JP4504318B2 - Mirror surface dew point meter - Google Patents

Mirror surface dew point meter Download PDF

Info

Publication number
JP4504318B2
JP4504318B2 JP2006012292A JP2006012292A JP4504318B2 JP 4504318 B2 JP4504318 B2 JP 4504318B2 JP 2006012292 A JP2006012292 A JP 2006012292A JP 2006012292 A JP2006012292 A JP 2006012292A JP 4504318 B2 JP4504318 B2 JP 4504318B2
Authority
JP
Japan
Prior art keywords
dew point
light
amount
mirror
mirror surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006012292A
Other languages
Japanese (ja)
Other versions
JP2007192715A (en
Inventor
良之 金井
研 岩切
昌樹 武智
新吾 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2006012292A priority Critical patent/JP4504318B2/en
Publication of JP2007192715A publication Critical patent/JP2007192715A/en
Application granted granted Critical
Publication of JP4504318B2 publication Critical patent/JP4504318B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

この発明は、被測定気体に晒される鏡面をペルチェ素子などの熱電冷却素子を用いて冷却し、被測定気体に含まれる水蒸気の一部を鏡面上に結露させ、この結露の増減がなくなる平衡状態になったときの鏡面の温度を露点として検出する鏡面冷却式露点計に関するものである。   In this invention, the mirror surface exposed to the gas to be measured is cooled using a thermoelectric cooling element such as a Peltier element, and a part of the water vapor contained in the gas to be measured is condensed on the mirror surface, so that there is no increase or decrease in the condensation. The present invention relates to a mirror-cooled dew point meter that detects the temperature of the mirror surface as a dew point.

従来より、湿度測定法として、被測定気体の温度を低下させ、その被測定気体に含まれる水蒸気の一部を結露させたときの温度を測定することにより露点を検出する露点検出法が知られている。例えば、寒剤、冷凍機、電子冷却器などを用いて鏡を冷却し、この冷却した鏡の鏡面上の反射光の強度の変化を検出し、この時の鏡面の温度を測定することによって、被測定気体中の水分の露点を検出する鏡面冷却式露点計について知られている。   Conventionally, as a humidity measurement method, a dew point detection method is known in which a dew point is detected by measuring the temperature when the temperature of a gas to be measured is reduced and a part of water vapor contained in the gas to be measured is condensed. ing. For example, a mirror is cooled using a cryogen, a refrigerator, an electronic cooler, etc., a change in the intensity of reflected light on the mirror surface of the cooled mirror is detected, and the temperature of the mirror surface at this time is measured, thereby A mirror-cooled dew point meter that detects the dew point of moisture in a measurement gas is known.

この鏡面冷却式露点計には、利用する反射光の種類によって、2つのタイプがある。1つは、正反射光を利用する正反射光検出方式(例えば、特許文献1参照)、もう1つは、散乱光を利用する散乱光検出方式(例えば、特許文献2参照)である。   There are two types of mirror-cooled dew point meters depending on the type of reflected light used. One is a specularly reflected light detection method that uses specularly reflected light (see, for example, Patent Document 1), and the other is a scattered light detection method that uses scattered light (see, for example, Patent Document 2).

〔正反射光検出方式〕
図11に正反射光検出方式を採用した従来の鏡面冷却式露点計の要部を示す。この鏡面冷却式露点計101は、被測定気体が流入されるチャンバ1と、このチャンバ1の内部に設けられた熱電冷却素子(ペルチェ素子)2を備えている。熱電冷却素子2の冷却面2−1には銅製ブロック3を介してボルト4が取り付けられており、熱電冷却素子2の加熱面2−2には放熱フィン5が取り付けられている。銅製ブロック3に取り付けられたボルト4の上面4−1は鏡面とされている。銅製ブロック3の側部には巻線式測温抵抗体(温度検出素子)6が埋め込まれている(図13参照)。また、チャンバ1の上部には、ボルト4の上面(鏡面)4−1に対して斜めに光を照射する発光素子7と、この発光素子7から鏡面4−1に対して照射された光の正反射光を受光する受光素子8とが設けられている。熱電冷却素子2の周囲には断熱材9が設けられている。
[Specular reflection detection method]
FIG. 11 shows a main part of a conventional mirror-cooled dew point meter that employs a regular reflection light detection method. The specular cooling dew point meter 101 includes a chamber 1 into which a gas to be measured is introduced and a thermoelectric cooling element (Peltier element) 2 provided inside the chamber 1. Bolts 4 are attached to the cooling surface 2-1 of the thermoelectric cooling element 2 via copper blocks 3, and radiating fins 5 are attached to the heating surface 2-2 of the thermoelectric cooling element 2. An upper surface 4-1 of the bolt 4 attached to the copper block 3 is a mirror surface. A winding type resistance temperature detector (temperature detection element) 6 is embedded in a side portion of the copper block 3 (see FIG. 13). Further, on the upper portion of the chamber 1, a light emitting element 7 that irradiates light obliquely to the upper surface (mirror surface) 4-1 of the bolt 4, and light emitted from the light emitting element 7 to the mirror surface 4-1. A light receiving element 8 for receiving the specularly reflected light is provided. A heat insulating material 9 is provided around the thermoelectric cooling element 2.

この鏡面冷却式露点計101において、チャンバ1内の鏡面4−1は、チャンバ1内に流入される被測定気体に晒される。鏡面4−1に結露が生じていなければ、発光素子7から照射された光はそのほゞ全量が正反射し、受光素子8で受光される。したがって、鏡面4−1に結露が生じていない場合、受光素子8で受光される反射光の強度は大きい。   In this mirror-cooled dew point meter 101, the mirror surface 4-1 in the chamber 1 is exposed to the gas to be measured flowing into the chamber 1. If there is no condensation on the mirror surface 4-1, almost all of the light emitted from the light emitting element 7 is regularly reflected and received by the light receiving element 8. Therefore, when there is no condensation on the mirror surface 4-1, the intensity of the reflected light received by the light receiving element 8 is high.

熱電冷却素子2への電流を増大し、熱電冷却素子2の冷却面2−1の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡面4−1に結露し、その水の分子に発光素子7から照射した光の一部が吸収されたり、乱反射したりする。これにより、受光素子8で受光される反射光(正反射光)の強度が減少する。この鏡面4−1における正反射光の変化を検出することにより、鏡面4−1上の状態の変化、すなわち鏡面4−1上に水分(水滴)が付着したことを知ることができる。   When the current to the thermoelectric cooling element 2 is increased and the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered, water vapor contained in the gas to be measured condenses on the mirror surface 4-1, and the water molecules Part of the light emitted from the light emitting element 7 is absorbed or diffusely reflected. Thereby, the intensity of the reflected light (regular reflected light) received by the light receiving element 8 is reduced. By detecting the change in the specularly reflected light on the mirror surface 4-1, it is possible to know the change in the state on the mirror surface 4-1, that is, that moisture (water droplets) has adhered to the mirror surface 4-1.

さらに、受光素子8で受光される反射光の光量に基づいて、鏡面4−1に生じる結露の増減がなくなる平衡状態になるように、すなわち受光素子8で受光される反射光の光量が変化しなくなる平衡状態になるように、熱電冷却素子2へ供給する電流、すなわち鏡4側の面2−1を低温側,放熱フィン5側の面2−2を高温側とする正方向への電流を制御し、この時の鏡面4−1の温度を温度検出素子6で測定することによって、被測定気体中の水分の露点を知ることができる。   Furthermore, based on the amount of reflected light received by the light receiving element 8, the amount of reflected light received by the light receiving element 8 changes so as to be in an equilibrium state where there is no increase or decrease in condensation occurring on the mirror surface 4-1. The current to be supplied to the thermoelectric cooling element 2 so that the equilibrium state disappears, that is, the current in the positive direction with the surface 2-1 on the mirror 4 side as the low temperature side and the surface 2-2 on the radiation fin 5 side as the high temperature side. By controlling and measuring the temperature of the mirror surface 4-1 at this time with the temperature detection element 6, the dew point of the moisture in the gas to be measured can be known.

〔散乱光検出方式〕
図12に散乱光検出方式を採用した従来の鏡面冷却式露点計の要部を示す。この鏡面冷却式露点計102は、正反射光検出方式を採用した鏡面冷却式露点計101とほゞ同構成であるが、受光素子8の取り付け位置が異なっている。この鏡面冷却式露点計102において、受光素子8は、発光素子7から鏡面4−1に対して照射された光の正反射光を受光する位置ではなく、散乱光を受光する位置に設けられている。
(Scattered light detection method)
FIG. 12 shows a main part of a conventional mirror-cooled dew point meter employing the scattered light detection method. This mirror-cooled dew point meter 102 has substantially the same configuration as the mirror-cooled dew point meter 101 employing the specular reflection light detection method, but the mounting position of the light receiving element 8 is different. In this mirror-cooled dew point meter 102, the light receiving element 8 is provided at a position for receiving scattered light, not at a position for receiving regular reflection light of light emitted from the light emitting element 7 to the mirror surface 4-1. Yes.

この鏡面冷却式露点計102において、鏡面4−1は、チャンバ1内に流入される被測定気体に晒される。鏡面4−1に結露が生じていなければ、発光素子7から照射された光はそのほゞ全量が正反射し、受光素子8での受光量は極微量である。したがって、鏡面4−1に結露が生じていない場合、受光素子8で受光される反射光の強度は小さい。   In this mirror-cooled dew point meter 102, the mirror surface 4-1 is exposed to the gas to be measured that flows into the chamber 1. If there is no condensation on the mirror surface 4-1, almost all of the light emitted from the light emitting element 7 is regularly reflected, and the amount of light received by the light receiving element 8 is extremely small. Therefore, when no condensation occurs on the mirror surface 4-1, the intensity of the reflected light received by the light receiving element 8 is small.

熱電冷却素子2への電流を増大し、熱電冷却素子2の冷却面2−1の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡面4−1に結露し、その水の分子に発光素子7から照射した光の一部が吸収されたり、乱反射したりする。これにより、受光素子8で受光される乱反射された光(散乱光)の強度が増大する。この鏡面4−1における散乱光の変化を検出することにより、鏡面4−1上の状態の変化、すなわち鏡面4−1上に水分(水滴)が付着したことを知ることができる。   When the current to the thermoelectric cooling element 2 is increased and the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered, water vapor contained in the gas to be measured condenses on the mirror surface 4-1, and the water molecules Part of the light emitted from the light emitting element 7 is absorbed or diffusely reflected. Thereby, the intensity of the irregularly reflected light (scattered light) received by the light receiving element 8 increases. By detecting the change in the scattered light on the mirror surface 4-1, it is possible to know a change in the state on the mirror surface 4-1, that is, that moisture (water droplets) has adhered to the mirror surface 4-1.

さらに、受光素子8で受光される反射光の光量に基づいて、鏡面4−1に生じる結露の増減がなくなる平衡状態になるように、すなわち受光素子8で受光される反射光の光量が変化しなくなる平衡状態になるように、熱電冷却素子2へ供給する電流、すなわち鏡4側の面2−1を低温側,放熱フィン5側の面2−2を高温側とする正方向への電流を制御し、この時の鏡面4−1の温度を温度検出素子6で測定することによって、被測定気体中の水分の露点を知ることができる。   Furthermore, based on the amount of reflected light received by the light receiving element 8, the amount of reflected light received by the light receiving element 8 changes so as to be in an equilibrium state where there is no increase or decrease in condensation occurring on the mirror surface 4-1. The current to be supplied to the thermoelectric cooling element 2 so that the equilibrium state disappears, that is, the current in the positive direction with the surface 2-1 on the mirror 4 side as the low temperature side and the surface 2-2 on the radiation fin 5 side as the high temperature side. By controlling and measuring the temperature of the mirror surface 4-1 at this time with the temperature detection element 6, the dew point of the moisture in the gas to be measured can be known.

この鏡面冷却式露点計では、上述した2つのタイプの何れも熱電冷却素子2によって鏡4を冷却するが、測定中に被測定気体の露点が急に高くなることがある。この場合、そのまま鏡4を冷却し続けると露点を計測することができないので、熱電冷却素子2への電流を遮断し、鏡面4−1の温度が自然上昇して露点温度付近となるのを待って、露点温度の計測を再開していた(例えば、特許文献3参照)。   In this mirror-cooled dew point meter, the mirror 4 is cooled by the thermoelectric cooling element 2 in any of the two types described above, but the dew point of the gas to be measured may suddenly increase during measurement. In this case, since the dew point cannot be measured if the mirror 4 is continuously cooled, the current to the thermoelectric cooling element 2 is interrupted, and the temperature of the mirror surface 4-1 naturally rises and waits for the dew point temperature to be reached. Thus, the measurement of the dew point temperature was resumed (for example, see Patent Document 3).

特開昭61−75235号公報JP-A-61-75235 特公平7−104304号公報Japanese Examined Patent Publication No. 7-104304 特開平9−307030号公報JP-A-9-307030

しかしながら、従来の鏡面冷却式露点計では、測定中に被測定気体の露点が急に高くなった場合、熱電冷却素子2への電流を遮断し、この熱電冷却素子2への電流の遮断による鏡面4−1の温度の自然上昇に依存していたので、露点温度の計測が可能になるまで長い待ち時間が発生していた。   However, in the conventional specular cooling type dew point meter, when the dew point of the gas to be measured suddenly increases during the measurement, the current to the thermoelectric cooling element 2 is cut off, and the mirror surface by cutting off the current to the thermoelectric cooling element 2 is cut off. Since it was dependent on the natural rise in temperature of 4-1, a long waiting time had occurred until the dew point temperature could be measured.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、測定中に被測定気体の露点が急に高くなった場合、素早く鏡面温度を高くし、露点温度の計測までの待ち時間を大幅に短縮することができる鏡面冷却式露点計を提供することにある。   The present invention has been made to solve such a problem, and the object of the present invention is to quickly increase the mirror surface temperature when the dew point of the gas to be measured suddenly increases during measurement, and to increase the dew point temperature. The object of the present invention is to provide a mirror-cooled dew point meter that can greatly reduce the waiting time until the measurement.

〔散乱光検出方式〕
このような目的を達成するために、第1発明は、正方向への電流の供給を受けて、一方の面が低温側、他方の面が高温側とされる熱電冷却素子と、この熱電冷却素子の一方の面側に取り付けられその鏡面が被測定気体に晒される鏡と、鏡面に対して光を照射する発光手段と、発光手段から鏡面に対して照射された光の散乱光を受光する受光手段と、鏡面の温度を検出する温度検出手段と、受光手段が受光する散乱光の受光量に基づいて、鏡面に生じる結露の増減がなくなる平衡状態になるように、熱電冷却素子へ供給する正方向への電流を制御する制御手段とを備えた鏡面冷却式露点計において、受光手段が受光する散乱光の受光量と予め定められている第1の閾値との比較に基づいて、鏡面に生じる結露の増減がなくなる平衡状態からの被測定気体の露点の上昇を検出する一方、受光手段が受光する散乱光の受光量と予め定められている第2の閾値との比較に基づいて、被測定気体の露点の上昇からの平衡状態への回復を検出する露点上昇検出手段と、露点の上昇が検出された場合、熱電冷却素子へ強制的に正方向とは反対の逆方向への電流を流す一方、露点の上昇からの平衡状態への回復が検出された場合、熱電冷却素子に供給する電流を正方向へ戻す手段とを設けたものである。
(Scattered light detection method)
In order to achieve such an object, the first invention provides a thermoelectric cooling element that is supplied with a current in the positive direction and has one surface at a low temperature side and the other surface at a high temperature side, and this thermoelectric cooling. A mirror which is attached to one surface of the element and whose mirror surface is exposed to the gas to be measured, a light emitting means for irradiating the mirror surface with light, and a scattered light of light emitted from the light emitting means to the mirror surface are received. Based on the light receiving means, the temperature detecting means for detecting the temperature of the mirror surface, and the amount of received scattered light received by the light receiving means, the temperature is supplied to the thermoelectric cooling element so as to be in an equilibrium state in which the increase or decrease of the dew condensation occurring on the mirror surface is eliminated. A mirror-cooled dew point meter having a control means for controlling a current in the positive direction, based on a comparison between the amount of scattered light received by the light receiving means and a predetermined first threshold value. Coverage from equilibrium where there is no increase or decrease in condensation While detecting the rise of the dew point of the constant gas, based on a comparison between a second threshold value which the light receiving means it is predetermined and received light amount of scattered light received, the equilibrium from increase in the dew point of the gas to be measured Dew point rise detection means to detect the recovery of the dew point, and when the dew point rise is detected, the thermoelectric cooling element is forced to flow in the reverse direction opposite to the positive direction, while the dew point rises to the equilibrium state. And a means for returning the current supplied to the thermoelectric cooling element in the positive direction when the recovery is detected.

この発明によれば、発光手段から鏡の鏡面に対して光が照射され、この照射された光の鏡面からの散乱光が受光手段で受光され、この受光手段が受光する散乱光の受光量に基づいて、鏡面に生じる結露が平衡状態になるように、熱電冷却素子へ供給する正方向への電流が制御される。この場合、鏡面に生じる結露が平衡状態となった時の鏡面の温度が露点温度であり、この露点温度が温度検手段によって検出される。この露点温度の測定中に、被測定気体の露点が上昇すると、鏡面に生じる結露の量が多くなる。本発明では、このような露点の上昇を検出し、熱電冷却素子へ強制的に逆方向への電流を流す。これにより、熱電冷却素子は、それまで低温側とされていた面(一方の面)が高温側とされ、高温側とされていた面(他方の面)が低温側とされ、すなわち冷却面と加熱面とが入れ替わり、鏡が積極的に加熱され、鏡面温度が素早く上昇する。そして、被測定気体の露点の上昇からの平衡状態への回復が検出されると、電冷却素子に供給する電流を正方向へ戻す。 According to this invention, light is emitted from the light emitting means to the mirror surface of the mirror, the scattered light from the mirror surface of the irradiated light is received by the light receiving means, and the amount of scattered light received by the light receiving means is reduced. Based on this, the current in the positive direction supplied to the thermoelectric cooling element is controlled so that the dew condensation occurring on the mirror surface is in an equilibrium state. In this case, the temperature of the mirror surface when the dew condensation occurring on the mirror surface is in an equilibrium state is the dew point temperature, and this dew point temperature is detected by the temperature detecting means. During measurement of the dew-point temperature, the dew point of the gas to be measured increases, it becomes large amount of condensation occurring in the mirror. In the present invention, such an increase in the dew point is detected, and a current in the reverse direction is forced to flow through the thermoelectric cooling element. As a result, the thermoelectric cooling element has the surface (one surface) that has been on the low temperature side as the high temperature side, and the surface (the other surface) that has been on the high temperature side as the low temperature side, that is, the cooling surface The heating surface is switched, the mirror is actively heated, and the mirror surface temperature rises quickly. And if the recovery to the equilibrium state from the rise of the dew point of the gas to be measured is detected, the current supplied to the electric cooling element is returned to the positive direction.

なお、被測定気体の露点の上昇は、例えば、受光手段が受光する散乱光の受光量が予め定められた閾値を上回った場合として検出したり、受光手段が受光する散乱光の受光量の増加方向への変化量が予め定められた閾値を上回った場合として検出したりすることが可能である。 An increase in the dew point of the gas to be measured is detected when, for example, the amount of scattered light received by the light receiving means exceeds a predetermined threshold, or an increase in the amount of scattered light received by the light receiving means. It is possible to detect when the amount of change in the direction exceeds a predetermined threshold.

〔正反射光検出方式〕
また、第2発明は、正方向への電流の供給を受けて、一方の面が低温側、他方の面が高温側とされる熱電冷却素子と、この熱電冷却素子の一方の面側に取り付けられその鏡面が被測定気体に晒される鏡と、鏡面に対して光を照射する発光手段と、発光手段から鏡面に対して照射された光の正反射光を受光する受光手段と、鏡面の温度を検出する温度検出手段と、受光手段が受光する正反射光の受光量に基づいて、鏡面に生じる結露の増減がなくなる平衡状態になるように、熱電冷却素子へ供給する正方向への電流を制御する制御手段とを備えた鏡面冷却式露点計において、受光手段が受光する正反射光の受光量と予め定められている第1の閾値との比較に基づいて、鏡面に生じる結露の増減がなくなる平衡状態からの被測定気体の露点の上昇を検出する一方、受光手段が受光する正反射光の受光量と予め定められている第2の閾値との比較に基づいて、被測定気体の露点の上昇からの平衡状態への回復を検出する露点上昇検出手段と、露点の上昇が検出された場合、熱電冷却素子へ強制的に正方向とは反対の逆方向への電流を流す一方、露点の上昇からの平衡状態への回復が検出された場合、熱電冷却素子に供給する電流を正方向へ戻す手段とを設けたものである。
[Specular reflection detection method]
Further, the second invention is provided with a thermoelectric cooling element that is supplied with a current in the positive direction and has one surface at a low temperature side and the other surface at a high temperature side, and is attached to one surface side of the thermoelectric cooling element. A mirror whose surface is exposed to the gas to be measured, a light emitting means for irradiating the mirror surface with light, a light receiving means for receiving the specularly reflected light emitted from the light emitting means to the mirror surface, and the temperature of the mirror surface Based on the received amount of specularly reflected light received by the light detecting means and the temperature detecting means for detecting the current, the current in the positive direction supplied to the thermoelectric cooling element is adjusted so that there is no increase / decrease in condensation on the mirror surface. In a specular cooling type dew point meter equipped with a control means for controlling, the increase or decrease of the dew condensation occurring on the mirror surface is based on a comparison between the amount of regular reflection light received by the light receiving means and a predetermined first threshold value. increase in the dew point of gas to be measured from the lost equilibrium While detecting, based on a comparison between a second threshold value which the light receiving means is predetermined and the light receiving amount of the specular reflection light received, the dew point for detecting the restoration of the equilibrium from increase in the dew point of the gas to be measured When rise detection means and dew point rise are detected, a current in the reverse direction opposite to the forward direction is forced to flow through the thermoelectric cooling element, while recovery from the dew point rise to equilibrium is detected. In this case, means for returning the current supplied to the thermoelectric cooling element in the positive direction is provided.

この発明によれば、発光手段から鏡の鏡面に対して光が照射され、この照射された光の鏡面からの正反射光が受光手段で受光され、この受光手段が受光する正反射光の受光量に基づいて、鏡面に生じる結露が平衡状態になるように、熱電冷却素子へ供給する正方向への電流が制御される。この場合、鏡面に生じる結露が平衡状態となった時の鏡面の温度が露点温度であり、この露点温度が温度検手段によって検出される。この露点温度の測定中に、被測定気体の露点が上昇すると、鏡面に生じる結露の量が多くなる。本発明では、このような露点の上昇を検出し、熱電冷却素子へ強制的に逆方向への電流を流す。これにより、熱電冷却素子は、それまで低温側とされていた面(一方の面)が高温側とされ、高温側とされていた面(他方の面)が低温側とされ、すなわち冷却面と加熱面とが入れ替わり、鏡が積極的に加熱され、鏡面温度が素早く上昇する。そして、被測定気体の露点の上昇からの平衡状態への回復が検出されると、電冷却素子に供給する電流を正方向へ戻す。 According to this invention, light is emitted from the light emitting means to the mirror surface of the mirror, and the regular reflection light from the mirror surface of the irradiated light is received by the light receiving means, and the regular reflection light received by the light receiving means is received. Based on the amount, the forward current supplied to the thermoelectric cooling element is controlled so that the dew condensation occurring on the mirror surface is in an equilibrium state. In this case, the temperature of the mirror surface when the dew condensation occurring on the mirror surface is in an equilibrium state is the dew point temperature, and this dew point temperature is detected by the temperature detecting means. During measurement of the dew-point temperature, the dew point of the gas to be measured increases, it becomes large amount of condensation occurring in the mirror. In the present invention, such an increase in the dew point is detected, and a current in the reverse direction is forced to flow through the thermoelectric cooling element. As a result, the thermoelectric cooling element has the surface (one surface) that has been on the low temperature side as the high temperature side, and the surface (the other surface) that has been on the high temperature side as the low temperature side, that is, the cooling surface The heating surface is switched, the mirror is actively heated, and the mirror surface temperature rises quickly. And if the recovery to the equilibrium state from the rise of the dew point of the gas to be measured is detected, the current supplied to the electric cooling element is returned to the positive direction.

なお、被測定気体の露点の上昇は、例えば、受光手段が受光する正反射光の受光量が予め定められた閾値を下回った場合として検出したり、受光手段が受光する正反射光の受光量の減少方向への変化量が予め定められた閾値を上回った場合として検出したりすることが可能である。 An increase in the dew point of the gas to be measured is detected when, for example, the amount of specularly reflected light received by the light receiving means falls below a predetermined threshold, or the amount of specularly reflected light received by the light receiving means. It can be detected that the amount of change in the decreasing direction exceeds a predetermined threshold.

本発明によれば、露点温度の測定中に、被測定気体の露点が急に高くなると、熱電冷却素子へ強制的に逆方向への電流が流れ、それまで低温側とされていた面が高温側とされ、高温側とされていた面が低温側とされるので、鏡が積極的に加熱され、素早く鏡面温度を高くし、露点温度の計測までの待ち時間を大幅に短縮することができるようになる。   According to the present invention, if the dew point of the gas to be measured suddenly increases during the measurement of the dew point temperature, a current in the reverse direction is forced to flow to the thermoelectric cooling element, and the surface that has been on the low temperature side until then is hot. Since the surface that has been set to the high temperature side is set to the low temperature side, the mirror is actively heated, the mirror surface temperature can be quickly increased, and the waiting time until the dew point temperature can be measured can be greatly shortened. It becomes like this.

以下、本発明を図面に基づいて詳細に説明する。
〔実施の形態1:散乱光検出方式〕
図1はこの発明に係る鏡面冷却式露点計の一実施の形態を示す概略構成図である。この鏡面冷却式露点計201はセンサ部201Aとコントロール部201Bとを有している。
Hereinafter, the present invention will be described in detail with reference to the drawings.
[Embodiment 1: Scattered light detection method]
FIG. 1 is a schematic configuration diagram showing an embodiment of a mirror-cooled dew point meter according to the present invention. The mirror-cooled dew point meter 201 has a sensor unit 201A and a control unit 201B.

センサ部201Aでは、熱電冷却素子(ペルチェ素子)2の冷却面2−1に鏡10を取り付けている。鏡10は、例えばシリコンチップとされ、その表面10−1が鏡面とされている。また、鏡10と熱電冷却素子2の冷却面2−1との接合面に、例えば白金による薄膜測温抵抗体(温度検出素子)11を形成している。また、熱電冷却素子2の加熱面2−2に円柱状のヒートシンク18を取り付け、このヒートシンク18に沿って、その上端部をJ字型に湾曲させたステンレス製のチューブ17を設けている。   In the sensor unit 201 </ b> A, the mirror 10 is attached to the cooling surface 2-1 of the thermoelectric cooling element (Peltier element) 2. The mirror 10 is a silicon chip, for example, and the surface 10-1 is a mirror surface. Further, a thin film resistance temperature detector (temperature detection element) 11 made of, for example, platinum is formed on the joint surface between the mirror 10 and the cooling surface 2-1 of the thermoelectric cooling element 2. A cylindrical heat sink 18 is attached to the heating surface 2-2 of the thermoelectric cooling element 2, and a stainless steel tube 17 whose upper end is curved in a J shape is provided along the heat sink 18.

チューブ17としては図2に示すような光ファイバを収容した種々のチューブPを使用することができる。図2(a)では、チューブP中に、発光側の光ファイバF1と受光側の光ファイバF2とを並設している。チューブP中において、発光側の光ファイバF1と受光側の光ファイバF2の周囲は、ポッテイング剤で満たされている。図2(b)では、チューブP中に、発光側(あるいは受光側)の光ファイバF1と受光側(あるいは発光側)の光ファイバF21〜F24を並行に設けている。図2(c)では、チューブP中の左半分を発光側の光ファイバF1、右半分を受光側の光ファイバF2としている。図2(d)では、チューブP中に、発光側の光ファイバF1と受光側の光ファイバF2とを混在させている。図2(e)では、チューブP中の中心部を発光側(あるいは受光側)の光ファイバF1、光ファイバF1の周囲を受光側(あるいは発光側)の光ファイバF2としている。   As the tube 17, various tubes P accommodating optical fibers as shown in FIG. 2 can be used. In FIG. 2A, in the tube P, the light-emitting side optical fiber F1 and the light-receiving side optical fiber F2 are arranged side by side. In the tube P, the periphery of the light-emitting side optical fiber F1 and the light-receiving side optical fiber F2 is filled with a potting agent. In FIG. 2 (b), the light emitting side (or light receiving side) optical fiber F1 and the light receiving side (or light emitting side) optical fibers F21 to F24 are provided in the tube P in parallel. In FIG. 2C, the left half of the tube P is the light-emitting side optical fiber F1, and the right half is the light-receiving side optical fiber F2. In FIG. 2D, the light emission side optical fiber F <b> 1 and the light reception side optical fiber F <b> 2 are mixed in the tube P. In FIG. 2 (e), the central portion in the tube P is the light emitting side (or light receiving side) optical fiber F1, and the periphery of the optical fiber F1 is the light receiving side (or light emitting side) optical fiber F2.

図1に示した鏡面冷却式露点計201では、チューブ17として図2(a)に示されたタイプのチューブPを使用しており、その内部に発光側の光ファイバ17−1と受光側の光ファイバ17−2とを収容している。発光側の光ファイバ17−1と受光側の光ファイバ17−2のJ字型に湾曲された先端部(発光部、受光部)は、鏡10の鏡面10−1に向けられ、この鏡面10−1に対して所定の傾斜角で傾けられている。この結果、光ファイバ17−1からの光の照射方向(光軸)と光ファイバ17−2での光の受光方向(光軸)とが平行とされ、また隣接して同一の傾斜角とされる。   In the mirror-cooled dew point meter 201 shown in FIG. 1, the tube P of the type shown in FIG. 2 (a) is used as the tube 17, and an optical fiber 17-1 on the light emitting side and a light receiving side on the inside thereof. The optical fiber 17-2 is accommodated. The tip portions (light emitting portion and light receiving portion) of the light emitting side optical fiber 17-1 and the light receiving side optical fiber 17-2 which are curved in a J-shape are directed to the mirror surface 10-1 of the mirror 10, and this mirror surface 10 -1 with a predetermined inclination angle. As a result, the irradiation direction (optical axis) of the light from the optical fiber 17-1 and the light receiving direction (optical axis) of the light from the optical fiber 17-2 are made parallel, and the same inclination angle is set adjacently. The

コントロール部201Bには、露点温度表示部12と、結露検知部13と、ペルチェ出力制御部14と、信号変換部15と、受光量急上昇検出部16Aと、電源供給部19とが設けられている。露点温度表示部12には温度検出素子11が検出する鏡10の温度が表示される。結露検知部13は、光ファイバ17−1の先端部より鏡10の鏡面10−1に対して斜めに所定の周期でパルス光を照射させるとともに、光ファイバ17−2を介して受光される反射パルス光(散乱光)の上限値と下限値との差を反射パルス光の強度として求め、この反射パルス光の強度に応じた信号S1をペルチェ出力制御部14および受光量急上昇検出部16Aへ送る。   The control unit 201B includes a dew point temperature display unit 12, a dew condensation detection unit 13, a Peltier output control unit 14, a signal conversion unit 15, a received light amount sudden rise detection unit 16A, and a power supply unit 19. . The dew point temperature display unit 12 displays the temperature of the mirror 10 detected by the temperature detection element 11. The dew condensation detection unit 13 irradiates the mirror surface 10-1 of the mirror 10 with pulse light obliquely at a predetermined period from the tip of the optical fiber 17-1, and receives light reflected through the optical fiber 17-2. The difference between the upper limit value and the lower limit value of the pulsed light (scattered light) is obtained as the intensity of the reflected pulsed light, and a signal S1 corresponding to the intensity of the reflected pulsed light is sent to the Peltier output control unit 14 and the received light amount sudden rise detecting unit 16A. .

受光量急上昇検出部16Aは、結露検知部13からの反射パルス光の強度に応じた信号S1を受けて、反射パルス光の強度の急上昇、すなわち光ファイバ17−1の先端部から鏡面10−1に対して照射された光の散乱光の受光量の急上昇を検出し、ペルチェ出力制御部14へ逆電流を流す旨の指示S4を与える。   Upon receiving the signal S1 corresponding to the intensity of the reflected pulsed light from the dew condensation detector 13, the received light quantity suddenly increasing detector 16A suddenly increases the intensity of the reflected pulsed light, that is, from the tip of the optical fiber 17-1 to the mirror surface 10-1. Is detected, and an instruction S4 is supplied to the Peltier output control unit 14 to flow a reverse current.

ペルチェ出力制御部14は、結露検知部13からの信号S1を受けて、反射パルス光の強度と予め定められている閾値th1とを比較し、反射パルス光の強度が閾値th1に達していない場合には、熱電冷却素子2への電流を信号S1の値に応じて増大させる制御信号S2を、反射パルス光の強度が閾値th1を超えている場合には、熱電冷却素子2への電流を信号S1の値に応じて減少させる制御信号S2を信号変換部15へ出力する。   The Peltier output control unit 14 receives the signal S1 from the dew condensation detection unit 13, compares the intensity of the reflected pulse light with a predetermined threshold th1, and the intensity of the reflected pulse light does not reach the threshold th1. Includes a control signal S2 for increasing the current to the thermoelectric cooling element 2 according to the value of the signal S1, and a signal to the current to the thermoelectric cooling element 2 when the intensity of the reflected pulse light exceeds the threshold th1. A control signal S2 to be decreased according to the value of S1 is output to the signal converter 15.

また、ペルチェ出力制御部14は、受光量急上昇検出部16Aからの逆電流を流す旨の指示S4を受けた場合、結露検知部13からの反射パルス光の強度に応じた信号S1に従う制御を中断し、熱電冷却素子2への電流をそれまでの正方向から逆方向への電流値に強制的に切り替える信号S2’を信号変換部15へ送る。信号変換部15は、ペルチェ出力制御部14からの制御信号S2,S2’で指示される電流S3,S3’を電源供給部19を介して熱電冷却素子2へ供給する。   In addition, when receiving the instruction S4 for flowing the reverse current from the light reception amount sudden rise detection unit 16A, the Peltier output control unit 14 interrupts the control according to the signal S1 corresponding to the intensity of the reflected pulse light from the dew condensation detection unit 13. Then, a signal S2 ′ for forcibly switching the current to the thermoelectric cooling element 2 from the current value in the forward direction to the reverse direction is sent to the signal conversion unit 15. The signal converter 15 supplies currents S3 and S3 'indicated by the control signals S2 and S2' from the Peltier output controller 14 to the thermoelectric cooling element 2 via the power supply unit 19.

〔露点温度の測定〕
この鏡面冷却式露点計201において、センサ部201Aは被測定気体中に置かれる。また、結露検知部13は、光ファイバ17−1の先端部より、鏡10の鏡面10−1に対して斜めに所定の周期でパルス光を照射させる(図3(a)参照)。鏡面10−1は被測定気体に晒されており、鏡面10−1に結露が生じていなければ、光ファイバ17−1の先端部から照射されたパルス光はそのほゞ全量が正反射し、光ファイバ17−2を介して受光される鏡面10−1からの反射パルス光(散乱光)の量は極微量である。したがって、鏡面10−1に結露が生じていない場合、光ファイバ17−2を介して受光される反射パルス光の強度は小さい。
[Measurement of dew point temperature]
In this mirror-cooled dew point meter 201, the sensor unit 201A is placed in the gas to be measured. Further, the dew condensation detector 13 irradiates the mirror surface 10-1 of the mirror 10 with pulsed light obliquely at a predetermined cycle from the tip of the optical fiber 17-1 (see FIG. 3A). If the mirror surface 10-1 is exposed to the gas to be measured and no condensation occurs on the mirror surface 10-1, almost all of the pulsed light irradiated from the tip of the optical fiber 17-1 is regularly reflected. The amount of reflected pulsed light (scattered light) from the mirror surface 10-1 received through the optical fiber 17-2 is extremely small. Accordingly, when no condensation occurs on the mirror surface 10-1, the intensity of the reflected pulse light received through the optical fiber 17-2 is small.

結露検知部13では、光ファイバ17−2を介して受光される反射パルス光の上限値と下限値との差を反射パルス光の強度として求め、反射パルス光の強度に応じた信号S1をペルチェ出力制御部14および受光量急上昇検出部16Aへ送る。この場合、反射パルス光の強度はほゞ零であり、閾値th1に達していないので、ペルチェ出力制御部14は、熱電冷却素子2への電流を増大させる制御信号S2を信号変換部15へ送る。これにより、熱電冷却素子2へ供給される電流S3が増大し、熱電冷却素子2の冷却面2−1の温度が下げられて行く。   In the dew condensation detection unit 13, the difference between the upper limit value and the lower limit value of the reflected pulse light received through the optical fiber 17-2 is obtained as the intensity of the reflected pulse light, and the signal S1 corresponding to the intensity of the reflected pulse light is obtained from the Peltier. It is sent to the output control unit 14 and the received light amount sudden rise detection unit 16A. In this case, since the intensity of the reflected pulse light is almost zero and has not reached the threshold th1, the Peltier output control unit 14 sends a control signal S2 for increasing the current to the thermoelectric cooling element 2 to the signal conversion unit 15. . Thereby, the electric current S3 supplied to the thermoelectric cooling element 2 increases, and the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered.

熱電冷却素子2の冷却面2−1の温度、すなわち鏡10の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡10の鏡面10−1に結露し、その水の分子に光ファイバ17−1の先端部から照射されたパルス光の一部が吸収されたり、乱反射したりする。これにより、光ファイバ17−2を介して受光される鏡面10−1からの反射パルス光(散乱光)の強度が増大する。   When the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered, that is, the temperature of the mirror 10, the water vapor contained in the gas to be measured is condensed on the mirror surface 10-1 of the mirror 10, and the water molecules are optical fiber. Part of the pulsed light irradiated from the tip portion of 17-1 is absorbed or irregularly reflected. Thereby, the intensity | strength of the reflected pulsed light (scattered light) from the mirror surface 10-1 light-received via the optical fiber 17-2 increases.

結露検知部13は、受光される反射パルス光の1パルス毎に、その1パルスの上限値と下限値との差を求め、これを反射パルス光の強度とする。すなわち、図3(b)に示すように、反射パルス光の1パルスの上限値Lmaxと下限値Lminとの差ΔLを求め、このΔLを反射パルス光の強度とする。この結露検知部13での処理により、反射パルス光に含まれる外乱光ΔXが除去され、外乱光による誤動作が防止される。この結露検知部13でのパルス光を用いた外乱光による誤動作防止の処理方式をパルス変調方式と呼ぶ。この処理によって、この鏡面冷却式露点計201では、センサ部201Aからチャンバをなくすことができている。   The dew condensation detection unit 13 obtains the difference between the upper limit value and the lower limit value of each pulse of the received reflected pulse light, and uses this difference as the intensity of the reflected pulse light. That is, as shown in FIG. 3B, a difference ΔL between the upper limit value Lmax and the lower limit value Lmin of one pulse of the reflected pulse light is obtained, and this ΔL is used as the intensity of the reflected pulse light. By the process in the dew condensation detection unit 13, the disturbance light ΔX included in the reflected pulse light is removed, and malfunction due to the disturbance light is prevented. A processing method for preventing malfunction by disturbance light using pulsed light in the dew condensation detection unit 13 is referred to as a pulse modulation method. With this process, the mirror cooled dew point meter 201 can eliminate the chamber from the sensor unit 201A.

ここで、光ファイバ17−2を介して受光される反射パルス光の強度が閾値th1を超えると、ペルチェ出力制御部14は、熱電冷却素子2への電流を減少させる制御信号S2を信号変換部15へ送る。これにより、熱電冷却素子2の冷却面2−1の温度の低下が抑えられ、結露の発生が抑制される。この結露の抑制により、光ファイバ17−2を介して受光される反射パルス光の強度が小さくなり、閾値th1を下回ると、ペルチェ出力制御部14から熱電冷却素子2への電流を増大させる制御信号S2が信号変換部15へ送られる。この動作の繰り返しによって、光ファイバ17−2を介して受光される反射パルス光の強度が閾値th1とほゞ等しくなるように、熱電冷却素子2の冷却面2−1の温度が調整される。この調整された温度、すなわち鏡面10−1に生じた結露が平衡状態に達した温度(露点温度)が、露点温度として露点温度表示部12に表示される。   Here, when the intensity of the reflected pulse light received through the optical fiber 17-2 exceeds the threshold th1, the Peltier output control unit 14 generates a control signal S2 for reducing the current to the thermoelectric cooling element 2 as a signal conversion unit. Send to 15. Thereby, the fall of the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is suppressed, and generation | occurrence | production of dew condensation is suppressed. Due to the suppression of the dew condensation, the intensity of the reflected pulse light received through the optical fiber 17-2 becomes small, and when it falls below the threshold th1, the control signal increases the current from the Peltier output control unit 14 to the thermoelectric cooling element 2. S2 is sent to the signal converter 15. By repeating this operation, the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is adjusted so that the intensity of the reflected pulse light received through the optical fiber 17-2 is approximately equal to the threshold th1. The adjusted temperature, that is, the temperature at which the dew condensation that has occurred on the mirror surface 10-1 has reached an equilibrium state (dew point temperature) is displayed on the dew point temperature display unit 12 as the dew point temperature.

この鏡面冷却式露点計201では、発光側の光ファイバ17−1と受光側の光ファイバ17−2の取り付け部が1箇所にまとめられており、検出部201Aの小型化に貢献している。また、発光側の光ファイバ17−1と受光側の光ファイバ17−2とがチューブ17に収容されているので、発光側の光ファイバ17−1と受光側の光ファイバ17−2との間での位置決めは必要なく、組立時の作業性がよくなる。   In this mirror-cooled dew point meter 201, the attachment portions of the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 are gathered in one place, which contributes to the downsizing of the detection unit 201A. Further, since the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 are accommodated in the tube 17, the space between the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2. There is no need for positioning at this point, and the workability during assembly is improved.

また、この鏡面冷却式露点計201では、センサ部201Aからチャンバをなくし、吸引ポンプや吸引用チューブ、排気用チューブ、流量計など省略することができているので、部品点数が削減され、センサ部201Aのさらなる小型化が図られ、組立性が向上し、コストもダウンする。また、吸引ポンプや吸引用チューブ、排気用チューブ、流量計などを装着しなくてもよいので、測定エリア(被測定気体中)への設置も容易となる。また、センサ部201Aには吸引ポンプや吸引用チューブ、排気用チューブ、流量計などの装着が伴わず、センサ部201Aとコントロール部201Bとの2つの構成となるので、持ち運びが容易となる。   Further, in this mirror-cooled dew point meter 201, the chamber is eliminated from the sensor unit 201A, and the suction pump, the suction tube, the exhaust tube, the flow meter, and the like can be omitted. Further downsizing of 201A is achieved, the assembling property is improved, and the cost is also reduced. Further, since it is not necessary to attach a suction pump, a suction tube, an exhaust tube, a flow meter, etc., installation in the measurement area (in the gas to be measured) is facilitated. The sensor unit 201A is not accompanied by a suction pump, a suction tube, an exhaust tube, a flow meter, or the like, and has two configurations of the sensor unit 201A and the control unit 201B.

〔測定中に被測定気体の露点が急に高くなった場合〕
上述した露点温度の測定中に、被測定気体の露点が急に高くなると、鏡面10−1に生じる結露の量が急に多くなる。このため、光ファイバ17−1の先端部から鏡面10−1に対して照射された光の散乱光が急に多くなり、光ファイバ17−2を介して受光される鏡面10−1からの散乱光の受光量が急上昇する。結露検知部13では、光ファイバ17−2を介して受光される反射パルス光の上限値と下限値との差を反射パルス光の強度として求め、反射パルス光の強度に応じた信号S1を受光量急上昇検出部16Aへ送る。受光量急上昇検出部16Aは、結露検知部13からの反射パルス光の強度に応じた信号S1を受けて、反射パルス光の強度の急上昇(露点の急上昇)を検出し、ペルチェ出力制御部14へ逆電流を流す旨の指示S4を与える。この実施の形態1では、受光量急上昇検出部16Aが本発明でいう露点上昇検出手段に相当する。
[When the dew point of the measured gas suddenly increases during measurement]
If the dew point of the measured gas suddenly increases during the measurement of the dew point temperature described above, the amount of dew condensation that occurs on the mirror surface 10-1 suddenly increases. For this reason, the scattered light of the light irradiated to the mirror surface 10-1 from the front-end | tip part of the optical fiber 17-1 increases suddenly, and is scattered from the mirror surface 10-1 light-received via the optical fiber 17-2. The amount of light received increases rapidly. In the dew condensation detection unit 13, the difference between the upper limit value and the lower limit value of the reflected pulse light received via the optical fiber 17-2 is obtained as the intensity of the reflected pulse light, and the signal S1 corresponding to the intensity of the reflected pulse light is received. The amount is sent to the sudden rise detector 16A. The received light amount sudden rise detection unit 16A receives the signal S1 corresponding to the intensity of the reflected pulse light from the dew condensation detection unit 13, detects a sudden rise in the intensity of the reflected pulse light (a sudden rise in the dew point), and sends it to the Peltier output control unit 14 An instruction S4 for giving a reverse current is given. In the first embodiment, the received light amount sudden rise detection unit 16A corresponds to the dew point rise detection means in the present invention.

図4に受光量急上昇検出部16Aにおける反射パルス光の強度の急上昇の検出処理の一例を示す。受光量急上昇検出部16Aは、結露検知部13からの反射パルス光の強度に応じた信号S1より散乱光の受光量を求め、この散乱光の受光量と予め定められている閾値α1とを比較する(ステップ401)。   FIG. 4 shows an example of the detection processing of the sudden increase in the intensity of the reflected pulsed light in the received light amount sudden rise detection unit 16A. The received light amount sudden rise detection unit 16A obtains the amount of scattered light received from the signal S1 corresponding to the intensity of the reflected pulse light from the dew condensation detection unit 13, and compares the amount of received scattered light with a predetermined threshold value α1. (Step 401).

散乱光の受光量が閾値α1以上であった場合(ステップ401のYES)、受光量急上昇検出部16Aは、散乱光の受光量の急上昇と判断し、ペルチェ出力制御部14へ逆電流を流す旨の指示S4を出力する(ステップ402)。この逆電流を流す旨の指示S4は、散乱光の受光量が予め定められている閾値α2(α2<α1)以下となるまで(ステップ403のYES)、ペルチェ出力制御部14へ出力され続ける。   If the amount of scattered light received is greater than or equal to the threshold α1 (YES in step 401), the received light amount sudden rise detection unit 16A determines that the amount of scattered light received suddenly rises, and causes a reverse current to flow to the Peltier output control unit 14. Instruction S4 is output (step 402). The instruction S4 to flow the reverse current continues to be output to the Peltier output control unit 14 until the amount of scattered light received is equal to or less than a predetermined threshold value α2 (α2 <α1) (YES in step 403).

なお、この例において、閾値α1は、ペルチェ出力制御部14からの信号S2に基づく通常の制御では散乱光の受光量がとり得ることのない十分大きな値として設定しておく。また、閾値α2は、露点温度付近での散乱光の受光量に近い値として設定しておく。   In this example, the threshold value α1 is set as a sufficiently large value that the amount of scattered light received cannot be obtained by normal control based on the signal S2 from the Peltier output control unit 14. The threshold value α2 is set as a value close to the amount of scattered light received near the dew point temperature.

図5に受光量急上昇検出部16Aにおける反射パルス光の強度の急上昇の検出処理の別の例を示す。受光量急上昇検出部16Aは、結露検知部13からの反射パルス光の強度に応じた信号S1より散乱光の受光量を求め、この散乱光の受光量と所定時間前に求められた散乱光の受光量との差を受光量変化量として求める(ステップ501)。そして、この受光量変化量が増加方向への受光量変化量であるのか減少方向への受光量変化量であるのかをチェックし(ステップ502)、増加方向への受光量変化量であれば(ステップ502のYES)、予め定められている閾値β1と比較する(ステップ503)。   FIG. 5 shows another example of the detection processing of the sudden increase in the intensity of the reflected pulsed light in the received light amount sudden rise detection unit 16A. The received light amount sudden rise detection unit 16A obtains the amount of scattered light received from the signal S1 corresponding to the intensity of the reflected pulse light from the dew condensation detection unit 13, and the amount of scattered light received and the amount of scattered light obtained a predetermined time before. The difference from the received light amount is obtained as the received light amount change amount (step 501). Then, it is checked whether the received light amount change amount is the received light amount change amount in the increasing direction or the received light amount change amount in the decreasing direction (step 502), and if it is the received light amount change amount in the increasing direction ( In step 502, a comparison is made with a predetermined threshold value β1 (step 503).

増加方向への受光量変化量が閾値β1以上であった場合(ステップ503のYES)、受光量急上昇検出部16Aは、散乱光の受光量の急上昇と判断し、ペルチェ出力制御部14へ逆電流を流す旨の指示S4を出力する(ステップ504)。この逆電流を流す旨の指示S4は、増加方向への受光量変化量が予め定められている閾値β2(β2<β1)以下となるまで(ステップ505のYES)、ペルチェ出力制御部14へ出力され続ける。   When the amount of change in the amount of received light in the increasing direction is equal to or greater than the threshold value β1 (YES in step 503), the received light amount sudden increase detection unit 16A determines that the amount of received light of the scattered light is suddenly increased, and sends a reverse current to the Peltier output control unit 14 An instruction S4 is sent to the effect (step 504). The instruction S4 to flow the reverse current is output to the Peltier output control unit 14 until the amount of change in the amount of received light in the increasing direction is equal to or less than a predetermined threshold value β2 (β2 <β1) (YES in Step 505). Continue to be.

なお、この例において、閾値β1は、ペルチェ出力制御部14からの信号S2に基づく通常の制御では増加方向への受光量変化量がとり得ることのない十分な大きな値として設定しておく。また、閾値β2は、零に近い値として設定しておく。   In this example, the threshold value β1 is set as a sufficiently large value that the amount of change in the amount of received light in the increasing direction cannot be taken in the normal control based on the signal S2 from the Peltier output control unit 14. The threshold value β2 is set as a value close to zero.

ペルチェ出力制御部14は、受光量急上昇検出部16Aからの逆電流を流す旨の指示S4を受けると、結露検知部13からの反射パルス光の強度に応じた信号S1に従う制御を中断し、熱電冷却素子2への電流をそれまでの正方向から逆方向への電流値に強制的に切り替える信号S2’を信号変換部15へ送る。信号変換部15は、ペルチェ出力制御部14からの制御信号S2’で指示される電流(逆電流)S3’を電源供給部19を介して熱電冷却素子2へ供給する。   When the Peltier output control unit 14 receives the instruction S4 to flow the reverse current from the received light amount sudden rise detection unit 16A, the Peltier output control unit 14 interrupts the control according to the signal S1 corresponding to the intensity of the reflected pulsed light from the dew condensation detection unit 13, and A signal S2 ′ for forcibly switching the current to the cooling element 2 from the current value in the forward direction to the reverse direction is sent to the signal converter 15. The signal converter 15 supplies a current (reverse current) S3 'indicated by the control signal S2' from the Peltier output controller 14 to the thermoelectric cooling element 2 via the power supply unit 19.

これにより、熱電冷却素子2は、それまで低温側とされていた面2−1が高温側とされ、高温側とされていた面2−2が低温側とされ、すなわち冷却面と加熱面とが入れ替わり、鏡10が積極的に加熱され、鏡面温度が素早く上昇する。そして、鏡面10−1の温度が露点温度付近となれば、ペルチェ出力制御部14からの制御信号S2’がS2へ切り替えられ、通常の制御に戻される。これにより、従来の熱電冷却素子2への電流を遮断する場合と比較して、露点温度計測までの待ち時間が大幅に短縮される。   Thereby, as for the thermoelectric cooling element 2, the surface 2-1 used as the low temperature side until now is made into the high temperature side, and the surface 2-2 used as the high temperature side is made into the low temperature side, ie, a cooling surface and a heating surface Are switched, the mirror 10 is actively heated, and the mirror surface temperature rises quickly. And if the temperature of the mirror surface 10-1 becomes near dew point temperature, control signal S2 'from the Peltier output control part 14 will be switched to S2, and it will return to normal control. Thereby, compared with the case where the electric current to the conventional thermoelectric cooling element 2 is interrupted | blocked, the waiting time until dew point temperature measurement is reduced significantly.

図6に測定中に被測定気体の露点が急に高くなった場合の鏡面温度のグラフを示す。同図において、特性Iは被測定気体の露点温度の変化を示し、特性IIは被測定気体の露点の急上昇時に熱電冷却素子への電流を遮断した場合の露点温度の変化(従来)を示し、特性III は被測定気体の露点の急上昇時に熱電冷却素子へ逆電流を流した場合の露点温度の変化(本願)を示す。このグラフからも、被測定気体の露点の急上昇時には逆電流を流した場合の方が応答性が速いことが分かる。   FIG. 6 shows a graph of the mirror surface temperature when the dew point of the measured gas suddenly increases during measurement. In the figure, characteristic I shows the change in the dew point temperature of the measured gas, characteristic II shows the change in the dew point temperature when the current to the thermoelectric cooling element is interrupted when the dew point of the measured gas suddenly rises (conventional), Characteristic III shows the change in dew point temperature (this application) when a reverse current is passed through the thermoelectric cooling element when the dew point of the gas to be measured rises rapidly. This graph also shows that the response is faster when a reverse current is passed when the dew point of the gas to be measured rises rapidly.

なお、図1に示した鏡面冷却式露点計201では、センサ部201Aにおいて発光側の光ファイバ17−1と受光側の光ファイバ17−2とを収容したチューブ17を用いたが、図7に示すセンサ部201A’のように、発光側の光ファイバ17−1に代えて発光ダイオード19を、受光側の光ファイバ17−2に代えてフォトカプラ20を設けるようにしてもよい。   In the mirror-cooled dew point meter 201 shown in FIG. 1, the tube 17 containing the light-emitting optical fiber 17-1 and the light-receiving optical fiber 17-2 is used in the sensor unit 201A. As shown in the sensor unit 201A ′, a light emitting diode 19 may be provided instead of the light-emitting side optical fiber 17-1, and a photocoupler 20 may be provided instead of the light-receiving side optical fiber 17-2.

〔実施の形態2:正反射光検出方式〕
図8はこの発明に係る鏡面冷却式露点計の他の実施の形態を示す概略構成図である。この鏡面冷却式露点計202では、発光側の光ファイバ17−1と受光側の光ファイバ17−2とを同方向ではなく、鏡10を挾んでその左右に対称に設けている。発光側の光ファイバ17−1と受光側の光ファイバ17−2のJ字型に湾曲された先端部は、鏡10の鏡面10−1に向けられ、この鏡面10−1に対して左右対称に所定の傾斜角で傾けられている。
[Embodiment 2: Regular reflection light detection method]
FIG. 8 is a schematic configuration diagram showing another embodiment of a mirror-cooled dew point meter according to the present invention. In this mirror-cooled dew point meter 202, the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2 are provided symmetrically on the left and right sides of the mirror 10 rather than in the same direction. The tips of the light-emitting side optical fiber 17-1 and the light-receiving side optical fiber 17-2, which are curved in a J-shape, are directed to the mirror surface 10-1 of the mirror 10 and symmetrical with respect to the mirror surface 10-1. Is inclined at a predetermined inclination angle.

〔露点温度の測定〕
この鏡面冷却式露点計202において、センサ部202Aは被測定気体中に置かれる。また、結露検知部13は、光ファイバ17−1の先端部より、鏡10の鏡面10−1に対して斜めに所定の周期でパルス光を照射させる。鏡面10−1は被測定気体に晒されており、鏡面10−1に結露が生じていなければ、光ファイバ17−1の先端部から照射されたパルス光はそのほゞ全量が正反射し、光ファイバ17−2を介して受光される。したがって、鏡面10−1に結露が生じていない場合、光ファイバ17−2を介して受光される反射パルス光(正反射光)の強度は大きい。
[Measurement of dew point temperature]
In this mirror-cooled dew point meter 202, the sensor unit 202A is placed in the gas to be measured. In addition, the dew condensation detection unit 13 irradiates the mirror surface 10-1 of the mirror 10 with pulsed light obliquely at a predetermined cycle from the tip of the optical fiber 17-1. If the mirror surface 10-1 is exposed to the gas to be measured and no condensation occurs on the mirror surface 10-1, almost all of the pulsed light irradiated from the tip of the optical fiber 17-1 is regularly reflected. Light is received through the optical fiber 17-2. Therefore, when no condensation occurs on the mirror surface 10-1, the intensity of the reflected pulse light (regular reflection light) received through the optical fiber 17-2 is high.

結露検知部13では、光ファイバ17−2を介して受光される反射パルス光の上限値と下限値との差を反射パルス光の強度として求め、この反射パルス光の強度に応じた信号S1をペルチェ出力制御部14および受光量急降下検出部16Bへ送る。この場合、反射パルス光の強度は大きく、閾値th2を超えているので、ペルチェ出力制御部14は、熱電冷却素子2への電流を増大させる制御信号S2を信号変換部15へ送る。これにより、熱電冷却素子2へ供給される電流S3が増大し、熱電冷却素子2の冷却面2−1の温度が下げられて行く。   In the dew condensation detector 13, the difference between the upper limit value and the lower limit value of the reflected pulse light received through the optical fiber 17-2 is obtained as the intensity of the reflected pulse light, and a signal S1 corresponding to the intensity of the reflected pulse light is obtained. It is sent to the Peltier output control unit 14 and the received light amount sudden drop detection unit 16B. In this case, since the intensity of the reflected pulse light is large and exceeds the threshold th2, the Peltier output control unit 14 sends a control signal S2 for increasing the current to the thermoelectric cooling element 2 to the signal conversion unit 15. Thereby, the electric current S3 supplied to the thermoelectric cooling element 2 increases, and the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered.

熱電冷却素子2の冷却面2−1の温度、すなわち鏡10の温度を下げて行くと、被測定気体に含まれる水蒸気が鏡10の鏡面10−1に結露し、その水の分子に光ファイバ17−1の先端部から照射されたパルス光の一部が吸収されたり、乱反射したりする。これにより、光ファイバ17−2を介して受光される鏡面10−1からの反射パルス光(正反射光)の強度が減少する。   When the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is lowered, that is, the temperature of the mirror 10, the water vapor contained in the gas to be measured is condensed on the mirror surface 10-1 of the mirror 10, and the water molecules are optical fiber. Part of the pulsed light irradiated from the tip portion of 17-1 is absorbed or irregularly reflected. Thereby, the intensity | strength of the reflected pulsed light (regular reflected light) from the mirror surface 10-1 light-received via the optical fiber 17-2 reduces.

ここで、光ファイバ17−2を介して受光される反射パルス光の強度が閾値th2を下回ると、ペルチェ出力制御部14は、熱電冷却素子2への電流を減少させる制御信号S2を信号変換部15へ送る。これにより、熱電冷却素子2の冷却面2−1の温度の低下が抑えられ、結露の発生が抑制される。この結露の抑制によって、光ファイバ17−2を介して受光される反射パルス光の強度が大きくなり、閾値th2を上回ると、ペルチェ出力制御部14から熱電冷却素子2への電流を増大させる制御信号S2が信号変換部15へ送られる。この動作の繰り返しによって、光ファイバ17−2を介して受光される反射パルス光の強度が閾値th2とほゞ等しくなるように、熱電冷却素子2の冷却面2−1の温度が調整される。この調整された温度、すなわち鏡面10−1に生じた結露が平衡状態に達した温度(露点温度)が、露点温度として露点温度表示部12に表示される。   Here, when the intensity of the reflected pulse light received through the optical fiber 17-2 is lower than the threshold th2, the Peltier output control unit 14 generates a control signal S2 for reducing the current to the thermoelectric cooling element 2 as a signal conversion unit. Send to 15. Thereby, the fall of the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is suppressed, and generation | occurrence | production of dew condensation is suppressed. By controlling the dew condensation, the intensity of the reflected pulse light received through the optical fiber 17-2 increases. When the intensity exceeds the threshold th2, the control signal increases the current from the Peltier output control unit 14 to the thermoelectric cooling element 2. S2 is sent to the signal converter 15. By repeating this operation, the temperature of the cooling surface 2-1 of the thermoelectric cooling element 2 is adjusted so that the intensity of the reflected pulse light received through the optical fiber 17-2 is substantially equal to the threshold value th2. The adjusted temperature, that is, the temperature at which the dew condensation that has occurred on the mirror surface 10-1 has reached an equilibrium state (dew point temperature) is displayed on the dew point temperature display unit 12 as the dew point temperature.

〔測定中に被測定気体の露点が急に高くなった場合〕
上述した露点温度の測定中に、被測定気体の露点が急に高くなると、鏡面10−1に生じる結露の量が急に多くなる。このため、光ファイバ17−1の先端部から鏡面10−1に対して照射された光の正反射光が急に少なくなり、光ファイバ17−2を介して受光される鏡面10−1からの正反射光の受光量が急降下する。結露検知部13では、光ファイバ17−2を介して受光される反射パルス光の上限値と下限値との差を反射パルス光の強度として求め、反射パルス光の強度に応じた信号S1を受光量急降下検出部16Bへ送る。受光量急降下検出部16Bは、結露検知部13からの反射パルス光の強度に応じた信号S1を受けて、反射パルス光の強度の急降下(露点の急上昇)を検出し、ペルチェ出力制御部14へ逆電流を流す旨の指示S4を与える。この実施の形態2では、受光量急降下検出部16Bが本発明でいう露点上昇検出手段に相当する。
[When the dew point of the measured gas suddenly increases during measurement]
If the dew point of the measured gas suddenly increases during the measurement of the dew point temperature described above, the amount of dew condensation that occurs on the mirror surface 10-1 suddenly increases. For this reason, the regular reflection light of the light irradiated from the front-end | tip part of the optical fiber 17-1 with respect to the mirror surface 10-1 decreases suddenly, and from the mirror surface 10-1 received via the optical fiber 17-2. The amount of specular reflection light suddenly drops. In the dew condensation detection unit 13, the difference between the upper limit value and the lower limit value of the reflected pulse light received via the optical fiber 17-2 is obtained as the intensity of the reflected pulse light, and the signal S1 corresponding to the intensity of the reflected pulse light is received. The amount is sent to the sudden drop detection unit 16B. The received light amount sudden drop detection unit 16B receives the signal S1 corresponding to the intensity of the reflected pulse light from the dew condensation detection unit 13, detects a sudden drop in the intensity of the reflected pulse light (a sudden rise in the dew point), and sends it to the Peltier output control unit 14 An instruction S4 for giving a reverse current is given. In the second embodiment, the received light amount sudden drop detection unit 16B corresponds to the dew point rise detection means in the present invention.

図9に受光量急降下検出部16Bにおける反射パルス光の強度の急降下の検出処理の一例を示す。受光量急降下検出部16Bは、結露検知部13からの反射パルス光の強度に応じた信号S1より正反射光の受光量を求め、この正反射光の受光量と予め定められている閾値γ1とを比較する(ステップ601)。   FIG. 9 shows an example of processing for detecting a sudden drop in the intensity of the reflected pulsed light in the received light amount sudden drop detector 16B. The light reception amount sudden drop detection unit 16B obtains the amount of regular reflection light from the signal S1 corresponding to the intensity of the reflected pulse light from the dew condensation detection unit 13, and receives the amount of regular reflection light and a predetermined threshold value γ1. Are compared (step 601).

正反射光の受光量が閾値γ1以下であった場合(ステップ601のYES)、受光量急降下検出部16Bは、正反射光の受光量の急降下と判断し、ペルチェ出力制御部14へ逆電流を流す旨の指示S4を出力する(ステップ602)。この逆電流を流す旨の指示S4は、正反射光の受光量が予め定められている閾値γ2(γ2>γ1)以上となるまで(ステップ603のYES)、ペルチェ出力制御部14へ出力され続ける。   When the received light amount of the specularly reflected light is equal to or less than the threshold value γ1 (YES in Step 601), the received light amount sudden drop detecting unit 16B determines that the received light amount of the regular reflected light is suddenly lowered and sends a reverse current to the Peltier output control unit 14. An instruction S4 to flow is output (step 602). The instruction S4 to flow the reverse current continues to be output to the Peltier output control unit 14 until the received light amount of the specularly reflected light is equal to or greater than a predetermined threshold value γ2 (γ2> γ1) (YES in Step 603). .

なお、この例において、閾値γ1は、ペルチェ出力制御部14からの信号S2に基づく通常の制御では正反射光の受光量がとり得ることのない十分小さな値として設定しておく。また、閾値γ2は、露点温度付近での正反射光の受光量に近い値として設定しておく。   In this example, the threshold value γ1 is set as a sufficiently small value that the amount of received regular reflected light cannot be taken in normal control based on the signal S2 from the Peltier output control unit 14. Further, the threshold value γ2 is set as a value close to the amount of regular reflection light received near the dew point temperature.

図10に受光量急降下検出部16Bにおける反射パルス光の強度の急降下の検出処理の別の例を示す。受光量急降下検出部16Bは、結露検知部13からの反射パルス光の強度に応じた信号S1より正反射光の受光量を求め、この正反射光の受光量と所定時間前に求められた正反射光の受光量との差を受光量変化量として求める(ステップ701)。そして、この受光量変化量が増加方向への受光量変化量がであるのか減少方向への受光量変化量であるのかをチェックし(ステップ702)、減少方向への受光量変化量であれば(ステップ702のYES)、予め定められている閾値δ1と比較する(ステップ703)。   FIG. 10 shows another example of the detection processing of the sudden drop of the intensity of the reflected pulsed light in the received light amount sudden drop detector 16B. The received light amount sudden drop detection unit 16B obtains the amount of specular reflection light from the signal S1 corresponding to the intensity of the reflected pulse light from the dew condensation detection unit 13, and receives the amount of specular reflection light and the positive amount obtained a predetermined time ago. The difference from the received light amount of the reflected light is obtained as the received light amount change amount (step 701). Then, it is checked whether the amount of received light amount change is the amount of received light amount change in the increasing direction or the amount of received light amount change in the decreasing direction (step 702). (YES in step 702), a comparison is made with a predetermined threshold value δ1 (step 703).

受光量急降下検出部16Bは、減少方向への受光量変化量が閾値δ1以上であれば(ステップ703のYES)、正反射光の受光量の急降下と判断し、ペルチェ出力制御部14へ逆電流を流す旨の指示S4を出力する(ステップ704)。この逆電流を流す旨の指示S4は、減少方向への受光量変化量が予め定められている閾値δ2(δ2<δ1)以下となるまで(ステップ705のYES)、ペルチェ出力制御部14へ出力され続ける。   If the amount of received light amount change in the decreasing direction is greater than or equal to the threshold δ1 (YES in step 703), the received light amount sudden drop detection unit 16B determines that the amount of received light of the specularly reflected light is abruptly lowered, and sends a reverse current to the Peltier output control unit 14 An instruction S4 is sent to the effect (step 704). The instruction S4 to flow the reverse current is output to the Peltier output control unit 14 until the amount of change in the amount of received light in the decreasing direction is equal to or less than a predetermined threshold value δ2 (δ2 <δ1) (YES in step 705). Continue to be.

なお、この例において、閾値δ1は、ペルチェ出力制御部14からの信号S2に基づく通常の制御では減少方向への受光量変化量がとり得ることのない十分な大きな値として設定しておく。また、閾値δ2は、零に近い値として設定しておく。   In this example, the threshold value δ1 is set as a sufficiently large value that the amount of change in the amount of received light in the decreasing direction cannot be taken in the normal control based on the signal S2 from the Peltier output control unit 14. The threshold value δ2 is set as a value close to zero.

ペルチェ出力制御部14は、受光量急降下検出部16Bからの逆電流を流す旨の指示S4を受けると、結露検知部13からの反射パルス光の強度に応じた信号S1に従う制御を中断し、熱電冷却素子2への電流をそれまでの正方向から逆方向への電流値に強制的に切り替える信号S2’を信号変換部15へ送る。信号変換部15は、ペルチェ出力制御部14からの制御信号S2’で指示される電流(逆電流)S3’を電源供給部19を介して熱電冷却素子2へ供給する。   When the Peltier output control unit 14 receives an instruction S4 to flow a reverse current from the received light amount sudden drop detection unit 16B, the Peltier output control unit 14 interrupts the control according to the signal S1 corresponding to the intensity of the reflected pulse light from the dew condensation detection unit 13, and A signal S2 ′ for forcibly switching the current to the cooling element 2 from the current value in the forward direction to the reverse direction is sent to the signal converter 15. The signal conversion unit 15 supplies a current (reverse current) S3 'indicated by the control signal S2' from the Peltier output control unit 14 to the thermoelectric cooling element 2 via the power supply unit 19.

これにより、熱電冷却素子2は、それまで低温側とされていた面2−1が高温側とされ、高温側とされていた面2−2が低温側とされ、すなわち冷却面と加熱面とが入れ替わり、鏡10が積極的に加熱され、鏡面温度が素早く降下する。そして、鏡面10−1の温度が露点温度付近となれば、ペルチェ出力制御部14からの制御信号S2’がS2へ切り替えられ、通常の制御に戻される。これにより、従来の熱電冷却素子2への電流を遮断する場合と比較して、露点温度計測までの待ち時間が大幅に短縮される。   Thereby, as for the thermoelectric cooling element 2, the surface 2-1 used as the low temperature side until now is made into the high temperature side, and the surface 2-2 used as the high temperature side is made into the low temperature side, ie, a cooling surface and a heating surface Are switched, the mirror 10 is positively heated, and the mirror surface temperature quickly drops. And if the temperature of the mirror surface 10-1 becomes near dew point temperature, control signal S2 'from the Peltier output control part 14 will be switched to S2, and it will return to normal control. Thereby, compared with the case where the electric current to the conventional thermoelectric cooling element 2 is interrupted | blocked, the waiting time until dew point temperature measurement is reduced significantly.

なお、制御信号S2’で指示される電流(逆電流)S3’の電流値は予め定められる任意の値としてもよいし、制御信号S2’が指示される直前に流れていたS3と同じ値(但し、流れ方向は逆)としてもよく、任意に決めてよい。   Note that the current value of the current (reverse current) S3 ′ indicated by the control signal S2 ′ may be an arbitrary value set in advance, or the same value as S3 flowing immediately before the control signal S2 ′ is indicated ( However, the flow direction may be reversed) and may be determined arbitrarily.

本発明に係る鏡面冷却式露点計の一実施の形態(実施の形態1)を示す概略構成図である。It is a schematic block diagram which shows one Embodiment (Embodiment 1) of the mirror surface cooling-type dew point meter which concerns on this invention. 発光側の光ファイバと受光側の光ファイバとを1つのチューブ中に並行して設ける構成を例示する図である。It is a figure which illustrates the structure which provides the optical fiber by the side of light emission, and the optical fiber by the side of light reception in parallel in one tube. 検出面裏面に対して照射されるパルス光および検出面裏面から受光される反射パルス光を示す図である。It is a figure which shows the pulsed light irradiated with respect to a detection surface back surface, and the reflected pulse light received from a detection surface back surface. 受光量急上昇検出部における反射パルス光の強度の急上昇の検出処理の一例を示すフローチャートである。It is a flowchart which shows an example of the detection process of the sudden rise of the intensity | strength of the reflected pulsed light in a received light amount sudden rise detection part. 受光量急上昇検出部における反射パルス光の強度の急上昇の検出処理の別の例を示すフローチャートである。It is a flowchart which shows another example of the detection process of the sharp rise of the intensity | strength of reflected pulsed light in a received light amount sudden rise detection part. 測定中に被測定気体の露点が急に高くなった場合の鏡面温度の変化を示すグラフである。It is a graph which shows the change of mirror surface temperature when the dew point of to-be-measured gas becomes high rapidly during measurement. 実施の形態1の鏡面冷却式露点計のセンサ部の変形例を示す図である。It is a figure which shows the modification of the sensor part of the mirror surface cooling-type dew point meter of Embodiment 1. FIG. 本発明に係る鏡面冷却式露点計の他の実施の形態(実施の形態2)を示す概略構成図である。It is a schematic block diagram which shows other embodiment (Embodiment 2) of the mirror surface cooling-type dew point meter which concerns on this invention. 受光量急降下検出部における反射パルス光の強度の急降下の検出処理の一例を示すフローチャートである。It is a flowchart which shows an example of the detection process of the sudden fall of the intensity | strength of the reflected pulsed light in a received light amount sudden fall detection part. 受光量急降下検出部における反射パルス光の強度の急降下の検出処理の別の例を示すフローチャートである。It is a flowchart which shows another example of the detection process of the sudden fall of the intensity | strength of the reflected pulsed light in a received light amount sudden fall detection part. 正反射光検出方式を採用した従来の鏡面冷却式露点計の要部を示す図である。It is a figure which shows the principal part of the conventional mirror surface cooling-type dew point meter which employ | adopted the regular reflection light detection system. 散乱光検出方式を採用した従来の鏡面冷却式露点計の要部を示す図である。It is a figure which shows the principal part of the conventional mirror surface cooling-type dew point meter which employ | adopted the scattered light detection system. 従来の鏡面冷却式露点計における鏡や温度検出素子の取り付け構造を示す斜視図である。It is a perspective view which shows the attachment structure of the mirror and temperature detection element in the conventional mirror surface cooling dew point meter.

符号の説明Explanation of symbols

2…熱電冷却素子(ペルチェ素子)、2−1…冷却面、2−2…加熱面、10…鏡、10−1…鏡面、11…温度検出素子(薄膜測温抵抗体)、12…露点温度表示部、13…結露検知部、14…ペルチェ出力制御部、15…信号変換部、16A…受光量急上昇検出部、16B…受光量急降下検出部、17…チューブ、17−1…発光側の光ファイバ、17−2…受光側の光ファイバ、18…ヒートシンク、19…電源供給部、201,202…鏡面冷却式露点計、201A,202A…センサ部、201B,202B…コントロール部。   DESCRIPTION OF SYMBOLS 2 ... Thermoelectric cooling element (Peltier element), 2-1 ... Cooling surface, 2-2 ... Heating surface, 10 ... Mirror, 10-1 ... Mirror surface, 11 ... Temperature detection element (thin film resistance thermometer), 12 ... Dew point Temperature display unit, 13 ... dew condensation detection unit, 14 ... Peltier output control unit, 15 ... signal conversion unit, 16A ... received light amount sudden rise detection unit, 16B ... received light amount sudden fall detection unit, 17 ... tube, 17-1 ... light emission side Optical fiber, 17-2 ... Optical fiber on the light receiving side, 18 ... Heat sink, 19 ... Power supply unit, 201, 202 ... Specular cooling dew point meter, 201A, 202A ... Sensor unit, 201B, 202B ... Control unit.

Claims (6)

正方向への電流の供給を受けて、一方の面が低温側、他方の面が高温側とされる熱電冷却素子と、
この熱電冷却素子の前記一方の面側に取り付けられその鏡面が被測定気体に晒される鏡と、
前記鏡面に対して光を照射する発光手段と、
前記発光手段から前記鏡面に対して照射された光の散乱光を受光する受光手段と、
前記鏡面の温度を検出する温度検出手段と、
前記受光手段が受光する散乱光の受光量に基づいて、前記鏡面に生じる結露の増減がなくなる平衡状態になるように、前記熱電冷却素子へ供給する正方向への電流を制御する制御手段とを備えた鏡面冷却式露点計において、
前記受光手段が受光する散乱光の受光量と予め定められている第1の閾値との比較に基づいて、前記鏡面に生じる結露の増減がなくなる平衡状態からの前記被測定気体の露点の上昇を検出する一方、前記受光手段が受光する散乱光の受光量と予め定められている第2の閾値との比較に基づいて、前記被測定気体の露点の上昇からの前記平衡状態への回復を検出する露点上昇検出手段と、
前記露点の上昇が検出された場合、前記熱電冷却素子へ強制的に前記正方向とは反対の逆方向への電流を流す一方、前記露点の上昇からの平衡状態への回復が検出された場合、前記熱電冷却素子に供給する電流を正方向へ戻す手段と
を備えたことを特徴とする鏡面冷却式露点計。
A thermoelectric cooling element that is supplied with current in the positive direction and has one surface at a low temperature side and the other surface at a high temperature side;
A mirror that is attached to the one surface side of the thermoelectric cooling element and whose mirror surface is exposed to the gas to be measured;
A light emitting means for irradiating the mirror surface with light;
A light receiving means for receiving scattered light of the light emitted from the light emitting means to the mirror surface;
Temperature detecting means for detecting the temperature of the mirror surface;
Control means for controlling the current in the positive direction supplied to the thermoelectric cooling element so as to be in an equilibrium state where there is no increase or decrease in dew condensation generated on the mirror surface based on the amount of scattered light received by the light receiving means. In the mirror-cooled dew point meter
On the basis of the comparison of the first threshold light receiving means is predetermined and received light amount of scattered light received, the increase in the dew point of the gas to be measured from equilibrium decrease eliminates condensation generated in the mirror On the other hand, the recovery from the rise of the dew point of the measured gas to the equilibrium state is detected based on a comparison between the amount of scattered light received by the light receiving means and a predetermined second threshold value. Dew point rise detection means
When an increase in the dew point is detected, a current in the reverse direction opposite to the forward direction is forced to flow through the thermoelectric cooling element, while a recovery from the increase in the dew point is detected. And a means for returning the current supplied to the thermoelectric cooling element in the positive direction.
請求項1に記載された鏡面冷却式露点計において、
前記露点上昇検出手段は、
前記受光手段が受光する散乱光の受光量が前記第1の閾値を上回った場合を前記露点の上昇として検出する一方、前記第1の閾値よりも小さくかつ露点付近での散乱光の受光量に近い値として設定された前記第2の閾値を下回った場合を前記露点の上昇からの平衡状態への回復として検出する
ことを特徴とする鏡面冷却式露点計。
In the mirror-cooled dew point meter according to claim 1,
The dew point rise detection means
The case where the amount of scattered light received by the light receiving means exceeds the first threshold is detected as an increase in the dew point, while the amount of scattered light received near the dew point is smaller than the first threshold. A mirror-cooled dew point meter, wherein a case where the value falls below the second threshold value set as a close value is detected as a recovery from an increase in the dew point to an equilibrium state.
請求項1に記載された鏡面冷却式露点計において、
前記露点上昇検出手段は、
前記受光手段が受光する散乱光の受光量の増加方向への変化量が前記第1の閾値を上回った場合を前記露点の上昇として検出する一方、前記第1の閾値よりも小さくかつ零に近い値として設定された前記第2の閾値を下回った場合を前記露点の上昇からの平衡状態への回復として検出する
ことを特徴とする鏡面冷却式露点計。
In the mirror-cooled dew point meter according to claim 1,
The dew point rise detection means
While the amount of change in the increasing direction of the amount of scattered light received by the light receiving means exceeds the first threshold is detected as an increase in the dew point, it is smaller than the first threshold and close to zero A specular cooling type dew point meter, wherein a case where the value falls below the second threshold value set as a value is detected as a recovery from an increase in the dew point to an equilibrium state.
正方向への電流の供給を受けて、一方の面が低温側、他方の面が高温側とされる熱電冷却素子と、
この熱電冷却素子の前記一方の面側に取り付けられその鏡面が被測定気体に晒される鏡と、
前記鏡面に対して光を照射する発光手段と、
前記発光手段から前記鏡面に対して照射された光の正反射光を受光する受光手段と、
前記鏡面の温度を検出する温度検出手段と、
前記受光手段が受光する正反射光の受光量に基づいて、前記鏡面に生じる結露の増減がなくなる平衡状態になるように、前記熱電冷却素子へ供給する正方向への電流を制御する制御手段とを備えた鏡面冷却式露点計において、
前記受光手段が受光する正反射光の受光量と予め定められている第1の閾値との比較に基づいて、前記鏡面に生じる結露の増減がなくなる平衡状態からの前記被測定気体の露点の上昇を検出する一方、前記受光手段が受光する正反射光の受光量と予め定められている第2の閾値との比較に基づいて、前記被測定気体の露点の上昇からの前記平衡状態への回復を検出する露点上昇検出手段と、
前記露点の上昇が検出された場合、前記熱電冷却素子へ強制的に前記正方向とは反対の逆方向への電流を流す一方、前記露点の上昇からの平衡状態への回復が検出された場合、前記熱電冷却素子に供給する電流を正方向へ戻す手段と
を備えたことを特徴とする鏡面冷却式露点計。
A thermoelectric cooling element that is supplied with current in the positive direction and has one surface at a low temperature side and the other surface at a high temperature side;
A mirror that is attached to the one surface side of the thermoelectric cooling element and whose mirror surface is exposed to the gas to be measured;
A light emitting means for irradiating the mirror surface with light;
A light receiving means for receiving specularly reflected light of the light emitted from the light emitting means to the mirror surface;
Temperature detecting means for detecting the temperature of the mirror surface;
Control means for controlling the current in the positive direction supplied to the thermoelectric cooling element so as to achieve an equilibrium state in which the increase or decrease of the dew condensation occurring on the mirror surface is eliminated based on the amount of received regular reflection light received by the light receiving means; In the mirror-cooled dew point meter with
Based on a comparison between the amount of specularly reflected light received by the light receiving means and a predetermined first threshold value, the dew point of the gas to be measured is raised from an equilibrium state where there is no increase or decrease in the dew condensation occurring on the mirror surface. Is detected, and the recovery from the rise of the dew point of the gas to be measured to the equilibrium state is performed based on a comparison between the amount of specularly reflected light received by the light receiving means and a predetermined second threshold value. Dew point rise detecting means for detecting
When an increase in the dew point is detected, a current in the reverse direction opposite to the forward direction is forced to flow through the thermoelectric cooling element, while a recovery from the increase in the dew point is detected. And a means for returning the current supplied to the thermoelectric cooling element in the positive direction.
請求項4に記載された鏡面冷却式露点計において、
前記露点上昇検出手段は、
前記受光手段が受光する正反射光の受光量が前記第1の閾値を下回った場合を前記露点の上昇として検出する一方、前記第1の閾値よりも大きくつ露点付近での正反射光の受光量に近い値として設定された前記第2の閾値を下回った場合を前記露点の上昇からの平衡状態への回復として検出する
ことを特徴とする鏡面冷却式露点計。
In the specular cooling type dew point meter according to claim 4,
The dew point rise detection means
When the amount of the regularly reflected light received by the light receiving means falls below the first threshold, it is detected as an increase in the dew point, while receiving the regularly reflected light near the dew point that is larger than the first threshold. A specular cooling type dew point meter, wherein a case where the value falls below the second threshold value set as a value close to the amount is detected as a recovery from an increase in the dew point to an equilibrium state.
請求項4に記載された鏡面冷却式露点計において、
前記露点上昇検出手段は、
前記受光手段が受光する正反射光の受光量の減少方向への変化量が前記第1の閾値を上回った場合を前記露点の上昇として検出する一方、前記第1の閾値よりも小さくかつ零に近い値として設定された前記第2の閾値を下回った場合を前記露点の上昇からの平衡状態への回復として検出する
ことを特徴とする鏡面冷却式露点計。
In the specular cooling type dew point meter according to claim 4,
The dew point rise detection means
A case where the amount of change in the decreasing direction of the amount of specularly reflected light received by the light receiving unit exceeds the first threshold is detected as an increase in the dew point, while being smaller than the first threshold and zero. A mirror-cooled dew point meter, wherein a case where the value falls below the second threshold value set as a close value is detected as a recovery from an increase in the dew point to an equilibrium state.
JP2006012292A 2006-01-20 2006-01-20 Mirror surface dew point meter Expired - Fee Related JP4504318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012292A JP4504318B2 (en) 2006-01-20 2006-01-20 Mirror surface dew point meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012292A JP4504318B2 (en) 2006-01-20 2006-01-20 Mirror surface dew point meter

Publications (2)

Publication Number Publication Date
JP2007192715A JP2007192715A (en) 2007-08-02
JP4504318B2 true JP4504318B2 (en) 2010-07-14

Family

ID=38448533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012292A Expired - Fee Related JP4504318B2 (en) 2006-01-20 2006-01-20 Mirror surface dew point meter

Country Status (1)

Country Link
JP (1) JP4504318B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105987930A (en) * 2016-07-06 2016-10-05 中国人民解放军空军勤务学院 Self-cooling type dew-point instrument

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875152B1 (en) 2007-07-23 2008-12-22 야마타케 코포레이션 Cooled mirror dew-point hygrometer
JP2009186440A (en) * 2008-02-08 2009-08-20 Seiko Instruments Inc Mirror surface cooling dew point meter
JP5011215B2 (en) * 2008-06-05 2012-08-29 株式会社日立製作所 Non-contact dimension measuring method and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101952U (en) * 1980-12-15 1982-06-23
JPS58113839A (en) * 1981-12-28 1983-07-06 Rikagaku Kenkyusho Detector for dew point
JPH0658891A (en) * 1992-08-06 1994-03-04 Ryoden Semiconductor Syst Eng Kk Dew point measuring apparatus
JPH11511242A (en) * 1995-06-02 1999-09-28 オロフ ソナンデル,スベン Method and apparatus for measuring dew point of wet gas
JP2003194756A (en) * 2001-12-26 2003-07-09 National Institute Of Advanced Industrial & Technology Mirror-surface condensing dew-point instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101952U (en) * 1980-12-15 1982-06-23
JPS58113839A (en) * 1981-12-28 1983-07-06 Rikagaku Kenkyusho Detector for dew point
JPH0658891A (en) * 1992-08-06 1994-03-04 Ryoden Semiconductor Syst Eng Kk Dew point measuring apparatus
JPH11511242A (en) * 1995-06-02 1999-09-28 オロフ ソナンデル,スベン Method and apparatus for measuring dew point of wet gas
JP2003194756A (en) * 2001-12-26 2003-07-09 National Institute Of Advanced Industrial & Technology Mirror-surface condensing dew-point instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105987930A (en) * 2016-07-06 2016-10-05 中国人民解放军空军勤务学院 Self-cooling type dew-point instrument

Also Published As

Publication number Publication date
JP2007192715A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
US20070171955A1 (en) Cooled mirror dew-point hygrometer
JP5198844B2 (en) Cloudiness detector and mirror-cooled dew point meter
US7736051B2 (en) Thermoelectric device and mirror surface state detection device
JP4504318B2 (en) Mirror surface dew point meter
WO2005098404A1 (en) Detector for detecting state on detection surface
WO2005098403A1 (en) Moisture detection device
US6023070A (en) System and method to monitor for fouling
JP5643602B2 (en) Mirror surface cooling type sensor
JP4005581B2 (en) Mirror surface dew point meter
EP1398617A1 (en) Exhaust gas sensor
JP4005580B2 (en) Mirror surface dew point meter
JP4504290B2 (en) Moisture detector
JP4012166B2 (en) Mirror surface dew point meter
KR100875152B1 (en) Cooled mirror dew-point hygrometer
JP4224032B2 (en) Moisture detector
JP4571537B2 (en) Mirror surface cooling type sensor
JP5643599B2 (en) Mirror surface cooling type sensor
JP5912874B2 (en) Humidity measurement system
JP2007127572A (en) Apparatus for detecting state on specular surface, and moisture detector
JP4231009B2 (en) Moisture detector
JP5643600B2 (en) Mirror surface cooling type sensor
JP4139377B2 (en) Mirror surface cooling type sensor
JP5912875B2 (en) Dew point temperature measurement system
JP5890247B2 (en) Mirror surface dew point meter
JP2012093222A (en) Mirror surface cooling type sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Ref document number: 4504318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees