particles existing between the opposing electrodes in a state where the opposing electrode surfaces to be connected are pressed. In addition, between the adjacent electrodes, the adhesive contains conductive particles, but does not exhibit conductivity because the density of the conductive particles is low.

上記実装基板20は、ガラス基材で補強された樹脂よりなる少なくとも1層以上の第1の絶縁層21と、最外層として、少なくとも上記電子部品が接着固定される側の1層を構成する第2の絶縁層22とを有する。なお、図1の例では、上記電子部品が接着固定される側とは異なる側にも第2の絶縁層22を設けている。   The mounting substrate 20 includes at least one or more first insulating layers 21 made of a resin reinforced with a glass base material, and an outermost layer constituting at least one layer on the side to which the electronic component is bonded and fixed. Two insulating layers 22. In the example of FIG. 1, the second insulating layer 22 is also provided on the side different from the side on which the electronic component is bonded and fixed.

本発明の接着剤によれば、半導体チップと回路部材接続用接着剤界面でのストレスを緩和できる他、更に接着樹脂組成物として40℃での弾性率が30〜2000MPaである場合には更に接着樹脂組成物によって熱衝撃、PCTやはんだバス浸漬試験などの信頼性試験において生じるストレスを吸収できるため、信頼性試験後においても接続部での接続抵抗の増大や接着剤の剥離がなく、接続信頼性が大幅に向上する。本発明によれば、回路部材接続用接着剤の厚み方向に物性の勾配をもうけることが可能なため、熱衝撃、PCTやはんだバス浸漬試験等の信頼性試験において生じる内部応力を吸収でき、信頼性試験後においても接続部での接続抵抗の増大や接着剤の剥離がなく、接続信頼性が向上する。また、フィルム状の接着剤は、取扱性にも便利である。   According to the adhesive of the present invention, stress at the interface between the semiconductor chip and the circuit member connecting adhesive can be relieved. Further, when the elastic modulus at 40 ° C. is 30 to 2000 MPa as the adhesive resin composition, the adhesive is further bonded. Since the resin composition can absorb stress generated in reliability tests such as thermal shock, PCT and solder bath immersion tests, there is no increase in connection resistance or peeling of the adhesive even after reliability testing, and connection reliability The characteristics are greatly improved. According to the present invention, since it is possible to create a gradient of physical properties in the thickness direction of the adhesive for connecting circuit members, internal stress generated in reliability tests such as thermal shock, PCT and solder bath immersion tests can be absorbed, Even after the property test, there is no increase in connection resistance at the connection portion and no peeling of the adhesive, and connection reliability is improved. The film adhesive is also convenient for handling.

したがって、本発明の接着剤は、LCD(Liquid Crystal Display)パネルとTAB(Tape Automated Bonding)、TABとフレキシブル回路基板、LCDパネルとICチップ、ICチップとプリント基板とを接続時の加圧方向にのみ電気的に接続するために好適に用いられる。   Therefore, the adhesive of the present invention is applied in the pressing direction when connecting the LCD (Liquid Crystal Display) panel and TAB (Tape Automated Bonding), TAB and flexible circuit board, LCD panel and IC chip, and IC chip and printed board. It is preferably used only for electrical connection.

本発明の回路板は、信頼性試験において生じるストレスを吸収でき、信頼性試験後においても接続部での接続抵抗の増大や接着剤の剥離がなく、接続信頼性が大幅に向上する。また、本発明の回路板では、チップ側に熱膨張係数が小さい接着フィルムを用いることによりチップと接着剤界面でのストレスを緩和できることから、チップの電極パッドに突起電極を設けた場合、温度サイクル試験下での突起電極の電極パッドからの剥離を大幅に低減できる。   The circuit board of the present invention can absorb the stress generated in the reliability test, and even after the reliability test, there is no increase in connection resistance and no peeling of the adhesive, and the connection reliability is greatly improved. Further, in the circuit board of the present invention, the stress at the interface between the chip and the adhesive can be relieved by using an adhesive film having a small coefficient of thermal expansion on the chip side. Peeling of the protruding electrode from the electrode pad under the test can be greatly reduced.

参考例1
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)125gとを酢酸エチル400gに溶解し、30%溶液を得た。
Reference example 1
To 400 g of ethyl acetate, 50 g of phenoxy resin and 125 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) Dissolved to give a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)325gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着樹脂組成物100重量部に対して40重量部、更にニッケル粒子(直径:3μm)を2体積%分散させて、フィルム塗工用溶液を得た。   Next, 325 g of a liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, 40 parts by weight and further 2% by volume of nickel particles (diameter: 3 μm) were dispersed to obtain a film coating solution.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、厚み45μmの接着フィルムaを形成した。なお、この接着フィルムaの溶融シリカ及びニッケル粒子を除いた接着樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、800MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to form an adhesive film a having a thickness of 45 μm. In addition, the 40 degreeC elastic modulus measured with the dynamic viscoelasticity measuring device only of the adhesive resin composition except the fused silica and nickel particle of this adhesive film a was 800 MPa.

次に、得られた接着フィルムaを用いて、金バンプ(面積:80μm×80μm、スペース30μm、高さ:15μm、バンプ数:288)付きチップ(10mm×10mm、厚み:0.5mm)と、Ni/AuめっきCu回路プリント基板との接続を、以下に示すように行った。   Next, using the obtained adhesive film a, a chip (10 mm × 10 mm, thickness: 0.5 mm) with gold bumps (area: 80 μm × 80 μm, space 30 μm, height: 15 μm, number of bumps: 288), Connection with the Ni / Au plated Cu circuit printed circuit board was performed as follows.

まず、接着フィルムa(12mm×12mm)をNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、チップのバンプとNi/AuめっきCu回路プリント基板(厚み:0.8mm)との位置合わせを行った。次いで、180℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行って本接続した。 First, the adhesive film a (12 mm × 12 mm) was attached to a Ni / Au plated Cu circuit printed board (electrode height: 20 μm, thickness: 0.8 mm) at 80 ° C. and 10 kgf / cm 2 , and then the separator was peeled off. The alignment of the bumps of the chip and the Ni / Au plated Cu circuit printed circuit board (thickness: 0.8 mm) was performed. Subsequently, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 30 g / bump, and 20 seconds.

本接続後の接続抵抗は、1バンプあたり最高で6mΩ、平均で2mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。 The connection resistance after this connection is a maximum of 6 mΩ per bump, an average of 2 mΩ, and an insulation resistance of 10 8 Ω or more. No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.

参考例2
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)175gとを酢酸エチル525gに溶解し、30%溶液を得た。
Reference example 2
To 525 g of ethyl acetate, 50 g of phenoxy resin and 175 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) Dissolved to give a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)275gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着樹脂組成物100重量部に対して60重量部、更にニッケル粒子(直径:5μm)を2体積%分散させてフィルム塗工用溶液を得た。   Next, 275 g of a liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution and stirred, and fused silica (average particle diameter: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, 60 parts by weight and further 2% by volume of nickel particles (diameter: 5 μm) were dispersed to obtain a film coating solution.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、厚み45μmの接着フィルムbを形成した。この接着フィルムbの溶融シリカ及びニッケル粒子を除いた接着樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、400MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to form an adhesive film b having a thickness of 45 μm. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring instrument using only the adhesive resin composition excluding fused silica and nickel particles of the adhesive film b was 400 MPa.

次に得られた接着フィルムbを用いて、金バンプ(面積:80μm×80μm、スペース30μm、高さ:15μm、バンプ数:288)付きチップ(10mm×10mm)と、Ni/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)との接続を、以下に示すように行った。   Next, using the obtained adhesive film b, a chip (10 mm × 10 mm) with gold bumps (area: 80 μm × 80 μm, space 30 μm, height: 15 μm, number of bumps: 288), and Ni / Au plated Cu circuit print Connection to the substrate (electrode height: 20 μm, thickness: 0.8 mm) was performed as shown below.

まず、接着フィルムb(12mm×12mm)をNi/AuめっきCu回路プリント基板に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、チップのバンプとNi/AuめっきCu回路プリント基板との位置合わせを行った。次いで、170℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行って本接続した。 First, an adhesive film b (12 mm × 12 mm) was attached to a Ni / Au plated Cu circuit printed board at 80 ° C. and 10 kgf / cm 2 , then the separator was peeled off, and the chip bump and Ni / Au plated Cu circuit printed board And alignment. Next, main connection was performed by heating and pressing from above the chip under the conditions of 170 ° C., 30 g / bump, and 20 seconds.

本接続後の接続抵抗は、1バンプあたり最高で18mΩ、平均で8mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。 The connection resistance after this connection is 18 mΩ at the maximum per bump, the average is 8 mΩ, and the insulation resistance is 10 8 Ω or more. These values are the thermal shock test at −55 to 125 ° C., 1000 cycle treatment, PCT test (121 No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.

参考例3
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)100gとを酢酸エチル350gに溶解し、30%溶液を得た。
Reference example 3
50 g of phenoxy resin and 100 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) in 350 g of ethyl acetate Dissolved to give a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)350gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着樹脂組成物100重量部に対して60重量部、更にポリスチレン系核体(直径:5μm)の表面にAu層を形成した導電粒子を5体積%分散させて、フィルム塗工用溶液を得た。   Next, 350 g of liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, 60% by weight of conductive particles having an Au layer formed on the surface of a polystyrene core (diameter: 5 μm) were dispersed in an amount of 5% by volume to obtain a film coating solution.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、厚み45μmの接着フィルムcを形成した。この接着フィルムcの溶融シリカ及び導電粒子を除いた接着樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、1000MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to form an adhesive film c having a thickness of 45 μm. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring instrument using only the adhesive resin composition excluding fused silica and conductive particles of the adhesive film c was 1000 MPa.

次に得られた接着フィルムcを用いて、金バンプ(面積:80μm×80μm、スペース30μm、高さ:15μm、バンプ数:288)付きチップ(10mm×10mm、厚み:0.5mm)と、Ni/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)との接続を、以下に示すように行った。   Next, using the obtained adhesive film c, a chip (10 mm × 10 mm, thickness: 0.5 mm) with gold bumps (area: 80 μm × 80 μm, space 30 μm, height: 15 μm, number of bumps: 288), Ni, / Au plating Cu circuit printed circuit board (electrode height: 20 μm, thickness: 0.8 mm) was connected as shown below.

まず、接着フィルムc(12mm×12mm)をNi/AuめっきCu回路プリント基板に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、チップのバンプとNi/AuめっきCu回路プリント基板との位置合わせを行った。次いで、170℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行って本接続した。 First, an adhesive film c (12 mm × 12 mm) was attached to a Ni / Au plated Cu circuit printed board at 80 ° C. and 10 kgf / cm 2 , and then the separator was peeled off, and the chip bump and the Ni / Au plated Cu circuit printed board And alignment. Next, main connection was performed by heating and pressing from above the chip under the conditions of 170 ° C., 30 g / bump, and 20 seconds.

本接続後の接続抵抗は、1バンプあたり最高で5mΩ、平均で1.5mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。 The connection resistance after this connection is a maximum of 5 mΩ per bump, an average of 1.5 mΩ, and an insulation resistance of 10 8 Ω or more. (121 ° C., 2 atm) No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours, showing good connection reliability.

参考例4
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)100gとを酢酸エチル350gに溶解し、30%溶液を得た。
Reference example 4
50 g of phenoxy resin and 100 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) in 350 g of ethyl acetate Dissolved to give a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)350g部をこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着樹脂組成物100重量部に対して40重量部、更にポリスチレン系核体(直径:5μm)の表面にAu層を形成した導電粒子を5体積%分散させて、フィルム塗工用溶液を得た。   Next, 350 g of a liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution and stirred, and 100 parts by weight of an adhesive resin composition is added with fused silica (average particle size: 0.5 μm). The conductive particles having an Au layer formed on the surface of a polystyrene core (diameter: 5 μm) were dispersed in an amount of 40% by weight, and a solution for film coating was obtained.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、厚み45μmの接着フィルムdを形成した。この接着フィルムdの溶融シリカ及び導電粒子を除いた接着樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、1000MPaであった。また、接着フィルムdのTMA法で測定した110〜130℃の平均熱膨張係数は111ppmであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to form an adhesive film d having a thickness of 45 μm. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring instrument using only the adhesive resin composition excluding fused silica and conductive particles of the adhesive film d was 1000 MPa. Moreover, the average thermal expansion coefficient of 110-130 degreeC measured by TMA method of the adhesive film d was 111 ppm.

次に、得られた接着フィルムdを用いて、金バンプ(面積:50μm×50μm、362バンプ、スペース:20μm、高さ:15μm)付きチップ(1.7mm×17mm、厚み:0.5mm)と、ITO(Indium Tin Oxide)回路付ガラス基板(厚み:1.1mm)との接続を以下に示すように行った。   Next, using the obtained adhesive film d, a chip (1.7 mm × 17 mm, thickness: 0.5 mm) with gold bumps (area: 50 μm × 50 μm, 362 bumps, space: 20 μm, height: 15 μm) and The connection with the ITO (Indium Tin Oxide) circuit-equipped glass substrate (thickness: 1.1 mm) was performed as follows.

まず、接着フィルムd(12mm×12mm)をITO回路付ガラス基板に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、チップのバンプとITO回路付ガラス基板との位置合わせを行った。次いで、180℃、40g/バンプ、20秒の条件でチップ上方から加熱、加圧を行って本接続した。 First, an adhesive film d (12 mm × 12 mm) was attached to a glass substrate with an ITO circuit at 80 ° C. and 10 kgf / cm 2 , and then the separator was peeled off to align the chip bumps with the glass substrate with an ITO circuit. It was. Next, main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 40 g / bump, and 20 seconds.

本接続後の接続抵抗は、1バンプあたり最高で150mΩ、平均で80mΩ、絶縁抵抗は10Ω以上であり、これらの値は−40〜100℃の熱衝撃試験1000サイクル処理、PCT試験(105℃、1.2気圧)100時間においても変化がなく、良好な接続信頼性を示した。 The connection resistance after this connection is a maximum of 150 mΩ per bump, an average of 80 mΩ, and an insulation resistance of 10 8 Ω or more. (° C., 1.2 atm.) No change even after 100 hours, showing good connection reliability.

参考例5
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)125gとを酢酸エチル400gに溶解し、30%溶液を得た。
Reference Example 5
To 400 g of ethyl acetate, 50 g of phenoxy resin and 125 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) Dissolved to give a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)325gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着樹脂組成物100重量部に対して60重量部、更にニッケル粒子(直径:5μm)を2体積%分散させてフィルム塗工用溶液を得た。   Next, 325 g of a liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, 60 parts by weight and further 2% by volume of nickel particles (diameter: 5 μm) were dispersed to obtain a film coating solution.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、厚み45μmの接着フィルムeを形成した。この接着フィルムeの溶融シリカ及びニッケル粒子を除いた接着樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、800MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to form an adhesive film e having a thickness of 45 μm. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring device using only the adhesive resin composition excluding fused silica and nickel particles of the adhesive film e was 800 MPa.

次に得られた接着フィルムeを用いて、バンプレスチップ(10mm×10mm、厚み:0.5mm、パッド電極:Al、パッド径:120μm)と、回路上にNi/AuめっきCuバンプ(直径:100μm、スペース50μm、高さ:15μm、バンプ数:200)を形成したNi/AuめっきCu回路プリント基板との接続を、以下に示すように行った。   Next, using the obtained adhesive film e, a bumpless chip (10 mm × 10 mm, thickness: 0.5 mm, pad electrode: Al, pad diameter: 120 μm), and Ni / Au plated Cu bump (diameter: on the circuit) Connection with a Ni / Au plated Cu circuit printed circuit board on which 100 μm, space 50 μm, height: 15 μm, number of bumps: 200) was formed was performed as shown below.

まず、接着フィルムe(12mm×12mm)をNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、チップのAlパッドとNi/AuめっきCuバンプ付Ni/AuめっきCu回路プリント基板(厚み:0.8mm)との位置合わせを行った。次いで、180℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行って本接続した。 First, the adhesive film e (12 mm × 12 mm) was attached to a Ni / Au plated Cu circuit printed board (electrode height: 20 μm, thickness: 0.8 mm) at 80 ° C. and 10 kgf / cm 2 , and then the separator was peeled off. The alignment of the Al pad of the chip and the Ni / Au plated Cu circuit printed board (thickness: 0.8 mm) with Ni / Au plated Cu bumps was performed. Subsequently, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 30 g / bump, and 20 seconds.

本接続後の接続抵抗は、1バンプあたり最高で8mΩ、平均で4mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。 The connection resistance after this connection is a maximum of 8 mΩ per bump, an average of 4 mΩ, and an insulation resistance of 10 8 Ω or more, and these values are the thermal shock test at −55 to 125 ° C., 1000 cycle treatment, PCT test (121 No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.

参考例6
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)125gとを酢酸エチル400gに溶解し、30%溶液を得た。
Reference Example 6
To 400 g of ethyl acetate, 50 g of phenoxy resin and 125 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) Dissolved to give a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)325gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を樹脂接着剤組成物100重量部に対して40重量部分散させてフィルム塗工用溶液を得た。   Next, 325 g of a liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution and stirred, and 100 parts by weight of fused silica (average particle size: 0.5 μm) is added to the resin adhesive composition. A film coating solution was obtained by dispersing 40 parts by weight of the solution.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、第1の接着層である接着フィルムf(厚み:25μm)を形成した。なお、この接着フィルムfの溶融シリカを除いた接着樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、800MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to form an adhesive film f (thickness: 25 μm) as a first adhesive layer. ) Was formed. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring device using only the adhesive resin composition excluding fused silica of the adhesive film f was 800 MPa.

また、溶融シリカを分散する代わりにニッケル粒子(直径:3μm)を2体積%分散した以外は、接着フィルムfの作成と同様にして、第2の接着層である接着フィルムg(厚み:25μm)を形成した。得られた接着フィルムgの40℃での弾性率は、800MPaであった。   Further, an adhesive film g (thickness: 25 μm) as the second adhesive layer was produced in the same manner as the production of the adhesive film f except that 2% by volume of nickel particles (diameter: 3 μm) was dispersed instead of dispersing the fused silica. Formed. The obtained adhesive film g had an elastic modulus at 40 ° C. of 800 MPa.

次に、得られた接着フィルムf及び接着フィルムgをラミネートして、複合膜である積層フィルム状接着剤hを得た。   Next, the obtained adhesive film f and adhesive film g were laminated to obtain a laminated film adhesive h that was a composite film.

この積層フィルム状接着剤hを用いて、金バンプ(面積:80μm×80μm、スペース30μm、高さ:15μm、バンプ数:288)付きチップ(10mm×10mm、厚み:0.5mm)と、Ni/AuめっきCu回路プリント基板との接続を、以下に示すように行った。   Using this laminated film adhesive h, a chip (10 mm × 10 mm, thickness: 0.5 mm) with gold bumps (area: 80 μm × 80 μm, space 30 μm, height: 15 μm, number of bumps: 288), Ni / Connection with the Au plated Cu circuit printed circuit board was performed as shown below.

まず、この積層フィルム状接着剤h(12mm×12mm)の接着フィルムg(第2の接着剤層)をNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、接着フィルムf(第1の接着剤層)側にチップを対向させ、チップのバンプとNi/AuめっきCu回路プリント基板(厚み:0.8mm)との位置合わせを行った。次いで、180℃、50g/バンプ、20秒の条件でチップ上方から加熱、加圧を行って本接続した。 First, an adhesive film g (second adhesive layer) of this laminated film adhesive h (12 mm × 12 mm) is applied to a Ni / Au plated Cu circuit printed circuit board (electrode height: 20 μm, thickness: 0.8 mm). After bonding at 10 ° C. and 10 kgf / cm 2 , the separator is peeled off, the chip is made to face the adhesive film f (first adhesive layer) side, the chip bump and the Ni / Au plated Cu circuit printed circuit board (thickness: 0.8mm). Next, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 50 g / bump, and 20 seconds.

本接続後の接続抵抗は、1バンプあたり最高で6mΩ、平均で2mΩ、絶縁抵抗は108Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。 The connection resistance after this connection is a maximum of 6 mΩ per bump, an average of 2 mΩ, and an insulation resistance of 10 8 Ω or more. No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.

参考例7
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)175gとを酢酸エチル525gに溶解し、30%溶液を得た。
Reference Example 7
To 525 g of ethyl acetate, 50 g of phenoxy resin and 175 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) Dissolved to give a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)275gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:1μm)を、接着樹脂組成物100重量部に対して60重量部分散させて、フィルム塗工用溶液を得た。   Next, 275 g of a liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution, stirred, and fused silica (average particle size: 1 μm) is added to 100 parts by weight of the adhesive resin composition. 60 parts by weight were dispersed to obtain a film coating solution.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、第1の接着剤層にあたる接着フィルムi(厚み:20μm)を形成した。この接着フィルiの溶融シリカを除いた接着樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、400MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater, dried at 100 ° C. for 10 minutes, and then an adhesive film i corresponding to the first adhesive layer (thickness: 20 μm). ) Was formed. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring device using only the adhesive resin composition excluding the fused silica of the adhesive film i was 400 MPa.

また、溶融シリカを分散する代わりにニッケル粒子(直径:5μm)を2体積%分散した以外は、接着フィルムiの作成と同様にして、第2の接着剤層にあたる接着フィルムj(厚み:20μm)を形成した。得られた接着フィルムjの40℃での弾性率は、400MPaであった。   Further, an adhesive film j (thickness: 20 μm) corresponding to the second adhesive layer was prepared in the same manner as the production of the adhesive film i except that 2% by volume of nickel particles (diameter: 5 μm) was dispersed instead of dispersing the fused silica. Formed. The obtained adhesive film j had an elastic modulus at 40 ° C. of 400 MPa.

次に、得られた接着フィルムi及び接着フィルムjをラミネートして、複合膜である積層フィルム状接着剤kを得た。この積層フィルム状接着剤kを用いて、金バンプ(面積:80μm×80μm、スペース30μm、高さ:15μm、バンプ数:288)付きチップ(10mm×10mm、厚み:0.5mm)と、Ni/AuめっきCu回路プリント基板との接続を、以下に示すように行った。   Next, the obtained adhesive film i and adhesive film j were laminated to obtain a laminated film adhesive k which was a composite film. Using this laminated film adhesive k, a chip (10 mm × 10 mm, thickness: 0.5 mm) with gold bumps (area: 80 μm × 80 μm, space 30 μm, height: 15 μm, number of bumps: 288), Ni / Connection with the Au plated Cu circuit printed circuit board was performed as shown below.

まず、この積層フィルム状接着剤k(12mm×12mm)の接着フィルムj(第2の接着層)を、Ni/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、接着フィルムi(第1の接着層)側にチップを対向させ、チップのバンプとNi/AuめっきCu回路プリント基板(厚み:0.8mm)との位置合わせを行った。次いで、180℃、50g/バンプ、20秒の条件でチップ上方から加熱、加圧を行って本接続した。 First, an adhesive film j (second adhesive layer) of this laminated film adhesive k (12 mm × 12 mm) is applied to a Ni / Au plated Cu circuit printed board (electrode height: 20 μm, thickness: 0.8 mm). After bonding at 10 ° C. and 10 kgf / cm 2 , the separator is peeled off, the chip is made to face the adhesive film i (first adhesive layer) side, the chip bump and the Ni / Au plated Cu circuit printed circuit board (thickness: 0) .8 mm). Next, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 50 g / bump, and 20 seconds.

本接続後の接続抵抗は、1バンプあたり最高で18mΩ、平均で8mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。 The connection resistance after this connection is a maximum of 18 mΩ per bump, an average of 8 mΩ, and an insulation resistance of 10 8 Ω or more. No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.

参考例8
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)100gとを酢酸エチル350gに溶解し、30%溶液を得た。
Reference Example 8
50 g of phenoxy resin and 100 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) in 350 g of ethyl acetate Dissolved to give a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)350gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着樹脂組成物100重量部に対して60重量部分散させて、フィルム塗工用溶液を得た。   Next, 350 g of liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, 60 parts by weight was dispersed to obtain a film coating solution.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、第1の接着層にあたる接着フィルムm(厚み:25μm)を形成した。この接着フィルムmの溶融シリカを除いた接着樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、1000MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater, dried at 100 ° C. for 10 minutes, and then an adhesive film m (thickness: 25 μm) corresponding to the first adhesive layer. Formed. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring instrument using only the adhesive resin composition excluding fused silica of the adhesive film m was 1000 MPa.

また、溶融シリカを分散する代わりにポリスチレン系核体(直径:5μm)の表面にAu層を形成した導電粒子を5体積%分散した以外は、接着フィルムmの作成と同様にして、第2の接着層にあたる接着フィルムn(厚み:25μm)を形成した。得られた接着フィルムnの40℃での弾性率は、1000MPaであった。   Further, in the same manner as the production of the adhesive film m, except that 5% by volume of conductive particles having an Au layer formed on the surface of a polystyrene core (diameter: 5 μm) was dispersed instead of dispersing the fused silica, the second An adhesive film n (thickness: 25 μm) corresponding to the adhesive layer was formed. The obtained adhesive film n had an elastic modulus at 40 ° C. of 1000 MPa.

次に、得られた接着フィルムmと接着フィルムnとをラミネートして、複合膜である積層フィルム状接着剤pを得た。この積層フィルム状接着剤pを用いて、金バンプ(面積:80μm×80μm、スペース30μm、高さ:15μm、バンプ数:288)付きチップ(10mm×10mm、厚み:0.5mm)と、Ni/AuめっきCu回路プリント基板との接続を、以下に示すように行った。   Next, the obtained adhesive film m and the adhesive film n were laminated to obtain a laminated film adhesive p which was a composite film. Using this laminated film adhesive p, a chip (10 mm × 10 mm, thickness: 0.5 mm) with gold bumps (area: 80 μm × 80 μm, space 30 μm, height: 15 μm, number of bumps: 288), Ni / Connection with the Au plated Cu circuit printed circuit board was performed as shown below.

まず、この積層フィルム状接着剤p(12mm×12mm)の接着フィルムn(第2の接着層)を、Ni/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、接着フィルムm(第1の接着層)側にチップを対向させ、チップのバンプとNi/AuめっきCu回路プリント基板(厚み:0.8mm)との位置合わせを行った。次いで、180℃、50g/バンプ、20秒の条件でチップ上方から加熱、加圧を行って本接続した。 First, an adhesive film n (second adhesive layer) of this laminated film adhesive p (12 mm × 12 mm) is applied to a Ni / Au plated Cu circuit printed circuit board (electrode height: 20 μm, thickness: 0.8 mm). After bonding at 10 ° C. and 10 kgf / cm 2 , the separator is peeled off, the chip is made to face the adhesive film m (first adhesive layer) side, the chip bump and the Ni / Au plated Cu circuit printed circuit board (thickness: 0) .8 mm). Next, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 50 g / bump, and 20 seconds.

本接続後の接続抵抗は、1バンプあたり最高で5mΩ、平均で1.5mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。 The connection resistance after this connection is a maximum of 5 mΩ per bump, an average of 1.5 mΩ, and an insulation resistance of 10 8 Ω or more. (121 ° C., 2 atm) No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours, showing good connection reliability.

参考例9
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)125gとを酢酸エチル400gに溶解し、30%溶液を得た。
Reference Example 9
To 400 g of ethyl acetate, 50 g of phenoxy resin and 125 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) Dissolved to give a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)325gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を、接着樹脂組成物100重量部に対して60重量部分散させて、フィルム塗工用溶液を得た。   Next, 325 g of a liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution, stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. 60 parts by weight was dispersed to obtain a film coating solution.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:25μm)にロールコータで塗布し、100℃で10分間乾燥させて、第1の接着層にあたる接着フィルムq(厚み:25μm)を形成した。この接着フィルムqの、溶融シリカを除いた接着樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、800MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 25 μm) with a roll coater, dried at 100 ° C. for 10 minutes, and then an adhesive film q (thickness: 25 μm) corresponding to the first adhesive layer. Formed. The elastic modulus at 40 ° C. of the adhesive film q measured by a dynamic viscoelasticity measuring device using only the adhesive resin composition excluding fused silica was 800 MPa.

溶融シリカを分散する代わりにニッケル粒子(直径:3μm)を2体積%分散した以外は、接着フィルムqの作成と同様にして、第2の接着層にあたる接着フィルムr(厚み:25μm)を形成した。得られた接着フィルムrの40℃での弾性率は、800MPaであった。   An adhesive film r (thickness: 25 μm) corresponding to the second adhesive layer was formed in the same manner as the production of the adhesive film q except that 2% by volume of nickel particles (diameter: 3 μm) was dispersed instead of dispersing the fused silica. . The obtained adhesive film r had an elastic modulus at 40 ° C. of 800 MPa.

次に、得られた接着フィルムqと接着フィルムrとをラミネートして、複合膜である積層フィルム状接着剤sを得た。   Next, the obtained adhesive film q and the adhesive film r were laminated to obtain a laminated film adhesive s as a composite film.

この積層フィルム状接着剤sを用いて、バンプレスチップ(10mm×10mm、厚み:0.5mm、パッド電極:Al、パッド径:120μm)と、回路上にNi/AuめっきCuバンプ(直径:100μm、スペース50μm、高さ:15μm、バンプ数:200)を形成したNi/AuめっきCu回路プリント基板との接続を、以下に示すように行った。   Using this laminated film adhesive s, a bumpless chip (10 mm × 10 mm, thickness: 0.5 mm, pad electrode: Al, pad diameter: 120 μm) and Ni / Au plated Cu bump (diameter: 100 μm) on the circuit , Space 50 μm, height: 15 μm, number of bumps: 200) were formed and connected to a Ni / Au plated Cu circuit printed circuit board as shown below.

まず、この積層フィルム状接着剤s(12mm×12mm)の接着フィルムr(第2の接着層)を、Ni/AuめっきCuバンプ(直径:100μm、スペース50μm、高さ:15μm、バンプ数:200)を形成したNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、接着フィルムq(第1の接着層)側にチップを対向し、チップのバンプとNi/AuめっきCu回路プリント基板(厚み:0.8mm)との位置合わせを行った。次いで、180℃、50g/バンプ、20秒の条件でチップ上方から加熱、加圧を行って本接続した。 First, an adhesive film r (second adhesive layer) of this laminated film adhesive s (12 mm × 12 mm) is made of Ni / Au plated Cu bumps (diameter: 100 μm, space 50 μm, height: 15 μm, number of bumps: 200 ) Formed on an Ni / Au plated Cu circuit printed circuit board (electrode height: 20 μm, thickness: 0.8 mm) at 80 ° C. and 10 kgf / cm 2 , and then the separator is peeled off to form an adhesive film q (first The chip was opposed to the adhesive layer) side, and the bumps of the chip and the Ni / Au plated Cu circuit printed circuit board (thickness: 0.8 mm) were aligned. Next, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 50 g / bump, and 20 seconds.

本接続後の接続抵抗は、1バンプあたり最高で8mΩ、平均で4mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。 The connection resistance after this connection is a maximum of 8 mΩ per bump, an average of 4 mΩ, and an insulation resistance of 10 8 Ω or more. No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.

実施例10
フェノキシ樹脂195gと多官能エポキシ(エポキシ当量:212)130gとを酢酸エチル1,083gに溶解し、30%溶液を得た。
Example 10
195 g of phenoxy resin and 130 g of polyfunctional epoxy (epoxy equivalent: 212) were dissolved in 1,083 g of ethyl acetate to obtain a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)325gをこの溶液に加え、撹拌し、更にニッケル粒子(直径:5μm)を2体積%分散させて、フィルム塗工用溶液を得た。   Next, 325 g of a liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution, stirred, and 2% by volume of nickel particles (diameter: 5 μm) are dispersed for film coating. A solution was obtained.

このフィルム塗工用溶液を、セパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、第3の接着層にあたる接着フィルムt(厚み:25μm)を形成した。硬化後の接着フィルムtの30〜100℃までの熱膨張係数は45ppm、ガラス転移温度は150℃、40℃での弾性率は2,600MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to form an adhesive film t (thickness: 25 μm) corresponding to the third adhesive layer. ) Was formed. The cured adhesive film t had a thermal expansion coefficient of 45 ppm up to 30 to 100 ° C., a glass transition temperature of 150 ° C., and an elastic modulus at 40 ° C. of 2,600 MPa.

また、フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(20部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)100gとを酢酸エチル500gに溶解させ、30%溶液を得た。   Further, 50 g of phenoxy resin and 100 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (20 parts), acrylonitrile (30 parts), and glycidyl methacrylate (3 parts) in ethyl acetate Dissolved in 500 g, a 30% solution was obtained.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)350gをこの溶液に加え、撹拌し、更にニッケル粒子(直径:5μm)を2体積%分散させてフィルム塗工用溶液を得た。   Next, 350 g of liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution, stirred, and 2% by volume of nickel particles (diameter: 5 μm) are dispersed to form a film coating solution. Got.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、第4の接着層にあたる接着フィルムu(厚み:25μm)を形成した。硬化後の接着フィルムuの30〜100℃までの熱膨張係数は70ppm、ガラス転移温度は125℃、40℃での弾性率は1,000MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to form an adhesive film u corresponding to the fourth adhesive layer (thickness: 25 μm). Formed. The cured adhesive film u had a thermal expansion coefficient of 30 ppm to 30-100 ° C., a glass transition temperature of 125 ° C., and an elastic modulus at 40 ° C. of 1,000 MPa.

次に、接着フィルムtと接着フィルムuとをラミネートして、複合膜である積層フィルム状接着剤v(厚み:50μm)を形成した。   Next, the adhesive film t and the adhesive film u were laminated to form a laminated film adhesive v (thickness: 50 μm) as a composite film.

次に、得られた積層フィルム状接着剤vを用いて、金バンプ(高さ:30μm、バンプ数:184)付きチップ(大きさ:10×10mm、厚み:0.55mm)と、Ni/AuめっきCu回路プリント基板(電極高さ:20μm、基板厚み:0.8mm)との接続を、以下に示すように行った。   Next, using the obtained laminated film adhesive v, a chip (size: 10 × 10 mm, thickness: 0.55 mm) with gold bumps (height: 30 μm, number of bumps: 184), Ni / Au Connection with a plated Cu circuit printed board (electrode height: 20 μm, substrate thickness: 0.8 mm) was performed as shown below.

まず、積層フィルム状接着剤v(大きさ:12×12mm)の接着フィルムu(第4の接着層)面をプリント基板側として、Ni/AuめっきCu回路プリント基板に60℃、0.5MPaの条件で積層フィルム状接着剤vを仮接続させた。仮接続工程後、チップのバンプとNi/AuめっきCu回路プリント基板とを位置合わせして積層フィルム状接着剤v上にチップを載置し、続いて180℃、50g/バンプ、20秒の条件でチップ上方から加熱、加圧を行って本接続した。   First, with the adhesive film u (fourth adhesive layer) surface of the laminated film adhesive v (size: 12 × 12 mm) as the printed circuit board side, the Ni / Au plated Cu circuit printed circuit board has a temperature of 60 ° C. and 0.5 MPa. The laminated film adhesive v was temporarily connected under the conditions. After the temporary connection process, the bumps of the chip and the Ni / Au plated Cu circuit printed circuit board are aligned and the chip is placed on the laminated film adhesive v, followed by the conditions of 180 ° C., 50 g / bump, 20 seconds. The main connection was made by heating and pressing from above the chip.

本接続後の接続抵抗は、1バンプあたり最高で10mΩ、平均で2mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル及び110℃85%RH、PCT試験500時間中の試験中連続(in situ)抵抗測定で良好な接続信頼性を示した。 The connection resistance after this connection is a maximum of 10 mΩ per bump, an average of 2 mΩ, and an insulation resistance of 10 8 Ω or more. These values are 1000 cycles of a thermal shock test of −55 to 125 ° C. and 110 ° C. and 85% RH. The PCT test showed good connection reliability by in-situ resistance measurement during the test for 500 hours.

実施例11
フェノキシ樹脂195gと多官能エポキシ(エポキシ当量:212)130gとを酢酸エチル1,083gに溶解し、30%溶液を得た。
Example 11
195 g of phenoxy resin and 130 g of polyfunctional epoxy (epoxy equivalent: 212) were dissolved in 1,083 g of ethyl acetate to obtain a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)325gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を樹脂組成物100重量部に対して20重量部、更にニッケル粒子(直径:5μm)を2体積%分散させてフィルム塗工用溶液を得た。   Next, 325 g of liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the resin composition. Then, 20 parts by weight and 2% by volume of nickel particles (diameter: 5 μm) were dispersed to obtain a film coating solution.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、第3の接着層にあたる接着フィルムw(厚み:25μm)を形成した。硬化後の接着フィルムwの30〜100℃までの熱膨張係数は38ppm、ガラス転移温度は153℃、40℃での弾性率は3,000MPaであった。   This film coating solution is applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater, and dried at 100 ° C. for 10 minutes to form an adhesive film w (thickness: 25 μm) corresponding to the third adhesive layer. Formed. The adhesive film w after curing had a thermal expansion coefficient of 38 ppm, glass transition temperature of 153 ° C., and an elastic modulus at 40 ° C. of 3,000 MPa.

また、フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(20部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)100gとを酢酸エチル500gに溶解し、30%溶液を得た。   Further, 50 g of phenoxy resin and 100 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (20 parts), acrylonitrile (30 parts), and glycidyl methacrylate (3 parts) in ethyl acetate Dissolved in 500 g, a 30% solution was obtained.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)350gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を樹脂組成物100重量部に対して20重量部、更にニッケル粒子(直径:5μm)を2体積%分散させてフィルム塗工用溶液を得た。   Next, 350 g of liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the resin composition. Then, 20 parts by weight and 2% by volume of nickel particles (diameter: 5 μm) were dispersed to obtain a film coating solution.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、第4の接着層にあたる接着フィルムx(厚み:25μm)を形成した。硬化後の接着フィルムxの30〜100℃までの熱膨張係数は60ppm、ガラス転移温度は127℃、40℃での弾性率は1,400MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater, dried at 100 ° C. for 10 minutes, and an adhesive film x (thickness: 25 μm) corresponding to the fourth adhesive layer Formed. The cured adhesive film x had a coefficient of thermal expansion of 30 ppm to 30-100 ° C., a glass transition temperature of 127 ° C., and an elastic modulus at 40 ° C. of 1,400 MPa.

次に、接着フィルムwと接着フィルムxとをラミネートし、複合膜である積層フィルム状接着剤y(厚み:50μm)を形成した。   Next, the adhesive film w and the adhesive film x were laminated to form a laminated film adhesive y (thickness: 50 μm) as a composite film.

次に、得られた積層フィルム状接着剤yを用いて、金バンプ(高さ:30μm、バンプ数:184)付きチップ(大きさ:10×10mm、厚み:0.55mm)と、Ni/AuめっきCu回路プリント基板(電極高さ:20μm、基板厚み:0.8mm)との接続を、以下に示すように行った。   Next, using the obtained laminated film adhesive y, a chip (size: 10 × 10 mm, thickness: 0.55 mm) with gold bumps (height: 30 μm, number of bumps: 184), Ni / Au Connection with a plated Cu circuit printed board (electrode height: 20 μm, substrate thickness: 0.8 mm) was performed as shown below.

積層フィルム状接着剤y(大きさ:12×12mm)の接着フィルムx(第4の接着層)面をプリント基板側として、Ni/AuめっきCu回路プリント基板に60℃、0.5MPaの条件で積層フィルム状接着剤yを仮接続させた。仮接続工程後、チップのバンプとNi/AuめっきCu回路プリント基板とを位置合わせして積層フィルム状接着剤y上にチップを載置し、続いて180℃、50g/バンプ、20秒の条件でチップ上方から加熱、加圧を行って本接続した。   With the adhesive film x (fourth adhesive layer) surface of the laminated film adhesive y (size: 12 × 12 mm) as the printed circuit board side, the Ni / Au plated Cu circuit printed circuit board is subjected to conditions of 60 ° C. and 0.5 MPa. The laminated film adhesive y was temporarily connected. After the temporary connection step, the bumps of the chip and the Ni / Au plated Cu circuit printed circuit board are aligned and the chip is placed on the laminated film adhesive y, followed by the conditions of 180 ° C., 50 g / bump, 20 seconds. The main connection was made by heating and pressing from above the chip.

本接続後の接続抵抗は、1バンプあたり最高で10mΩ、平均で2mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル及び110℃85%RH、PCT試験500時間中の試験中連続(in situ)抵抗測定で良好な接続信頼性を示した。 The connection resistance after this connection is a maximum of 10 mΩ per bump, an average of 2 mΩ, and an insulation resistance of 10 8 Ω or more. The PCT test showed good connection reliability by in-situ resistance measurement during the test for 500 hours.

比較例1
実施例10で得られた積層フィルム状接着剤vを用いて、金バンプ(高さ:30μm、バンプ数:184)付きチップ(大きさ:10×10mm、厚み:0.55mm)と、Ni/AuめっきCu回路プリント基板(電極高さ:20μm、基板厚み:0.8mm)との接続を、実施例10と同様にして行った。ただし、本比較例では、積層フィルム状接着剤v(大きさ:12×12mm)の接着フィルムt(第3の接着層)面をプリント基板側とした。
Comparative Example 1
Using the laminated film adhesive v obtained in Example 10, a chip (size: 10 × 10 mm, thickness: 0.55 mm) with gold bumps (height: 30 μm, number of bumps: 184), Ni / Connection with an Au plated Cu circuit printed circuit board (electrode height: 20 μm, substrate thickness: 0.8 mm) was performed in the same manner as in Example 10. However, in this comparative example, the surface of the adhesive film t (third adhesive layer) of the laminated film adhesive v (size: 12 × 12 mm) was the printed circuit board side.

本接続後の接続抵抗は、1バンプあたり最高で10mΩ、平均で2mΩ、絶縁抵抗は10Ω以上であったが、これらの値は−55〜125℃の熱衝撃試験500サイクルで、また110℃85%RH、PCT試験300時間で電気的導通が不良になった。 The connection resistance after this connection was a maximum of 10 mΩ per bump, an average of 2 mΩ, and an insulation resistance of 10 8 Ω or more, but these values were 500 cycles of a thermal shock test at −55 to 125 ° C. and 110 The electrical continuity was poor after 300 hours at 85 ° C. and PCT test.

比較例2
フェノキシ樹脂195gと多官能エポキシ(エポキシ当量:212)130gとを酢酸エチル1,083gに溶解し、30%溶液を得た。
Comparative Example 2
195 g of phenoxy resin and 130 g of polyfunctional epoxy (epoxy equivalent: 212) were dissolved in 1,083 g of ethyl acetate to obtain a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)325gをこの溶液に加え、撹拌し、更にニッケル粒子(直径:5μm)を2体積%分散させてフィルム塗工用溶液を得た。   Next, 325 g of a liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution, stirred, and further 2% by volume of nickel particles (diameter: 5 μm) are dispersed to form a film coating solution. Got.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、厚み50μmの接着フィルムzを形成した。硬化後の接着フィルムzの30〜100℃までの熱膨張係数は45ppm、ガラス転移温度は150℃、40℃での弾性率は2,600MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to form an adhesive film z having a thickness of 50 μm. The adhesive film z after curing had a coefficient of thermal expansion of 45 ppm, a glass transition temperature of 150 ° C., and an elastic modulus at 40 ° C. of 2,600 MPa.

次に、得られた接着フィルムzのみを用いて、金バンプ(高さ:30μm、バンプ数:184)付きチップ(大きさ:10×10mm、厚み:0.55mm)と、Ni/AuめっきCu回路プリント基板(電極高さ:20μm、基板厚み:0.8mm)との接続を、以下に示すように行った。   Next, using only the obtained adhesive film z, a chip (size: 10 × 10 mm, thickness: 0.55 mm) with gold bumps (height: 30 μm, number of bumps: 184), Ni / Au plating Cu Connection to a circuit printed board (electrode height: 20 μm, board thickness: 0.8 mm) was performed as shown below.

まず、接着フィルムzを、Ni/AuめっきCu回路プリント基板に60℃、0.5MPaの条件で仮接続させた。仮接続工程後、チップのバンプとNi/AuめっきCu回路プリント基板とを位置合わせして接着フィルムz上にチップを載置し、続いて180℃、50g/バンプ、20秒の条件でチップ上方から加熱、加圧を行って本接続した。   First, the adhesive film z was temporarily connected to a Ni / Au plated Cu circuit printed circuit board at 60 ° C. and 0.5 MPa. After the temporary connection process, the bumps of the chip and the Ni / Au plated Cu circuit printed circuit board are aligned and the chip is placed on the adhesive film z, and then the upper part of the chip at 180 ° C., 50 g / bump, 20 seconds. Then, this connection was made by heating and pressurizing.

本接続後の接続抵抗は、1バンプあたり最高で10mΩ、平均で3mΩ、絶縁抵抗は10Ω以上であったが、これらの値は−55〜125℃の熱衝撃試験300サイクル及び260℃のはんだバス浸漬10秒後において電気的導通が不良になった。接続部分の断面観察の結果、導通不良部分の一部で接着フィルム界面の剥離が観察された。 The connection resistance after this connection was 10 mΩ at the maximum per bump, 3 mΩ on average, and the insulation resistance was 10 8 Ω or more. These values are 300 cycles of the thermal shock test at −55 to 125 ° C. Electrical continuity was poor after 10 seconds of immersion in the solder bath. As a result of cross-sectional observation of the connection portion, peeling of the adhesive film interface was observed in a part of the poor conduction portion.

比較例3
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(20部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)100gとを酢酸エチル500gに溶解し、30%溶液を得た。
Comparative Example 3
50 g of phenoxy resin and 100 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (20 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) in 500 g of ethyl acetate Dissolved to give a 30% solution.

次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量:185)350gをこの溶液に加え、撹拌し、更にニッケル粒子(直径:5μm)を2体積%分散させてフィルム塗工用溶液を得た。   Next, 350 g of liquid epoxy (epoxy equivalent: 185) containing a microcapsule-type latent curing agent is added to this solution, stirred, and 2% by volume of nickel particles (diameter: 5 μm) are dispersed to form a film coating solution. Got.

このフィルム塗工用溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み:40μm)にロールコータで塗布し、100℃で10分間乾燥させて、厚み25μmの接着フィルムαを形成した。硬化後の接着フィルムαの30〜100℃までの熱膨張係数は60ppm、ガラス転移温度は125℃、40℃での弾性率は1,000MPaであった。   This film coating solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness: 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to form an adhesive film α having a thickness of 25 μm. The cured adhesive film α had a thermal expansion coefficient of 30 ppm to 30 ° C., a glass transition temperature of 125 ° C., and an elastic modulus at 40 ° C. of 1,000 MPa.

次に、得られた接着フィルムαのみを用いて、金バンプ(高さ:30μm、バンプ数:184)付きチップ(大きさ:10×10mm、厚み:0.55mm)と、Ni/AuめっきCu回路プリント基板(電極高さ:20μm、基板厚み:0.8mm)との接続を、以下に示すように行った。   Next, using only the obtained adhesive film α, a chip (size: 10 × 10 mm, thickness: 0.55 mm) with gold bumps (height: 30 μm, number of bumps: 184), Ni / Au plating Cu Connection to a circuit printed board (electrode height: 20 μm, board thickness: 0.8 mm) was performed as shown below.

まず、接着フィルムαをNi/AuめっきCu回路プリント基板に60℃、0.5MPaの条件で仮接続させた。仮接続工程後、チップのバンプとNi/AuめっきCu回路プリント基板とを位置合わせして接着フィルムα上にチップを載置し、続いて180℃、50g/バンプ、20秒の条件でチップ上方から加熱、加圧を行なって本接続した。   First, the adhesive film α was temporarily connected to a Ni / Au plated Cu circuit printed circuit board at 60 ° C. and 0.5 MPa. After the temporary connection process, the bumps of the chip and the Ni / Au plated Cu circuit printed circuit board are aligned, and the chip is placed on the adhesive film α. Then, heating and pressurization were performed to make the main connection.

本接続後の接続抵抗は、1バンプあたり最高で10mΩ、平均で2mΩ、絶縁抵抗は10Ω以上であったが、これらの値は−55〜125℃の熱衝撃試験30サイクルで、熱衝撃試験の高温試験時に電気的導通が不良になるという現象が生じた。
The connection resistance after this connection was a maximum of 10 mΩ per bump, an average of 2 mΩ, and an insulation resistance of 10 8 Ω or more, but these values were the thermal shock test in 30 cycles of −55 to 125 ° C. There was a phenomenon that electrical continuity was poor during the high temperature test.

Claims (15)

第1の接続端子を有する第1の回路部材と、前記第1の接続端子に対向する第2の接続端子を有する第2の回路部材と、の間に介在され、前記第1の接続端子と前記第2の接続端子とを電気的に接続する回路部材接続用接着剤であって、A first circuit member having a first connection terminal and a second circuit member having a second connection terminal facing the first connection terminal; and the first connection terminal An adhesive for connecting a circuit member for electrically connecting the second connection terminal,
第3の接着剤層と第4の接着剤層とを備え、A third adhesive layer and a fourth adhesive layer;
前記第4の接着剤層の硬化後の40℃における弾性率が100〜2000MPaであり、The elastic modulus at 40 ° C. after curing of the fourth adhesive layer is 100 to 2000 MPa,
前記第3の接着剤層の硬化後の40℃における弾性率が、前記第4の接着剤層の硬化後の40℃における弾性率より大きく、500〜5000MPaであり、The elastic modulus at 40 ° C. after curing of the third adhesive layer is larger than the elastic modulus at 40 ° C. after curing of the fourth adhesive layer, and is 500 to 5000 MPa,
前記第1の回路部材及び前記第2の回路部材のうち、相対的に弾性率が大きい側に前記第3の接着剤層側が接着され、相対的に弾性率が小さい側に前記第4の接着剤層側が接着されるように配置される、回路部材接続用接着剤。Of the first circuit member and the second circuit member, the third adhesive layer side is bonded to the side having a relatively large elastic modulus, and the fourth bond is bonded to the side having a relatively small elastic modulus. An adhesive for connecting circuit members, arranged so that the agent layer side is bonded.
第1の接続端子を有する第1の回路部材と、前記第1の接続端子に対向する第2の接続端子を有する第2の回路部材と、の間に介在され、前記第1の接続端子と前記第2の接続端子とを電気的に接続する回路部材接続用接着剤であって、A first circuit member having a first connection terminal and a second circuit member having a second connection terminal facing the first connection terminal; and the first connection terminal An adhesive for connecting a circuit member for electrically connecting the second connection terminal,
第3の接着剤層と第4の接着剤層とを備え、A third adhesive layer and a fourth adhesive layer;
前記第4の接着剤層の硬化後の40℃における弾性率が100〜2000MPaであり、The elastic modulus at 40 ° C. after curing of the fourth adhesive layer is 100 to 2000 MPa,
前記第3の接着剤層の硬化後の40℃における弾性率が、前記第4の接着剤層の硬化後の40℃における弾性率より大きく、500〜5000MPaであり、The elastic modulus at 40 ° C. after curing of the third adhesive layer is larger than the elastic modulus at 40 ° C. after curing of the fourth adhesive layer, and is 500 to 5000 MPa,
前記第1の回路部材及び前記第2の回路部材のうち、相対的に熱膨張係数が小さい側に前記第3の接着剤層側が接着され、相対的に熱膨張係数が大きい側に前記第4の接着剤層側が接着されるように配置される、回路部材接続用接着剤。Of the first circuit member and the second circuit member, the third adhesive layer side is bonded to the side having a relatively small thermal expansion coefficient, and the fourth circuit member is disposed to the side having a relatively large thermal expansion coefficient. An adhesive for connecting circuit members, which is arranged so that the adhesive layer side of is adhered.
第1の接続端子を有する、無機質絶縁基板からなる第1の回路部材と、前記第1の接続端子に対向する第2の接続端子を有する、有機質絶縁基板からなる第2の回路部材と、の間に介在され、前記第1の接続端子と前記第2の接続端子とを電気的に接続する回路部材接続用接着剤であって、A first circuit member made of an inorganic insulating substrate having a first connection terminal; and a second circuit member made of an organic insulating substrate having a second connection terminal facing the first connection terminal. An adhesive for circuit member connection that is interposed between and electrically connects the first connection terminal and the second connection terminal,
第3の接着剤層と第4の接着剤層とを備え、A third adhesive layer and a fourth adhesive layer;
前記第4の接着剤層の硬化後の40℃における弾性率が100〜2000MPaであり、The elastic modulus at 40 ° C. after curing of the fourth adhesive layer is 100 to 2000 MPa,
前記第3の接着剤層の硬化後の40℃における弾性率が、前記第4の接着剤層の硬化後の40℃における弾性率より大きく、500〜5000MPaであり、The elastic modulus at 40 ° C. after curing of the third adhesive layer is larger than the elastic modulus at 40 ° C. after curing of the fourth adhesive layer, and is 500 to 5000 MPa,
前記第1の回路部材側に前記第3の接着剤層側が接着され、前記第2の回路部材側に前記第4の接着剤層側が接着されるように配置される、回路部材接続用接着剤。Circuit member connecting adhesive arranged such that the third adhesive layer side is bonded to the first circuit member side and the fourth adhesive layer side is bonded to the second circuit member side .
第3及び第4の少なくともいずれか一方の接着剤層は、
接着樹脂組成物と、
前記接着樹脂組成物100重量部に対して10〜200重量部の絶縁性の無機質充填材と、を含む、請求項1〜3のいずれか一項に記載の回路部材接続用接着剤。
At least one of the third and fourth adhesive layers is:
An adhesive resin composition;
The adhesive for circuit member connection according to any one of claims 1 to 3 , comprising 10 to 200 parts by weight of an insulating inorganic filler with respect to 100 parts by weight of the adhesive resin composition.
前記絶縁性の無機質充填材の平均粒径が3μm以下である請求項記載の回路部材接続用接着剤。 The adhesive for circuit member connection according to claim 4, wherein the insulating inorganic filler has an average particle size of 3 μm or less. 前記接着剤は、
導電粒子を、前記接着樹脂組成物100体積部に対して、0.1〜30体積部含有する請求項4又は5記載の回路部材接続用接着剤。
The adhesive layer is
The adhesive for circuit member connection according to claim 4 or 5 , comprising 0.1 to 30 parts by volume of conductive particles with respect to 100 parts by volume of the adhesive resin composition.
前記接着剤は、
前記絶縁性の無機質充填材の平均粒径に比べて平均粒径の大きい導電粒子を、前記接着樹脂組成物100体積部に対して0.1〜30体積部含有する請求項4〜6のいずれか一項に記載の回路部材接続用接着剤。
The adhesive layer is
The large conductive particles having an average particle diameter than the average particle diameter of the insulating inorganic filler, any of claims 4 to 6 containing 0.1 to 30 parts by volume with respect to the adhesive resin composition 100 parts by volume of The adhesive for a circuit member connection according to claim 1.
前記接着樹脂組成物が、エポキシ系樹脂及び潜在性硬化剤を含有する請求項4〜7のいずれか一項に記載の回路部材接続用接着剤。 The adhesive for circuit member connection according to any one of claims 4 to 7 , wherein the adhesive resin composition contains an epoxy resin and a latent curing agent. 前記接着樹脂組成物が、エポキシ樹脂、アクリルゴム、及び、潜在性硬化剤を含有する請求項4〜8のいずれか一項に記載の回路部材接続用接着剤。 The adhesive for circuit member connection as described in any one of Claims 4-8 in which the said adhesive resin composition contains an epoxy resin, an acrylic rubber, and a latent hardener. 前記アクリルゴムが、分子中にグリシジルエーテル基を含有する請求項記載の回路部材接続用接着剤。 The adhesive for circuit member connection according to claim 9 , wherein the acrylic rubber contains a glycidyl ether group in a molecule. 形状がフィルム状である、請求項1〜10のいずれか一項に記載の回路部材接続用接着剤。 The adhesive for circuit member connection as described in any one of Claims 1-10 whose shape is a film form. 第1の接続端子を有する第1の回路部材と、
第2の接続端子を有する第2の回路部材とを、
第1の接続端子と第2の接続端子を対向して配置し、
前記対向配置した第1の接続端子と第2の接続端子の間に接着剤を介在させ、
加圧して前記対向配置した第1の接続端子と第2の接続端子を電気的に接続させた回路板であって、
前記接着剤が請求項1〜11のいずれか一項に記載の回路部材接続用接着剤である回路板。
A first circuit member having a first connection terminal;
A second circuit member having a second connection terminal;
The first connection terminal and the second connection terminal are arranged to face each other,
An adhesive is interposed between the first connection terminal and the second connection terminal arranged opposite to each other,
A circuit board in which the first connection terminal and the second connection terminal which are arranged opposite to each other by applying pressure are electrically connected;
The circuit board whose said adhesive agent is the adhesive agent for a circuit member connection as described in any one of Claims 1-11 .
前記第1の回路部材が無機質絶縁基板であり、
前記第2の回路部材が有機質絶縁基板であり、
前記第3の接着剤層の少なくともいずれかが前記第1の回路部材側に接着されている請求項12記載の回路板。
The first circuit member is an inorganic insulating substrate;
The second circuit member is an organic insulating substrate;
The circuit board according to claim 12, wherein at least one of the third adhesive layers is bonded to the first circuit member side.
前記第1の回路部材が半導体チップである、請求項12又は13記載の回路板。 The circuit board according to claim 12 or 13 , wherein the first circuit member is a semiconductor chip. 第1の接続端子を有する、無機質絶縁基板からなる第1の回路部材と、
第2の接続端子を有する、有機質絶縁基板からなる第2の回路部材とを、
第1の接続端子と第2の接続端子とを対向させて配置し、
前記対向配置した第1の接続端子と第2の接続端子との間に、請求項1〜11のいずれか一項に記載の回路部材接続用接着剤を、前記第3の接着剤層が前記第1の回路部材側になるように配置して介在させ、
加圧して前記対向配置した第1の接続端子と第2の接続端子とを電気的に接続させる工程を有する、回路板の製造方法。
A first circuit member made of an inorganic insulating substrate having a first connection terminal;
A second circuit member made of an organic insulating substrate having a second connection terminal;
The first connection terminal and the second connection terminal are arranged to face each other,
The adhesive for circuit member connection according to any one of claims 1 to 11 , wherein the third adhesive layer is between the first connection terminal and the second connection terminal that are arranged to face each other. Arranged so as to be on the first circuit member side,
A method of manufacturing a circuit board, comprising a step of electrically connecting the first connection terminal and the second connection terminal that are arranged opposite to each other by applying pressure.
JP2009158970A 2009-07-03 2009-07-03 Circuit member connecting adhesive, circuit board, and manufacturing method thereof Expired - Fee Related JP4631984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158970A JP4631984B2 (en) 2009-07-03 2009-07-03 Circuit member connecting adhesive, circuit board, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158970A JP4631984B2 (en) 2009-07-03 2009-07-03 Circuit member connecting adhesive, circuit board, and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009032626A Division JP4631979B2 (en) 2009-02-16 2009-02-16 Circuit member connecting adhesive, circuit board and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010210835A Division JP4631998B1 (en) 2010-09-21 2010-09-21 Circuit member connecting adhesive, circuit board, and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2010016383A JP2010016383A (en) 2010-01-21
JP2010016383A5 JP2010016383A5 (en) 2010-03-04
JP4631984B2 true JP4631984B2 (en) 2011-02-16

Family

ID=41702125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158970A Expired - Fee Related JP4631984B2 (en) 2009-07-03 2009-07-03 Circuit member connecting adhesive, circuit board, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4631984B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247381B1 (en) 1998-08-13 2007-07-24 Hitachi Chemical Company, Ltd. Adhesive for bonding circuit members, circuit board, and method of producing the same
JP4928378B2 (en) * 2007-08-06 2012-05-09 日立化成工業株式会社 Adhesive for connecting circuit members
JP4631979B2 (en) * 2009-02-16 2011-02-16 日立化成工業株式会社 Circuit member connecting adhesive, circuit board and manufacturing method thereof
WO2011126018A1 (en) * 2010-04-09 2011-10-13 オリンパスメディカルシステムズ株式会社 Adhesive composition and endoscope

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996042107A1 (en) * 1995-06-13 1996-12-27 Hitachi Chemical Company, Ltd. Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device
WO1998003047A1 (en) * 1996-07-15 1998-01-22 Hitachi Chemical Company, Ltd. Film-like adhesive for connecting circuit and circuit board
JP2007113012A (en) * 2006-11-13 2007-05-10 Hitachi Chem Co Ltd Adhesive for connecting circuit part
JP2007335889A (en) * 2007-08-06 2007-12-27 Hitachi Chem Co Ltd Adhesive for circuit member connection
JP2009147361A (en) * 2009-02-16 2009-07-02 Hitachi Chem Co Ltd Adhesive for circuit member connection, circuit board, and manufacturing method thereof
JP4440352B2 (en) * 1997-02-17 2010-03-24 日立化成工業株式会社 Adhesive for connecting circuit members

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996042107A1 (en) * 1995-06-13 1996-12-27 Hitachi Chemical Company, Ltd. Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device
WO1998003047A1 (en) * 1996-07-15 1998-01-22 Hitachi Chemical Company, Ltd. Film-like adhesive for connecting circuit and circuit board
JP4440352B2 (en) * 1997-02-17 2010-03-24 日立化成工業株式会社 Adhesive for connecting circuit members
JP2007113012A (en) * 2006-11-13 2007-05-10 Hitachi Chem Co Ltd Adhesive for connecting circuit part
JP2007335889A (en) * 2007-08-06 2007-12-27 Hitachi Chem Co Ltd Adhesive for circuit member connection
JP2009147361A (en) * 2009-02-16 2009-07-02 Hitachi Chem Co Ltd Adhesive for circuit member connection, circuit board, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010016383A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
KR100388770B1 (en) Adhesive for Bonding Circuit Members, Circuit Board, and Method of Producing the Same
JP3342703B2 (en) Film adhesive for circuit connection and circuit board
JP2012023025A (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP4631984B2 (en) Circuit member connecting adhesive, circuit board, and manufacturing method thereof
JP4631979B2 (en) Circuit member connecting adhesive, circuit board and manufacturing method thereof
JPH10226769A (en) Film adhesive and method for connection
JP4631998B1 (en) Circuit member connecting adhesive, circuit board, and manufacturing method thereof
JP4928378B2 (en) Adhesive for connecting circuit members
JP2007113012A (en) Adhesive for connecting circuit part
JP2012023024A (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP2012023338A (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP2009299079A (en) Connecting member for circuit, and circuit board
JP3801341B2 (en) Electronic component equipment
JP5223946B2 (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method
JP2009203478A (en) Adhesive for connecting circuit member
JP4492692B2 (en) Adhesive film for connecting circuit members
JP2007305994A (en) Circuit connecting member, and circuit board
EP1454973B1 (en) Adhesive for bonding circuit members, circuit board and process for its production
JPH11219980A (en) Electronic part device
JP2007107008A (en) Film-shaped adhesive and method for producing laminate
TW402631B (en) An adhhesive for connecting circuit members, a circuit board and a method of manufacturing the circuit board
JP5378261B2 (en) Adhesive for connecting circuit members
JP2009105449A (en) Circuit connection member and circuit board
JP2008115400A (en) Adhesive for connecting circuit member
JP2012209558A (en) Anisotropic conductive adhesive for circuit member connection

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees