JP4607547B2 - Pressure control method and pulse wave discrimination method for electronic sphygmomanometer - Google Patents
Pressure control method and pulse wave discrimination method for electronic sphygmomanometer Download PDFInfo
- Publication number
- JP4607547B2 JP4607547B2 JP2004319036A JP2004319036A JP4607547B2 JP 4607547 B2 JP4607547 B2 JP 4607547B2 JP 2004319036 A JP2004319036 A JP 2004319036A JP 2004319036 A JP2004319036 A JP 2004319036A JP 4607547 B2 JP4607547 B2 JP 4607547B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- value
- cuff
- pulse wave
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 52
- 238000012850 discrimination method Methods 0.000 title description 5
- 238000005070 sampling Methods 0.000 claims description 49
- 230000036772 blood pressure Effects 0.000 claims description 36
- 238000005259 measurement Methods 0.000 claims description 26
- 230000006837 decompression Effects 0.000 claims description 25
- 230000009467 reduction Effects 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 17
- 210000001367 artery Anatomy 0.000 claims description 7
- 230000001186 cumulative effect Effects 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 description 20
- 238000012937 correction Methods 0.000 description 7
- 238000009530 blood pressure measurement Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 101001135738 Homo sapiens Parathyroid hormone-related protein Proteins 0.000 description 3
- 101000589873 Homo sapiens Parathyroid hormone/parathyroid hormone-related peptide receptor Proteins 0.000 description 3
- 102100032256 Parathyroid hormone/parathyroid hormone-related peptide receptor Human genes 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Description
本発明は、動脈をカフで圧迫し、カフ圧を変化させる過程で脈波振幅値を検出し、この脈波振幅値を用いて血圧を決定するオシロメトリック式の電子血圧計の圧力制御方法及び脈波弁別方法に関するものである。 The present invention relates to a pressure control method for an oscillometric electronic sphygmomanometer that detects a pulse wave amplitude value in the process of compressing an artery with a cuff and changes the cuff pressure, and determines the blood pressure using the pulse wave amplitude value, and The present invention relates to a pulse wave discrimination method.
オシロメトリック式の電子血圧計では、被測定体である被験者の上腕または手首などにカフを巻き、カフを加圧し動脈を圧迫して阻血し、その加圧過程またはその後減圧してゆく過程で、圧力センサでカフ圧を検出すると共に、カフ圧信号中に重畳される脈波成分を抽出し、その脈波振幅の推移とカフ圧とに基づき血圧を決定する。例えば、脈波振幅の最大値に対応するカフ圧を平均血圧、脈波振幅の最大値の50%に相当する高カフ圧側の脈波振幅に対応するカフ圧を最高血圧、また脈波振幅の最大値の70%に相当する低カフ圧側の脈波振幅に対応するカフ圧を最低血圧と決定している。 In an oscillometric electronic sphygmomanometer, a cuff is wrapped around the upper arm or wrist of the subject to be measured, the cuff is pressurized and the artery is compressed to block the blood, and the pressurization process or the process of depressurization thereafter, While detecting the cuff pressure with the pressure sensor, the pulse wave component superimposed on the cuff pressure signal is extracted, and the blood pressure is determined based on the transition of the pulse wave amplitude and the cuff pressure. For example, the cuff pressure corresponding to the maximum value of the pulse wave amplitude is the average blood pressure, the cuff pressure corresponding to the pulse wave amplitude on the high cuff pressure side corresponding to 50% of the maximum value of the pulse wave amplitude is the maximum blood pressure, and the pulse wave amplitude The cuff pressure corresponding to the pulse wave amplitude on the low cuff pressure side corresponding to 70% of the maximum value is determined as the minimum blood pressure.
この種の電子血圧計において正確な血圧を測定するためには、カフ圧を一定速度で加圧または減圧しなければならない。つまり、微速加圧過程で血圧測定を行う加圧中測定方式の血圧計の場合は、加圧手段による現在のカフの加圧速度を監視し、所定の加圧速度(加圧速度が一定)となるように、加圧手段を制御しなければならない。例えば、加圧手段の吐出量が入力電流に比例する場合は、加圧速度が速すぎるとき、加圧手段の電流を減らして加圧を遅くし、加圧速度が遅すぎるとき、加圧手段の電流を増やして加圧を速くするよう制御している。 In order to measure accurate blood pressure in this type of electronic sphygmomanometer, the cuff pressure must be increased or decreased at a constant rate. In other words, in the case of a sphygmomanometer that measures blood pressure during the slow pressurization process, the current cuff pressurization speed by the pressurization means is monitored and a predetermined pressurization speed (the pressurization speed is constant) The pressurizing means must be controlled so that For example, when the discharge amount of the pressurizing means is proportional to the input current, when the pressurizing speed is too fast, the pressurizing means is decreased by reducing the current of the pressurizing means, and when the pressurizing speed is too slow, the pressurizing means The current is increased to increase the pressurization.
また、加圧後の微速減圧過程で血圧測定を行う減圧中測定方式の血圧計の場合は、現在のカフの減圧速度を監視し、所定の減圧速度(減圧速度が一定)となるように、電動排気弁を制御しなければならない。例えば、電動排気弁の弁開度が入力電流に比例する場合は、排気速度が速すぎるとき、電動排気弁の電流を増やして排気を遅くし、排気速度が遅すぎるとき、電動排気弁の電流を減らして排気を速くするよう制御している。なお、電動排気弁の形式により、制御入力が、電流の代わりに、電圧値やデューティ値であってもよい。 In addition, in the case of a sphygmomanometer that measures blood pressure in the slow depressurization process after pressurization, the current depressurization rate of the cuff is monitored and the predetermined depressurization rate (depressurization rate is constant) The motorized exhaust valve must be controlled. For example, when the valve opening of the electric exhaust valve is proportional to the input current, when the exhaust speed is too high, the electric exhaust valve current is increased to slow down the exhaust, and when the exhaust speed is too slow, the electric exhaust valve current It is controlled to reduce exhaust and speed up exhaust. Depending on the type of the electric exhaust valve, the control input may be a voltage value or a duty value instead of the current.
この加圧速度や減圧速度をコントロールする方法として、従来では、脈波発生前は、単位時間ごとの圧力差(検出カフ圧と目標カフ圧の差)に基づいて加圧速度や減圧速度を検出して加圧手段や電動排気弁の通電(電流)を制御し、脈波発生後は、各脈波の立上り直前の圧力差(検出カフ圧と目標カフ圧の差)により加圧速度や減圧速度を検出して、加圧手段や電動排気弁の通電(電流)を制御している。つまり、脈波と脈波の間隔(時間)と立ち上がりの圧力値から加圧速度や減圧速度を演算して、脈波1拍につき1回だけ加圧手段や電動排気弁の通電制御を行うのが一般的であった(例えば、特許文献1参照)。その理由は、脈波のあるところでのカフ圧に基づいて加圧手段や電動排気弁の制御が行われると、その時点でのカフ圧の検出値自体が基線(脈波判定の基準となる線であり、脈波が無いとした場合のカフ圧の変化曲線に相当)からはずれたものであり、加圧速度制御や減圧速度制御が適正に行われなくなるからである。 As a method for controlling the pressurization speed and decompression speed, conventionally, before the pulse wave is generated, the pressurization speed and decompression speed are detected based on the pressure difference per unit time (difference between the detected cuff pressure and the target cuff pressure). Then, the energization (current) of the pressurizing means and electric exhaust valve is controlled, and after the pulse wave is generated, the pressurization speed and pressure are reduced by the pressure difference (difference between the detected cuff pressure and the target cuff pressure) immediately before each pulse wave rises. The speed is detected and the energization (current) of the pressurizing means and the electric exhaust valve is controlled. In other words, the pressurization speed and pressure reduction speed are calculated from the pulse wave-to-pulse wave interval (time) and the rising pressure value, and the energization control of the pressurizing means and the electric exhaust valve is performed only once per pulse wave. (See, for example, Patent Document 1). The reason for this is that when the pressurizing means and the electric exhaust valve are controlled based on the cuff pressure where the pulse wave is present, the detected value of the cuff pressure at that time itself is the baseline (the line used as the reference for pulse wave determination). This corresponds to a change curve of the cuff pressure when there is no pulse wave), and the pressurization speed control and the decompression speed control are not properly performed.
次に、従来例として、加圧中測定方式における圧力制御方法及び脈波弁別方法について説明する。
図10は血圧測定の際のカフ圧の変化曲線を示している。
全体は(A)急速加圧区間、(B)定速加圧区間、(C)急速排気区間の3つの区間に分けられる。
(A)急速加圧区間は、測定開始(加圧開始)からカフ圧が所定値P1となるまでの間。
(B)定速加圧区間は、カフ圧P1〜測定終了(血圧検出終了)までの間。
(C)急速排気区間は、測定終了〜排気終了までの間。
Next, as a conventional example, a pressure control method and a pulse wave discrimination method in the measurement method during pressurization will be described.
FIG. 10 shows a change curve of the cuff pressure at the time of blood pressure measurement.
The whole is divided into three sections: (A) rapid pressurizing section, (B) constant speed pressurizing section, and (C) rapid exhaust section.
(A) The rapid pressurization section is from the measurement start (pressurization start) until the cuff pressure reaches the predetermined value P1.
(B) The constant speed pressurization section is from the cuff pressure P1 to the end of measurement (end of blood pressure detection).
(C) The rapid exhaust period is from the end of measurement to the end of exhaust.
カフ圧P1は、定速度加圧(脈波検出)を開始するカフ圧値であり、想定される最も低い最低血圧値より低い値に設定する。実施例として、25mmHgを設定してある。 The cuff pressure P1 is a cuff pressure value at which constant speed pressurization (pulse wave detection) is started, and is set to a value lower than the lowest possible minimum blood pressure value. As an example, 25 mmHg is set.
(B)定速加圧区間は、制御の違いにより3つの区間(1)〜(3)に区別されている。
図中の(1)〜(3)の各工程ではそれぞれ制御方法が異なる。
(1)脈波が検出されない区間での制御:
図11に示すように、この区間では、所定の時間間隔T(実施例:250mSec.)毎に加圧手段(加圧ポンプ)の吐出量を制御する。
時間Tn間の目標カフ変化量dpと、実際のカフ圧変化量dp1とを比較し、
dp1>dp:加圧ポンプの吐出量を下げる(図の場合)。
dp1<dp:加圧ポンプの吐出量を上げる。
dp1=dp:加圧ポンプの吐出量を維持させる。
(B) The constant speed pressurization section is divided into three sections (1) to (3) due to a difference in control.
In each step (1) to (3) in the figure, the control method is different.
(1) Control in a section where no pulse wave is detected:
As shown in FIG. 11, in this section, the discharge amount of the pressurizing means (pressurizing pump) is controlled every predetermined time interval T (Example: 250 mSec.).
The target cuff change amount dp during time Tn is compared with the actual cuff pressure change amount dp1,
dp1> dp: Decreases the discharge rate of the pressure pump (in the case of the figure).
dp1 <dp: Increase the discharge rate of the pressure pump.
dp1 = dp: The discharge amount of the pressure pump is maintained.
dpとdp1との差に対する加圧手段の吐出制御量は、カフの容積(サイズ)や制御する時点のカフ圧値毎に経験的に得た数値を関数化して用いる。
目標とするカフ圧変化曲線は、等速度加圧開始点P1(実施例:25mmHg)を起点に等速加圧特性を持つ変化曲線(実施例:4mmHg/Sec.)として定義する。
As the discharge control amount of the pressurizing means for the difference between dp and dp1, a numerical value obtained empirically for each cuff volume (size) or cuff pressure value at the time of control is used as a function.
The target cuff pressure change curve is defined as a change curve (Example: 4 mmHg / Sec.) Having a constant speed pressurization characteristic starting from the constant speed pressurization start point P1 (Example: 25 mmHg).
(2)最初の脈波が検出される直前から直後の制御:
図12に示すように、最後の吐出量補正から最初の脈波が検出されるまでの時間Tfが、吐出量の制御周期T(実施例:250mSec.)の所定量(実施例:1/3)以下の場合は、T(n)/dpによる吐出量を維持する。
また、TfがTの所定値(実施例:1/3)を上回ったら、脈波検出時点でTf/dpfから求めた補正値で吐出量を補正する。
(2) Control immediately before and after the first pulse wave is detected:
As shown in FIG. 12, the time Tf from the last discharge amount correction until the first pulse wave is detected is a predetermined amount (Example: 1/3) of the discharge amount control cycle T (Example: 250 mSec.). ) In the following cases, the discharge amount by T (n) / dp is maintained.
When Tf exceeds a predetermined value of T (Example: 1/3), the ejection amount is corrected with the correction value obtained from Tf / dpf at the time of detecting the pulse wave.
(3)脈波が検出されている間における制御:
図13に示すように、先行脈波P(n-1)と後行脈波P(n)との検出間隔T(Int(n))と、先行脈波P(n-1)と後行脈波P(n)検出時のカフ圧差dpp(n)とから求めた補正量で、後行脈波P(n)検出時に吐出量を補正する。これを脈波の検出毎に行う。
(3) Control while pulse wave is detected:
As shown in FIG. 13, the detection interval T (Int (n)) between the preceding pulse wave P (n-1) and the following pulse wave P (n), and the preceding pulse wave P (n-1) and the following pulse wave. The discharge amount is corrected when the trailing pulse wave P (n) is detected with the correction amount obtained from the cuff pressure difference dpp (n) when the pulse wave P (n) is detected. This is performed every time a pulse wave is detected.
また、図14に示すように、脈波の検出は次のように行っている。
(a)カフ圧P(n)を等間隔t毎にサンプリングする。
(b)カフ圧の現在値P(n)と、それより所定時間H(実施例:3t)前のカフ圧値PHとの圧力差dpH(n)から求めた、1サンプリング毎の平均圧力差dp(n)(実施例:dpH(n)/3)を、カフ圧P(n)のサンプリング毎に求める。
(c)同時に、平均圧力差dp(n)より所定量大きい値dpst(n)(実施例:1.3〜1.5dp(n))を求め、カフ圧の現在値P(n)に加えたカフ圧値PTHR(n)を脈波スレッショルド値に設定する。
(d)ここで、次のカフ圧値dp(n+1)が脈波スレッショルド値PTHR(n)を上回ったときは、P(n)を基点に脈波検出に移る。(脈波の立ち上がりを検出)
(e)カフ圧のサンプリングを続行し、先行カフ圧dp(n)<後行カフ圧dp(n+1)の条件を満足する間の先行カフ圧dp(n)と後行カフ圧dp(n+1)の圧力差dp(n)(図中ではdp1〜dp3)を加算した値を脈波振幅値として検出する。
(f)カフ圧値dp(n)が脈波スレッショルド値PTHR(n)を上回らなかったときは、(a)〜(d)の動作を繰り返す。
Moreover, as shown in FIG. 14, the detection of the pulse wave is performed as follows.
(A) The cuff pressure P (n) is sampled at equal intervals t.
(B) Average pressure difference for each sampling obtained from the pressure difference dpH (n) between the current value P (n) of the cuff pressure and the cuff pressure value PH before the predetermined time H (Example: 3t). dp (n) (Example: dpH (n) / 3) is determined for each sampling of the cuff pressure P (n).
(C) At the same time, a value dpst (n) (Example: 1.3 to 1.5 dp (n)) larger than the average pressure difference dp (n) by a predetermined amount is obtained, and the cuff pressure added to the current value P (n) of the cuff pressure Set the value PTHR (n) to the pulse wave threshold value.
(D) Here, when the next cuff pressure value dp (n + 1) exceeds the pulse wave threshold value PTHR (n), the flow proceeds to pulse wave detection with P (n) as a base point. (Detects the rise of the pulse wave)
(E) The cuff pressure sampling is continued, and the leading cuff pressure dp (n) and the trailing cuff pressure dp (while satisfying the condition of the leading cuff pressure dp (n) <the trailing cuff pressure dp (n + 1) A value obtained by adding the pressure difference dp (n) of n + 1) (dp1 to dp3 in the figure) is detected as a pulse wave amplitude value.
(F) When the cuff pressure value dp (n) does not exceed the pulse wave threshold value PTHR (n), the operations (a) to (d) are repeated.
ところで、上記従来技術の制御方法では、次のような問題点があった。
まず、加圧中測定方式の場合、脈波が検出されない間は所定時間毎に加圧手段の吐出量が制御されるが、脈波検出が開始された後は、脈波の周期毎にしか吐出量を制御することができず、特に被験者の脈拍数が低い場合に吐出量の制御間隔が粗くなり、その結果、場合によっては、カフ圧の変化曲線から脈波成分を検出する際の基線変動を血圧計自身が招き、測定の正確さを阻害する一因となっていた。また、被験者の脈拍数が低い場合や、脈波検出開始後に何らかの原因で脈波が所定時間検出されなかった場合、制御の遅れが生じ、所定の微速加圧速度に正しく制御できないという不具合があった。
By the way, the above conventional control method has the following problems.
First, in the measurement method during pressurization, while the pulse wave is not detected, the discharge amount of the pressurizing means is controlled at predetermined time intervals, but after the pulse wave detection is started, it is performed only for each pulse wave cycle. The discharge rate cannot be controlled, especially when the subject's pulse rate is low, and the discharge rate control interval becomes coarse. As a result, in some cases, the baseline when detecting the pulse wave component from the cuff pressure change curve The sphygmomanometer itself caused fluctuations, which contributed to hindering measurement accuracy. In addition, if the subject's pulse rate is low, or if the pulse wave is not detected for a predetermined period of time after the start of pulse wave detection, there is a problem that control delay occurs and control cannot be performed correctly at the predetermined slow pressurization speed. It was.
また、脈波検出の面では、吐出量制御に伴う前記基線変動を脈波と誤って検出してしまうことがあり、そのような場合、本来の基線とは異なる誤った傾きを導き出してしまい、その結果、さらに制御が乱れるという不具合が発生した。また、吐出量制御に伴う前記基線変動が実際の脈波と重なり合った場合、実際の脈波信号の振幅を正しく捕らえられないという不具合があった。特に振幅の小さい脈波の立ち上がり点が正確に捕捉できない場合があり、この場合、脈波が捕捉できないか、あるいは、振幅値に誤差を生じる原因となった。また、脈波の捕捉感度は、脈波スレッショルド値に依存し、小さくすれば脈波の捕捉感度は上がるが、加圧手段の吐出量制御により引き起こされる前記基線変動などにより、影響を受けやすくなるという弊害も共存していた。 In addition, in terms of pulse wave detection, the baseline fluctuation accompanying discharge amount control may be erroneously detected as a pulse wave, and in such a case, an erroneous inclination different from the original baseline is derived, As a result, there was a problem that control was further disturbed. In addition, when the baseline fluctuation accompanying the discharge amount control overlaps with the actual pulse wave, there is a problem that the amplitude of the actual pulse wave signal cannot be captured correctly. In particular, the rising point of a pulse wave having a small amplitude may not be accurately captured. In this case, the pulse wave cannot be captured, or an error is caused in the amplitude value. Moreover, the pulse wave capture sensitivity depends on the pulse wave threshold value, and if it is reduced, the pulse wave capture sensitivity increases, but it is more susceptible to the baseline fluctuation caused by the discharge amount control of the pressurizing means. The evil that coexisted.
同様に、減圧中測定方式の場合、脈波が検出されない間は所定時間毎に電動排気弁が制御されるが、脈波検出が開始された後は、脈波の周期毎にしか電動排気弁を制御することができず、特に被験者の脈拍数が低い場合に電動排気弁の制御間隔が粗くなり、その結果、場合によっては、カフ圧の変化曲線から脈波成分を検出する際の基線変動を血圧計自身が招き、測定の正確さを阻害する一因となっていた。また、被験者の脈拍数が低い場合や脈波検出開始後に何らかの原因で脈波が所定時間検出されなかった場合、制御の遅れが生じ、所定の微速減圧速度に正しく制御できないという不具合があった。 Similarly, in the case of the measurement method during decompression, the electric exhaust valve is controlled every predetermined time while the pulse wave is not detected. However, after the pulse wave detection is started, the electric exhaust valve is operated only for each cycle of the pulse wave. The control interval of the motorized exhaust valve becomes rough, especially when the subject's pulse rate is low, and as a result, the baseline fluctuation when detecting the pulse wave component from the cuff pressure change curve The sphygmomanometer itself invited it, which contributed to hindering measurement accuracy. In addition, when the pulse rate of the subject is low, or when the pulse wave is not detected for a predetermined time after the start of pulse wave detection, there is a problem that control delay occurs and the control cannot be performed correctly at a predetermined very low pressure reduction speed.
また、脈波検出の面では、電動排気弁の制御に伴う前記基線変動を脈波と誤って検出してしまうことがあり、そのような場合、本来の基線とは異なる誤った傾きを導き出してしまい、その結果、さらに制御が乱れるという不具合が発生した。また、電動排気弁の制御に伴う前記基線変動が実際の脈波と重なり合った場合、実際の脈波信号の振幅を正しく捕らえられないという不具合があった。特に振幅の小さい脈波の立ち上がり点が正確に捕捉できない場合があり、この場合、脈波が捕捉できないか、あるいは、振幅値に誤差を生じる原因となった。また、脈波の捕捉感度は、脈波スレッショルド値に依存し、小さくすれば脈波の捕捉感度は上がるが、電動排気弁の制御により引き起こされる前記基線変動などにより、影響を受けやすくなるという弊害も共存していた。 In addition, in terms of pulse wave detection, the baseline fluctuation accompanying the control of the motorized exhaust valve may be erroneously detected as a pulse wave. In such a case, an erroneous inclination different from the original baseline is derived. As a result, the problem that the control is further disturbed occurred. Further, when the baseline fluctuation accompanying the control of the electric exhaust valve overlaps with the actual pulse wave, there is a problem that the amplitude of the actual pulse wave signal cannot be captured correctly. In particular, the rising point of a pulse wave having a small amplitude may not be accurately captured. In this case, the pulse wave cannot be captured, or an error is caused in the amplitude value. In addition, the pulse wave capture sensitivity depends on the pulse wave threshold value.If the pulse wave capture sensitivity is reduced, the pulse wave capture sensitivity increases, but it is easily affected by the baseline fluctuation caused by the control of the electric exhaust valve. Also coexisted.
本発明は、上記事情を考慮し、脈波の有無に関係なく、加圧速度や減圧速度を一定にコントロールすることができ、それにより、血圧測定精度の向上を図れるようにした電子血圧計の圧力制御方法及び脈波弁別方法を提供することを目的とする。 In consideration of the above circumstances, the present invention can control the pressurization speed and the decompression speed to be constant regardless of the presence or absence of a pulse wave, thereby improving the blood pressure measurement accuracy. An object is to provide a pressure control method and a pulse wave discrimination method.
請求項1の発明の圧力制御方法は、生体動脈を圧迫するカフと、カフを微速加圧可能な加圧手段と、カフ圧を検出する圧力センサと、カフを微速加圧する過程において脈波の重畳された前記圧力センサからの信号を解析して血圧値を割り出す血圧演算手段とを備え、等間隔でカフ圧のサンプリングを行い、微速加圧中のカフの圧力上昇量とその時間から微速加圧速度を求め、その微速加圧速度と目標加圧速度との差に基づき、微速加圧速度が目標加圧速度となるよう前記加圧手段をフィードバック制御する電子血圧計の圧力制御方法において、測定開始から所定圧力に急速加圧した後に、微速加圧に移行し、微速加圧に移行してから任意に決定した1つのポイントを基点として、その基点から1サンプリング毎にカフ圧を計測し、前記基点における圧力値と前記計測点における圧力値との圧力差と、前記基点から計測点までの時間差とから加圧速度を求め、求めた加圧速度を、前記カフ圧のサンプリングが行われる毎に、所定個数だけ、対応する圧力値のデータと共に記憶しておき、記憶した区間内の最古のデータから所定区間内の加圧速度が最も小さい値と、記憶した区間内の最新のデータから所定区間内の加圧速度が最も小さい値とを抽出して、これら2点のデータに対応する圧力値と時間差とから平均加圧速度を求め、求めた平均加圧速度と目標加圧速度との差に基づいて、微速加圧速度が所定の目標加圧速度となるよう前記加圧手段をフィードバック制御することを特徴とする。 The pressure control method according to the first aspect of the present invention includes a cuff that compresses a living artery, a pressurizing unit that can pressurize the cuff at a low speed, a pressure sensor that detects cuff pressure, and a pulse wave in the process of pressurizing the cuff at a low speed. Blood pressure calculation means for analyzing the signal from the superimposed pressure sensor to determine the blood pressure value, sampling the cuff pressure at equal intervals, and adding the cuff pressure during the slow pressurization and the time In a pressure control method for an electronic sphygmomanometer that obtains a pressure speed and feedback-controls the pressurizing means so that the slow pressurization speed becomes the target pressurization speed based on the difference between the fine pressurization speed and the target pressurization speed. After rapid pressurization to the specified pressure from the start of measurement, shift to fine pressure pressurization and measure the cuff pressure every sampling from the base point with one point determined arbitrarily after shifting to the fine pressure pressurization. To the base point The pressure difference between the pressure value at the measurement point and the pressure value at the measurement point, and the time difference from the base point to the measurement point, the pressurization speed is obtained, and the obtained pressurization speed is sampled every time the cuff pressure is sampled. A predetermined number is stored together with the corresponding pressure value data, and the value from the oldest data in the stored section where the pressurization speed in the predetermined section is the smallest, and the latest section in the stored section is stored in the predetermined section. The value with the smallest pressurization rate is extracted, the average pressurization rate is obtained from the pressure value corresponding to these two points of data and the time difference, and the difference between the calculated average pressurization rate and the target pressurization rate Based on the above, the pressurizing means is feedback-controlled so that the fine pressurizing speed becomes a predetermined target pressurizing speed.
請求項2の発明の脈波弁別方法は、請求項1に記載の圧力制御方法を実施して脈波を検出するに当たり、微速加圧中の現在のカフ圧値とそれより所定時間前のカフ圧値との圧力差から求めた1サンプリング毎の平均圧力差をカフ圧のサンプリング毎に求め、同時に、前記平均圧力差より所定量大きい値を現在のカフ圧値に加えることで、その値を脈波スレッショルド値に設定し、次のサンプリングによるカフ圧値が脈波スレッショルド値を上回ったとき、その前のサンプリング点を基点に脈波検出を開始し、先行サンプリングしたカフ圧値よりその1つ後に後行サンプリングしたカフ圧値が大きい状態が所定時間または所定サンプリング回数続いた場合に脈波検出と判定し、先行サンプリングしたカフ圧値よりその1つ後に後行サンプリングしたカフ圧値が大きい状態が続いた区間における、各先行カフ圧値と後行カフ圧値の圧力差を累計加算した値を、脈波振幅値として算出することを特徴とする。 A pulse wave discrimination method according to a second aspect of the present invention provides a current cuff pressure value during slow pressurization and a cuff of a predetermined time before the pulse wave is detected by performing the pressure control method according to the first aspect. An average pressure difference for each sampling obtained from the pressure difference with the pressure value is obtained for each cuff pressure sampling, and at the same time, a value larger than the average pressure difference by a predetermined amount is added to the current cuff pressure value to obtain the value. When the pulse wave threshold value is set and the cuff pressure value by the next sampling exceeds the pulse wave threshold value, the pulse wave detection is started from the previous sampling point, and one of the cuff pressure values from the preceding sampled cuff pressure value. When a state in which the cuff pressure value that is later sampled is large continues for a predetermined time or a predetermined number of times, it is determined that the pulse wave is detected, and the subsequent sampling is performed one time after the cuff pressure value that has been sampled in advance. In the cuff pressure value is greater state lasted interval has a value obtained by cumulative addition of the pressure difference between the preceding cuff pressure value and the following cuff pressure value, and calculates a pulse wave amplitude value.
請求項3の発明の圧力制御方法は、生体動脈を圧迫するカフと、カフを加圧する加圧ポンプと、カフを減圧する電動排気弁と、カフ圧を検出する圧力センサと、カフを減圧する過程において脈波の重畳された前記圧力センサからの信号を解析して血圧値を割り出す血圧演算手段とを備え、減圧中のカフの圧力下降量とその時間から微速減圧速度を求め、その微速減圧速度と目標減圧速度との差に基づき、微速減圧速度が目標減圧速度となるよう前記電動排気弁をフィードバック制御する電子血圧計の圧力制御方法において、所定圧力に加圧した後に、微速減圧に移行し、微速減圧に移行してから任意に決定した1つのポイントを基点として、その基点から1サンプリング毎にカフ圧を計測し、前記基点における圧力値と前記計測点における圧力値との圧力差と、前記基点から計測点までの時間差とから減圧速度を求め、求めた減圧速度を、前記カフ圧のサンプリングが行われる毎に、所定個数だけ、対応する圧力値のデータと共に記憶しておき、記憶した区間内の最古のデータから所定区間内の減圧速度が最も大きい値と、記憶した区間内の最新のデータから所定区間内の減圧速度が最も大きい値とを抽出して、これら2点のデータに対応する圧力値と時間差とから平均減圧速度を求め、求めた平均減圧速度と目標減圧速度との差に基づいて、微速減圧速度が所定の目標減圧速度となるよう前記電動排気弁をフィードバック制御することを特徴とする。 According to a third aspect of the present invention, there is provided a pressure control method comprising: a cuff that compresses a living artery; a pressurizing pump that pressurizes the cuff; an electric exhaust valve that depressurizes the cuff; a pressure sensor that detects the cuff pressure; A blood pressure calculation means for analyzing a signal from the pressure sensor on which a pulse wave is superimposed in the process and calculating a blood pressure value, and obtaining a slow depressurization speed from the pressure decrease amount of the cuff during depressurization and its time, and the slow depressurization In the pressure control method of the electronic sphygmomanometer that feedback-controls the electric exhaust valve so that the slow depressurization speed becomes the target depressurization speed based on the difference between the speed and the target depressurization speed. Then, the cuff pressure is measured every sampling from the base point as one base point arbitrarily determined after shifting to the slow pressure reduction, and the pressure value at the base point and the pressure at the measurement point are measured. The pressure reduction speed is obtained from the pressure difference from the value and the time difference from the base point to the measurement point, and each time the cuff pressure is sampled, the determined pressure reduction speed together with the corresponding pressure value data. Store and extract the largest value of the decompression speed in the predetermined section from the oldest data in the stored section and the largest value of the decompression speed in the predetermined section from the latest data in the stored section. Thus, an average decompression speed is obtained from the pressure value corresponding to the data at these two points and the time difference, and based on the difference between the obtained average decompression speed and the target decompression speed, the fine decompression speed becomes the predetermined target decompression speed. The electric exhaust valve is feedback-controlled.
請求項4の発明の脈波弁別方法は、請求項3に記載の圧力制御方法を実施して脈波を検出するに当たり、微速減圧中の現在のカフ圧値とそれより所定時間前のカフ圧値との圧力差から求めた1サンプリング毎の平均圧力差をカフ圧のサンプリング毎に求め、同時に、前記平均圧力差より所定量大きい値を現在のカフ圧値に加えることで、その値を脈波スレッショルド値に設定し、次のサンプリングによるカフ圧値が脈波スレッショルド値を上回ったとき、その前のサンプリング点を基点に脈波検出を開始し、先行サンプリングしたカフ圧値よりその1つ後に後行サンプリングしたカフ圧値が大きい状態が所定時間または所定サンプリング回数続いた場合に脈波検出と判定し、先行サンプリングしたカフ圧値よりその1つ後に後行サンプリングしたカフ圧値が大きい状態が続いた区間における、各先行カフ圧値と後行カフ圧値の圧力差を累計加算した値を、脈波振幅値として算出することを特徴とする。 According to a fourth aspect of the present invention, when the pulse wave is detected by executing the pressure control method according to the third aspect of the present invention, the current cuff pressure value during the slow depressurization and the cuff pressure a predetermined time before that are detected. An average pressure difference for each sampling obtained from the pressure difference with the value is obtained for each cuff pressure sampling, and at the same time, a value larger than the average pressure difference by a predetermined amount is added to the current cuff pressure value, and the value is pulsed. When the cuff pressure value is set to the wave threshold value and the cuff pressure value by the next sampling exceeds the pulse wave threshold value, the pulse wave detection is started from the previous sampling point, and one cuff pressure value after the cuff pressure value sampled in advance. It is determined that the pulse wave has been detected when a state in which the cuff pressure value that has been sampled is large continues for a predetermined time or a predetermined number of sampling times, and the subsequent sampling is performed one time after the cuff pressure value that has been sampled in advance. In the cuff pressure value is greater state lasted interval has a value obtained by cumulative addition of the pressure difference between the preceding cuff pressure value and the following cuff pressure value, and calculates a pulse wave amplitude value.
本発明によれば、微速加圧中に血圧を測定する血圧計、あるいは、微速減圧中に血圧を測定する血庄計において、圧力に重畳した脈波の影響を受けない、真の基線(脈波判定の基準となる線であり、脈波が無いとした場合のカフ圧の変化曲線に相当)の傾きを抽出できるので、目標の微速加圧速度、または、目標の微速減圧速度に精度良く制御することができる。また、その結果、精度良く脈波を弁別することができるようになり、測定の安定度が改善されると共に、精度の高い測定が可能となる。 According to the present invention, in a sphygmomanometer that measures blood pressure during slow pressurization or a blood pressure meter that measures blood pressure during slow depressurization, a true baseline (pulse) that is not affected by the pulse wave superimposed on the pressure. It is a line used as a reference for wave judgment, and the slope of the cuff pressure change curve when there is no pulse wave can be extracted, so the target fine pressurization speed or the target fine depressurization speed can be accurately obtained. Can be controlled. As a result, the pulse wave can be discriminated with high accuracy, the measurement stability is improved, and high-accuracy measurement is possible.
以下、本発明の実施形態を図面に基づいて説明する。
図1はここで使用する加圧中血圧測定方式の電子血圧計の概略構成を示すブロック図、図2はサンプリングとカフ圧の関係を示す図である。図3〜図8は本発明の制御方法の説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of an electronic blood pressure monitor of a blood pressure measurement system during pressurization used here, and FIG. 2 is a diagram showing a relationship between sampling and cuff pressure. 3-8 is explanatory drawing of the control method of this invention.
この血圧計は、図1に示すように、生体動脈を圧迫するカフ1と、カフ1内を微速加圧可能な(吐出量可変式)の加圧ポンプ(加圧手段)2と、カフ1内を減圧する電動排気弁3と、カフ1内の圧力(カフ圧)を検出する圧力センサ4と、全般的の制御演算処理を行うマイクロコンピュータよりなる制御手段10と、制御手段10からの制御指令を受けて加圧ポンプ2に駆動信号を供給する加圧ポンプ用の駆動回路11と、制御手段10からの制御指令を受けて電動排気弁3に駆動信号を供給する電動排気弁用の駆動回路12と、圧力センサ4のアナログ出力をデジタル変換して制御手段10に入力させるA/D変換器13と、操作キー等の入力操作部16と、液晶表示装置等の表示部17と、を具備している。
As shown in FIG. 1, this sphygmomanometer includes a
制御手段10は、圧力センサ4からの信号に基づいて、加圧ポンプ2や電動排気弁3に制御信号を与えて各動作を制御する機能(加圧ポンプ制御手段及び排気弁制御手段に相当)と、加圧ポンプ2や電動排気弁3によりカフ1を加圧または減圧する過程において、脈波の重畳された圧力センサ4からの検出信号を解析して血圧値を割り出す機能(血圧演算手段に相当)とを有している。また、各種の表示すべき情報を表示部17に表示させる機能や、入力操作部16からの入力に応じて各種の命令を実行する機能等を備えている。
The control means 10 provides a control signal to the
次に制御内容について説明する。
この血圧計には、カフ1を手首や上腕部に巻き付けた状態で、血圧測定のトリガーが何らかのタイミングで与えられることにより、次の順序で処理を進める機能が備わっている。
Next, the contents of control will be described.
This sphygmomanometer has a function of advancing the processing in the following order when a blood pressure measurement trigger is given at some timing with the
(1)測定開始と共に加圧ポンプ2による加圧が始まる。加圧動作中は、図2に示すように、カフ圧P(n)を等間隔tでサンプリングする。
P(n):サンプリング毎のカフ圧値
t :サンプリング間隔(実施例:30mSec.)
(1) Pressurization by the
P (n): Cuff pressure value for each sampling t: Sampling interval (Example: 30 mSec.)
(2)図3に示すように、等速度加圧開始基準点となる基準カフ圧値P(0)を設定する。
・定速度加圧を開始するカフ圧値は、被験者の最低血圧を下回る値であって、測定対象たる被験者の最低血圧を考慮して経験的に得られた最適値を用いる。
・定速度加圧開始直後の加圧ポンプの吐出量は、使用するカフサイズや定速度加圧を開始するカフ圧値等から、経験的に得られた適切な値とし、その吐出量で加圧を開始する。
・P(0)は定速度加圧開始から所定時間B経過後のカフ圧値、または、定速度加圧開始から所定圧力A上昇した時点のカフ圧値を設定すると、動作を安定させることができる。なお、P(0)の位置は、定速度加圧に移行してからの任意の1つの点として設定可能である。
(2) As shown in FIG. 3, a reference cuff pressure value P (0) that is a constant velocity pressurization start reference point is set.
-The cuff pressure value at which constant-speed pressurization is started is a value that is lower than the subject's minimum blood pressure, and an optimum value obtained experimentally in consideration of the minimum blood pressure of the subject to be measured is used.
・ The discharge rate of the pressurization pump immediately after the start of constant speed pressurization shall be an appropriate value obtained empirically from the cuff size to be used, the cuff pressure value to start constant speed pressurization, etc., and pressurization with that discharge amount To start.
・ P (0) can stabilize the operation by setting the cuff pressure value after the elapse of the predetermined time B from the start of constant speed pressurization or the cuff pressure value when the predetermined pressure A rises from the start of constant speed pressurization. it can. Note that the position of P (0) can be set as an arbitrary point after shifting to constant speed pressurization.
(3)以降、図4に示すように、カフ圧値P(n)のサンプリングの都度、基準カフ圧値P(0)との圧力差dP(n)及び基準カフ圧値P(0)の設定時点からの経過時間T(n)とを求め、基準カフ圧値P(0)を基準とする傾きdP/dt(n)を求める。それぞれの値はメモリへ格納する。 (3) Thereafter, as shown in FIG. 4, each time the cuff pressure value P (n) is sampled, the pressure difference dP (n) from the reference cuff pressure value P (0) and the reference cuff pressure value P (0) The elapsed time T (n) from the set time point is obtained, and the slope dP / dt (n) with the reference cuff pressure value P (0) as a reference is obtained. Each value is stored in memory.
(4)メモリへの格納は次のように行う。
・まず、データウインドウ(DW)を定義する。
メモリは、測定可能最低脈拍数における脈波検出間隔及びそれより長い所定時間幅分に相当するカフ圧値P(n)及びカフ圧値の傾きdP/dT(n)のデータを格納可能なレジスタで構成される。
実施例:最低脈拍数を40拍/分とした場合はDW≧1.5Sec.
・データウインドウ(DW)は、図5に示すように、メモリ上のP(n)及びdP/dT(n)の各データ(図中の○数字)を古いデータから順次入力してゆき、満杯になった後は、古いデータを順次廃棄して新しいデータに更新する。なお、図5においては、図示の関係上、例としてのデータ個数を実際のデータ個数よりも少なく表示してある。
(4) The storage in the memory is performed as follows.
First, a data window (DW) is defined.
The memory is a register that can store the cuff pressure value P (n) and the cuff pressure value slope dP / dT (n) corresponding to the pulse wave detection interval at the lowest measurable pulse rate and a predetermined time width longer than that. Consists of.
Example: When the minimum pulse rate is 40 beats / minute, DW ≧ 1.5 Sec.
・ As shown in Fig. 5, the data window (DW) is filled with P (n) and dP / dT (n) data (numbers in the figure) in order from the oldest data. After that, the old data is sequentially discarded and updated to new data. In FIG. 5, the number of data as an example is displayed smaller than the actual number of data for the purpose of illustration.
(5)次に吐出量の制御のための真のカフ圧変化曲線を求める。
・その場合、まず、図6(a)に示すように、前記データウインドウ上に蓄積されたカフ圧の傾きデータdP/dT(n)のうち、最も古いデータから所定時間Tf(実施例:500mSec.)内のdP/dT(n)を確認し、このうち最も小さいdP/dT(n)値を抽出し、当該データに対応するカフ圧P(n)を、先行カフ圧P(f)に決定する。
・次に、図6(b)に示すように、前記データウインドウ上に蓄積されたカフ圧の傾きデータdP/dT(n)のうち、最も新しいデータから所定時間Te(実施例:500mSec.)内のdP/dT(n)を確認し、このうち最も小さいdP/dT(n)値を抽出し、当該データに対応するカフ圧P(n)を、後行カフ圧P(b)に決定する。
・ここで、図8に示すように、データウインドウDWの前縁部ウインドウTf及び後縁部ウインドウTeの時間幅は、脈波1個分を包含する時間幅とする。実施例では500mSec.としている。
・次に、所定時間毎に前記の手順でP(f)、P(b)を検出し、図9に示すように、P(f)、P(b)間の圧力差dP及び時間差dTから求めたP(f)、P(b)間のカフ圧変化曲線の真の傾きを求める。この場合の傾きは、図7に示すように、P(0)を基点に定義されており、この傾きをプロットすると、図7の下側の線図となる。
・なお、カフ圧及び傾きデータはいったんメモりに格納せずに、直接データウインドウに入力するように構成すれば、メモリの節約が果たせる。
(5) Next, a true cuff pressure change curve for controlling the discharge amount is obtained.
In this case, first, as shown in FIG. 6 (a), the cuff pressure gradient data dP / dT (n) accumulated on the data window has a predetermined time Tf (example: 500 mSec) from the oldest data. .) DP / dT (n), the smallest dP / dT (n) value is extracted, and the cuff pressure P (n) corresponding to the data is changed to the preceding cuff pressure P (f). decide.
Next, as shown in FIG. 6 (b), among the cuff pressure gradient data dP / dT (n) accumulated on the data window, the newest data is used for a predetermined time Te (Example: 500 mSec.). DP / dT (n) is extracted, the smallest dP / dT (n) value is extracted, and the cuff pressure P (n) corresponding to the data is determined as the subsequent cuff pressure P (b). To do.
Here, as shown in FIG. 8, the time width of the leading edge window Tf and the trailing edge window Te of the data window DW is a time width including one pulse wave. In the embodiment, 500 mSec.
Next, P (f) and P (b) are detected by the above procedure every predetermined time, and from the pressure difference dP and time difference dT between P (f) and P (b) as shown in FIG. The true slope of the cuff pressure change curve between the obtained P (f) and P (b) is obtained. As shown in FIG. 7, the inclination in this case is defined with P (0) as a base point. When this inclination is plotted, the lower diagram in FIG. 7 is obtained.
Note that memory can be saved by configuring the cuff pressure and tilt data so that they are directly stored in the data window instead of being stored in memory.
(6)次に吐出量の制御を行う。
・前記手順で求めたカフ圧変化曲線の真の傾きと、目標となる傾きとを比較し、使用しているカフのサイズ、補正時のカフ圧力等を基に、経験的に得られた適切な補正量で吐出量の制御を行う。
・なお、吐出量の制御は所定時間毎に行うが、真のカフ圧変化曲線の傾きが、カフ圧曲線の目標の傾きに対して大きな差があり、一度に補正すると前記基線変動が生じるおそれがある場合は、複数回に分けて吐出量の制御を行うようにする。
(6) Next, the discharge amount is controlled.
・ Comparing the true slope of the cuff pressure change curve obtained in the above procedure with the target slope, appropriate values obtained empirically based on the size of the cuff used, the cuff pressure at the time of correction, etc. The discharge amount is controlled with a correct correction amount.
-Although the discharge amount is controlled every predetermined time, the slope of the true cuff pressure change curve has a large difference from the target slope of the cuff pressure curve, and if the correction is performed at once, the baseline fluctuation may occur. If there is, the discharge amount is controlled in a plurality of times.
次により具体的な実施例について説明する。
(1)入力操作部16の中の加圧開始キーを押すと、表示部17を所定時間全表示した後、大気圧解放時(無加圧時)の圧力値を圧力ゼロセット値として読み込み、表示部17の例えば最高血圧値表示エリアの1の桁に0を表示する。この実施例では、静電容量式センサを使用して、静電容量式センサを発信器の一部として組み込むことにより、圧力変化を発信周波数の変化として制御手段10(以下CPUと言う)に取り込み、カフ圧および脈波を検出する。なお、圧力センサにピエゾ抵抗を用いた半導体圧力センサを使い、所定レベルまで増幅してA/D変換によりCPUに取り込むように構成してもよい。
Specific examples will be described below.
(1) When the pressurization start key in the
(2)ゼロセット後、CPUは、ポンプ駆動回路および電動排気弁駆動回路に駆動信号を出力し、電動排気弁は全閉状態に保持され、ボンプが駆動して加圧を開始する。加圧中の圧力値は表示部に更新して表示される。 (2) After zero setting, the CPU outputs a drive signal to the pump drive circuit and the electric exhaust valve drive circuit, the electric exhaust valve is held in a fully closed state, and the pump is driven to start pressurization. The pressure value during pressurization is updated and displayed on the display unit.
(3)加圧を開始して、圧力が所定値まで達したとCPUが判断したとき、CPUは所定の微速加圧速度となるよう所定の初期値を加圧ポンプ駆動回路に出力する。ここで、初期値は経験的に求められた値とする。微速加圧を開始した点から、所定値(例:5mmHg)圧力が上昇したとき、または、微速加圧開始から所定時間(1秒)経過したと判断した点の圧力値を、加圧速度計測の基点として記憶する。 (3) When pressurization is started and the CPU determines that the pressure has reached a predetermined value, the CPU outputs a predetermined initial value to the pressurization pump drive circuit so as to achieve a predetermined fine pressurization speed. Here, the initial value is determined empirically. Pressurization speed measurement is performed at a pressure value at a point where a predetermined value (eg 5 mmHg) pressure has increased from the point at which fine pressure pressurization has started, or when a predetermined time (1 second) has elapsed since the start of slow pressure pressurization. It is memorized as the base point.
(4)CPUは、加圧制御開始の基点から、圧力値のサンプリングを行う毎に、最新値と基準値との差圧力と経過時間(1サンプリングの時間×サンプリング回数)から、1サンプリング当たりの傾き(加圧量dP)を演算して、最新の圧力値データと共にRAMに記億する。このとき、記憶するデータは、想定される測定可能な最低脈抽数(例:40拍/分)の周期以上とすれば、脈波に影響されない領域同士を結ぶ基線を求めることができるので、実施例では1.5秒間としている。圧力値のサンプリングが進む毎に、データはシフトして、一番古いデータを削除して更新記億する。 (4) Every time the pressure value is sampled from the starting point of the pressurization control, the CPU determines the per-sampling from the differential pressure between the latest value and the reference value and the elapsed time (1 sampling time × sampling count). The inclination (pressurization amount dP) is calculated and stored in the RAM together with the latest pressure value data. At this time, if the data to be stored is equal to or greater than the period of the lowest measurable pulse extraction number (for example, 40 beats / minute), a baseline connecting regions that are not affected by the pulse wave can be obtained. In the embodiment, it is 1.5 seconds. Each time the pressure value sampling progresses, the data shifts and the oldest data is deleted and updated.
(5)前記dPを所定時間記憶した後、CPUはdPデータの最古のデータから所定時間(例:500mSec.)内のデータの中から、最も傾きが小さなデータを抽出すると共に、そのデータに対応した圧力値のデータP(f)を抽出する。同様に、dPデータの最新のデータから所定時間(例:500mSec.)前までのデータ内の傾きが最小であるデータを抽出して、そのデータに対応した圧カデータP(b)を抽出する。
・次にPfとPbの圧力差を求める。〔dPX=P(b)−P(f)〕
・P(f)とP(b)間の時間を求める。
CPUは、P(f)が格納されているRAMの位置から、最新の圧カサンプリングデータから数えて何番目のデータであったか、同様にP(b)が何番目のデータであったかを割り出すことができるので、差のサンプリング数×サンプリング周期を計算して、P(f)とP(b)間の時間Xtを計算により求める。
・XtとdPXから、1サンプリング相当の傾きを求める。この値が求める真の基線の傾きである。〔dPX/Xt〕
(5) After storing the dP for a predetermined time, the CPU extracts the data with the smallest inclination from the data within the predetermined time (eg, 500 mSec.) From the oldest dP data, The corresponding pressure value data P (f) is extracted. Similarly, data having the smallest slope in the data from the latest dP data to a predetermined time (eg, 500 mSec.) Before is extracted, and pressure data P (b) corresponding to the data is extracted.
・ Next, calculate the pressure difference between Pf and Pb. [DPX = P (b) -P (f)]
-Find the time between P (f) and P (b).
The CPU can determine from the RAM position where P (f) is stored what number of data is counted from the latest pressure sampling data, and similarly, what number P (b) is. Since it is possible, the difference sampling number × sampling period is calculated, and the time Xt between P (f) and P (b) is obtained by calculation.
・ From Xt and dPX, find the slope equivalent to one sampling. This value is the true baseline slope desired. [DPX / Xt]
(6)CPUは、微速加圧目標値と(5)で求めた真の傾きとの差から、その差に応じて制御出力を修正し、加圧ボンプ駆動回路に出力して、サンプリングが進む毎に、前記の処理を繰り返し行って加圧速度を制御する。
制御信号の出力のタイミングは、所定時間毎に行うが、差が大きい場合は、一度に制御出力値を変更するのではなく、加圧中の基線の揺らぎを押さえる意味で、所定量以上である場合は、時分割で出力を変更するとよい。
(6) The CPU corrects the control output in accordance with the difference between the slow pressure target value and the true slope obtained in (5), and outputs the correction output to the pressure pump driving circuit, so that sampling proceeds. Each time, the above process is repeated to control the pressurization speed.
The output timing of the control signal is performed every predetermined time. If the difference is large, the control output value is not changed at a time, but the fluctuation of the base line during pressurization is suppressed, and the control signal value is greater than a predetermined amount. In this case, the output should be changed in time division.
(7)脈波の弁別
最新の圧力値データP1とその1つ前の圧力値P2の圧力差と、基線dPX/Xtとの差を求め、この値が所定量以上プラスであれば、脈波有りとして、脈波の弁別処理を開始する。
・脈波の弁別処理を開始して、弁別中の脈波が真の脈波であるかどうかの判定は、例えば、基線に対して所定回数の上昇が見られ、所定回数の減少があるかどうかを確認すると共に、人の脈波としては有り得ない所定回数以上の基線に対する圧力上昇が無いこと、そして振幅値などを確認して判断するとよい。
・前記の処理により、正しい脈波と判定されたとき、CPUは、脈波弁別処理の開始圧力と弁別した脈波振幅値をRAMに記憶する。
(7) Discrimination of pulse wave The difference between the pressure difference between the latest pressure value data P1 and the previous pressure value P2 and the baseline dPX / Xt is obtained. As there is, the pulse wave discrimination process is started.
・ Start the pulse wave discrimination process to determine whether the pulse wave during discrimination is a true pulse wave. It may be determined by confirming whether or not there is no pressure increase with respect to the base line more than a predetermined number of times, which is not possible as a human pulse wave, and by confirming an amplitude value or the like.
When it is determined by the above processing that the pulse wave is correct, the CPU stores the pulse wave amplitude value discriminated from the start pressure of the pulse wave discrimination processing in the RAM.
(8)測定終了の条件が来るまで、前記の微速加圧制御および脈波弁別を繰り返す。
(9)測定終了条件が成立したとき、CPUは、オシロメトリック法による血庄値の計算を行い、結果を表示部に表示する。血圧値の決定についての詳細は、従来公知の技術と同様であるので説明を省略する。
(8) The above-described slow pressurization control and pulse wave discrimination are repeated until the measurement end condition is reached.
(9) When the measurement end condition is satisfied, the CPU calculates the blood pressure value by the oscillometric method and displays the result on the display unit. Details of the determination of the blood pressure value are the same as those of a conventionally known technique, and thus description thereof is omitted.
上記実施形態では、加圧中血圧測定方式の制御を行う場合について説明したが、減圧中血圧測定方式の制御を行う場合にも同様に適用できる。その場合は、所定圧力に加圧した後に、微速減圧に移行して、所定時間経過後または所定圧力下降後のポイント(任意に定めることができる)を基点として、その基点から1サンプリング毎にカフ圧を計測し、前記基点の圧力値と前記計測点の圧力値との圧力差と、基点から計測点までの時間差とから減圧速度を求め、求めた減圧速度を、カフ圧のサンプリングが行われる毎に、所定個数だけ、対応する圧力値のデータと共に記憶しておき、記憶した区間内の最古のデータから所定区間内の減圧速度が最も大きい値と、記憶した区間内の最新のデータから所定区間内の減圧速度が最も大きい値とを抽出して、これら2点のデータに対応する圧力値と時間差とから平均減圧速度を求め、求めた平均減圧速度と目標減圧速度との差に基づいて、微速減圧速度が所定の目標減圧速度となるよう前記電動排気弁をフィードバック制御する。 In the above-described embodiment, the case of controlling the blood pressure measurement method during pressurization has been described, but the present invention can be similarly applied to the case of controlling the blood pressure measurement method during decompression. In that case, after pressurizing to a predetermined pressure, the process shifts to a slow depressurization, and a point after a predetermined time has passed or a predetermined pressure has been lowered (which can be arbitrarily determined) is cuffed every sampling from that base point. The pressure is measured, the pressure reduction rate is obtained from the pressure difference between the pressure value at the base point and the pressure value at the measurement point, and the time difference from the base point to the measurement point, and the cuff pressure is sampled based on the obtained pressure reduction rate. Each time, a predetermined number is stored together with the corresponding pressure value data, and from the oldest data in the stored section, the value with the highest decompression speed in the predetermined section and the latest data in the stored section The value with the largest decompression speed in the predetermined section is extracted, the average decompression speed is obtained from the pressure value corresponding to these two points of data and the time difference, and based on the difference between the obtained mean decompression speed and the target decompression speed. Fine Decompression speed feedback control of the electric exhaust valve so that a predetermined target decompression rate.
この場合の具体的な実施例について説明する。
(1)入力操作部16の中の加圧開始キーを押すと、表示部17を所定時間全表示した後、大気圧解放時(無加圧時)の圧力値を圧力ゼロセット値として読み込み、表示部の例えば最高血圧値表示エリアの1の桁に0を表示する。
A specific embodiment in this case will be described.
(1) When the pressurization start key in the
(2)ゼロセット後、CPUは、ポンプ駆動回路および電動排気弁駆動回路に駆動信号を出力し、電動排気弁は全閉状態に保持され、ポンプが駆動して加圧を開始する。加圧中の圧力値は表示部に更新表示される。 (2) After zero setting, the CPU outputs a drive signal to the pump drive circuit and the electric exhaust valve drive circuit, the electric exhaust valve is held in a fully closed state, and the pump is driven to start pressurization. The pressure value during pressurization is updated and displayed on the display unit.
(3)加圧を開始して、圧力の加圧設定値(例:180mmHg)まで達したとCPUが判断したとき、CPUは、加圧ポンプを停止して、減圧速度が所定の微速減圧速度となるよう所定の初期値を出力する。微速加圧を開始した点から所定値(例:10mmHg)圧力降下するか、または、微速減圧開始から所定時間(例:1秒)経過したと判断した点の圧力値を微速制御開始の基準点として記憶する。 (3) When the CPU determines that the pressurization is started and the pressure has reached the pressure set value (eg, 180 mmHg), the CPU stops the pressurization pump and the depressurization speed is a predetermined fine depressurization speed. A predetermined initial value is output so that The reference value for starting the fine speed control is the pressure value at the point where it has been determined that the pressure has dropped by a predetermined value (eg 10 mmHg) from the point at which fine pressure pressurization has started, or the predetermined time (eg: 1 second) has elapsed since the start of slow pressure reduction. Remember as.
(4)CPUは減圧開始の基準点から圧力値のサンプリングを行う毎に、最新値と基準値との差圧力と経過時間(1サンプリングの時間×サンプリング回数)から1サンプリング当たりの傾き(加圧量dP)を演算して、最新の圧力値データと共にRAMに記憶する。このとき、記憶するデータは、RAM節約の都合から全て記憶する必要はないが、想定される測定可能な最低脈拍数(例:40拍/分)以下の場合、脈波に影響されない領域同土を結ぶ基線を求めることができなくなるため、測定可能な最低脈拍数の1拍分以上のデータを記憶する必要がある。実施例では、1.5秒間としている。圧力値のサンプリングが進む毎に、データはシフトして、一番古いデータを削除して更新記憶する。 (4) Every time the CPU samples the pressure value from the reference point at which decompression starts, the slope per one sampling (pressurization) from the differential pressure between the latest value and the reference value and the elapsed time (one sampling time × sampling count) The amount dP) is calculated and stored in the RAM together with the latest pressure value data. At this time, it is not necessary to store all the data to be stored for the convenience of saving RAM. However, if it is less than the minimum measurable pulse rate (for example, 40 beats / minute), the region is not affected by the pulse wave. Therefore, it is necessary to store data for one beat or more of the lowest measurable pulse rate. In the embodiment, the time is 1.5 seconds. Each time the pressure value sampling progresses, the data shifts and the oldest data is deleted and updated and stored.
(5)前記dPを所定時間記憶した後、CPUは、dPデータの最古のデータから所定時間(例:500mSec.)内のデータの中から、最も傾きが大きなデータを抽出すると共に、そのデータに対応した圧力値のデータP(f)を抽出する。同様に、dPデータの最新のデータから所定時間(例:500mSec.)前までのデータ内の最も傾きが大きいデータを抽出して、そのデータに対応した圧カデータP(b)を抽出する。
・次にP(f)とP(b)の圧力差を求める。〔dPX=P(b)−P(f)〕
・P(f)とP(b)間の時間を求める。
CPUは、P(f)が格納されているRAMの位置から、最新の圧カサンプリングデータから数えて何番目のデータであったか、同様に、P(b)が何番目のデータであったかを割り出すことができるので、差のサンプリング数×サンプリング周期を計算して、P(f)とP(b)間の時間Xtを計算により求める。
・XtとdPXから、1サンプリング相当の傾きを求める。この値が求める真の基線の傾きである。〔dPX/Xt〕
(5) After storing the dP for a predetermined time, the CPU extracts the data with the largest inclination from the data within the predetermined time (eg, 500 mSec.) From the oldest data of the dP data. The pressure value data P (f) corresponding to is extracted. Similarly, the data having the largest inclination in the data from the latest dP data to a predetermined time (eg, 500 mSec.) Before is extracted, and the pressure data P (b) corresponding to the data is extracted.
・ Next, calculate the pressure difference between P (f) and P (b). [DPX = P (b) -P (f)]
-Find the time between P (f) and P (b).
The CPU determines the number of data counted from the latest pressure sampling data from the RAM location where P (f) is stored, and similarly the number of data P (b). Therefore, the number of samplings of the difference × sampling period is calculated, and the time Xt between P (f) and P (b) is obtained by calculation.
・ From Xt and dPX, find the slope equivalent to one sampling. This value is the true baseline slope desired. [DPX / Xt]
(6)CPUは、微速減圧目標値と(5)で求めた真の傾きとの差から、その差の応じて制御出力を修正し、電動排気弁駆動回路に出力して、サンプリングが進む毎に前記の処理を繰り返し行って加圧速度を制御する。なお、制御信号の出力のタイミングは、所定時間毎に行うが、差が大きい場合は、一度に制御出力値を変更するのではなく、加圧中の基線の揺らぎを押さえる意味で、所定量以上である場合は時分割で出力を変更するとよい。 (6) The CPU corrects the control output according to the difference between the target value for the slow depressurization and the true slope obtained in (5), and outputs the control output to the electric exhaust valve drive circuit. The pressure rate is controlled by repeating the above process. Note that the timing of the control signal output is performed every predetermined time, but if the difference is large, the control output value is not changed at a time, but the fluctuation of the baseline during pressurization is suppressed, and the predetermined amount or more. If this is the case, the output should be changed in time division.
(7)脈波の弁別
最新の圧力値データP1とその1つ前の圧力値P2の圧力差と基線dPX/Xtとの差を求め、この値が所定量以上プラスであれば、脈波有りとして、脈波の弁別処理を開始する。
・脈波の弁別処理を開始して、弁別中の脈波が真の脈波であるかどうかの判定は、例えば、基線に対して所定回数の上昇が見られ、所定回数の減少があるかどうかを確認すると共に、人の脈波としては有り得ない所定回数以上の基線に対する過大な圧力上昇が無いこと、そして振幅値などを確認して判断するとよい。
・前記の処理により、正しい脈波と判定されたとき、CPUは、脈波弁別処理の開始圧力と、弁別した脈波振幅値をRAMに記憶する。
(7) Discrimination of pulse wave The difference between the pressure difference between the latest pressure value data P1 and the previous pressure value P2 and the baseline dPX / Xt is obtained. Then, the pulse wave discrimination process is started.
・ Start the pulse wave discrimination process to determine whether the pulse wave during discrimination is a true pulse wave. It may be determined by confirming whether there is no excessive pressure rise with respect to the baseline more than a predetermined number of times, which is impossible for a human pulse wave, and by confirming an amplitude value or the like.
When it is determined by the above processing that the pulse wave is correct, the CPU stores the start pressure of the pulse wave discrimination processing and the discriminated pulse wave amplitude value in the RAM.
(8)測定終了の条作が来るまで、前記の微速減圧制御および脈波弁別を繰り返す。
(9)測定終了条件が成立したとき、オシロメトリック法による血圧値の計算を行い、結果を表示部に表示する。(血圧値の決定についての詳細は省略)
(8) The above-mentioned slow speed pressure reduction control and pulse wave discrimination are repeated until the end of measurement.
(9) When the measurement end condition is satisfied, the blood pressure value is calculated by the oscillometric method, and the result is displayed on the display unit. (Details about determination of blood pressure are omitted)
1 カフ
2 加圧ポンプ(加圧手段)
3 電動排気弁
4 圧力センサ
10 制御手段(排気弁制御手段、血圧演算手段、加圧ポンプ制御手段)
1
3
Claims (4)
測定開始から所定圧力に急速加圧した後に、微速加圧に移行し、微速加圧に移行してから任意に決定した1つのポイントを基点として、その基点から1サンプリング毎にカフ圧を計測し、前記基点における圧力値と前記計測点における圧力値との圧力差と、前記基点から計測点までの時間差とから加圧速度を求め、
求めた加圧速度を、前記カフ圧のサンプリングが行われる毎に、所定個数だけ、対応する圧力値のデータと共に記憶しておき、
記憶した区間内の最古のデータから所定区間内の加圧速度が最も小さい値と、記憶した区間内の最新のデータから所定区間内の加圧速度が最も小さい値とを抽出して、
これら2点のデータに対応する圧力値と時間差とから平均加圧速度を求め、
求めた平均加圧速度と目標加圧速度との差に基づいて、微速加圧速度が所定の目標加圧速度となるよう前記加圧手段をフィードバック制御することを特徴とする電子血圧計の圧力制御方法。 A cuff that compresses a living artery, a pressurizing means that can pressurize the cuff at a low speed, a pressure sensor that detects the cuff pressure, and a signal from the pressure sensor on which a pulse wave is superimposed in the process of pressurizing the cuff at a low speed Blood pressure calculation means for determining the blood pressure value, sampling the cuff pressure at equal intervals, obtaining the slow pressurization speed from the amount of pressure increase of the cuff during the slow pressurization and the time, In a pressure control method for an electronic sphygmomanometer that feedback-controls the pressurizing unit so that the slow pressurization speed becomes the target pressurization speed based on the difference from the target pressurization speed,
After rapid pressurization to the specified pressure from the start of measurement, shift to fine pressure pressurization and measure the cuff pressure every sampling from the base point with one point determined arbitrarily after shifting to the fine pressure pressurization. The pressure rate is determined from the pressure difference between the pressure value at the base point and the pressure value at the measurement point, and the time difference from the base point to the measurement point,
Each time the cuff pressure is sampled, the determined pressurization speed is stored together with a predetermined number of pressure value data,
Extract the value with the smallest pressurization speed in the predetermined section from the oldest data in the stored section and the value with the smallest pressurization speed in the predetermined section from the latest data in the stored section,
From the pressure value and time difference corresponding to these two points of data, the average pressurization speed is obtained,
The pressure of the electronic sphygmomanometer is characterized in that the pressurizing means is feedback-controlled so that the fine pressurization speed becomes a predetermined target pressurization speed based on the difference between the obtained average pressurization speed and the target pressurization speed. Control method.
所定圧力に加圧した後に、微速減圧に移行し、微速減圧に移行してから任意に決定した1つのポイントを基点として、その基点から1サンプリング毎にカフ圧を計測し、前記基点における圧力値と前記計測点における圧力値との圧力差と、前記基点から計測点までの時間差とから減圧速度を求め、
求めた減圧速度を、前記カフ圧のサンプリングが行われる毎に、所定個数だけ、対応する圧力値のデータと共に記憶しておき、
記憶した区間内の最古のデータから所定区間内の減圧速度が最も大きい値と、記憶した区間内の最新のデータから所定区間内の減圧速度が最も大きい値とを抽出して、
これら2点のデータに対応する圧力値と時間差とから平均減圧速度を求め、
求めた平均減圧速度と目標減圧速度との差に基づいて、微速減圧速度が所定の目標減圧速度となるよう前記電動排気弁をフィードバック制御することを特徴とする電子血圧計の圧力制御方法。 A cuff that compresses a living artery, a pressurizing pump that pressurizes the cuff, an electric exhaust valve that depressurizes the cuff, a pressure sensor that detects the cuff pressure, and the pressure sensor on which a pulse wave is superimposed in the process of depressurizing the cuff A blood pressure calculation means for analyzing a signal from the blood pressure and calculating a blood pressure value, obtaining a slow depressurization speed from the pressure decrease amount of the cuff during decompression and its time, and based on the difference between the slow depressurization speed and the target decompression speed, In the pressure control method of the electronic sphygmomanometer that feedback-controls the electric exhaust valve so that the slow depressurization speed becomes the target depressurization speed,
After pressurizing to a predetermined pressure, shift to fine pressure reduction, measure cuff pressure every sampling from the base point with one point arbitrarily determined after shifting to slow pressure reduction, and the pressure value at the base point And the pressure difference between the pressure value at the measurement point and the time difference from the base point to the measurement point, the pressure reduction rate is obtained,
Each time the cuff pressure is sampled, the determined pressure reduction speed is stored together with a predetermined number of corresponding pressure value data,
Extracting the largest decompression speed in the predetermined section from the oldest data in the stored section and the largest decompression speed in the predetermined section from the latest data in the stored section,
From the pressure value and time difference corresponding to these two points of data, the average pressure reduction rate is obtained,
A pressure control method for an electronic sphygmomanometer, wherein the electric exhaust valve is feedback-controlled based on a difference between the obtained average pressure reduction speed and a target pressure reduction speed so that a fine pressure reduction speed becomes a predetermined target pressure reduction speed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004319036A JP4607547B2 (en) | 2004-11-02 | 2004-11-02 | Pressure control method and pulse wave discrimination method for electronic sphygmomanometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004319036A JP4607547B2 (en) | 2004-11-02 | 2004-11-02 | Pressure control method and pulse wave discrimination method for electronic sphygmomanometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006129920A JP2006129920A (en) | 2006-05-25 |
JP4607547B2 true JP4607547B2 (en) | 2011-01-05 |
Family
ID=36723963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004319036A Expired - Lifetime JP4607547B2 (en) | 2004-11-02 | 2004-11-02 | Pressure control method and pulse wave discrimination method for electronic sphygmomanometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4607547B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114533009A (en) * | 2020-11-25 | 2022-05-27 | 华为技术有限公司 | Blood pressure measuring device and pressurizing method thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102160779A (en) * | 2010-02-22 | 2011-08-24 | 深圳市金科威实业有限公司 | Method and device for inflating cuff of non-invasive blood pressure measurement equipment |
JP5733698B2 (en) * | 2010-09-27 | 2015-06-10 | 日本精密測器株式会社 | Electronic blood pressure monitor, measurement site circumference length estimation method, and blood pressure measurement method |
JP5811766B2 (en) | 2011-10-26 | 2015-11-11 | オムロンヘルスケア株式会社 | Electronic blood pressure monitor |
JP5884496B2 (en) * | 2012-01-16 | 2016-03-15 | オムロンヘルスケア株式会社 | Blood pressure measuring device and method for controlling blood pressure measuring device |
JP5998486B2 (en) * | 2012-01-16 | 2016-09-28 | オムロンヘルスケア株式会社 | Blood pressure measuring device and method for controlling blood pressure measuring device |
JP5919879B2 (en) * | 2012-02-24 | 2016-05-18 | オムロンヘルスケア株式会社 | Blood pressure measuring device, blood pressure measuring method, blood pressure measuring program |
CN107920765B (en) * | 2015-09-03 | 2021-07-06 | 皇家飞利浦有限公司 | Non-invasive blood pressure monitoring device and method |
TWI611103B (en) * | 2016-02-03 | 2018-01-11 | 研能科技股份有限公司 | Control method of driving circuit of piezoelectric actuated pump and driving circuit thereof |
CN112206142A (en) * | 2020-10-22 | 2021-01-12 | 中山大学附属第一医院 | External counterpulsation pressurization system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001333889A (en) * | 2000-05-26 | 2001-12-04 | Matsushita Electric Works Ltd | Sphygmomanometer |
JP2002034938A (en) * | 2000-07-26 | 2002-02-05 | Matsushita Electric Works Ltd | Sphygmomanometer |
JP2003339650A (en) * | 2002-05-28 | 2003-12-02 | Matsushita Electric Works Ltd | Biological information measuring instrument |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0636786B2 (en) * | 1985-08-20 | 1994-05-18 | オムロン株式会社 | Electronic blood pressure monitor |
-
2004
- 2004-11-02 JP JP2004319036A patent/JP4607547B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001333889A (en) * | 2000-05-26 | 2001-12-04 | Matsushita Electric Works Ltd | Sphygmomanometer |
JP2002034938A (en) * | 2000-07-26 | 2002-02-05 | Matsushita Electric Works Ltd | Sphygmomanometer |
JP2003339650A (en) * | 2002-05-28 | 2003-12-02 | Matsushita Electric Works Ltd | Biological information measuring instrument |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114533009A (en) * | 2020-11-25 | 2022-05-27 | 华为技术有限公司 | Blood pressure measuring device and pressurizing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2006129920A (en) | 2006-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4607547B2 (en) | Pressure control method and pulse wave discrimination method for electronic sphygmomanometer | |
US7029448B2 (en) | Electronic hemomanometer and blood pressure measuring method of electronic hemomanometer | |
EP0422512B1 (en) | Electronic sphygmomanometer | |
EP0808604B1 (en) | Electronic blood pressure meter | |
EP1426008B1 (en) | Blood pressure measuring apparatus | |
EP2047793A1 (en) | Instrument for measuring index of viscoelasticity of blood vessel | |
EP1645225B1 (en) | Apparatus, program product and method for displaying pulse wave information | |
JP2008188303A (en) | Electronic sphygmometer | |
JP2010119640A (en) | Electronic sphygmomanometer | |
JP4153543B2 (en) | Electronic blood pressure monitor | |
US7803122B2 (en) | Device for determining the transition between systole and diastole | |
JP3042051B2 (en) | Electronic sphygmomanometer | |
JP4579895B2 (en) | Electronic blood pressure monitor | |
JPS63311935A (en) | Electronic hemomanometer | |
KR102094825B1 (en) | Method and system for computation of start time of wave-free period for calculation of iFR for determination of treatment of intermediate coronary artery stenosis | |
JP2936814B2 (en) | Electronic sphygmomanometer | |
JPS61199835A (en) | Electronic hemomanometer | |
JP4607546B2 (en) | Pressure control method for electronic sphygmomanometer | |
US6249796B1 (en) | Real-time technique for reducing the settling time of a high pass filter | |
JP2769249B2 (en) | Oscillometric digital sphygmomanometer | |
KR930009708B1 (en) | Method for pulse detection of electric pressure meter | |
EP0246571A1 (en) | Electronic blood pressure meter incorporating compensation function for systolic and diastolic blood pressure determinations | |
JP3124623B2 (en) | Electronic sphygmomanometer | |
JPH06112B2 (en) | Electronic blood pressure monitor for fingers | |
JP2001198093A (en) | Electronic sphygmomanometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100907 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101007 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4607547 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |