JP4572507B2 - Transparent conductive material and touch panel - Google Patents
Transparent conductive material and touch panel Download PDFInfo
- Publication number
- JP4572507B2 JP4572507B2 JP2003143831A JP2003143831A JP4572507B2 JP 4572507 B2 JP4572507 B2 JP 4572507B2 JP 2003143831 A JP2003143831 A JP 2003143831A JP 2003143831 A JP2003143831 A JP 2003143831A JP 4572507 B2 JP4572507 B2 JP 4572507B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- refractive index
- transparent conductive
- conductive material
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、構成が簡単で製造コストが低く、かつ着色の少ない透明導電材料およびそれを用いたタッチパネルに関する。
【0002】
【従来の技術】
現在、画面表示に直接触れることにより、情報を入力できるデバイスとしてタッチパネルが用いられている。これは光を透過する入力装置を液晶表示装置、CRTなどの各種ディスプレイ上に配置したものであり、代表的な形式のひとつとして、電極基板2枚を導電層が向かい合う様に配置した抵抗膜式タッチパネルがある。
【0003】
抵抗膜式タッチパネル用の電極基板として、ガラス板や、樹脂板や、各種の熱可塑性高分子フィルムの基板上に、酸化インジウム錫(ITO)や酸化亜鉛などの導電性を有する金属酸化物を積層したものが一般的に用いられている。
【0004】
このようにして得られた電極基板は、金属酸化物層の反射および吸収に由来する可視光短波長域の透過率低下により全光線透過率が低下すると同時に、黄色もしくは茶色に呈色することが多い。そのためタッチパネルの下に配置される表示装置の発色を正確に表現することが難しいといった問題があった。
【0005】
この問題を解決するために、導電層と基材との間に、導電層、基材のどちらよりも屈折率の高い高屈折率層を挿入したり、あるいは導電層、基材のどちらよりも屈折率の低い低屈折率層を挿入する方法が提案されている(例えば特許文献1を参照)。この方法によれば、図5に示すように、550nm付近の波長における反射率を抑えることができ、図6に示すように、550nm付近の波長における透過率を高くすることができる。しかし、これらはいずれも全光線透過率を向上させる効果は得られるが、黄色もしくは茶色に透過光が呈色する問題については未解決であった。
【0006】
また、導電層と基材の間に多層光学膜を積層する方法も提案されている(例えば特許文献2を参照)。
【0007】
【特許文献1】
特開平6−218864号公報(第2頁及び第3頁)
【特許文献2】
特開平11−286066号公報(第2〜4頁)
【0008】
【発明が解決しようとする課題】
ところが、これらは電極材料の透過率をコントロールして透過光の着色を抑える効果が得られるものの、中間層が多層膜となるため、構成が複雑で製造コストが高くなる問題があった。
【0009】
本発明の目的は、構成が簡単で製造コストが低く、かつ透過光の着色の少ない透明導電材料およびそれを用いたタッチパネルを提供することである。
【0010】
【課題を解決するための手段】
本発明者らは、前記問題点に鑑み鋭意検討した結果、基材表面に特定の中間屈折率層を形成した上に、導電層を形成することにより、着色を抑えた透明導電材料を形成できることを見い出し、本発明を完成した。
【0011】
本発明は次の(1)〜(9)である。
(1) 基材(A)の片面もしくは両面に、直接基材側から順に、層厚が光学膜厚で100〜175nmの中間屈折率層(B)および層厚が光学膜厚で10〜60nmの導電層(C)を積層した透明導電材料であって、かつ前記中間屈折率層(B)の屈折率が1.7〜1.85で、各層の屈折率が基材(A)の屈折率<中間屈折率層(B)の屈折率<導電層(C)の屈折率となる関係を満たすとともに、前記中間屈折率層(B)は金属酸化物と紫外線硬化性単量体との混合物により形成され、前記金属酸化物の平均粒径は0.01〜0.05μmであり、さらに金属酸化物と紫外線硬化性単量体との重量比は50/50〜90/10である透明導電材料。
(2) 導電層(C)が金属もしくは金属酸化物からなる導電層である前記(1)の透明導電材料。
(3) 導電層(C)が酸化インジウム錫を蒸着法、イオンプレーティング法、化学蒸着(CVD)法およびスパッタリング法から選ばれるいずれか1種の方法により形成した層であることを特徴とする前記(1)又は(2)の透明導電材料。
(4) 基材(A)が10〜500μmの厚みを持つプラスチックフィルムである前記(1)〜(3)のいずれかの透明導電材料。
(5) 中間屈折率層(B)が原料をウェットコーティング法により形成した層である前記(1)〜(4)のいずれかの透明導電材料。
(6) 透明導電材料の導電層C側表面における反射率曲線の極小値が380〜500nmの波長範囲内にあることを特徴とする前記(1)〜(5)のいずれかの透明導電材料。
(7) 透明導電材料の導電層C側表面における反射率曲線の極小値が450〜500nmの波長範囲内にあることを特徴とする前記(1)〜(5)のいずれかの透明導電材料。
(8) JIS Z8729に定められるL*a*b*表色系における透過色差が、−2<a*<2、−2<b*<2の範囲であることを特徴とする前記(1)〜(7)のいずれかの透明導電材料。
(9) 前記(1)〜(8)のいずれかの透明導電材料を電極基板として用いたタッチパネル。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
本実施形態の透明導電材料は、基材(A)の片面もしくは両面に、直接基材側から順に、層厚が光学膜厚で100〜175nmの中間屈折率層(B)、層厚が光学膜厚で10〜60nmの導電層(C)を積層したものである。かつ中間屈折率層(B)の屈折率が1.7〜1.85で、各層の屈折率が基材(A)の屈折率<中間屈折率層(B)の屈折率<導電層(C)の屈折率となる関係を満たすとともに、前記中間屈折率層(B)は金属酸化物と紫外線硬化性単量体との混合物により形成され、前記金属酸化物の平均粒径は0.01〜0.05μmであり、さらに金属酸化物と紫外線硬化性単量体との重量比は50/50〜90/10のものである。ここでいう光学膜厚とは層の屈折率(n)と層の厚み(d)の積(n×d)を意味している。
【0013】
本実施形態に用いられる基材(A)は、透明導電材料のベース材となるもので、透明性の良好なものである。この基材(A)としては特に限定されるものではなく、公知の全てのものが使用可能である。基材(A)の材質としては、例えば、ガラスや、ポリエチレンテレフタレート(以下PETと略記)、ポリブチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル共重合体、トリアセチルセルロース、ポリオレフィン、ポリアミド、ポリ塩化ビニル、非晶質ポリオレフィンなどの透明樹脂が好ましい。
【0014】
また基材(A)の形状としては、例えば板状もしくはフィルム状のものが挙げられる。生産性、運搬性の点からプラスチックフィルムが好ましく挙げられる。その際、その厚みとしては10〜500μmのものが透明性、作業性の点より好ましく、50〜200μmのものがさらに好ましい。
【0015】
次に、中間屈折率層(B)について説明する。基材(A)と導電層(C)の間に前述したような特定の中間屈折率層(B)を形成させた本実施形態の透明導電材料は、紫から青色の光の反射を低減できるため、透過光の着色を低減できる。
【0016】
中間屈折率層(B)の屈折率は、基材(A)と導電層C) の屈折率に対して、基材(A)の屈折率<中間屈折率層(B)の屈折率<導電層Cの屈折率の関係を満たし、かつ1.7〜1.85の範囲である。中間屈折率層(B)の屈折率が1.7未満あるいは1.85よりも大きい場合、得られる透明導電材料における着色度が大きくなる。
【0017】
中間屈折率層(B)の層厚は、光学膜厚で100〜175nmの範囲が好ましい。中間屈折率層(B)の光学膜厚をこのような範囲に設定することにより、反射光の中で特に青色(波長400nm)付近の反射率の小さい透明導電材料が得られる。光学膜厚が100nm未満あるいは光学膜厚が175nmより大きい場合には、得られる透明導電材料における着色度が大きくなる。中間屈折率層(B)を形成する材料としては、屈折率が特定の範囲を逸脱せず、本実施形態の目的を損なわない限りは特に限定されず、従来公知の材料を使用することができる。
【0018】
具体的には、例えば、無機物、無機物と有機物との混合物を用いることができる。ここで、無機物としては例えば酸化亜鉛、酸化チタン、酸化セリウム、酸化アルミニウム、酸化シラン、酸化タンタル、酸化イットリウム、酸化イッテルビウム、酸化ジルコニウム、酸化インジウム錫、酸化アンチモン錫などの金属酸化物が材料として挙げられる。これらのうち、酸化ジルコニウム、酸化チタン、酸化インジウム錫、酸化アンチモン錫及び酸化セリウムが好ましく、酸化ジルコニウムが屈折率、電気絶縁性、耐光性などの観点から最も好ましい。
【0019】
中間屈折率層(B)の形成方法は特に限定されず、例えば蒸着法、スパッタリング法、イオンプレーティング法、化学蒸着(CVD)法、めっき法などのドライコーティング法、ウェットコーティング法などを採用することができる。これらの中では、層の厚みの制御が容易であるという観点から蒸着法およびスパッタリング法が好ましい。
【0020】
また、無機物と有機物との混合物の場合、例えば、無機物として前述の金属酸化物の微粒子と、有機物としての硬化性単量体の混合物が材料として挙げられる。この場合、中間屈折率層(B)の屈折率の設定を容易に行なうことができ、また該層(B)を容易に作製することができる。金属酸化物の微粒子の平均粒径は中間屈折率層の厚みを大きく超えないことが好ましい。具体的には0.1μm以下であることが好ましく、0.05μm以下であることがさらに好ましく、0.01〜0.05μmであることが最も好ましい。平均粒径が大きくなると、散乱が生じるなど、中間屈折率層の透明性が低下する場合があるため好ましくない。
【0021】
また、必要に応じて微粒子表面を各種カップリング剤などにより修飾することができる。各種カップリング剤としては例えば、珪素化合物、アルミニウム、チタニウム、ジルコニウム、アンチモンなどを有機置換した金属アルコキシド、有機酸塩などが挙げられる。
【0022】
硬化性単量体としては、特に限定されず、従来公知のものを使用できる。例えば単官能もしくは多官能の(メタ)アクリル酸エステルや、テトラエトキシシランなどの珪素化合物が挙げられる。さらに、硬化性単量体は、中間屈折率層(B)の生産性および層強度の観点より紫外線硬化性単量体であることが好ましく、層強度を向上させる観点から、多官能単量体を用いることが好ましい。そのため、紫外線硬化型でかつ多官能型のアクリレートや珪素化合物が、最も好ましく挙げられる。
【0023】
紫外線硬化型でかつ多官能型のアクリレートとしては、具体的には、例えば、ジペンタエリスリトールヘキサアクリレート、テトラメチロールメタンテトラアクリレート、テトラメチロールメタントリアクリレート、ペンタエリスリトールペンタアクリレート、トリメチロールプロパントリアクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ビス(3−アクリロイルオキシ−2−ヒドロキシプロピルオキシ)ヘキサンなどの多官能アルコール誘導体やポリエチレングリコールジアクリレート、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー等のウレタンアクリレートなどが挙げられる。硬化性単量体として、前述の単量体の1種または2種以上混合したもの、またはその他の成分をさらに添加したものを用いることができる。
【0024】
金属酸化物の微粒子と硬化性単量体との混合比率(金属酸化物の微粒子/硬化性単量体、単位:重量比)は、50/50〜90/10であることが好ましく、60/40〜85/15であることがさらに好ましい。金属酸化物の微粒子の割合が50重量部未満、すなわち硬化性単量体の割合が50重量部を超える場合、屈折率を所望通り上げることができず、また金属酸化物の微粒子の割合が90重量部を超え、すなわち硬化性単量体の割合が10重量部未満の場合、層の成形性および強度が低くなる傾向にある。
【0025】
また、中間屈折率層(B)の層中に本実施形態の効果を損なわない範囲において、その他の成分を含ませても構わない。その他の成分とは特に限定されるものではなく、例えば、無機または有機顔料、重合体、重合開始剤、重合禁止剤、酸化防止剤、分散剤、界面活性剤、光安定剤、光吸収剤、レベリング剤などの添加剤が挙げられる。
【0026】
また、ウェットコーティング法において層を形成後乾燥させる限りは、任意の量の溶媒を添加することができる。無機物と有機物との混合物の場合、通常ウェットコーティング法で中間屈折率層(B)が形成される。ウェットコーティングの方法としては公知の方法で良く、例えばロールコート法、スピンコート法、ディップコート法などが代表的な方法として挙げられる。これらの中では、連続的に形成できるため生産性が高いという点でロールコート法またはディップコート法はより好ましい方法である。
【0027】
次に、本実施形態における導電層(C)は、透明導電材料の導電回路を構成する通電部として機能するものである。この導電層(C)の材料としては特に限定されないが、金属もしくは金属酸化物を用いることが好ましい。例えば、金、銀、銅、白金、ニッケル、酸化錫、酸化インジウム錫(ITO)、酸化アンチモン錫などの透明導電層が好ましく挙げられる。これらの中では、導電性、透明性、安定性の観点より酸化インジウム錫(ITO)が好ましく挙げられる。
【0028】
また、導電層(C)の形成方法は特に限定されず、例えば蒸着法、スパッタリング法、イオンプレーティング法、CVD法、めっき法などのドライコーティング法を採用することができる。これらの中では、層の厚み制御の観点より蒸着法およびスパッタリング法が特に好ましい。
【0029】
導電層(C)の層厚は、光学膜厚で10〜60nmの範囲である。光学膜厚10nm未満では表面抵抗値が高くなり、また光学膜厚が60nmより大きい場合、透明性が低下する。
【0032】
本実施形態において、透明導電材料の導電層側表面における反射率曲線の極小値を380〜500nmの波長範囲内となるように、各層の屈折率や光学膜厚を調整すると、紫から青色の光の反射をより低減でき、透過光の着色をより低減できる。ここで、反射率曲線の極小値波長が380nm未満あるいは500nmより大きい場合には、紫から青色の光の反射を低減する効果が小さいか、逆に反射が大きくなることにより、透過光が着色する傾向にある。
【0033】
本実施形態において、透明導電材料の導電層側表面における反射率曲線の極小値を380〜500nmの波長範囲内となるように各層の屈折率や光学膜厚を調整すると、透過光をJIS Z8729に定められるL*a*b*表色系における透過色差として測定したとき、−2<a*<2、−2<b*<2の範囲にできる。
従って、着色が実用上問題とならない透明導電材料ができる。
【0034】
さらに、反射率曲線の極小値波長を450〜500nmの範囲内となるように屈折率と光学膜厚を調整した場合、紫から青色の光の反射をより低減できるため、透過光の着色をより低減できるだけではなく、透明導電材料のJIS K7361−1に定められる全光線透過率を85%以上にできるのでさらに好ましい。
【0035】
本実施形態の透明導電材料は、導電材料として高い光線透過率および優れた色調を必要とする用途に用いることができる。特に有機、無機エレクトロルミネッセンスディスプレイや液晶ディスプレイなどの電子画像表示装置や、抵抗膜式タッチパネルの電極基板などに用いることができる。
【0036】
また、必要に応じて透明導電材料の導電層を形成していない面にあらかじめ接着層を設け、対象物に貼り合せて用いることができる。接着層に用いられる材料としては特に限定されるものではないが、例えば、シリコーン系粘着剤、アクリル系粘着剤、紫外線硬化型接着剤、熱硬化型接着剤などを挙げることができる。
【0037】
また、抵抗膜式タッチパネルの上部電極基板として用いる場合には、透明導電材料の導電層を形成していない面に、表面強度向上のためのハードコート層を形成することが好ましい。このハードコート層には防眩、帯電防止、減反射などの機能を一種類以上付与させることができる。また透明導電材料の導電層を形成していない面を密着させるように接着層を介してハードコート層を有する基材の裏面に貼り合せて用いることもできる。
【0038】
抵抗膜式タッチパネルの下部電極基板として用いる場合には透明導電性材料をそのまま、もしくはガラス、プラスチックなどの基材に貼り合せて用いることができる。また、その裏側に光線透過率を向上させるために直接もしくは1層以上の層を介して、少なくとも1層以上からなる減反射層を形成したり、減反射層を有する基材を貼り合せることができる。減反射層としては特に限定されず、従来公知のものを使用することができる。
【0039】
さて、本実施形態の透明導電材料は、基材(A)上に層厚が光学膜厚で100〜175nmの中間屈折率層(B)、さらにその上に層厚が光学膜厚で10〜60nmの導電層(C)が積層されて構成されている。すなわち、この透明導電材料は、基材(A)と導電層(C)との間に中間屈折率層(B)のみが形成されて構成されている。従って、多層構造の場合に比べて構成が簡単で、容易に製造することができる。
【0040】
また、中間屈折率層(B)の屈折率が1.7〜1.85で、各層の屈折率が基材(A)の屈折率<中間屈折率層(B)の屈折率<導電層(C)の屈折率となる関係を有している。このため、透明導電材料に入射した光は、図3に示すように、400〜780nmの範囲の波長で反射率がほぼ一定となるように低下され、透過光が着色するのが抑制される。さらに、図4に示すように、透過率(全光線透過率)もほぼ85%で一定となり、透過光の明るいものとなる。上記のように、中間屈折率層(B)の屈折率が基材(A)の屈折率と導電層(C)の屈折率との中間の値に設定されていることから、透明導電材料の反射率を各波長に対して比較的フラット(極大値と極小値との差が比較的小さい)なものにすることができる。従って、透過光の着色を抑えることができる。さらに、透過率も波長にかかわらず高く、ほぼ一定した値が得られ、透過光を明るくすることができる。
【0041】
以上の実施形態により発揮される効果を以下にまとめて説明する。
・ 本実施形態の透明導電材料は、基材(A)の片面もしくは両面に、基材側から順に層厚が光学膜厚で100〜175nmの中間屈折率層(B)、層厚が光学膜厚で10〜60nmの導電層(C)が積層されている。かつ中間屈折率層(B)の屈折率が1.7〜1.85で、各層の屈折率が基材(A)の屈折率<中間屈折率層(B)の屈折率<導電層(C)の屈折率となる関係を有している。このため、透過光の着色を少なくすることができるとともに、積層する層数が少ないので構成を簡単にでき、製造を容易に、しかも製造コストを低くすることができる。従って、本実施形態の透明導電性材料はタッチパネルなどの電極基板として有用である。
【0042】
・ 導電層(C)は金属もしくは金属酸化物で形成されていることから、良好な表面抵抗値を得ることができる。
・ 導電層(C)は酸化インジウム錫を蒸着法、イオンプレーティング法、CVD法およびスパッタリング法から選ばれるいずれか1種の方法により容易に形成することができる。
【0043】
・ 基材(A)が10〜500μmの厚みを持つプラスチックフィルムであるため、透明導電材料は安定した透明性を発揮することができる。
・ 中間屈折率層(B)が原料をウェットコーティング法により形成した層であることから、製膜を容易に行なうことができ、透明導電材料の製造コストを低減することができる。
【0044】
・ 透明導電材料の導電層(C)側表面における反射率曲線の極小値は380〜500nmの波長範囲内にある。このため、反射スペクトルの青色の反射光を低減させ、黄色の呈色を低減させることができる。
【0045】
・ 透明導電材料の導電層(C)側表面における反射率曲線の極小値が450〜500nmの波長範囲内にあることにより、全光線透過率を下げることなく、黄色の呈色を低減させることができる。
【0046】
・ JIS Z8729に定められるL*a*b*表色系における透過色差が、−2<a*<2、−2<b*<2の範囲で、ゼロに近いことにより、透明導電材料の呈色を抑制することができる。
【0047】
【実施例】
以下に前記実施形態をさらに具体化した実施例を示すが、本発明は以下の実施例に限定されるものではない。なお、導電層以外の層の屈折率は以下の手順に従って測定した。
(1)屈折率1.63のPETフィルム(商品名:A4100、東洋紡績株式会社製)上に、ディップコーター(杉山元理化学機器株式会社製)により、乾燥後の層が光学膜厚(n×d)=110nm程度になるように層の厚さを調整しながら各層用塗液を塗布する。
(2)塗布層を乾燥後、窒素雰囲気下で紫外線を照射(岩崎電気株式会社製紫外線照射装置、120W高圧水銀灯、400mJ)することにより硬化する。
(3)PETフィルムの裏面をサンドペーパーで荒らし、黒色塗料で塗りつぶしたものを分光光度計(「U−best 50」、日本分光株式会社製)により、380〜780nmの5°、−5°正反射スペクトルを測定する。
(4)反射スペクトルより読み取った反射率の極大値または極小値を用いて以下の式(1)より層の屈折率を計算する。
【0048】
【数1】
但し、nMはPETフィルムの屈折率、nは層の屈折率を表す。
【0049】
また、導電層の屈折率は、屈折率1.63のPETフィルム(商品名:A4100、東洋紡績株式会社製)上に光学膜厚(n×d)=110nm程度になるように導電層を形成した後、上記(3)、(4)の手順で屈折率を測定した。
【0050】
製造例1(中間屈折率層用塗液(H―1)の調製)
酸化ジルコニウムの微粒子(平均粒径:0.04μm)80重量部、テトラメチロールメタントリアクリレート15重量部、ブチルアルコール900重量部、光重合開始剤(商品名:IRGACURE 907、チバガイギー株式会社製)1重量部を混合することにより中間屈折率層用塗液(H―1)を調製した。その塗液の一部を用いた紫外線硬化後の硬化物の屈折率は1.77であった。
【0051】
製造例2(中間屈折率層用塗液(H―2)の調製)
酸化ジルコニウムの微粒子(平均粒径:0.04μm)80重量部に代えて酸化チタンの微粒子(平均粒径:0.03μm)80重量部を用いた以外は製造例1と同様にして、中間屈折率層用塗液(H―2)を調製した。その塗液の一部を用いた紫外線硬化後の硬化物の屈折率は1.85であった。
【0052】
製造例3(ハードコート層用塗液(HC−1)の調製)
ジペンタエリスリトールヘキサアクリレート70重量部、1,6−ジアクリロイルオキシヘキサン30重量部、光重合開始剤(商品名:IRGACURE184、チバガイギー株式会社製)4重量部、イソプロピルアルコール100重量部を混合することによりハードコート層用塗液を調製した。その塗液の一部を用いた紫外線硬化後の硬化物の屈折率は1.52であった。
【0053】
製造例4(ハードコート処理PETフィルムの作製)
厚みが188μmのPETフィルム(商品名:A4100、東洋紡績株式会社製、屈折率1.63)上に、製造例3で調製したハードコート用塗液をバーコーターを用いて乾燥後の層厚が5μm程度になるように塗布した。その後、紫外線を照射(岩崎電気株式会社製紫外線照射装置、120W高圧水銀灯、400mJ)し、硬化させることによりハードコート処理PETフィルムを作製した。
【0054】
製造例5(シリカ微粒子の分散液(L―1)の調製)
テトラメチロールメタントリアクリレート25重量部、シリカ微粒子の分散液(商品名:XBA−ST、日産化学株式会社製)220重量部、ブチルアルコール900重量部、光重合開始剤(商品名:KAYACURE BMS、日本化薬株式会社製)5重量部を混合することによりシリカ微粒子の分散液(L―1)を調製した。その塗液の一部を用いた紫外線硬化後の硬化物の屈折率は1.50であった。
【0055】
実施例1
厚みが188μmのPETフィルム(商品名:A4100、東洋紡績株式会社製、屈折率1.63)上に、製造例1で作製した中間屈折率層用塗液(H―1)を用いて以下の方法で中間屈折率層(B)を形成した。
【0056】
硬化後の光学膜厚が160nmになるように層厚を調整しながらディップコーター(杉山元理化学機器株式会社製)により中間屈折率層用塗液(H―1)を塗布して乾燥後、窒素雰囲気下で紫外線を照射(岩崎電気株式会社製紫外線照射装置、120W高圧水銀灯、400mJ)することにより硬化した。
【0057】
このフィルムを100℃で1時間予備乾燥を行った後、ITO(インジウム:錫=92:8、層形成後の屈折率2.00)ターゲットを用いるスパッタリングにより、光学膜厚=40nmの導電層(C)を中間屈折率層(B)の上に形成し、透明導電材料を作製した。
【0058】
得られた透明導電材料の模式的な断面図を図1に示す。すなわち、PETフィルムよりなる基材A上には中間屈折率層Bが設けられ、さらにその上には導電層Cが設けられている。
【0059】
次に、これを用いて全光線透過率、反射率の極小値波長、透過色差(a*、b*)、および表面抵抗値を以下の方法により測定した。その結果をそれぞれ表1に示す。
【0060】
(1)全光線透過率;ヘイズメーター(商品名:NDH2000、日本電色工業株式会社製)により全光線透過率を測定した。
(2)反射率の極小値波長;分光光度計(商品名:UV1600、株式会社島津製作所製)を用いて380〜780nmの反射スペクトルを測定し、そのスペクトルより反射率の極小値を示す波長を確認した。
【0061】
(3)透過色差;色差計(商品名:SQ−2000、日本電色工業株式会社製)を用いて透過色差a*、b*を測定した。
(4)表面抵抗値;表面抵抗計(商品名:Loresta MP MCP―T350、三菱化学株式会社製)により測定した。
【0062】
実施例2
硬化後の光学膜厚が120nmになるように層厚を調整しながら中間屈折率層用塗液(H―1)を塗布して乾燥すること以外は実施例1と同様にして透明導電材料を作製した。
【0063】
次に全光線透過率、反射率の極小値波長、透過色差(a*、b*)、および表面抵抗値を実施例1と同様に測定した。その結果をそれぞれ表1に示す。
参考例3
PETフィルムに代えて、製造例4で作製したハードコート処理PETフィルムを使用すること以外は実施例1と同様にして透明導電材料を作製した。
【0064】
次に全光線透過率、反射率の極小値波長、透過色差(a*、b*)、および表面抵抗値を実施例1と同様に測定した。その結果をそれぞれ表1に示す。
参考例4
中間層の屈折率を1.85に変更すること以外、参考例3と同様にして透明導電性材料を作製した。
【0065】
次に全光線透過率、反射率の極小値波長、透過色差(a*、b*)、および表面抵抗値を実施例1と同様に測定した。その結果をそれぞれ表1に示す。
比較例1
厚みが188μmのPETフィルム(商品名:A4100、東洋紡績株式会社製、屈折率1.63)上に直接、実施例1と同様にして導電層(C)を形成した。
【0066】
次に全光線透過率、透過色差(a*、b*)、および表面抵抗値を実施例1と同様に測定した。その結果をそれぞれ表1に示す。
比較例2
硬化後の光学膜厚を90nmになるように層厚を調整しながら中間屈折率層用塗液(H―1)を塗布して乾燥すること以外は実施例1と同様にして透明導電材料を作製した。
【0067】
次に全光線透過率、反射率の極小値波長、透過色差(a*、b*)、および表面抵抗値を実施例1と同様に測定した。その結果をそれぞれ表1に示す。
比較例3
硬化後の光学膜厚を190nmになるように層厚を調整しながら中間屈折率層用塗液(H―1)を塗布して乾燥すること以外は実施例1と同様にして透明導電材料を作製した。
【0068】
次に全光線透過率、反射率の極小値波長、透過色差(a*、b*)、および表面抵抗値を実施例1と同様に測定した。その結果をそれぞれ表1に示す。
比較例4
硬化後の光学膜厚を160nmになるように層厚を調整しながら、中間屈折率層用塗液にシリカ微粒子の分散液(L―1、屈折率:1.50)を塗布して乾燥すること以外は実施例1と同様に透明導電性材料を作製した。
【0069】
次に全光線透過率、反射率の極小値波長、透過色差a*、b*、および表面抵抗値を実施例1と同様に測定した。結果をそれぞれ表1に示した。
比較例5
厚みが188μmのPETフィルム(商品名:A4100、東洋紡績株式会社製、屈折率1.63)上に、中間屈折率層として酸化チタンターゲットを用いるスパッタリングにより、金属酸化物層(屈折率:2.30、光学膜厚:160nm)を形成した。さらに、その上にITO(インジウム:錫=92:8)ターゲットを用いるスパッタリングにより、導電層(光学膜厚:40nm)を形成して透明導電材料を作製した。
【0070】
比較例6
PETフィルムの一方の面に酸化チタンを電子ビーム加熱法により、1.33×10-2〜2.66×10-2Paの真空度で真空蒸着して、厚さが100nm(屈折率:2.35)からなる透明な誘電体膜を形成した。その後、実施例1と同様にして導電層(C)を形成して透明導電材料を作製した。
【0071】
次に、全光線透過率、反射率の極小値波長、透過色差(a*、b*)、および表面抵抗値を実施例1と同様に測定した。その結果をそれぞれ表1に示す。
【0072】
【表1】
表1に示したように、実施例1および2で作製した透明導電性材料は表面抵抗値が小さく高導電性であり、また透過色差の値が小さいことから着色の少ないことが明らかとなった。
【0073】
一方、中間屈折率層(B)がない比較例1および比較例6や、中間屈折率層の光学膜厚が適切でない比較例2、3や、中間屈折率層の屈折率が小さい比較例4では、いずれも透過色差のb*が大きくなって、着色が見られることが明らかとなった。
【0074】
また中間屈折率層の屈折率を導電層の屈折率より高くした比較例5は、透過色差b*が非常に小さくなって、着色することが明らかとなった。
参考例5、6
参考例3、4で作製した透明導電材料の裏面にアクリル系粘着剤シート(商品名:ノンキャリア、リンテック株式会社製)をハンドローラーにより貼り、製造例4で作製したハードコート処理PETフィルムの裏面に均一に貼り合わせた。
また厚さ2mmのガラス板(商品名:FL2.0、日本板硝子株式会社製)に実施例1と同様にしてスパッタリング法によりITO(インジウム:錫=92:8)の導電層を形成した。次に、これらを導電層同士が向かい合うように配置し、四辺を両面粘着テープにより貼り合せ、抵抗膜式タッチパネルのモデルを作製した。
【0075】
得られたタッチパネルモデルの模式的な断面図を図2に示す。すなわち、透明導電材料は、第1ハードコート層1が設けられた基材A上に中間屈折率層Bを介して導電層Cが設けられて構成されている。この透明導電材料は、第2ハードコート層2が設けられたPETフィルム3が粘着剤層4により接合されている。一方、ガラス基板5上には導体層6が設けられ、該導体層6と透明導電材料の導電層Cとが対向するように両面テープ7で接合され、タッチパネルが構成されている。
【0076】
次に全光線透過率、透過色差(a*、b*)を実施例1と同様の方法により測定した。その結果を表2に示す。
比較例7〜9
透明導電性材料として、比較例7は比較例1で作製したフィルム、比較例8は比較例2で作製したフィルム、そして比較例9は比較例3で作製したフィルムをそれぞれ使用すること以外は参考例5と同様にして抵抗膜式タッチパネルのモデルを作製した。
【0077】
次に全光線透過率、透過色差(a*、b*)を実施例1と同様の方法により測定した。その結果を表2に示す。
【0078】
【表2】
表2に示したように、参考例5、6のタッチパネルは透過色差が低く、着色の目立たないことが明らかとなった。
【0079】
一方、中間屈折率層(B)のないフィルムを使用したタッチパネル(比較例7)や、中間屈折率層の光学膜厚が適切でないフィルムを使用したタッチパネル(比較例8、9)では、透過色差b*が非常に大きくなっており、黄色に着色することが明らかとなった。
【0080】
得られたタッチパネルをCRTディスプレイ上に装着し、その機能を確認した。参考例5、6のタッチパネルを装着したとき、CRTディスプレイの発色をすべて正確に表示できた。一方、比較例7〜9のタッチパネルを装着したときは、CRTディスプレイの白表示が黄色味がかっていた。
【0081】
なお、前記実施形態を次のように変更して実施することも可能である。
・ 中間屈折率層(B)を2層で構成し、屈折率1.7〜1.85の範囲内で基材(A)側の層の屈折率を小さく、導電層(C)側の層の屈折率を大きくするように構成することもできる。この場合、反射率をより小さくでき、透過率をより高くすることができる。
【0082】
・ 例えば、基材(A)の表面の反射光と中間屈折率層(B)の表面の反射光との干渉によって反射光を打ち消し合うようにするために、波長λの反射光について、2×(中間屈折率層(B)の光学膜厚)/λ=1/2なる関係を利用して中間屈折率層(B)の光学膜厚及び屈折率を決定するようにしてもよい。
【0083】
・ 中間屈折率層(B)を、金属酸化物と硬化性単量体の混合物をウェットコーティング法により硬化させて形成する場合、電子線を照射して速やかに硬化させることもできる。
【0084】
・ 中間屈折率層(B)を形成するための金属酸化物と硬化性単量体との混合液中に粘度調整剤(増粘剤)を加え、所望とする光学膜厚が得られるように粘度調整を行なうようにしてもよい。
【0088】
【発明の効果】
本発明の透明導電材料は、積層する層数が少ないので構成が簡単で製造コストが低く、かつ透過光の着色が少ない。そのため、本発明の透明導電材料はタッチパネルなどの電極基板として有用である。
【図面の簡単な説明】
【図1】 実施例1で作製した透明導電材料を模式的に示す断面図。
【図2】 参考例5で作製したタッチパネルのモデルを模式的に示す断面図。
【図3】 実施形態の透明導電材料について、光の波長と反射率との関係を示すグラフ。
【図4】 実施形態の透明導電材料について、光の波長と透過率との関係を示すグラフ。
【図5】 従来の透明導電材料について、光の波長と反射率との関係を示すグラフ。
【図6】 従来の透明導電材料について、光の波長と透過率との関係を示すグラフ。
【符号の説明】
A…基材、B…中間屈折率層、C…導電層。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent conductive material having a simple structure, low manufacturing cost, and little coloring, and a touch panel using the transparent conductive material.
[0002]
[Prior art]
Currently, a touch panel is used as a device that can input information by directly touching a screen display. This is a light-transmitting input device arranged on various displays such as liquid crystal display devices and CRTs. As one of the typical types, a resistive film type in which two electrode substrates are arranged with their conductive layers facing each other. There is a touch panel.
[0003]
A conductive metal oxide such as indium tin oxide (ITO) or zinc oxide is laminated on a glass plate, resin plate, or various thermoplastic polymer film substrates as an electrode substrate for a resistive touch panel. Is generally used.
[0004]
The electrode substrate thus obtained may be colored yellow or brown at the same time that the total light transmittance is reduced due to a reduction in transmittance in the short wavelength range of visible light derived from the reflection and absorption of the metal oxide layer. Many. For this reason, there is a problem that it is difficult to accurately express the color of the display device arranged under the touch panel.
[0005]
In order to solve this problem, a high refractive index layer having a higher refractive index than either the conductive layer or the base material is inserted between the conductive layer and the base material, or more than the conductive layer or the base material. A method of inserting a low refractive index layer having a low refractive index has been proposed (see, for example, Patent Document 1). According to this method, the reflectance at a wavelength near 550 nm can be suppressed as shown in FIG. 5, and the transmittance at a wavelength near 550 nm can be increased as shown in FIG. However, all of these have the effect of improving the total light transmittance, but the problem that the transmitted light is colored yellow or brown has not been solved.
[0006]
A method of laminating a multilayer optical film between a conductive layer and a substrate has also been proposed (see, for example, Patent Document 2).
[0007]
[Patent Document 1]
JP-A-6-218864 (pages 2 and 3)
[Patent Document 2]
JP-A-11-286066 (pages 2 to 4)
[0008]
[Problems to be solved by the invention]
However, these have the effect of controlling the transmittance of the electrode material to suppress the coloration of the transmitted light, but have a problem that the structure is complicated and the manufacturing cost is high because the intermediate layer is a multilayer film.
[0009]
An object of the present invention is to provide a transparent conductive material having a simple configuration, low manufacturing cost, and little coloration of transmitted light, and a touch panel using the same.
[0010]
[Means for Solving the Problems]
As a result of intensive studies in view of the above problems, the present inventors are able to form a transparent conductive material in which coloring is suppressed by forming a specific intermediate refractive index layer on the substrate surface and forming a conductive layer. The present invention has been completed.
[0011]
The present invention includes the following (1) to (9).
(1) Directly apply to one or both sides of the substrate (A) Base A transparent conductive material in which an intermediate refractive index layer (B) having a layer thickness of 100 to 175 nm and a conductive layer (C) having a layer thickness of 10 to 60 nm are stacked in order from the material side, Before In the middle The refractive index of the intermediate refractive index layer (B) is 1.7 to 1.85, and the refractive index of each layer is the refraction of the substrate (A). Rate < In addition to satisfying the relationship of refractive index of the intermediate refractive index layer (B) <refractive index of the conductive layer (C), the intermediate refractive index layer (B) is formed of a mixture of a metal oxide and an ultraviolet curable monomer. A transparent conductive material in which the average particle diameter of the metal oxide is 0.01 to 0.05 μm, and the weight ratio of the metal oxide to the ultraviolet curable monomer is 50/50 to 90/10.
(2) The transparent conductive material according to (1), wherein the conductive layer (C) is a conductive layer made of metal or metal oxide.
(3) The conductive layer (C) is a layer formed of indium tin oxide by any one method selected from a vapor deposition method, an ion plating method, a chemical vapor deposition (CVD) method, and a sputtering method. The transparent conductive material according to (1) or (2).
(4) The transparent conductive material according to any one of (1) to (3), wherein the substrate (A) is a plastic film having a thickness of 10 to 500 μm.
(5) The transparent conductive material according to any one of (1) to (4), wherein the intermediate refractive index layer (B) is a layer formed by wet coating as a raw material.
(6) The transparent conductive material according to any one of the above (1) to (5), wherein the minimum value of the reflectance curve on the surface of the conductive layer C of the transparent conductive material is in the wavelength range of 380 to 500 nm.
(7) The transparent conductive material according to any one of (1) to (5), wherein the minimum value of the reflectance curve on the surface of the transparent conductive material on the conductive layer C side is within a wavelength range of 450 to 500 nm.
(8) The transmission color difference in the L * a * b * color system defined in JIS Z8729 is in the range of −2 <a * <2 and −2 <b * <2. Transparent conductive material in any one of-(7).
(9) A touch panel using the transparent conductive material according to any one of (1) to (8) as an electrode substrate.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The transparent conductive material of this embodiment is directly applied to one side or both sides of the substrate (A). Base In order from the material side, an intermediate refractive index layer (B) having an optical thickness of 100 to 175 nm and a conductive layer (C) having an optical thickness of 10 to 60 nm are laminated. Or Middle The refractive index of the intermediate refractive index layer (B) is 1.7 to 1.85, and the refractive index of each layer is the refraction of the substrate (A). Rate < In addition to satisfying the relationship of refractive index of the intermediate refractive index layer (B) <refractive index of the conductive layer (C), the intermediate refractive index layer (B) is formed of a mixture of a metal oxide and an ultraviolet curable monomer. The average particle diameter of the metal oxide is 0.01 to 0.05 μm, and the weight ratio of the metal oxide to the ultraviolet curable monomer is 50/50 to 90/10. The optical film thickness here means the product (n × d) of the refractive index (n) of the layer and the thickness (d) of the layer.
[0013]
The base material (A) used in this embodiment is a base material of a transparent conductive material, and has good transparency. The substrate (A) is not particularly limited, and all known materials can be used. Examples of the material of the base material (A) include glass, polyethylene terephthalate (hereinafter abbreviated as PET), polybutylene terephthalate, polycarbonate, polymethyl methacrylate copolymer, triacetyl cellulose, polyolefin, polyamide, polyvinyl chloride, Transparent resins such as amorphous polyolefin are preferred.
[0014]
Moreover, as a shape of a base material (A), a plate shape or a film-like thing is mentioned, for example. A plastic film is preferably mentioned in terms of productivity and transportability. In this case, the thickness is preferably 10 to 500 μm from the viewpoint of transparency and workability, and more preferably 50 to 200 μm.
[0015]
Next, the intermediate refractive index layer (B) will be described. The transparent conductive material of this embodiment in which the specific intermediate refractive index layer (B) as described above is formed between the base material (A) and the conductive layer (C) can reduce reflection of light from purple to blue. Therefore, coloring of transmitted light can be reduced.
[0016]
The refractive index of the intermediate refractive index layer (B) is determined by the base material (A )When Refraction of the substrate (A) with respect to the refractive index of the conductive layer C) Rate < The relationship of the refractive index of the intermediate refractive index layer (B) <the refractive index of the conductive layer C is satisfied, and the range is 1.7 to 1.85. When the refractive index of the intermediate refractive index layer (B) is less than 1.7 or greater than 1.85, the degree of coloring in the obtained transparent conductive material increases.
[0017]
The layer thickness of the intermediate refractive index layer (B) is preferably in the range of 100 to 175 nm in terms of optical film thickness. By setting the optical film thickness of the intermediate refractive index layer (B) in such a range, a transparent conductive material having a small reflectance particularly in the vicinity of blue (wavelength 400 nm) in the reflected light can be obtained. When the optical film thickness is less than 100 nm or the optical film thickness is greater than 175 nm, the degree of coloring in the transparent conductive material obtained increases. The material for forming the intermediate refractive index layer (B) is not particularly limited as long as the refractive index does not deviate from a specific range and does not impair the purpose of the present embodiment, and conventionally known materials can be used. .
[0018]
Specifically, for example, an inorganic material or a mixture of an inorganic material and an organic material can be used. Here, examples of the inorganic substance include metal oxides such as zinc oxide, titanium oxide, cerium oxide, aluminum oxide, silane oxide, tantalum oxide, yttrium oxide, ytterbium oxide, zirconium oxide, indium tin oxide, and antimony tin oxide. It is done. Of these, zirconium oxide, titanium oxide, indium tin oxide, antimony tin oxide, and cerium oxide are preferable, and zirconium oxide is most preferable from the viewpoints of refractive index, electrical insulation, light resistance, and the like.
[0019]
The method for forming the intermediate refractive index layer (B) is not particularly limited, and for example, a vapor deposition method, a sputtering method, an ion plating method, a chemical vapor deposition (CVD) method, a dry coating method such as a plating method, a wet coating method, or the like is employed. be able to. Among these, the vapor deposition method and the sputtering method are preferable from the viewpoint of easy control of the layer thickness.
[0020]
In the case of a mixture of an inorganic substance and an organic substance, for example, a mixture of the above-described metal oxide fine particles as the inorganic substance and a curable monomer as the organic substance can be used as the material. In this case, the refractive index of the intermediate refractive index layer (B) can be easily set, and the layer (B) can be easily produced. The average particle diameter of the metal oxide fine particles preferably does not greatly exceed the thickness of the intermediate refractive index layer. Specifically, it is preferably 0.1 μm or less, more preferably 0.05 μm or less, and most preferably 0.01 to 0.05 μm. A large average particle size is not preferable because the transparency of the intermediate refractive index layer may be reduced, such as scattering.
[0021]
Further, the surface of the fine particles can be modified with various coupling agents as required. Examples of the various coupling agents include metal alkoxides and organic acid salts obtained by organic substitution of silicon compounds, aluminum, titanium, zirconium, antimony, and the like.
[0022]
It does not specifically limit as a curable monomer, A conventionally well-known thing can be used. Examples thereof include monofunctional or polyfunctional (meth) acrylic acid esters and silicon compounds such as tetraethoxysilane. Further, the curable monomer is preferably an ultraviolet curable monomer from the viewpoint of productivity and layer strength of the intermediate refractive index layer (B), and from the viewpoint of improving the layer strength, the polyfunctional monomer. Is preferably used. Therefore, UV curable and polyfunctional acrylates and silicon compounds are most preferred.
[0023]
Specific examples of the UV-curable and multifunctional acrylate include dipentaerythritol hexaacrylate, tetramethylol methane tetraacrylate, tetramethylol methane triacrylate, pentaerythritol pentaacrylate, trimethylol propane triacrylate, 1 , 6-hexanediol diacrylate, polyfunctional alcohol derivatives such as 1,6-bis (3-acryloyloxy-2-hydroxypropyloxy) hexane, polyethylene glycol diacrylate, pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, etc. Examples thereof include urethane acrylate. As the curable monomer, those obtained by mixing one or more of the above-mentioned monomers or those further added with other components can be used.
[0024]
The mixing ratio of the metal oxide fine particles to the curable monomer (metal oxide fine particles / curable monomer, unit: weight ratio) is preferably 50/50 to 90/10, More preferably, it is 40-85 / 15. When the proportion of the metal oxide fine particles is less than 50 parts by weight, that is, when the proportion of the curable monomer exceeds 50 parts by weight, the refractive index cannot be increased as desired, and the proportion of the metal oxide fine particles is 90%. When the amount exceeds part by weight, that is, when the ratio of the curable monomer is less than 10 parts by weight, the moldability and strength of the layer tend to be lowered.
[0025]
In addition, other components may be included in the intermediate refractive index layer (B) as long as the effects of the present embodiment are not impaired. Other components are not particularly limited, for example, inorganic or organic pigments, polymers, polymerization initiators, polymerization inhibitors, antioxidants, dispersants, surfactants, light stabilizers, light absorbers, Additives such as leveling agents can be mentioned.
[0026]
In addition, any amount of solvent can be added as long as the layer is formed and then dried in the wet coating method. In the case of a mixture of an inorganic substance and an organic substance, the intermediate refractive index layer (B) is usually formed by a wet coating method. As a method of wet coating, a known method may be used. For example, a roll coating method, a spin coating method, a dip coating method and the like can be mentioned as representative methods. Among these, the roll coating method or the dip coating method is a more preferable method in terms of high productivity because it can be formed continuously.
[0027]
Next, the conductive layer (C) in this embodiment functions as a current-carrying part constituting a conductive circuit made of a transparent conductive material. The material of the conductive layer (C) is not particularly limited, but it is preferable to use a metal or a metal oxide. For example, transparent conductive layers such as gold, silver, copper, platinum, nickel, tin oxide, indium tin oxide (ITO), and antimony tin oxide are preferable. Among these, indium tin oxide (ITO) is preferable from the viewpoints of conductivity, transparency, and stability.
[0028]
Moreover, the formation method of a conductive layer (C) is not specifically limited, For example, dry coating methods, such as a vapor deposition method, sputtering method, an ion plating method, CVD method, a plating method, are employable. Among these, the vapor deposition method and the sputtering method are particularly preferable from the viewpoint of controlling the layer thickness.
[0029]
The layer thickness of the conductive layer (C) is in the range of 10 to 60 nm in terms of optical film thickness. When the optical film thickness is less than 10 nm, the surface resistance value becomes high, and when the optical film thickness is larger than 60 nm, the transparency is lowered.
[0032]
In this embodiment, when the refractive index and optical film thickness of each layer are adjusted so that the minimum value of the reflectance curve on the conductive layer side surface of the transparent conductive material is within the wavelength range of 380 to 500 nm, light from purple to blue Reflection can be further reduced, and coloring of transmitted light can be further reduced. Here, when the minimum wavelength of the reflectance curve is less than 380 nm or greater than 500 nm, the effect of reducing the reflection of light from violet to blue is small, or conversely, the reflection is increased, whereby the transmitted light is colored. There is a tendency.
[0033]
In this embodiment, when the refractive index and optical film thickness of each layer are adjusted so that the minimum value of the reflectance curve on the conductive layer side surface of the transparent conductive material is within the wavelength range of 380 to 500 nm, the transmitted light is transferred to JIS Z8729. When measured as the transmission color difference in the defined L * a * b * color system, it can be in the range of −2 <a * <2 and −2 <b * <2.
Therefore, a transparent conductive material in which coloring is not a practical problem can be obtained.
[0034]
Furthermore, when the refractive index and the optical film thickness are adjusted so that the minimum wavelength of the reflectance curve falls within the range of 450 to 500 nm, the reflection of light from purple to blue can be further reduced. Not only can it be reduced, but the total light transmittance as defined in JIS K7361-1 of the transparent conductive material can be made 85% or more, which is more preferable.
[0035]
The transparent conductive material of this embodiment can be used for applications requiring high light transmittance and excellent color tone as a conductive material. In particular, it can be used for electronic image display devices such as organic and inorganic electroluminescence displays and liquid crystal displays, and electrode substrates for resistive touch panels.
[0036]
Further, if necessary, an adhesive layer can be provided in advance on the surface of the transparent conductive material on which the conductive layer is not formed, and can be used by being attached to an object. Although it does not specifically limit as a material used for a contact bonding layer, For example, a silicone type adhesive, an acrylic adhesive, a ultraviolet curable adhesive, a thermosetting adhesive etc. can be mentioned.
[0037]
Moreover, when using as an upper electrode board | substrate of a resistive film type touch panel, it is preferable to form the hard-coat layer for surface strength improvement in the surface in which the conductive layer of a transparent conductive material is not formed. This hard coat layer can be provided with one or more functions such as antiglare, antistatic, and reduced reflection. Moreover, it can also be used by bonding to the back surface of the base material having the hard coat layer through an adhesive layer so that the surface of the transparent conductive material on which the conductive layer is not formed is adhered.
[0038]
When used as a lower electrode substrate of a resistive film type touch panel, a transparent conductive material can be used as it is or bonded to a base material such as glass or plastic. Moreover, in order to improve the light transmittance on the back side, it is possible to form a reduced reflection layer consisting of at least one layer directly or via one or more layers, or to bond a substrate having a reduced reflection layer. it can. The antireflection layer is not particularly limited, and a conventionally known layer can be used.
[0039]
Now, the transparent conductive material of this embodiment has an intermediate refractive index layer (B) having an optical film thickness of 100 to 175 nm on the base material (A), and a layer thickness of 10 to 10 on the optical film thickness. A 60 nm conductive layer (C) is laminated. That is, this transparent conductive material is configured such that only the intermediate refractive index layer (B) is formed between the base material (A) and the conductive layer (C). Therefore, the configuration is simple compared to the case of the multilayer structure, and it can be easily manufactured.
[0040]
Further, the refractive index of the intermediate refractive index layer (B) is 1.7 to 1.85, and the refractive index of each layer is the refractive index of the substrate (A). Rate < The refractive index of the intermediate refractive index layer (B) <the refractive index of the conductive layer (C). For this reason, as shown in FIG. 3, the light incident on the transparent conductive material is lowered so that the reflectance becomes substantially constant at a wavelength in the range of 400 to 780 nm, and coloring of transmitted light is suppressed. Furthermore, as shown in FIG. 4, the transmittance (total light transmittance) is also constant at about 85%, and the transmitted light is bright. As described above, the refractive index of the intermediate refractive index layer (B) is the refractive index of the substrate (A). Rate and Since the refractive index of the conductive layer (C) is set to an intermediate value, the reflectance of the transparent conductive material is relatively flat with respect to each wavelength (the difference between the maximum value and the minimum value is relatively small). Can be made. Therefore, coloring of transmitted light can be suppressed. Furthermore, the transmittance is high regardless of the wavelength, and a substantially constant value is obtained, so that the transmitted light can be brightened.
[0041]
The effects exhibited by the above embodiment will be described together below.
-The transparent conductive material of this embodiment is an intermediate refractive index layer (B) having an optical film thickness of 100 to 175 nm in order from the substrate side on one or both surfaces of the substrate (A), and the layer thickness is an optical film. A conductive layer (C) having a thickness of 10 to 60 nm is laminated. The refractive index of the intermediate refractive index layer (B) is 1.7 to 1.85, and the refractive index of each layer is the refractive index of the substrate (A) <the refractive index of the intermediate refractive index layer (B) <the conductive layer (C ). For this reason, coloring of transmitted light can be reduced, and the number of layers to be stacked is small, so that the configuration can be simplified, the manufacturing can be facilitated, and the manufacturing cost can be reduced. Therefore, the transparent conductive material of the present embodiment is useful as an electrode substrate such as a touch panel.
[0042]
Since the conductive layer (C) is made of metal or metal oxide, a good surface resistance value can be obtained.
The conductive layer (C) can be easily formed of indium tin oxide by any one method selected from a vapor deposition method, an ion plating method, a CVD method, and a sputtering method.
[0043]
-Since a base material (A) is a plastic film with a thickness of 10-500 micrometers, a transparent conductive material can exhibit the stable transparency.
-Since intermediate refractive index layer (B) is a layer which formed the raw material with the wet coating method, film formation can be performed easily and the manufacturing cost of a transparent conductive material can be reduced.
[0044]
The minimum value of the reflectance curve on the surface of the transparent conductive material on the conductive layer (C) side is in the wavelength range of 380 to 500 nm. For this reason, the blue reflected light of a reflection spectrum can be reduced and yellow coloration can be reduced.
[0045]
-The minimum value of the reflectance curve on the conductive layer (C) side surface of the transparent conductive material is within the wavelength range of 450 to 500 nm, thereby reducing the yellow coloration without reducing the total light transmittance. it can.
[0046]
・ When the transmission color difference in the L * a * b * color system defined by JIS Z8729 is close to zero in the range of −2 <a * <2 and −2 <b * <2, Color can be suppressed.
[0047]
【Example】
Although the example which actualized the said embodiment further below is shown, this invention is not limited to a following example. The refractive index of layers other than the conductive layer was measured according to the following procedure.
(1) On a PET film having a refractive index of 1.63 (trade name: A4100, manufactured by Toyobo Co., Ltd.), a layer after drying has an optical film thickness (n × d) Apply the coating solution for each layer while adjusting the thickness of the layer so as to be about 110 nm.
(2) After the coating layer is dried, it is cured by irradiating with ultraviolet rays in a nitrogen atmosphere (ultraviolet irradiation device manufactured by Iwasaki Electric Co., Ltd., 120 W high pressure mercury lamp, 400 mJ).
(3) The back surface of the PET film is roughened with sandpaper and painted with a black paint, and a spectrophotometer ("U-best 50", manufactured by JASCO Corporation) is used to measure 5 ° and -5 ° at 380 to 780 nm. Measure the reflection spectrum.
(4) The refractive index of the layer is calculated from the following formula (1) using the maximum or minimum value of the reflectance read from the reflection spectrum.
[0048]
[Expression 1]
However, n M Represents the refractive index of the PET film, and n represents the refractive index of the layer.
[0049]
The conductive layer is formed on a PET film (trade name: A4100, manufactured by Toyobo Co., Ltd.) having a refractive index of 1.63 so that the optical film thickness (n × d) is about 110 nm. Then, the refractive index was measured by the procedures (3) and (4) above.
[0050]
Production Example 1 (Preparation of intermediate refractive index layer coating liquid (H-1))
Zirconium oxide fine particles (average particle size: 0.04 μm) 80 parts by weight, tetramethylolmethane triacrylate 15 parts by weight, butyl alcohol 900 parts by weight, photopolymerization initiator (trade name: IRGACURE 907, manufactured by Ciba-Geigy Corporation) 1 part by weight The intermediate refractive index layer coating solution (H-1) was prepared by mixing the parts. The refractive index of the cured product after ultraviolet curing using a part of the coating liquid was 1.77.
[0051]
Production Example 2 (Preparation of intermediate refractive index layer coating solution (H-2))
Intermediate refraction in the same manner as in Production Example 1 except that 80 parts by weight of titanium oxide fine particles (average particle size: 0.03 μm) were used instead of 80 parts by weight of zirconium oxide fine particles (average particle size: 0.04 μm). A coating liquid for rate layer (H-2) was prepared. The refractive index of the cured product after ultraviolet curing using a part of the coating liquid was 1.85.
[0052]
Production Example 3 (Preparation of hard coat layer coating solution (HC-1))
By mixing 70 parts by weight of dipentaerythritol hexaacrylate, 30 parts by weight of 1,6-diacryloyloxyhexane, 4 parts by weight of a photopolymerization initiator (trade name: IRGACURE 184, manufactured by Ciba Geigy Corporation), and 100 parts by weight of isopropyl alcohol. A coating solution for a hard coat layer was prepared. The refractive index of the cured product after ultraviolet curing using a part of the coating liquid was 1.52.
[0053]
Production Example 4 (Production of hard-coated PET film)
On the PET film (trade name: A4100, manufactured by Toyobo Co., Ltd., refractive index 1.63) having a thickness of 188 μm, the hard coat coating liquid prepared in Production Example 3 was dried using a bar coater. It applied so that it might be set to about 5 micrometers. Then, the hard coat process PET film was produced by irradiating with ultraviolet rays (Iwasaki Electric Co., Ltd. ultraviolet irradiation device, 120W high pressure mercury lamp, 400 mJ) and curing.
[0054]
Production Example 5 (Preparation of silica fine particle dispersion (L-1))
Tetramethylol methane triacrylate 25 parts by weight, silica fine particle dispersion (trade name: XBA-ST, manufactured by Nissan Chemical Co., Ltd.) 220 parts by weight, butyl alcohol 900 parts by weight, photopolymerization initiator (trade name: KAYACURE BMS, Japan) A dispersion (L-1) of silica fine particles was prepared by mixing 5 parts by weight of Kayaku Co., Ltd.). The refractive index of the cured product after ultraviolet curing using a part of the coating liquid was 1.50.
[0055]
Example 1
On the PET film (trade name: A4100, manufactured by Toyobo Co., Ltd., refractive index 1.63) having a thickness of 188 μm, the following coating liquid (H-1) prepared in Production Example 1 was used. The intermediate refractive index layer (B) was formed by the method.
[0056]
Apply the coating solution for intermediate refractive index layer (H-1) with a dip coater (manufactured by Sugiyama Motochemical Co., Ltd.) while adjusting the layer thickness so that the optical film thickness after curing is 160 nm. It hardened | cured by irradiating with ultraviolet-rays (Iwasaki Electric Co., Ltd. ultraviolet irradiation device, 120W high pressure mercury lamp, 400mJ) in atmosphere.
[0057]
This film was preliminarily dried at 100 ° C. for 1 hour, and then a conductive layer (optical film thickness = 40 nm) was formed by sputtering using an ITO (indium: tin = 92: 8, refractive index 2.00 after layer formation) target. C) was formed on the intermediate refractive index layer (B) to produce a transparent conductive material.
[0058]
A schematic cross-sectional view of the obtained transparent conductive material is shown in FIG. That is, an intermediate refractive index layer B is provided on a substrate A made of a PET film, and a conductive layer C is further provided thereon.
[0059]
Next, the total light transmittance, the minimum wavelength of reflectance, the transmission color difference (a *, b *), and the surface resistance value were measured by the following methods. The results are shown in Table 1, respectively.
[0060]
(1) Total light transmittance; Total light transmittance was measured with a haze meter (trade name: NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
(2) Minimum wavelength of reflectance; a reflection spectrum of 380 to 780 nm is measured using a spectrophotometer (trade name: UV1600, manufactured by Shimadzu Corporation), and the wavelength indicating the minimum value of reflectance from the spectrum is measured. confirmed.
[0061]
(3) Transmission color difference: Transmission color difference a *, b * was measured using a color difference meter (trade name: SQ-2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
(4) Surface resistance value; measured by a surface resistance meter (trade name: Loresta MP MCP-T350, manufactured by Mitsubishi Chemical Corporation).
[0062]
Example 2
The transparent conductive material was prepared in the same manner as in Example 1 except that the intermediate refractive index layer coating solution (H-1) was applied and dried while adjusting the layer thickness so that the optical thickness after curing was 120 nm. Produced.
[0063]
Next, the total light transmittance, the minimum wavelength of reflectance, the transmission color difference (a *, b *), and the surface resistance value were measured in the same manner as in Example 1. The results are shown in Table 1, respectively.
Reference example 3
A transparent conductive material was produced in the same manner as in Example 1 except that the hard coat-treated PET film produced in Production Example 4 was used instead of the PET film.
[0064]
Next, the total light transmittance, the minimum wavelength of reflectance, the transmission color difference (a *, b *), and the surface resistance value were measured in the same manner as in Example 1. The results are shown in Table 1, respectively.
Reference example 4
Other than changing the refractive index of the intermediate layer to 1.85, Reference example In the same manner as in Example 3, a transparent conductive material was produced.
[0065]
Next, the total light transmittance, the minimum wavelength of reflectance, the transmission color difference (a *, b *), and the surface resistance value were measured in the same manner as in Example 1. The results are shown in Table 1, respectively.
Comparative Example 1
A conductive layer (C) was formed in the same manner as in Example 1 directly on a PET film (trade name: A4100, manufactured by Toyobo Co., Ltd., refractive index 1.63) having a thickness of 188 μm.
[0066]
Next, the total light transmittance, transmission color difference (a *, b *), and surface resistance value were measured in the same manner as in Example 1. The results are shown in Table 1, respectively.
Comparative Example 2
A transparent conductive material was prepared in the same manner as in Example 1 except that the intermediate refractive index layer coating solution (H-1) was applied and dried while adjusting the layer thickness so that the optical thickness after curing was 90 nm. Produced.
[0067]
Next, the total light transmittance, the minimum wavelength of reflectance, the transmission color difference (a *, b *), and the surface resistance value were measured in the same manner as in Example 1. The results are shown in Table 1, respectively.
Comparative Example 3
A transparent conductive material was prepared in the same manner as in Example 1 except that the intermediate refractive index layer coating solution (H-1) was applied and dried while adjusting the layer thickness so that the optical thickness after curing was 190 nm. Produced.
[0068]
Next, the total light transmittance, the minimum wavelength of reflectance, the transmission color difference (a *, b *), and the surface resistance value were measured in the same manner as in Example 1. The results are shown in Table 1, respectively.
Comparative Example 4
While adjusting the layer thickness so that the optical film thickness after curing is 160 nm, the silica fine particle dispersion (L-1, refractive index: 1.50) is applied to the intermediate refractive index layer coating solution and dried. A transparent conductive material was produced in the same manner as in Example 1 except that.
[0069]
Next, the total light transmittance, the minimum wavelength of reflectance, the transmission color difference a *, b *, and the surface resistance value were measured in the same manner as in Example 1. The results are shown in Table 1, respectively.
Comparative Example 5
On a PET film (trade name: A4100, manufactured by Toyobo Co., Ltd., refractive index: 1.63) having a thickness of 188 μm, a metal oxide layer (refractive index: 2.2. 30, optical film thickness: 160 nm). Furthermore, a conductive layer (optical film thickness: 40 nm) was formed thereon by sputtering using an ITO (indium: tin = 92: 8) target to produce a transparent conductive material.
[0070]
Comparative Example 6
Titanium oxide is applied to one side of the PET film by an electron beam heating method to 1.33 × 10 -2 ~ 2.66 × 10 -2 A transparent dielectric film having a thickness of 100 nm (refractive index: 2.35) was formed by vacuum deposition at a degree of vacuum of Pa. Thereafter, a conductive layer (C) was formed in the same manner as in Example 1 to produce a transparent conductive material.
[0071]
Next, the total light transmittance, the minimum wavelength of reflectance, the transmission color difference (a *, b *), and the surface resistance value were measured in the same manner as in Example 1. The results are shown in Table 1, respectively.
[0072]
[Table 1]
As shown in Table 1, Example 1 And 2 The produced transparent conductive material has a small surface resistance value and high conductivity, and since the value of the transmission color difference is small, it has been clarified that there is little coloring.
[0073]
On the other hand, Comparative Examples 1 and 6 without the intermediate refractive index layer (B), Comparative Examples 2 and 3 where the optical film thickness of the intermediate refractive index layer is not appropriate, and Comparative Example 4 with a small refractive index of the intermediate refractive index layer Then, it became clear that in all cases, b * of the transmission color difference was increased and coloring was observed.
[0074]
Further, it was revealed that Comparative Example 5 in which the refractive index of the intermediate refractive index layer was higher than the refractive index of the conductive layer was colored because the transmission color difference b * was very small.
Reference example 5, 6
Reference example Acrylic pressure-sensitive adhesive sheet (trade name: Non-Carrier, manufactured by Lintec Co., Ltd.) is attached to the back surface of the transparent conductive material produced in 3 and 4 with a hand roller, and the back surface of the hard coat treated PET film produced in Production Example 4 is uniform Pasted together.
In addition, an ITO (indium: tin = 92: 8) conductive layer was formed on a 2 mm thick glass plate (trade name: FL2.0, manufactured by Nippon Sheet Glass Co., Ltd.) in the same manner as in Example 1. Next, these were arranged so that the conductive layers faced each other, and the four sides were bonded with a double-sided adhesive tape to produce a resistance film type touch panel model.
[0075]
A schematic cross-sectional view of the obtained touch panel model is shown in FIG. That is, the transparent conductive material is configured such that the conductive layer C is provided on the base material A on which the first hard coat layer 1 is provided via the intermediate refractive index layer B. In this transparent conductive material, a PET film 3 provided with a second hard coat layer 2 is joined by an adhesive layer 4. On the other hand, a
[0076]
Next, the total light transmittance and transmission color difference (a *, b *) were measured in the same manner as in Example 1. The results are shown in Table 2.
Comparative Examples 7-9
As a transparent conductive material, except that Comparative Example 7 uses the film produced in Comparative Example 1, Comparative Example 8 uses the film produced in Comparative Example 2, and Comparative Example 9 uses the film produced in Comparative Example 3, respectively. Reference example In the same manner as in 5, a resistive film type touch panel model was produced.
[0077]
Next, the total light transmittance and transmission color difference (a *, b *) were measured in the same manner as in Example 1. The results are shown in Table 2.
[0078]
[Table 2]
As shown in Table 2, Reference example It became clear that the touch panels of Nos. 5 and 6 had a low transmission color difference and the coloring was not noticeable.
[0079]
On the other hand, in a touch panel using a film without the intermediate refractive index layer (B) (Comparative Example 7) and a touch panel using a film whose optical thickness of the intermediate refractive index layer is not appropriate (Comparative Examples 8 and 9), the transmission color difference It became clear that b * became very large and colored yellow.
[0080]
The obtained touch panel was mounted on a CRT display and its function was confirmed. Reference example When the
[0081]
It should be noted that the above embodiment can be modified as follows.
The intermediate refractive index layer (B) is composed of two layers, the refractive index of the layer on the substrate (A) side is small within the range of the refractive index of 1.7 to 1.85, and the layer on the conductive layer (C) side. The refractive index can be increased. In this case, the reflectance can be further reduced and the transmittance can be further increased.
[0082]
For example, in order to cancel the reflected light by interference between the reflected light on the surface of the substrate (A) and the reflected light on the surface of the intermediate refractive index layer (B), the reflected light of wavelength λ is 2 × The optical film thickness and refractive index of the intermediate refractive index layer (B) may be determined using the relationship (optical film thickness of the intermediate refractive index layer (B)) / λ = 1/2.
[0083]
When the intermediate refractive index layer (B) is formed by curing a mixture of a metal oxide and a curable monomer by a wet coating method, the intermediate refractive index layer (B) can be quickly cured by irradiation with an electron beam.
[0084]
A viscosity modifier (thickener) is added to the mixed liquid of the metal oxide and the curable monomer for forming the intermediate refractive index layer (B) so that the desired optical film thickness can be obtained. Viscosity adjustment may be performed.
[0088]
【The invention's effect】
Since the transparent conductive material of the present invention has a small number of layers to be laminated, the structure is simple, the manufacturing cost is low, and the transmitted light is hardly colored. Therefore, the transparent conductive material of the present invention is useful as an electrode substrate such as a touch panel.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a transparent conductive material produced in Example 1. FIG.
[Figure 2] Reference example Sectional drawing which shows typically the model of the touchscreen produced in 5. FIG.
FIG. 3 is a graph showing the relationship between the wavelength of light and the reflectance of the transparent conductive material of the embodiment.
FIG. 4 is a graph showing the relationship between the wavelength of light and the transmittance of the transparent conductive material of the embodiment.
FIG. 5 is a graph showing the relationship between the wavelength of light and the reflectance of a conventional transparent conductive material.
FIG. 6 is a graph showing the relationship between light wavelength and transmittance for a conventional transparent conductive material.
[Explanation of symbols]
A ... base material, B ... intermediate refractive index layer, C ... conductive layer.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003143831A JP4572507B2 (en) | 2002-05-23 | 2003-05-21 | Transparent conductive material and touch panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002149877 | 2002-05-23 | ||
JP2003143831A JP4572507B2 (en) | 2002-05-23 | 2003-05-21 | Transparent conductive material and touch panel |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010045300A Division JP5158112B2 (en) | 2002-05-23 | 2010-03-02 | Transparent conductive material and touch panel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004047456A JP2004047456A (en) | 2004-02-12 |
JP4572507B2 true JP4572507B2 (en) | 2010-11-04 |
Family
ID=31719697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003143831A Expired - Fee Related JP4572507B2 (en) | 2002-05-23 | 2003-05-21 | Transparent conductive material and touch panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4572507B2 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100832259B1 (en) | 2004-04-20 | 2008-05-28 | 타키론 가부시기가이샤 | Touch panel-use transparent conductive molded product and touch panel |
US8097330B2 (en) | 2004-04-30 | 2012-01-17 | Nitto Denko Corporation | Transparent conductive multilayer body and touch panel |
US7695805B2 (en) | 2004-11-30 | 2010-04-13 | Tdk Corporation | Transparent conductor |
JP2006302562A (en) * | 2005-04-18 | 2006-11-02 | Teijin Dupont Films Japan Ltd | Conductive film |
JP4974071B2 (en) * | 2006-04-10 | 2012-07-11 | 東レフィルム加工株式会社 | Transparent conductive film for touch panel |
JP2011060617A (en) * | 2009-09-11 | 2011-03-24 | Toppan Printing Co Ltd | Transparent conductive laminate, method of manufacturing the same, and capacitance touch panel |
KR20110038518A (en) * | 2009-10-08 | 2011-04-14 | 엘지이노텍 주식회사 | Planer member for touch panel and method for manufacturing same and touch panel using the planer member |
JP5570289B2 (en) * | 2010-04-29 | 2014-08-13 | 三菱樹脂株式会社 | Laminated polyester film |
JP5659601B2 (en) * | 2010-07-26 | 2015-01-28 | 日油株式会社 | Transparent conductive film |
JP5691279B2 (en) * | 2010-07-26 | 2015-04-01 | 日油株式会社 | Transparent conductive film |
JP2012203701A (en) * | 2011-03-25 | 2012-10-22 | Dainippon Printing Co Ltd | Touch panel member, substrate with transparent electrode layer, substrate laminate type touch panel member, and coordinate detection device using touch panel member or substrate laminate type touch panel member |
JP5780034B2 (en) * | 2011-07-26 | 2015-09-16 | 日油株式会社 | Color tone correction film and transparent conductive film using the same |
JP5849566B2 (en) * | 2011-09-26 | 2016-01-27 | 凸版印刷株式会社 | Substrate with transparent layer |
CN104040644B (en) * | 2012-01-06 | 2017-04-12 | 捷恩智株式会社 | Transparent electroconductive film and image display device |
WO2013141374A1 (en) * | 2012-03-23 | 2013-09-26 | 積水ナノコートテクノロジー株式会社 | Light-transmitting electroconductive film, method for producing same, and use therefor |
JP5987466B2 (en) * | 2012-05-16 | 2016-09-07 | 日油株式会社 | Color tone correction film and transparent conductive film using the same |
JP2013237244A (en) * | 2012-05-17 | 2013-11-28 | Nof Corp | Color tone correction film and transparent conductive film using the same |
JP2015050100A (en) * | 2013-09-03 | 2015-03-16 | 日東電工株式会社 | Transparent conductive film |
JP6210851B2 (en) * | 2013-11-13 | 2017-10-11 | 日立マクセル株式会社 | Transparent conductive sheet |
JP5549967B1 (en) * | 2014-03-18 | 2014-07-16 | 大日本印刷株式会社 | Conductive film and touch panel sensor |
JP5549966B1 (en) * | 2014-03-18 | 2014-07-16 | 大日本印刷株式会社 | Conductive film and touch panel sensor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03504900A (en) * | 1988-06-03 | 1991-10-24 | アンダス・コーポレイション | transparent conductive coating |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04154647A (en) * | 1990-10-16 | 1992-05-27 | Asahi Glass Co Ltd | Transparent electrically conductive laminate |
JPH08240800A (en) * | 1995-03-03 | 1996-09-17 | Asahi Glass Co Ltd | Resin substrate for liqud crystal display |
-
2003
- 2003-05-21 JP JP2003143831A patent/JP4572507B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03504900A (en) * | 1988-06-03 | 1991-10-24 | アンダス・コーポレイション | transparent conductive coating |
Also Published As
Publication number | Publication date |
---|---|
JP2004047456A (en) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5158112B2 (en) | Transparent conductive material and touch panel | |
JP4572507B2 (en) | Transparent conductive material and touch panel | |
CN108431645B (en) | Transparent heat insulation member with transparent screen function | |
JP2003080624A (en) | Transparent conducting material and touch panel | |
KR101947521B1 (en) | Transparent Conductive Layer-Equipped Cover Member Having Transparent Adhesive Layer | |
US8531406B2 (en) | Transparent conductive film, electrode sheet for use in touch panel, and touch panel | |
TWI460742B (en) | Transparent conductive film | |
US9874987B2 (en) | Double-sided transparent conductive film and touch panel | |
KR101555411B1 (en) | Transparent conductive film and use thereof | |
KR102077859B1 (en) | Pressure-Sensitive Adhesive Composition and Pressure-Sensitive film for Touch Panel with Improved Optical Performance | |
KR20110037881A (en) | Transparent conductive film | |
KR20040034544A (en) | Thin, electromagnetic wave shielding laminate for displays and process for producing the same | |
JP2006116754A (en) | Reflection decreasing material, and electronic image displaying device using it | |
KR20150084983A (en) | Conductive trace hiding materials, articles, and methods | |
WO2019107036A1 (en) | Hard coat film, optical layered body, and image display device | |
JP2013202844A (en) | Hard coat base material, and transparent conductive film using the same | |
KR20170018327A (en) | Light diffusing sheet, and backlight device comprising said sheet | |
JP4285059B2 (en) | Transparent conductive material and touch panel | |
JP2004086196A (en) | Low refractive index layer for reflection reducing material, reflection reducing material equipped with same, and its usage | |
KR101087026B1 (en) | Multi-functional optic film | |
JP4802385B2 (en) | Touch panel | |
KR101819437B1 (en) | Conductive film laminate having transparent adhesive layer | |
KR20070013677A (en) | Light control film | |
KR100980068B1 (en) | Multi-functional optic film | |
KR101358841B1 (en) | Protecting film for touch screen panel and touch screen panel having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060517 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081222 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100302 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100506 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100720 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100802 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4572507 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |