JP4451129B2 - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
JP4451129B2
JP4451129B2 JP2003416443A JP2003416443A JP4451129B2 JP 4451129 B2 JP4451129 B2 JP 4451129B2 JP 2003416443 A JP2003416443 A JP 2003416443A JP 2003416443 A JP2003416443 A JP 2003416443A JP 4451129 B2 JP4451129 B2 JP 4451129B2
Authority
JP
Japan
Prior art keywords
epoxy resin
group
resin composition
general formula
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003416443A
Other languages
Japanese (ja)
Other versions
JP2005171188A (en
Inventor
明広 伊藤
Original Assignee
ジャパンエポキシレジン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパンエポキシレジン株式会社 filed Critical ジャパンエポキシレジン株式会社
Priority to JP2003416443A priority Critical patent/JP4451129B2/en
Publication of JP2005171188A publication Critical patent/JP2005171188A/en
Application granted granted Critical
Publication of JP4451129B2 publication Critical patent/JP4451129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

本発明は、エポキシ樹脂組成物に関する。この組成物は、難燃付与成分としてハロゲン化合物、アンチモン化合物を添加することなしに、又は少量添加するだけで優れた難燃性を有し、かつ低吸湿性、密着性に優れる硬化物を与えることができ、特に半導体封止の用途に有用である。   The present invention relates to an epoxy resin composition. This composition has excellent flame retardancy without adding a halogen compound or antimony compound as a flame retardant imparting component, or by adding a small amount, and gives a cured product having excellent low moisture absorption and adhesion. Particularly useful for semiconductor encapsulation applications.

半導体素子の封止には、信頼性、生産性及びコストの面から、エポキシ樹脂組成物が広く用いられている。一般のプラスチック材料と同じく、これら組成物にも難燃性が要求されており、そのために主成分とは別に難燃付与成分として、テトラブロモビスフェノールA型エポキシ樹脂やブロム化フェノールノボラック型エポキシ樹脂などのブロム化エポキシ樹脂と酸化アンチモンが組み合わせて配合されている。   For sealing semiconductor elements, epoxy resin compositions are widely used in terms of reliability, productivity, and cost. Like general plastic materials, these compositions are also required to be flame retardant. For this reason, as a flame retardant component apart from the main component, tetrabromobisphenol A type epoxy resin, brominated phenol novolac type epoxy resin, etc. This is a combination of brominated epoxy resin and antimony oxide.

近年、環境保護の観点からダイオキシン類似化合物を発生する危惧のある含ハロゲン化合物や毒性の高いアンチモン化合物の使用を量規制する動きが高まっており、半導体封止用組成物に関しては、上述のブロム化エポキシ樹脂をはじめとするハロゲン化合物や酸化アンチモンを使用することなしに難燃性を達成させる技術が検討されるようになった。たとえば、赤リンを配合する方法(特許文献1)、リン酸エステル化合物を配合する方法(特許文献2)、ホスファゼン化合物を配合する方法(特許文献3)、金属水酸化物を配合する方法(特許文献4)などのハロゲン化合物や酸化アンチモンに代わる難燃剤を配合する手法及び充填剤の配合割合を高くする手法(特許文献5)などが検討されている。   In recent years, from the viewpoint of environmental protection, there is an increasing movement to regulate the use of halogen-containing compounds that are likely to generate dioxin-like compounds and highly toxic antimony compounds. Techniques for achieving flame retardancy without using epoxy compounds and other halogen compounds and antimony oxide have been studied. For example, a method of blending red phosphorus (Patent Document 1), a method of blending a phosphate ester compound (Patent Document 2), a method of blending a phosphazene compound (Patent Document 3), a method of blending a metal hydroxide (Patent Document 3) A method of blending a halogen compound such as literature 4) or a flame retardant in place of antimony oxide and a method of increasing the blending ratio of the filler (Patent Literature 5) have been studied.

しかし、半導体封止用エポキシ組成物に赤リンを用いた場合は耐湿信頼性の低下や赤リンの打撃発火性に起因する安全性の問題、燐酸エステルやホスファゼン化合物を用いた場合は可塑化による成形性の低下や耐湿信頼性の低下の問題、金属水酸化物を用いた場合や充填剤の配合割合を高くした場合は流動性の低下の問題がそれぞれにあり、いずれの場合もブロム化エポキシ樹脂と酸化アンチモンを併用した封止用エポキシ樹脂組成物と同等の成形性、信頼性を得るに至っていない。   However, when red phosphorus is used in the epoxy composition for semiconductor encapsulation, it is caused by deterioration of moisture resistance reliability and safety problems due to red phosphorus impact ignition, and plasticization when phosphate ester or phosphazene compound is used. There is a problem of deterioration of moldability and moisture resistance reliability, and there is a problem of decrease in fluidity when using metal hydroxide or when the blending ratio of the filler is increased. In either case, brominated epoxy Moldability and reliability equivalent to those of an epoxy resin composition for sealing using a combination of a resin and antimony oxide have not been obtained.

一方で、高度化した実装方式に対応するため、封止用エポキシ樹脂組成物にはなお一層の成形性、耐ハンダクラック性が要求されており、これらを達成するためには、組成物の速硬化性、流動性、低熱線膨張化、低吸湿性及び密着性等にも十分配慮する必要がある。   On the other hand, in order to cope with advanced mounting methods, the epoxy resin composition for sealing is required to have further moldability and solder crack resistance. To achieve these, the speed of the composition is required. It is necessary to give sufficient consideration to curability, fluidity, low thermal linear expansion, low hygroscopicity, adhesion, and the like.

これらの要求を満足させるために、テトラメチルビフェノール型エポキシ樹脂とフェノールアラルキル樹脂など架橋間点の長い硬化物を与えるフェノール樹脂からなる組成物を用い、吸湿性及び低応力性を改良すること(特許文献6)、吸湿性を改善するためにジシクロペンタジエンフェノールを原料とするエポキシ樹脂を主成分に用いること(特許文献7)、耐湿性と耐熱性のバランスを取るためにオルソ−クレゾールとベンズアルデヒドの共縮合ノボラック樹脂のエポキシ物を主成分として用いること(特許文献8)など、種々の検討が提案されている。   In order to satisfy these requirements, a composition comprising a phenol resin that gives a cured product having a long cross-linking point such as a tetramethylbiphenol type epoxy resin and a phenol aralkyl resin is used to improve hygroscopicity and low stress (patents). Document 6), using epoxy resin based on dicyclopentadienephenol as the main component in order to improve hygroscopicity (Patent Document 7), ortho-cresol and benzaldehyde to balance moisture resistance and heat resistance. Various studies have been proposed such as using an epoxy compound of a co-condensed novolac resin as a main component (Patent Document 8).

また、芳香族炭化水素ホルムアルデヒド樹脂変性ノボラック型エポキシ樹脂を用いたものでは、通常のエポキシ樹脂と芳香族炭化水素ホルムアルデヒド樹脂変性ノボラック型エポキシ樹脂の組成物を用い、耐熱性、接着性を改良すること(特許文献9)、芳香族炭化水素樹脂変性ノボラックエポキシ樹脂と多官能性シアン酸エステル系の組成物を用い、耐熱性を改良すること(特許文献10)、(特許文献11)などが提案されている。   In addition, in the case of using an aromatic hydrocarbon formaldehyde resin-modified novolac type epoxy resin, use a composition of a normal epoxy resin and an aromatic hydrocarbon formaldehyde resin-modified novolak type epoxy resin to improve heat resistance and adhesion. (Patent Document 9), using an aromatic hydrocarbon resin-modified novolak epoxy resin and a polyfunctional cyanate ester-based composition to improve heat resistance (Patent Document 10), (Patent Document 11), etc. ing.

しかし、どの提案も環境に配慮した提案とは言えず、難燃剤としてハロゲン化合物やアンチモン化合物を用いないと十分な難燃性を達成できない。
特開平9−227765号公報 特開平9−235449号公報 特開平8−225714号公報 特開平9−241483号公報 特開平7−82343号公報 特開昭61−47725号公報 特開昭61−123618号公報 特開平1−271415号公報 特開平7−48499号公報 特開平5−222148号公報 特開平6−157721号公報)
However, none of these proposals are environmentally friendly proposals, and sufficient flame retardancy cannot be achieved unless halogen compounds or antimony compounds are used as flame retardants.
JP-A-9-227765 JP 9-235449 A JP-A-8-225714 Japanese Patent Laid-Open No. 9-241383 JP 7-82343 A JP-A 61-47725 JP 61-123618 A Japanese Patent Laid-Open No. 1-271415 JP 7-48499 A JP-A-5-222148 (JP-A-6-157721)

本発明は、種々の用途に使用でき、難燃付与成分としてハロゲン化合物、アンチモン化合物を添加することなしに、又は少量添加するだけで優れた難燃性を有し、かつ低吸湿性、密着性に優れた硬化物を与えるエポキシ樹脂組成物を提供しようとするものである。   The present invention can be used in various applications, has excellent flame retardancy without adding a halogen compound or antimony compound as a flame retardant imparting component, or only by adding a small amount, and has low moisture absorption and adhesion. It is intended to provide an epoxy resin composition that gives an excellent cured product.

本発明者等は、前記の課題を解決するために種々研究を重ねた結果、エポキシ樹脂として特定の芳香族炭化水素ホルムアルデヒド樹脂変性ノボラック型エポキシ樹脂を製造し、該エポキシ樹脂を、硬化剤として特定の芳香族基を多く含むフェノール樹脂を用いることによりその目的を達成できたのである。本発明は、以下の各発明を包含する。 As a result of repeated researches to solve the above-mentioned problems, the present inventors manufactured a specific aromatic hydrocarbon formaldehyde resin-modified novolak type epoxy resin as an epoxy resin , and specified the epoxy resin as a curing agent. The purpose could be achieved by using a phenol resin containing a large amount of aromatic groups. The present invention includes the following inventions.

(1)(A)エポキシ樹脂、(B)フェノール系硬化剤、及び(C)硬化促進剤を必須成分とし、(A)エポキシ樹脂が下記一般式(1)で表わされるフェノール樹脂とエピハロヒドリンを反応させることにより得られる、エポキシ当量が150〜330g/eq.、且つ一般式(1)で表わされるフェノール樹脂の水酸基当量から計算した理論値の1.00倍〜1.50倍であるエポキシ樹脂を含有してなるエポキシ樹脂組成物。

Figure 0004451129
(式中、R1、R2は互いに同一であっても異なっていてもよく、炭素数1〜10のアルキル基、置換又は無置換のフェニル基、置換又は無置換のアラルキル基である。m、nは平均値で1〜8の数であり、i、jは0〜3の整数である。) (1) (A) epoxy resin, (B) phenolic curing agent, and (C) curing accelerator as essential components, (A) epoxy resin reacts with phenol resin represented by the following general formula (1) and epihalohydrin The epoxy equivalent is 150 to 330 g / eq. An epoxy resin composition comprising an epoxy resin that is 1.00 to 1.50 times the theoretical value calculated from the hydroxyl equivalent of the phenol resin represented by the general formula (1).
Figure 0004451129
(In formula, R < 1 >, R < 2 > may mutually be same or different, and is a C1-C10 alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted aralkyl group. M , N is an average value of 1 to 8, and i and j are integers of 0 to 3.)

(2)前記(B)フェノール系硬化剤が前記一般式(1)又は下記一般式(2)で表わされるフェノール樹脂であることを特徴とする(1)項記載のエポキシ樹脂組成物。

Figure 0004451129
〔式中、Rは、互いに同一であっても異なっていてもよく、炭素数1〜10のアルキル基、フェニル基、アラルキル基又はアルコキシ基であり、Zは、互いに同一であっても異なっていてもよく、メチレン基又は下記一般式(3)〜(5)で表される2価の基であり、lは、平均値で0〜8の数であり、 kは、互いに同一であっても異なっていてもよく、0〜3の整数である。
Figure 0004451129
(式中、Rは、互いに同一であっても異なっていてもよく、水素原子、炭素数1〜10のアルキル基、フェニル基、又はアラルキル基である。)
Figure 0004451129
(式中、Rは、互いに同一であっても異なっていてもよく、水素原子、炭素数1〜10のアルキル基、フェニル基、又はアラルキル基である。)
Figure 0004451129
(式中、Rは、水素原子、炭素数1〜10のアルキル基、フェニル基、又はアラルキル基であり、Rは、互いに同一であっても異なっていてもよく、炭素数1〜10のアルキル基、フェニル基、アラルキル基又はハロゲン原子であり、hは0〜5の整数である。)。〕 (2) The epoxy resin composition according to item (1), wherein the (B) phenolic curing agent is a phenol resin represented by the general formula (1) or the following general formula (2).
Figure 0004451129
Wherein, R 3, which may be the being the same or different, an alkyl group having 1 to 10 carbon atoms, full Eniru group, an A aralkyl group or an alkoxy group, Z is the same as each other May be different and is a methylene group or a divalent group represented by the following general formulas (3) to (5), l is an average value of 0 to 8 and k is the same as each other Or may be different and is an integer from 0 to 3.
Figure 0004451129
(Wherein, R 4 may be the being the same or different, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, full Eniru group, also an A aralkyl group.)
Figure 0004451129
(Wherein, R 5 may be the being the same or different, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, full Eniru group, also an A aralkyl group.)
Figure 0004451129
(Wherein, R 6 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, full Eniru group, or an A aralkyl group, R 7, which may be the being the same or different carbon atoms 1-10 alkyl group, full Eniru group, an a aralkyl group or a halogen atom, h is an integer of 0-5.). ]

(3)前記(A)エポキシ樹脂として、下記一般式(6)で表わされる結晶性エポキシ樹脂、又は前記一般式(2)で表わされるフェノール樹脂とエピハロヒドリンを反応させることにより得られるエポキシ樹脂を含有してなる(1)項又は(2)項に記載のエポキシ樹脂組成物。

Figure 0004451129
〔式中、Gはグリシジル基である。Aは直接結合、−C(CH)−、−CH−である。Rは互いに同一であっても異なっていてもよく、水素原子、炭素数1〜10のアルキル基、フェニル基、アラルキル基である。gは0〜4の整数である。〕 (3) As the epoxy resin (A), a crystalline epoxy resin represented by the following general formula (6) or an epoxy resin obtained by reacting a phenol resin represented by the general formula (2) with an epihalohydrin is contained. The epoxy resin composition according to item (1) or (2).
Figure 0004451129
[In the formula, G represents a glycidyl group. A is a direct bond, —C (CH 3 ) 2 —, —CH 2 —. R 8 may be the being the same or different, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, full Eniru group, an A aralkyl group. g is an integer of 0-4. ]

)前記一般式(1)で表わされるフェノール樹脂の遊離フェノールが3質量%以下であることを特徴とする(1)項〜()項のいずれか1項に記載のエポキシ樹脂組成物。 ( 4 ) The epoxy resin composition according to any one of items (1) to ( 3 ), wherein a free phenol of the phenol resin represented by the general formula (1) is 3% by mass or less. .

)前記(A)エポキシ樹脂、(B)硬化剤の150℃における混合溶融粘度が0.9Pa・s以下である(1)項〜()項のいずれか1項に記載のエポキシ樹脂組成物。 ( 5 ) The epoxy resin according to any one of (1) to ( 4 ), wherein the (A) epoxy resin and (B) the curing agent have a mixed melt viscosity at 150 ° C. of 0.9 Pa · s or less. Composition.

)前記一般式(1)で表わされるフェノール樹脂とエピハロヒドリンを反応させることにより得られるエポキシ樹脂がエポキシ樹脂全体の70質量%より多いことを特徴とする(1)項〜()項のいずれか1項に記載のエポキシ樹脂組成物。 (6) the general formula (1) an epoxy resin obtained by reacting a phenolic resin with an epihalohydrin represented by is equal to or greater than 70% by weight of the total epoxy resin (1) to (5) of claim The epoxy resin composition according to any one of the above.

)無機充填材として、破砕型及び/又は球状の、溶融及び/又は結晶シリカ粉末を組成物の70〜95質量%配合してなる(1)項〜()項のいずれか1項に記載のエポキシ樹脂組成物。 ( 7 ) Any one of items (1) to ( 6 ), wherein 70 to 95% by mass of the composition of crushed and / or spherical, fused and / or crystalline silica powder is blended as the inorganic filler. The epoxy resin composition described in 1.

)難燃付与成分としてハロゲン化合物及び/又はアンチモン化合物を含まず、その硬化物がUL−94規格のV−0を満足する難燃性を有する(1)項〜()項のいずれか1項に記載のエポキシ樹脂組成物。 ( 8 ) Any of the items (1) to ( 7 ), which does not contain a halogen compound and / or an antimony compound as a flame retardant imparting component, and the cured product has flame retardancy satisfying V-0 of UL-94 standard. The epoxy resin composition according to claim 1.

)前記()項又は()項のいずれか1項に記載のエポキシ樹脂組成物を含有する硬化性樹脂組成物を硬化してなるエポキシ樹脂硬化物。 ( 9 ) An epoxy resin cured product obtained by curing a curable resin composition containing the epoxy resin composition according to any one of ( 7 ) or ( 8 ).

本発明のエポキシ樹脂組成物は、難燃付与成分としてハロゲン化合物、アンチモン化合物を添加することなしに、又は少量添加するだけで優れた難燃性を有し、かつ低吸湿性、密着性に優れる硬化物を与えるので、電気電子分野、特に半導体封止の用途に有用である。   The epoxy resin composition of the present invention has excellent flame retardancy without adding a halogen compound or antimony compound as a flame retardant imparting component, or just by adding a small amount, and is excellent in low moisture absorption and adhesion. Since it gives a cured product, it is useful in the electrical and electronic field, particularly in semiconductor encapsulation applications.

前記一般式(1)で表わされる化合物は、芳香族炭化水素ホルムアルデヒド樹脂、フェノール類及びホルムアルデヒドを反応させることによって得られる。芳香族炭化水素ホルムアルデヒド樹脂の具体例としては、メシチレン-ホルムアルデヒド樹脂、キシレン-ホルムアルデヒド樹脂、トルエン-ホルムアルデヒド樹脂、ベンゼン-ホルムアルデヒド樹脂などが挙げられる。フェノール類としてはフェノール、クレゾール、キシレノールなどが挙げられる。   The compound represented by the general formula (1) can be obtained by reacting an aromatic hydrocarbon formaldehyde resin, phenols and formaldehyde. Specific examples of the aromatic hydrocarbon formaldehyde resin include mesitylene-formaldehyde resin, xylene-formaldehyde resin, toluene-formaldehyde resin, and benzene-formaldehyde resin. Phenols include phenol, cresol, xylenol and the like.

一般式(1)で表わされる化合物の製造方法は、前述した芳香族炭化水素ホルムアルデヒド樹脂とフェノールとを硫酸、塩酸、硝酸などの無機酸、トルエンスルホン酸、キシレンスルホン酸、シュウ酸などの酸性触媒により反応させた後、更にその酸性触媒を使用するか或いは酢酸カルシウム、酢酸マグネシウム、酢酸亜鉛、その他有機酸金属塩、酸化亜鉛などの中性触媒を使用して、ホルムアルデヒドと反応させる方法が挙げられる。また、フェノール類とホルムアルデヒドとを反応させた後、芳香族炭化水素ホルムアルデヒドと反応させる方法や芳香族炭化水素ホルムアルデヒド樹脂、フェノール類、及びホルムアルデヒドを同時に反応させる方法でも実施できる。   The method for producing the compound represented by the general formula (1) comprises the above-described aromatic hydrocarbon formaldehyde resin and phenol, an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid, an acidic catalyst such as toluenesulfonic acid, xylenesulfonic acid or oxalic acid. After the reaction, a method in which the acid catalyst is further used, or a neutral catalyst such as calcium acetate, magnesium acetate, zinc acetate, other organic acid metal salt, zinc oxide or the like is used to react with formaldehyde. . Moreover, after reacting phenols and formaldehyde, it can also implement by the method of reacting with aromatic hydrocarbon formaldehyde, or the method of reacting aromatic hydrocarbon formaldehyde resin, phenols, and formaldehyde simultaneously.

このようにして得られる一般式(1)で表わされる化合物は、この後エポキシ化したものの品質性状を考えると、各成分の種類、使用割合等により変化するが、水酸基当量が100〜270g/eq.、好ましくは120〜240g/eq.、より好ましくは140〜220g/eq.、150℃の溶融粘度が1.1Pa・s以下、好ましくは0.9Pa・s以下、より好ましくは0.7Pa・s以下、軟化点が70〜160℃、好ましくは80〜130℃、より好ましくは80〜100℃、となるよう各種条件等を調整することが好ましい。   The compound represented by the general formula (1) thus obtained varies depending on the type of each component, the use ratio, etc. in view of the quality properties of the epoxidized product, but the hydroxyl group equivalent is 100 to 270 g / eq. . , Preferably 120 to 240 g / eq. , More preferably 140 to 220 g / eq. The melt viscosity at 150 ° C. is 1.1 Pa · s or less, preferably 0.9 Pa · s or less, more preferably 0.7 Pa · s or less, and the softening point is 70 to 160 ° C., preferably 80 to 130 ° C., more preferably. It is preferable to adjust various conditions so that the temperature is 80 to 100 ° C.

また、一般式(1)のフェノール樹脂に含まれる遊離フェノールは3質量%以下、好ましくは2質量%以下、より好ましくは1質量%以下が好ましい。遊離フェノールが多すぎるとエポキシ樹脂組成物の硬化物の耐熱性が低下するだけでなく、高温での取り扱い時の作業環境の悪化にもつながる。
水酸基当量はJIS K0070、軟化点はJIS K7234、遊離フェノールはGC法にて測定した。
Moreover, the free phenol contained in the phenol resin of the general formula (1) is 3% by mass or less, preferably 2% by mass or less, more preferably 1% by mass or less. If there is too much free phenol, not only will the heat resistance of the cured product of the epoxy resin composition be reduced, but it will also lead to a deterioration of the working environment during handling at high temperatures.
The hydroxyl equivalent was measured by JIS K0070, the softening point was measured by JIS K7234, and the free phenol was measured by the GC method.

一般式(1)で表わされる化合物とエピハロヒドリンの反応によって得られるエポキシ樹脂は公知の方法によって製造することができる。代表的な例を以下に詳述する。まず、フェノール性水酸基1モル当たり3〜20モルに相当する量のエピハロヒドリンに溶解させて均一な溶液とする。ついで、その溶液を撹拌しながら、これにフェノール性水酸基1モル当たり0.9〜2.0モル量のアルカリ金属水酸化物を固体又は水溶液で加えて反応させる.この反応は、常圧下又は減圧下で行わせることができ、反応温度は通常、常圧下の反応の場合は30〜150℃であり、減圧下の反応の場合は30〜80℃である。反応は必要に応じて所定の温度を保持しながら反応液を共沸させ、揮発する蒸気を冷却して得られた凝縮液を油/水分離し、水分を除いた油分を反応系へ戻す方法により脱水する。アルカリ金属水酸化物の添加は、急激な反応を抑えるために、1〜8時間かけて少量ずつを断続的もしくは連続的に添加する。その全反応時間は通常、1〜10時間である。   The epoxy resin obtained by the reaction of the compound represented by the general formula (1) and epihalohydrin can be produced by a known method. Representative examples are described in detail below. First, it is dissolved in an amount of epihalohydrin corresponding to 3 to 20 mol per mol of phenolic hydroxyl group to obtain a uniform solution. Then, while stirring the solution, 0.9 to 2.0 moles of alkali metal hydroxide per mole of phenolic hydroxyl group is added as a solid or an aqueous solution to react. This reaction can be carried out under normal pressure or reduced pressure, and the reaction temperature is usually 30 to 150 ° C. for a reaction under normal pressure and 30 to 80 ° C. for a reaction under reduced pressure. In the reaction, the reaction liquid is azeotroped while maintaining a predetermined temperature as required, the condensed liquid obtained by cooling the vaporized vapor is separated into oil / water, and the oil component excluding moisture is returned to the reaction system. To dehydrate. Addition of the alkali metal hydroxide is intermittently or continuously added little by little over 1 to 8 hours in order to suppress a rapid reaction. The total reaction time is usually 1 to 10 hours.

反応終了後、不溶性の副生塩を濾別して除くか、水洗により除去した後、未反応のエピハロヒドリンを減圧留去して除くと、目的のエポキシ樹脂が得られる。この反応におけるエピハロヒドリンとしては、通常、エピクロルヒドリン又はエピブロモヒドリンが用いられる。アルカリ金属水酸化物としては通常、水酸化ナトリウム又は水酸化カリウムが用いられる。   After completion of the reaction, the insoluble by-product salt is removed by filtration or removed by washing with water, and then the unreacted epihalohydrin is removed by distillation under reduced pressure to obtain the desired epoxy resin. As epihalohydrin in this reaction, epichlorohydrin or epibromohydrin is usually used. As the alkali metal hydroxide, sodium hydroxide or potassium hydroxide is usually used.

また、この反応においては、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムブロミドなどの第四級アンモニウム塩;ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノールなどの第三級アミン;2−エチル−4−メチルイミダゾール、2−フェニルイミダゾールなどのイミダゾール類;エチルトリフェニルホスホニウムアイオダイドなどのホスホニウム塩;トリフェニルホスフィンなどのホスフィン類等の触媒を用いても良い。   In this reaction, quaternary ammonium salts such as tetramethylammonium chloride and tetraethylammonium bromide; tertiary amines such as benzyldimethylamine and 2,4,6-tris (dimethylaminomethyl) phenol; 2-ethyl Catalysts such as imidazoles such as -4-methylimidazole and 2-phenylimidazole; phosphonium salts such as ethyltriphenylphosphonium iodide; phosphines such as triphenylphosphine may be used.

さらに、この反応においては、エタノール、イソプロピルアルコールなどのアルコール類;アセトン、メチルエチルケトンなどのケトン類;ジオキサン、エチレングリコールジメチルエーテルなどのエーテル類;メトキシプロパノールなどのグリコールエーテル類;ジメチルスルホキシド、ジメチルホルムアミドなどの非プロトン性極性溶媒等の不活性な有機溶媒を使用しても良い。   Further, in this reaction, alcohols such as ethanol and isopropyl alcohol; ketones such as acetone and methyl ethyl ketone; ethers such as dioxane and ethylene glycol dimethyl ether; glycol ethers such as methoxypropanol; non-dimethyls such as dimethyl sulfoxide and dimethylformamide An inert organic solvent such as a protic polar solvent may be used.

さらに、上記のようにして得られたエポキシ樹脂の可鹸化ハロゲン量が多すぎる場合は、再処理して十分に可鹸化ハロゲン量が低下した精製エポキシ樹脂を得ることができる。つまり、その粗製エポキシ樹脂を、イソプロピルアルコール、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、ジオキサン、メトキシプロパノール、ジメチルスルホキシドなどの不活性な有機溶媒に再溶解しアルカリ金属水酸化物を固体又は水溶液で加えて約30〜120℃の温度で0.5〜8時間再閉環反応を行った後、水洗等の方法で過剰のアルカリ金属水酸化物や副性塩を除去し、さらに有機溶媒を減圧留去して除くと、精製されたエポキシ樹脂が得られる。   Furthermore, when the amount of saponifiable halogen in the epoxy resin obtained as described above is too large, a purified epoxy resin having a sufficiently reduced amount of saponifiable halogen can be obtained by reprocessing. That is, the crude epoxy resin is redissolved in an inert organic solvent such as isopropyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, dioxane, methoxypropanol, dimethyl sulfoxide, and the alkali metal hydroxide is added as a solid or aqueous solution. After re-ringing reaction at a temperature of about 30 to 120 ° C. for 0.5 to 8 hours, excess alkali metal hydroxide and secondary salts are removed by a method such as washing with water, and the organic solvent is distilled off under reduced pressure. When removed, a purified epoxy resin is obtained.

以上のようにして製造される一般式(1)とエピハロヒドリンの反応によって得られるエポキシ樹脂の品質性状は、各成分の種類、使用割合等により変化するが、エポキシ当量が150〜330g/eq.、好ましくは180〜300g/eq.、より好ましくは200〜280g/eq.、150℃の溶融粘度が0.9Pa・s以下、好ましくは0.7Pa・s以下、より好ましくは0.5Pa・s以下、軟化点が50〜120℃、好ましくは60〜110℃、より好ましくは62〜100℃、加水分解性ハロゲンが1000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下、揮発性分(水も含む)は0.9質量%以下、好ましくは0.6質量%以下、より好ましくは0.3質量%以下となるよう各種条件等を調整することが好ましい。   The quality properties of the epoxy resin obtained by the reaction of the general formula (1) and epihalohydrin produced as described above vary depending on the type of each component, the use ratio, and the like, but the epoxy equivalent is 150 to 330 g / eq. , Preferably 180 to 300 g / eq. , More preferably 200 to 280 g / eq. The melt viscosity at 150 ° C. is 0.9 Pa · s or less, preferably 0.7 Pa · s or less, more preferably 0.5 Pa · s or less, and the softening point is 50 to 120 ° C., preferably 60 to 110 ° C., more preferably. Is 62 to 100 ° C., hydrolyzable halogen is 1000 ppm or less, preferably 800 ppm or less, more preferably 600 ppm or less, volatile content (including water) is 0.9 mass% or less, preferably 0.6 mass% or less, More preferably, various conditions and the like are adjusted so as to be 0.3% by mass or less.

エポキシ当量が小さすぎると低吸湿性に劣り、大きすぎると硬化性が悪化する。溶融粘度が高すぎると成型時の流動性が損なわれる。軟化点が低すぎると固体としての取り扱いが困難になり、高すぎるとフェノール樹脂等との混合が困難になる。加水分解性ハロゲンが多すぎると封止材中のハロゲンイオンなどが原因で半導体集積回路のアルミ配線の腐食による不良を起こしてしまう可能性がある。揮発成分が多いと硬化不良を起こしてしまう可能性があると同時に高温での取り扱い時の作業環境の悪化にもつながる。   If the epoxy equivalent is too small, the low hygroscopicity is poor, and if it is too large, the curability deteriorates. If the melt viscosity is too high, fluidity during molding is impaired. If the softening point is too low, handling as a solid becomes difficult, and if it is too high, mixing with a phenol resin or the like becomes difficult. If there is too much hydrolyzable halogen, there is a possibility of causing a defect due to corrosion of the aluminum wiring of the semiconductor integrated circuit due to halogen ions in the sealing material. If there are many volatile components, curing failure may occur, and at the same time, the working environment during handling at high temperatures may be deteriorated.

さらに、エポキシ当量は一般式(1)のフェノール樹脂の水酸基当量から計算した理論値の1.00〜1.50倍、好ましくは1.00〜1.20倍なるよう各種条件等を調整することが好ましい。ここでの理論値とは、一般式(1)のフェノール樹脂のヒドロキシル基が全てグリシジル化した時の値であり、エポキシ当量が理論値より大きすぎることは、ヒドロキシル基がエピハロヒドリン以外のものと反応し、高分子化している等の原因が考えられ、硬化性の悪化や不純物の存在が懸念される。   Furthermore, various conditions are adjusted so that the epoxy equivalent is 1.00 to 1.50 times, preferably 1.00 to 1.20 times the theoretical value calculated from the hydroxyl equivalent of the phenol resin of the general formula (1). Is preferred. The theoretical value here is a value when all the hydroxyl groups of the phenol resin of the general formula (1) are glycidylated, and the epoxy equivalent is larger than the theoretical value. The hydroxyl group reacts with something other than epihalohydrin. However, there are causes such as polymerization, and there are concerns about deterioration of curability and the presence of impurities.

揮発成分はGC法で測定した揮発分とJIS K0068で測定した水分の合計とした。
加水分解性ハロゲンは以下の電位差滴定法にて測定した。
ビーカーに試料1.0 gを精評し、ジオキサン30mlを加え、完全に溶解した。1Nアルコール性KOH 5mlをホールピペットで加えた後、ビーカーに冷却管をつけ、オイルバス中で30分間煮沸還流した。1Nアルコール性KOHは事前に1Lメスフラスコに水酸化カリウム56.1gを秤量し、95.0%エタノールで溶解し調整した。その後ビーカーを冷却し、メタノール5ml、80%アセトン水100mlを加えた。ビーカーに回転子を入れ、硝酸2mlを加え、0.01N硝酸銀標準溶液を用い、電位差滴定装置にて滴定した。次式より加水分解性ハロゲンを計算した。
The volatile component was the sum of the volatile content measured by the GC method and the water content measured by JIS K0068.
Hydrolyzable halogen was measured by the following potentiometric titration method.
Sample 1.0 g was put into a beaker and 30 ml of dioxane was added and completely dissolved. After adding 5 ml of 1N alcoholic KOH with a whole pipette, a condenser was attached to the beaker, and the mixture was boiled and refluxed for 30 minutes in an oil bath. 1N alcoholic KOH was prepared by weighing 56.1 g of potassium hydroxide in a 1 L volumetric flask in advance and dissolving in 95.0% ethanol. Thereafter, the beaker was cooled, and 5 ml of methanol and 100 ml of 80% acetone water were added. The rotor was placed in a beaker, 2 ml of nitric acid was added, and titration was performed using a 0.01N silver nitrate standard solution with a potentiometric titrator. The hydrolyzable halogen was calculated from the following formula.

加水分解性ハロゲン(ppm) =〔(A−B)×C×F×103〕/W
但し、A:試料の滴定に要した0.01N硝酸銀標準溶液の量(ml)、B:空試験の滴定に要した0.01N硝酸銀標準溶液の量(ml)、C:ハロゲンの原子量、N:硝酸銀標準溶液の規定度、F:硝酸銀標準溶液の力価、W:サンプル量(g)。
Hydrolyzable halogen (ppm) = [(AB) × C × F × 10 3 ] / W
However, A: Amount of 0.01N silver nitrate standard solution required for titration of sample (ml), B: Amount of 0.01N silver nitrate standard solution required for titration of blank test (ml), C: Atom atomic weight, N : Normality of silver nitrate standard solution, F: titer of silver nitrate standard solution, W: sample amount (g).

本発明のエポキシ樹脂組成物のエポキシ樹脂は、一般式(1)で表わされるフェノール樹脂とエピハロヒドリンから得られるエポキシ樹脂以外のエポキシ樹脂を混合することができるが、それぞれを個別に製造した後、混合しても良いし、一般式(1)で表わされるフェノール樹脂とその他のエポキシ樹脂の原料である化合物を混合使用してエピハロヒドリンと反応させ、混合エポキシ樹脂として同時に製造しても良い。   The epoxy resin of the epoxy resin composition of the present invention can be mixed with a phenol resin represented by the general formula (1) and an epoxy resin other than an epoxy resin obtained from epihalohydrin. Alternatively, the phenol resin represented by the general formula (1) and a compound that is a raw material of another epoxy resin may be mixed and reacted with epihalohydrin to be simultaneously produced as a mixed epoxy resin.

その混合することができるエポキシ樹脂としては、公知のものが使用できるが、具体例としては、次のフェノール類あるいはフェノール樹脂とエピハロヒドリンから製造されるエポキシ樹脂;ビスフェノールF、ビスフェノールAD、ビフェノール、テトラメチルビフェノール、ビス(4−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシフェニル)プロパン、テルペンジフェノール、ハイドロキノン、メチルハイドロキノン、ジブチルハイドロキノン、レゾルシン、メチルレゾルシン、ビスフェノールS、チオジフェノール、ジヒドロキシジフェニルエーテル、ジヒドロキシナフタレン、フェノールノボラック樹脂、オルソ−クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエンフェノール樹脂、テルペンフェノール樹脂、フェノールアラルキル樹脂、ナフトールノボラック樹脂などの種々のフェノール類や、種々のフェノール類と、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロトンアルデヒド、グリオキザールなどの種々のアルデヒド類との縮合反応で得られる多価フェノール樹脂等の各種のフェノール化合物や、石油系重質油又はピッチ類とホルムアルデヒド重合物とフェノール類とを酸触媒の存在下に重縮合させた変性フェノール樹脂など。次のアミン化合物とエピハロヒドリンとから製造されるエポキシ樹脂;ジアミノジフェニルメタン、アミノフェノール、キシレンジアミンなど、次のカルボン酸類とエピハロヒドリンとから製造されるエポキシ樹脂;メチルヘキサヒドロキシフタル酸、ダイマー酸などが挙げられ、これらを2種以上併用しても良い。   As the epoxy resin that can be mixed, known resins can be used. Specific examples include the following phenols or epoxy resins produced from phenol resins and epihalohydrins; bisphenol F, bisphenol AD, biphenol, tetramethyl. Biphenol, bis (4-hydroxyphenyl) methane, bis (4-hydroxyphenyl) propane, terpene diphenol, hydroquinone, methylhydroquinone, dibutylhydroquinone, resorcin, methylresorcin, bisphenol S, thiodiphenol, dihydroxydiphenyl ether, dihydroxynaphthalene, Phenol novolac resin, ortho-cresol novolac resin, bisphenol A novolac resin, dicyclopentadiene phenol resin, tellurium Polyphenols obtained by condensation reaction of various phenols such as polyphenol resin, phenol aralkyl resin, naphthol novolak resin, and various phenols with various aldehydes such as benzaldehyde, hydroxybenzaldehyde, crotonaldehyde, and glyoxal Various phenolic compounds such as resins, and modified phenolic resins obtained by polycondensation of petroleum heavy oil or pitches, formaldehyde polymers and phenols in the presence of an acid catalyst. Epoxy resins produced from the following amine compounds and epihalohydrins; epoxy resins produced from the following carboxylic acids and epihalohydrins such as diaminodiphenylmethane, aminophenol, and xylenediamine; methyl hexahydroxyphthalic acid, dimer acid, etc. Two or more of these may be used in combination.

一般式(1)で表わされる化合物とエピハロヒドリンの反応によって得られるエポキシ樹脂と混合できるそれ以外のエポキシ樹脂の混合割合は特にその制限はないが、一般式(1)で表わされる化合物とエピハロヒドリンの反応によって得られるエポキシ樹脂がエポキシ樹脂全体の70質量%より多いことが好ましい。一般式(1)で表わされる化合物とエピハロヒドリンの反応によって得られるエポキシ樹脂の混合割合が少なすぎると、本発明のエポキシ樹脂組成物に十分な性能を付与することができない。   The mixing ratio of the other epoxy resin that can be mixed with the epoxy resin obtained by the reaction of the compound represented by the general formula (1) and the epihalohydrin is not particularly limited, but the reaction of the compound represented by the general formula (1) and the epihalohydrin. It is preferable that the epoxy resin obtained by is more than 70 mass% of the whole epoxy resin. If the mixing ratio of the epoxy resin obtained by the reaction of the compound represented by the general formula (1) and epihalohydrin is too small, sufficient performance cannot be imparted to the epoxy resin composition of the present invention.

また、混合できるその他のエポキシ樹脂の中では、混合しても本発明のエポキシ樹脂組成物の特性を損なうことが少なく、流動性を低下させる効果のある結晶性のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビフェノール型エポキシ樹脂及び4,4’−ビフェノール型エポキシ樹脂、難燃性を向上させる効果のあるビフェニルフェノール型のエポキシ樹脂が特に好ましい。   Among other epoxy resins that can be mixed, the crystalline bisphenol A type epoxy resin, bisphenol F, which is less likely to damage the properties of the epoxy resin composition of the present invention even when mixed, has the effect of reducing fluidity. Type epoxy resin, tetramethylbiphenol type epoxy resin, 4,4′-biphenol type epoxy resin, and biphenylphenol type epoxy resin having an effect of improving flame retardancy are particularly preferable.

本発明のエポキシ樹脂組成物において必須成分として使用される(B)硬化剤の具体例としては、芳香族炭化水素ホルムアルデヒド樹脂変性ノボラック型フェノール樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂などの種々の多価フェノール類や、種々のフェノール類とベンズアルデヒド、ヒドロキシベンズアルデヒドなどの種々のアルデヒド類との縮合反応で得られる多価フェノール樹脂等があげられ、これらは1種単独でも、2種以上併用しても良い。   Specific examples of the curing agent (B) used as an essential component in the epoxy resin composition of the present invention include aromatic hydrocarbon formaldehyde resin-modified novolak type phenol resin, phenol novolak resin, cresol novolak resin, phenol aralkyl resin, biphenyl. Examples include various polyhydric phenols such as aralkyl resins and naphthol aralkyl resins, and polyhydric phenol resins obtained by condensation reactions of various phenols with various aldehydes such as benzaldehyde and hydroxybenzaldehyde. One species may be used alone, or two or more species may be used in combination.

また、(A)エポキシ樹脂と(B)硬化剤の150℃における混合溶融粘度は0.9Pa・s以下、好ましくは0.7Pa・s以下、より好ましくは0.5Pa・s以下となるように各種条件などを調整する事が好ましい。溶融粘度が高すぎると成形時の流動性が損なわれる。   Further, the mixed melt viscosity at 150 ° C. of (A) the epoxy resin and (B) the curing agent is 0.9 Pa · s or less, preferably 0.7 Pa · s or less, more preferably 0.5 Pa · s or less. It is preferable to adjust various conditions. If the melt viscosity is too high, fluidity during molding is impaired.

本発明のエポキシ樹脂組成物に使用される硬化剤の使用量は、全エポキシ樹脂成分中のエポキシ基1モルに対して、全硬化剤中のエポキシ基と反応する基が0.5〜2.0モルになる量が好ましく、より好ましくは0.7〜1.2モルである。   The amount of the curing agent used in the epoxy resin composition of the present invention is such that the group that reacts with the epoxy group in the total curing agent is 0.5-2. The amount to be 0 mol is preferred, more preferably 0.7 to 1.2 mol.

本発明のエポキシ樹脂組成物において必須成分として使用される(C)硬化促進剤としては、例えば、トリブチルホスフィン、トリフェニルホスフィン、トリス(ジメトキシフェニル)ホスフィン、トリス(ヒドロキシプロピル)ホスフィン、トリス(シアノエチル)ホスフィンなどのホスフィン化合物、テトラフェニルホスホニウムテトラフェニルボレート、メチルトリブチルホスホニウムテトラフェニルボレート、メチルトリシアノエチルホスホニウムテトラフェニルボレートなどのホスホニウム塩、2−メチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、1−シアノエチル−2−メチルイミダゾール、2,4−ジシアノ−6−[2−メチルイミダゾリル−(1)]−エチル−S−トリアジン、2,4−ジシアノ−6−[2−ウンデシルイミダゾリル−(1)]−エチル−S−トリアジンなどのイミダゾール類、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテ−ト、2−メチルイミダゾリウムイソシアヌレート、2−エチル−4−メチルイミダゾリウムテトラフェニルボレート、2−エチル−1,4−ジメチルイミダゾリウムテトラフェニルボレートなどのイミダゾリウム塩、2,4,6−トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン、テトラメチルブチルグアニジン、N−メチルピペラジン、2−ジメチルアミノ−1−ピロリンなどのアミン類、トリエチルアンモニウムテトラフェニルボレートなどのアンモニウム塩、1,5−ジアザビシクロ(5,4,0)−7−ウンデセン、1,5−ジアザビシクロ(4,3,0)−5−ノネン、1,4−ジアザビシクロ(2,2,2)−オクタンなどのジアザビシクロ化合物、それらジアザビシクロ化合物のテトラフェニルボレート、フェノール塩、フェノールノボラック塩、2−エチルヘキサン酸塩などが挙げられる。それらの硬化促進剤となる化合物の中では、ホスフィン化合物、イミダゾール化合物、ジアザビシクロ化合物、及びそれらの塩が好ましい。
これらの促進剤の使用量は効果促進効果が得られれば特に制限はないが、(A)エポキシ樹脂と(B)硬化剤の総量に対して0.1〜10重量%が好ましく、1〜7重量%がより好ましい。
Examples of the (C) curing accelerator used as an essential component in the epoxy resin composition of the present invention include tributylphosphine, triphenylphosphine, tris (dimethoxyphenyl) phosphine, tris (hydroxypropyl) phosphine, and tris (cyanoethyl). Phosphine compounds such as phosphine, phosphonium salts such as tetraphenylphosphonium tetraphenylborate, methyltributylphosphonium tetraphenylborate, methyltricyanoethylphosphonium tetraphenylborate, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole 2-undecylimidazole, 1-cyanoethyl-2-methylimidazole, 2,4-dicyano-6- [2-methylimidazolyl- (1)]-eth Imidazoles such as -S-triazine, 2,4-dicyano-6- [2-undecylimidazolyl- (1)]-ethyl-S-triazine, 1-cyanoethyl-2-undecylimidazolium trimellitate, Imidazolium salts such as 2-methylimidazolium isocyanurate, 2-ethyl-4-methylimidazolium tetraphenylborate, 2-ethyl-1,4-dimethylimidazolium tetraphenylborate, 2,4,6-tris (dimethyl (Aminomethyl) phenol, benzyldimethylamine, tetramethylbutylguanidine, N-methylpiperazine, amines such as 2-dimethylamino-1-pyrroline, ammonium salts such as triethylammonium tetraphenylborate, 1,5-diazabicyclo (5, 4,0) -7-undecene, 1, -Diazabicyclo (4,3,0) -5-nonene, diazabicyclo compounds such as 1,4-diazabicyclo (2,2,2) -octane, tetraphenylborate, phenol salt, phenol novolak salt of these diazabicyclo compounds, 2- Examples include ethyl hexanoate. Among these compounds serving as curing accelerators, phosphine compounds, imidazole compounds, diazabicyclo compounds, and salts thereof are preferable.
Although there is no restriction | limiting in particular if the usage-amount of these accelerators is acquired, if an effect promotion effect is acquired, 0.1-10 weight% is preferable with respect to the total amount of (A) epoxy resin and (B) hardening | curing agent, and 1-7 Weight percent is more preferred.

本発明のエポキシ樹脂組成物において使用される無機充填剤としては例えば、溶融シリカ、結晶性シリカ、ガラス粉、アルミナ、炭酸カルシウム、硫酸カルシウム、タルクなどが挙げられる。また、本発明のエポキシ樹脂組成物を半導体封止の用途に用いる場合には、無機充填材として、破砕型及び/又は球状の、溶融及び/又は結晶性シリカ粉末充填材を組成物全体の70〜95質量%配合することが好ましい。無機充填剤を使用することにより、封止材の熱膨張係数を内部のシリコンチップやリードフレームに近づけることができ、また封止材全体の吸湿量を減らす事ができるため、耐はんだクラック性を向上させることができる。またその平均粒径は1〜50μm、好ましくは1.5〜40μm、より好ましくは2〜30μmである。粒径が細かすぎると溶融粘度が高くなり流動性が低下してしまい、粒径が大きくなると成形時に金型の狭い隙間に充填剤が目詰まりし材料の充填性を低下させてしまう。   Examples of the inorganic filler used in the epoxy resin composition of the present invention include fused silica, crystalline silica, glass powder, alumina, calcium carbonate, calcium sulfate, and talc. In addition, when the epoxy resin composition of the present invention is used for semiconductor encapsulation, a crushed and / or spherical, fused and / or crystalline silica powder filler is used as the inorganic filler. It is preferable to add to 95% by mass. By using an inorganic filler, the thermal expansion coefficient of the encapsulant can be brought close to that of the internal silicon chip and lead frame, and the moisture absorption amount of the entire encapsulant can be reduced. Can be improved. Moreover, the average particle diameter is 1-50 micrometers, Preferably it is 1.5-40 micrometers, More preferably, it is 2-30 micrometers. If the particle size is too fine, the melt viscosity becomes high and the fluidity is lowered, and if the particle size is large, the filler is clogged in the narrow gap of the mold at the time of molding and the filling property of the material is lowered.

本発明のエポキシ樹脂組成物には、他の一般のエポキシ樹脂組成物と同様に、各種添加剤を配合することができる。それら各種添加剤としては例えば、カップリング剤、難燃剤、可塑剤、反応性希釈剤、顔料等があげられ、必要に応じて適宜に配合することができる。その難燃剤としては、臭素化エポキシ樹脂、臭素化フェノール樹脂などのハロゲン系難燃剤、三酸化アンチモンなどのアンチモン化合物、赤燐、リン酸エステル類、ホスフィン類などのリン系難燃剤、メラミン誘導体などの窒素系難燃剤及び水酸化アルミニウム、水酸化マグネシウムなどの無機系難燃剤などが挙げられる。   Various additives can be mix | blended with the epoxy resin composition of this invention similarly to other general epoxy resin compositions. Examples of these various additives include coupling agents, flame retardants, plasticizers, reactive diluents, pigments, and the like, which can be appropriately blended as necessary. The flame retardants include halogenated flame retardants such as brominated epoxy resins and brominated phenolic resins, antimony compounds such as antimony trioxide, red flame retardants such as red phosphorus, phosphate esters and phosphines, melamine derivatives, etc. Nitrogen-based flame retardants, and inorganic flame retardants such as aluminum hydroxide and magnesium hydroxide.

本発明のエポキシ樹脂組成物の硬化物は難燃性に優れるため、上記のうち特に環境安全性が危惧されている臭素化エポキシ樹脂、臭素化フェノール樹脂などのハロゲン系難燃剤、三酸化アンチモンなどのアンチモン化合物について、これらの難燃剤を配合する必要がないか、少量にすることができる。ただし、組成物中の各成分の種類や配合量により難燃性は変化するので、UL−94規格のV−0あるいはそれに準じた難燃性を確保できるよう各成分の選択や配合量の調整をする必要がある。   Since the cured product of the epoxy resin composition of the present invention is excellent in flame retardancy, among the above, halogenated flame retardants such as brominated epoxy resins and brominated phenol resins that are particularly concerned about environmental safety, antimony trioxide, etc. These antimony compounds do not need to be blended with these flame retardants or can be made in a small amount. However, since flame retardancy varies depending on the type and blending amount of each component in the composition, selection of each component and adjustment of blending amount so as to ensure flame retardancy according to UL-94 V-0 or equivalent. It is necessary to do.

本発明のエポキシ樹脂組成物の硬化物を封止材として用いた際の吸湿率は0.4質量%以下、好ましくは0.3質量%以下、より好ましくは0.2質量%以下である。吸湿率が高いと硬化物中の水分が急激に気化し、その結果、パッケージに大きな応力が発生しクラックが生じてしまう。吸湿率は以下の通り測定した。
直径50mm高さ3mmの円柱の試験片を成形し、105℃で2時間乾燥した。その後、試験片の質量を精秤した後、85℃/85%RHの恒温恒湿槽に入れた。72時間後に質量を測定し、その質量変化を測定した。
The moisture absorption when the cured product of the epoxy resin composition of the present invention is used as a sealing material is 0.4% by mass or less, preferably 0.3% by mass or less, more preferably 0.2% by mass or less. If the moisture absorption rate is high, moisture in the cured product is rapidly vaporized, resulting in a large stress in the package and cracks. The moisture absorption rate was measured as follows.
A cylindrical test piece having a diameter of 50 mm and a height of 3 mm was molded and dried at 105 ° C. for 2 hours. Thereafter, the mass of the test piece was precisely weighed and then placed in a constant temperature and humidity chamber of 85 ° C./85% RH. The mass was measured after 72 hours, and the change in mass was measured.

本発明のエポキシ樹脂組成物の硬化物を封止材として用いた際のガラス転移点以下の線膨張係数α1は5〜25μm/m℃、好ましくは5〜20μm/m℃、より好ましくは5〜15μm/m℃である。ガラス転移点以下の線膨張係数α2は20〜60μm/m℃、好ましくは20〜50μm/m℃、より好ましくは20〜40μm/m℃である。線膨張係数がこれらの範囲から外れると封止樹脂中に熱応力が増大し、パッシベーションやチップの損傷、アルミ配線のスライド、パッケージクラックなどの不良を起こしてしまう。
線膨張係数はTMA法(TA instruments社製 TMA 2940 Thermomechanical Analyzerを使用)にて測定した。
The linear expansion coefficient α1 below the glass transition point when the cured product of the epoxy resin composition of the present invention is used as a sealing material is 5 to 25 μm / m ° C., preferably 5 to 20 μm / m ° C., more preferably 5 to 5 μm / m ° C. 15 μm / m ° C. The linear expansion coefficient α2 below the glass transition point is 20 to 60 μm / m ° C., preferably 20 to 50 μm / m ° C., more preferably 20 to 40 μm / m ° C. If the linear expansion coefficient is out of these ranges, thermal stress increases in the sealing resin, causing defects such as passivation, chip damage, aluminum wiring slides, and package cracks.
The linear expansion coefficient was measured by the TMA method (using TMA 2940 Thermoanalyzer manufactured by TA instruments).

本発明のエポキシ樹脂組成物は、難燃付与成分としてハロゲン化合物、アンチモン化合物を添加することなしに、又は少量添加するだけで優れた難燃性を有し、かつ低吸湿性、密着性に優れる硬化物を与えるので、電気電子分野、特に半導体封止の用途に有用である。   The epoxy resin composition of the present invention has excellent flame retardancy without adding a halogen compound or antimony compound as a flame retardant imparting component, or just by adding a small amount, and is excellent in low moisture absorption and adhesion. Since it gives a cured product, it is useful in the electrical and electronic field, particularly in semiconductor encapsulation applications.

以下に、本発明で使用される芳香族炭化水素ホルムアルデヒド樹脂変性ノボラック型エポキシ樹脂の製造例、本発明のエポキシ樹脂組成物の実施例及び比較例を挙げてさらに詳述する。   The production examples of the aromatic hydrocarbon formaldehyde resin-modified novolak type epoxy resins used in the present invention, examples of the epoxy resin composition of the present invention, and comparative examples will be described in further detail below.

〔予備製造例〕
温度計、撹拌装置、冷却管を備えた内容量2Lの三口フラスコに、キシレン220g、硫酸130g、を仕込み、90℃に昇温して均一に溶解させた後、35%ホルムアルデヒド水溶液240gを1時間かけて滴下した。滴下終了後、90℃で5時間保持し反応を完了させ、水洗により硫酸を除去した。系内が中性になるまで水洗を繰り返した後、生成物から減圧下でキシレンを留去してキシレン-ホルムアルデヒド樹脂を得た。以後、このキシレン−ホルムアルデヒド樹脂をXF樹脂とする。
[Preliminary production example]
A 2 L three-necked flask equipped with a thermometer, a stirrer, and a cooling tube was charged with 220 g of xylene and 130 g of sulfuric acid, heated to 90 ° C. and uniformly dissolved, and then 240 g of 35% formaldehyde aqueous solution was added for 1 hour. It was dripped over. After completion of the dropwise addition, the reaction was completed by maintaining at 90 ° C. for 5 hours, and sulfuric acid was removed by washing with water. Washing with water was repeated until the system became neutral, and then xylene was distilled off from the product under reduced pressure to obtain a xylene-formaldehyde resin. Hereinafter, this xylene-formaldehyde resin is referred to as XF resin.

〔製造例1〕
温度計、撹拌装置、冷却管を備えた内容量2Lの三口フラスコに、先に得られたXF樹脂200gにフェノール300g、p−トルエンスルホン酸0.1gを加え、100℃で2時間攪拌した。その後、ホルマリン35g、シュウ酸1.5gを加え3時間攪拌した。反応混合物をメチルイソブチルケトン500gに溶解し、65℃で中性になるまで水洗を繰り返した。次いで減圧下でメチルイソブチルケトン、フェノールを160℃、減圧下で留去して芳香族炭化水素ホルムアルデヒド樹脂変性ノボラック型フェノール樹脂を得た。水酸基当量163g/eq.、150℃における溶融粘度0.21Pa・s、軟化点84℃、遊離フェノール0.1質量%以下であった。またこの樹脂は一般式(1)においてR2=CH3、i=0、j=2、m=2.3、n=1.6であった。
(Production Example 1)
300 g of phenol and 0.1 g of p-toluenesulfonic acid were added to 200 g of the previously obtained XF resin in a 2 L three-necked flask equipped with a thermometer, a stirrer, and a condenser, and stirred at 100 ° C. for 2 hours. Thereafter, 35 g of formalin and 1.5 g of oxalic acid were added and stirred for 3 hours. The reaction mixture was dissolved in 500 g of methyl isobutyl ketone and washed repeatedly with water until neutral at 65 ° C. Subsequently, methyl isobutyl ketone and phenol were distilled off under reduced pressure at 160 ° C. under reduced pressure to obtain an aromatic hydrocarbon formaldehyde resin-modified novolak type phenol resin. Hydroxyl equivalent weight 163 g / eq. The melt viscosity at 150 ° C. was 0.21 Pa · s, the softening point was 84 ° C., and the free phenol was 0.1% by mass or less. The resin in the general formula (1) R 2 = CH 3 , i = 0, j = 2, m = 2.3, was n = 1.6.

こうして得られた芳香族炭化水素ホルムアルデヒド樹脂変性ノボラック型フェノール樹脂150g、エピクロルヒドリン510g、イソプロピルアルコール200gを温度計、撹拌装置、冷却管を備えた内容量2Lの三口フラスコに仕込み、40℃に昇温して均一に溶解させた後、48.5質量%の水酸化ナトリウム水溶液90gを60分かけて滴下した。その間に徐々に昇温し、滴下終了後には系内が65℃になるようにした。その後、65℃で30分保持し反応を完了させ、水洗により副生塩及び過剰の水酸化ナトリウムを除去した。ついで、生成物から減圧下で過剰のエピクロルヒドリンとイソプロパノールを留去して、粗製エポキシ樹脂を得た。この粗製エポキシ樹脂をメチルイソブチルケトン300gに溶解させ、48.5質量%の水酸化ナトリウム水溶液9gを加え、65℃の温度で1時間反応させた。その後、反応液に第一リン酸ナトリウム水溶液を加えて、過剰の水酸化ナトリウムを中和し、水洗して副生塩を除去した。次いで、減圧下でメチルイソブチルケトンを完全に除去して、目的のエポキシ樹脂180gを得た。得られた樹脂はエポキシ当量247g/eq.(水酸基当量から計算した理論値は219g/eq.)、加水分解性ハロゲン400ppm、150℃における溶融粘度は0.18Pa・s、軟化点は63℃であった。   The thus obtained aromatic hydrocarbon formaldehyde resin-modified novolak-type phenolic resin 150 g, epichlorohydrin 510 g, and isopropyl alcohol 200 g were charged into a 2 L three-necked flask equipped with a thermometer, a stirrer, and a cooling tube, and the temperature was raised to 40 ° C. Then, 90 g of a 48.5% by mass aqueous sodium hydroxide solution was added dropwise over 60 minutes. During this time, the temperature was gradually raised, and the temperature inside the system was adjusted to 65 ° C. after the dropping was completed. Thereafter, the reaction was completed by maintaining at 65 ° C. for 30 minutes, and by-product salt and excess sodium hydroxide were removed by washing with water. Subsequently, excess epichlorohydrin and isopropanol were distilled off from the product under reduced pressure to obtain a crude epoxy resin. This crude epoxy resin was dissolved in 300 g of methyl isobutyl ketone, 9 g of 48.5 mass% sodium hydroxide aqueous solution was added, and the mixture was reacted at a temperature of 65 ° C. for 1 hour. Thereafter, an aqueous sodium phosphate solution was added to the reaction solution to neutralize excess sodium hydroxide and washed with water to remove by-product salts. Next, methyl isobutyl ketone was completely removed under reduced pressure to obtain 180 g of the desired epoxy resin. The obtained resin had an epoxy equivalent of 247 g / eq. (Theoretical value calculated from hydroxyl group equivalent was 219 g / eq.), Hydrolyzable halogen 400 ppm, melt viscosity at 150 ° C. was 0.18 Pa · s, and softening point was 63 ° C.

〔製造例2〕
製造例1においてホルマリンの量を55gに置き換えた以外は、製造例1と同様の操作を行い、芳香族炭化水素ホルムアルデヒド樹脂変性ノボラック型フェノール樹脂を得た。得られた樹脂は水酸基当量170g/eq.、150℃における溶融粘度0.62Pa・s、軟化点95℃、遊離フェノール0.1質量%以下であった。またこの樹脂は一般式(1)においてR=CH、i=0、j=2、m=2.9、n=2.1であった。つづいて製造例1と同様の操作を行い、エポキシ樹脂を得た。得られた樹脂はエポキシ当量249g/eq.(水酸基当量から計算した理論値は226g/eq.)、加水分解性ハロゲン500ppm、150℃における溶融粘度は0.48Pa・s、軟化点は80℃であった。
[Production Example 2]
Except that the amount of formalin was replaced with 55 g in Production Example 1, the same operation as in Production Example 1 was performed to obtain an aromatic hydrocarbon formaldehyde resin-modified novolak type phenol resin. The obtained resin had a hydroxyl equivalent weight of 170 g / eq. The melt viscosity at 150 ° C. was 0.62 Pa · s, the softening point was 95 ° C., and the free phenol was 0.1% by mass or less. The resin in the general formula (1) R 2 = CH 3 , i = 0, j = 2, m = 2.9, was n = 2.1. Subsequently, the same operation as in Production Example 1 was performed to obtain an epoxy resin. The obtained resin had an epoxy equivalent of 249 g / eq. (Theoretical value calculated from hydroxyl group equivalent was 226 g / eq.), Hydrolyzable halogen 500 ppm, melt viscosity at 150 ° C. was 0.48 Pa · s, and softening point was 80 ° C.

〔製造例3〕
製造例1においてホルマリンの量を70g、メチルイソブチルケトン、フェノールの留去の温度を120℃に置き換えた以外は、製造例1と同様の操作を行い、芳香族炭化水素ホルムアルデヒド樹脂変性ノボラック型フェノール樹脂を得た。得られた樹脂は水酸基当量190g・/eq.、150℃における溶融粘度4.2Pa・s、軟化点109℃、遊離フェノール3.6質量%であった。またこの樹脂は一般式(1)においてR=CH、i=0、j=2、m=9.8、n=7.5であった。つづいて、製造例1において、エピクロロヒドリンの量を440g、イソプロピルアルコールの量を170g、48.5質量%の水酸化ナトリウム水溶液の量を70gとした以外は、製造例1と同様の操作を行い、エポキシ樹脂を得た。得られた樹脂はエポキシ当量296g/eq.(水酸基当量から計算した理論値は246g/eq.)、加水分解性ハロゲン700ppm、150℃における溶融粘度は2.4Pa・s、軟化点は97℃であった。
[Production Example 3]
The same procedure as in Production Example 1 was performed except that the amount of formalin in Production Example 1 was replaced with 70 g, methyl isobutyl ketone, and phenol distillation temperature at 120 ° C., and an aromatic hydrocarbon formaldehyde resin-modified novolak phenol resin Got. The resulting resin had a hydroxyl equivalent weight of 190 g · eq. The melt viscosity at 150 ° C. was 4.2 Pa · s, the softening point was 109 ° C., and the free phenol was 3.6% by mass. The resin in the general formula (1) R 2 = CH 3 , i = 0, j = 2, m = 9.8, was n = 7.5. Subsequently, in Production Example 1, the same operation as in Production Example 1 except that the amount of epichlorohydrin was 440 g, the amount of isopropyl alcohol was 170 g, and the amount of 48.5 mass% sodium hydroxide aqueous solution was 70 g. To obtain an epoxy resin. The obtained resin had an epoxy equivalent of 296 g / eq. (Theoretical value calculated from hydroxyl group equivalent was 246 g / eq.), 700 ppm hydrolyzable halogen, melt viscosity at 150 ° C. was 2.4 Pa · s, and softening point was 97 ° C.

〔製造例4〕
製造例3においてエピクロロヒドリンの量を230g、イソプロピルアルコールの量を90g、48.5質量%の水酸化ナトリウム水溶液の量を70gとした以外は、製造例1と同様の操作を行い、エポキシ樹脂を得た。得られた樹脂はエポキシ当量372g/eq.(水酸基当量から計算した理論値は246g/eq.)、加水分解性ハロゲン1100ppm、150℃における溶融粘度は5.4Pa・s、軟化点は122℃であった。
[Production Example 4]
The same operation as in Production Example 1 was carried out except that the amount of epichlorohydrin was 230 g, the amount of isopropyl alcohol was 90 g, and the amount of 48.5 mass% sodium hydroxide aqueous solution was 70 g in Production Example 3. A resin was obtained. The obtained resin had an epoxy equivalent of 372 g / eq. (Theoretical value calculated from hydroxyl group equivalent was 246 g / eq.), Hydrolyzable halogen was 1100 ppm, melt viscosity at 150 ° C. was 5.4 Pa · s, and softening point was 122 ° C.

〔エポキシ樹脂組成物実施例1〜6及び比較例1〜4〕
表1に示したように、エポキシ樹脂として製造例1〜4で得られたエポキシ樹脂、テトラメチルビフェノールから誘導されたエポキシ樹脂、ビフェノールとテトラメチルビフェノールから誘導されたエポキシ樹脂、ビスフェノールA型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂又はオルソクレゾールノボラック樹脂から誘導されたエポキシ樹脂、エポキシ樹脂用硬化剤として一般式(1)で表わされるフェノール樹脂、フェノールアラルキル樹脂、ビフェニルフェノール樹脂、フェノール/ベンズアルデヒドノボラック型樹脂、ナフトールアラルキル樹脂、フェノールノボラック樹脂、無機充填剤としてシリカ粉末、硬化促進剤としてトリフェニルホスフィンを用い、さらにカップリング剤としてエポキシシラン、離形剤としてカルナバワックスをそれぞれ用いて、各エポキシ樹脂組成物を配合した。次いで、各配合物をミキシングロールを用いて70〜120℃の温度で5分間溶融混練した。得られた各溶融混合物は薄板状に取り出し冷却した後、粉砕して各成形材料を得た。これらの各成形材料を用い低圧トランスファー成形機で金型温度175℃、成形時間180秒で成形して、各試験片を得、180℃で8時間ポストキュアさせた。ポストキュア後の各試験片の吸湿率、ガラス転移温度、及び密着性、難燃性を試験した結果を表1及び表2に示した。さらに各成形材料により封止された模擬半導体装置の耐ハンダクラック性を試験した結果を表1及び表2に示した。またエポキシ樹脂と硬化剤の混合溶融粘度を表1及び表2に示した。
[Epoxy Resin Composition Examples 1 to 6 and Comparative Examples 1 to 4]
As shown in Table 1, the epoxy resin obtained in Production Examples 1 to 4 as an epoxy resin, an epoxy resin derived from tetramethylbiphenol, an epoxy resin derived from biphenol and tetramethylbiphenol, and a bisphenol A type epoxy resin , Epoxy resin derived from tetrabromobisphenol A type epoxy resin or orthocresol novolak resin, phenol resin represented by general formula (1) as a curing agent for epoxy resin, phenol aralkyl resin, biphenylphenol resin, phenol / benzaldehyde novolak type Resin, naphthol aralkyl resin, phenol novolak resin, silica powder as inorganic filler, triphenylphosphine as curing accelerator, epoxy silane as release agent, mold release agent Using carnauba wax each was formulated each epoxy resin composition. Subsequently, each compound was melt-kneaded for 5 minutes at a temperature of 70 to 120 ° C. using a mixing roll. Each obtained molten mixture was taken out into a thin plate shape, cooled, and then pulverized to obtain each molding material. Each of these molding materials was molded by a low pressure transfer molding machine at a mold temperature of 175 ° C. and a molding time of 180 seconds to obtain each test piece, which was post-cured at 180 ° C. for 8 hours. Tables 1 and 2 show the results of testing the moisture absorption rate, glass transition temperature, adhesion, and flame retardancy of each test piece after post cure. Furthermore, Table 1 and Table 2 show the results of testing the solder crack resistance of the simulated semiconductor device sealed with each molding material. Tables 1 and 2 show the mixed melt viscosity of the epoxy resin and the curing agent.

Figure 0004451129
Figure 0004451129

Figure 0004451129
*1: A;テトラメチルビフェニル型エポキシ樹脂(ジャパンエポキシレジン社商品
名 エピコートYX4000H,エポキシ当量:193(g/eq))
*2: B;ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社商品名 エピコー
トYL6121H,エポキシ当量:172(g/eq),)
*3: C;ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社商品名
エピコートYL6810,エポキシ当量:172(g/eq),)
*4: D;クレゾ−ルノボラック型エポキシ樹脂(ジャパンエポキシレジン社商品名
エピコート180S62,エポキシ当量:197(g/eq))
*5: E;臭素化エポキシ樹脂(日本化薬社商品名 BREN-S、エポキシ当量:385
(g/eq)、臭素含量:48%)
*6: F;フェノールアラルキル樹脂(明和化成社商品名 MEH-7800S,水酸基当
量:175(g/eq),軟化点:75(℃)
*7: G;芳香族炭化水素ホルムアルデヒド樹脂変性ノボラック型フェノール樹脂
(三菱瓦斯化学社商品名 ニカノールGLP,水酸基当量:163(g/eq),
軟化点:86(℃)
*8: H;フェノール/ベンズアルデヒドノボラック型樹脂(ジャパンエポキシレジ ン社商品名 エピキュアYLH1027,水酸基当量:150(g/eq)),軟 化点:82(℃)
*9: I;ビフェニルフェノール樹脂(明和化成社商品名 MEH-7851S,水酸基当 量:205(g/eq),軟化点:75(℃)
*10: J;ナフトールアラルキル樹脂(明和化成社商品名 MEH-7700,水酸基当量:
140(g/eq),軟化点:96(℃)
*11: K;フェノールノボラック樹脂(群栄化学社商品名 レヂトップPSM4261,水酸
基当量:103(g/eq),軟化点:85℃)
*12: 溶融シリカ粉末(龍森社商品名 RD-8)
*13: エポキシシラン(信越化学工業社商品名 KBM-403)
*14: エポキシ樹脂と硬化剤のみを混合溶融させてICI粘度計により測定。
*15: EMMI−1−66
*16: TMA法
*17: 85℃、85%RH、72時間後の吸湿率
*18: アルミピール試験
*19: 80ピンQFP16個を85℃、85%RHにおいて72時間吸湿後、260℃ハンダ浴に10秒
間浸漬し、クラックの発生した個数を求めた。
*20: UL94
Figure 0004451129
* 1: A: Tetramethylbiphenyl type epoxy resin (Japan Epoxy Resin Products)
Name Epicoat YX4000H, epoxy equivalent: 193 (g / eq))
* 2: B: Biphenyl type epoxy resin (Japan Epoxy Resin product name EPICO
YL6121H, epoxy equivalent: 172 (g / eq),)
* 3: C: Bisphenol A type epoxy resin (trade name of Japan Epoxy Resin Co., Ltd.)
Epicoat YL6810, epoxy equivalent: 172 (g / eq),)
* 4: D: Cresol-Lenovorac type epoxy resin (Japan Epoxy Resin product name)
Epicoat 180S62, epoxy equivalent: 197 (g / eq))
* 5: E: Brominated epoxy resin (Nippon Kayaku Co., Ltd. trade name BREN-S, epoxy equivalent: 385
(g / eq), bromine content: 48%)
* 6: F: Phenol aralkyl resin (Maywa Kasei Co., Ltd., MEH-7800S, hydroxyl group)
Amount: 175 (g / eq), softening point: 75 (° C)
* 7: G: Aromatic hydrocarbon formaldehyde resin-modified novolak phenol resin
(Product name: Mitsubishi Gas Chemical Company, Nikanol GLP, hydroxyl equivalent: 163 (g / eq),
Softening point: 86 (℃)
* 8: H: Phenol / benzaldehyde novolak resin (trade name: EpiCure YLH1027, hydroxyl equivalent: 150 (g / eq)), Softening point: 82 (° C)
* 9: I: Biphenylphenol resin (Maywa Kasei Co., Ltd. trade name MEH-7851S, hydroxyl group equivalent: 205 (g / eq), softening point: 75 (° C)
* 10: J: Naphthol aralkyl resin (Maywa Kasei Co., Ltd. trade name MEH-7700, hydroxyl equivalent:
140 (g / eq), softening point: 96 (℃)
* 11: K: Phenol novolac resin (Gunei Chemical Co., Ltd., trade name Resitop PSM4261, Hydroxic Acid
Base equivalent: 103 (g / eq), softening point: 85 ° C)
* 12: Fused silica powder (trade name RD-8, Tatsumori)
* 13: Epoxy silane (trade name KBM-403, Shin-Etsu Chemical Co., Ltd.)
* 14: Measured with ICI viscometer after mixing and melting only epoxy resin and curing agent.
* 15: EMMI-1-66
* 16: TMA method * 17: Moisture absorption rate after 72 hours at 85 ° C, 85% RH * 18: Aluminum peel test * 19: Solder at 260 ° C after absorbing 80 pin QFP at 85 ° C and 85% RH for 72 hours 10 seconds to bath
It was immersed for a while and the number of cracks was determined.
* 20: UL94

上記表1及び表2から明らかなように、実施例1〜6の各成形材料は、比較例1〜4の成形材料と比較してハロゲン化合物、アンチモン化合物を添加することなしに、優れた難燃性を有するとともに、低吸湿性、密着性のバランスに優れ、さらに耐ハンダクラック性に優れていた。また比較例3、4の成形材料は低吸湿性、密着性には優れていたが、混合溶融粘度が高いため、スパイラルフローが短く、著しく流動性に劣っていた。   As apparent from Table 1 and Table 2 above, the molding materials of Examples 1 to 6 were superior to the molding materials of Comparative Examples 1 to 4 without adding a halogen compound or an antimony compound. In addition to being flammable, it was excellent in the balance between low moisture absorption and adhesion, and also excellent in solder crack resistance. In addition, the molding materials of Comparative Examples 3 and 4 were excellent in low moisture absorption and adhesion, but because of the high mixed melt viscosity, the spiral flow was short and the fluidity was remarkably inferior.

Claims (9)

(A)エポキシ樹脂、(B)フェノール系硬化剤、及び(C)硬化促進剤を必須成分とするエポキシ樹脂組成物であって
(A)エポキシ樹脂として、下記一般式(1)で表されるフェノール樹脂とエピハロヒドリンを反応させることにより得られるエポキシ樹脂であって、そのエポキシ当量が150〜330g/eq.で、下記一般式(1)で表されるフェノール樹脂の水酸基当量から計算した理論値の1.00倍〜1.50倍であり、且つ、加水分解性ハロゲンが1000ppm以下、150℃における溶融粘度が0.9Pa・s以下、及び軟化点が50〜120℃のエポキシ樹脂を含有することを特徴とするエポキシ樹脂組成物。
Figure 0004451129
(式中、R、Rは同一であっても異なっていてもよく、炭素数1〜10のアルキル基、フェニル基、又はアラルキル基である。m、nは平均値で1〜8の数であり、i、jは0〜3の整数である。)
An epoxy resin composition containing (A) an epoxy resin, (B) a phenolic curing agent, and (C) a curing accelerator as essential components,
(A) as an epoxy resin, an epoxy resin obtained by reacting a phenolic resin with an epihalohydrin represented by the following general formula (1), its epoxy equivalent 150~330g / eq. In, Ri 1.00 times 1.50 Baidea the theoretical values calculated from the hydroxyl equivalent of the phenolic resin represented by the following general formula (1), and, hydrolyzable halogens 1000ppm or less, melting at 0.99 ° C. An epoxy resin composition comprising an epoxy resin having a viscosity of 0.9 Pa · s or less and a softening point of 50 to 120 ° C.
Figure 0004451129
(Wherein, R 1, R 2 may be the same or different and is an alkyl group, full Eniru group, or A aralkyl group having 1 to 10 carbon atoms .m, n is 1 to the mean value 8 and i and j are integers from 0 to 3.)
前記(B)フェノール系硬化剤が前記一般式(1)又は下記一般式(2)で表されるフェノール樹脂であることを特徴とする請求項1記載のエポキシ樹脂組成物。
Figure 0004451129
〔(式中、Rは、互いに同一であっても異なっていてもよく、炭素数1〜10のアルキル基、フェニル基、アラルキル基又はアルコキシ基であり、Zは、互いに同一であっても異なってもいてもよく、メチレン基又は下記一般式(3)〜(5)で表される2価の基であり、lは、平均値で0〜8の数であり、kは、互いに同一であっても異なっていてもよく、0〜3の整数である。
Figure 0004451129
(式中、Rは、互いに同一であっても異なっていてもよく、水素原子、炭素数1〜10のアルキル基、フェニル基、又はアラルキル基である。)
Figure 0004451129
(式中、Rは、互いに同一であっても異なっていてもよく、水素原子、炭素数1〜10のアルキル基、フェニル基、又はアラルキル基である。)
Figure 0004451129
(式中、Rは、水素原子、炭素数1〜10のアルキル基、フェニル基、又はアラルキル基であり、Rは、互いに同一であっても異なっていてもよく、水素原子、炭素数1〜10のアルキル基、フェニル基、アラルキル基又はハロゲン原子であり、hは0〜5の整数である。)。〕
The epoxy resin composition according to claim 1, wherein the (B) phenolic curing agent is a phenol resin represented by the general formula (1) or the following general formula (2).
Figure 0004451129
[(Wherein, R 3, which may be the being the same or different, an alkyl group having 1 to 10 carbon atoms, full Eniru group, an A aralkyl group or an alkoxy group, Z is a identical to one another May be different from each other, and is a methylene group or a divalent group represented by the following general formulas (3) to (5), l is an average value of 0 to 8, and k is They may be the same as or different from each other, and are integers from 0 to 3.
Figure 0004451129
(Wherein, R 4 may be the being the same or different, a hydrogen atom, an alkyl group, full Eniru group having 1 to 10 carbon atoms, or an aralkyl group.)
Figure 0004451129
(Wherein, R 5 may be the being the same or different, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, full Eniru group, also an A aralkyl group.)
Figure 0004451129
(Wherein, R 6 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, full Eniru group, or an A aralkyl group, R 7, which may be the being the same or different, a hydrogen atom , alkyl group having 1 to 10 carbon atoms, full Eniru group, an a aralkyl group or a halogen atom, h is an integer of 0-5.). ]
前記(A)エポキシ樹脂として、下記一般式(6)で表される結晶性エポキシ樹脂、又は前記一般式(2)で表されるフェノール樹脂とエピハロヒドリンを反応させることにより得られるエポキシ樹脂を含有してなる請求項1又は請求項2に記載のエポキシ樹脂組成物。
Figure 0004451129
(式中、Gはグリシジル基である。Aは直接結合、−C(CH−、−CH−である。Rは互いに同一であっても異なっていてもよく、水素原子、炭素数1〜10のアルキル基、フェニル基、アラルキル基である。gは0〜4の整数である。)
The epoxy resin (A) contains a crystalline epoxy resin represented by the following general formula (6), or an epoxy resin obtained by reacting a phenol resin represented by the general formula (2) with an epihalohydrin. The epoxy resin composition according to claim 1 or 2.
Figure 0004451129
(In the formula, G is a glycidyl group. A is a direct bond, —C (CH 3 ) 2 —, —CH 2 —. R 8 s may be the same as or different from each other; alkyl group having 1 to 10 carbon atoms, full Eniru group, is .g an a aralkyl group is an integer of 0-4.)
前記一般式(1)で表されるフェノール樹脂の遊離フェノールが3質量%以下であることを特徴とする請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, wherein a free phenol of the phenol resin represented by the general formula (1) is 3% by mass or less . 前記(A)エポキシ樹脂、(B)硬化剤の150℃における混合溶融粘度が0.9pa・s以下である請求項1〜4のいずれか1項に記載のエポキシ樹脂組成物。 5. The epoxy resin composition according to claim 1, wherein the ( A) epoxy resin and (B) the curing agent have a mixed melt viscosity at 150 ° C. of 0.9 pa · s or less . 前記一般式(1)で表されるフェノール樹脂とエピハロヒドリンを反応させることにより得られるエポキシ樹脂が(A)エポキシ樹脂全体の70質量%より多いことを特徴とする請求項1〜5のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin obtained by reacting the phenol resin represented by the general formula (1) and epihalohydrin is more than 70% by mass of (A) the entire epoxy resin, 6. The epoxy resin composition according to item. 無機充填剤として、破砕型及び/又は球状の、溶融及び/又は結晶シリカ粉末を組成物の70〜95質量%配合してなる請求項1〜6のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 6, comprising 70 to 95% by mass of a crushed and / or spherical fused and / or crystalline silica powder as the inorganic filler . . 難燃付与成分としてハロゲン化合物及び/又はアンチモン化合物を含まず、その硬化物がUL−94規格のV−0を満足する難燃性を有する請求項6又は7に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 6 or 7, which does not contain a halogen compound and / or an antimony compound as a flame retardant imparting component, and the cured product thereof has flame retardancy satisfying V-0 of UL-94 standard . 請求項1〜請求項8のいずれか1項に記載のエポキシ樹脂組成物を含有する硬化性樹脂組成物を硬化してなるエポキシ樹脂硬化物 The epoxy resin hardened | cured material formed by hardening | curing the curable resin composition containing the epoxy resin composition of any one of Claims 1-8 .
JP2003416443A 2003-12-15 2003-12-15 Epoxy resin composition Expired - Lifetime JP4451129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003416443A JP4451129B2 (en) 2003-12-15 2003-12-15 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416443A JP4451129B2 (en) 2003-12-15 2003-12-15 Epoxy resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009188228A Division JP5272963B2 (en) 2009-08-17 2009-08-17 Epoxy resin and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005171188A JP2005171188A (en) 2005-06-30
JP4451129B2 true JP4451129B2 (en) 2010-04-14

Family

ID=34735638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416443A Expired - Lifetime JP4451129B2 (en) 2003-12-15 2003-12-15 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP4451129B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176595A (en) * 2004-12-21 2006-07-06 Matsushita Electric Works Ltd Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JP2007138128A (en) * 2005-10-20 2007-06-07 Matsushita Electric Works Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2007262235A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Semiconductor-sealing epoxy resin and semiconductor device
WO2008047613A1 (en) * 2006-10-11 2008-04-24 Nipponkayaku Kabushikikaisha Epoxy resin, method for producing the epoxy resin, epoxy resin composition using the epoxy resin, and cured product of the epoxy resin composition
JP5473209B2 (en) * 2007-10-29 2014-04-16 日本化薬株式会社 Phenolic resin, epoxy resin, epoxy resin composition and cured product thereof
JP5268606B2 (en) * 2008-12-08 2013-08-21 日本化薬株式会社 Phenolic resin, epoxy resin, epoxy resin composition and cured product thereof
JP5413127B2 (en) * 2009-10-29 2014-02-12 住友ベークライト株式会社 Semiconductor sealing resin composition, semiconductor device using the same, and method for producing semiconductor sealing resin composition
JP5353636B2 (en) * 2009-10-29 2013-11-27 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device using the same
JP5673237B2 (en) * 2011-03-10 2015-02-18 住友ベークライト株式会社 Resin composition for sealing and electronic component device
JP2017132897A (en) * 2016-01-27 2017-08-03 三菱ケミカル株式会社 Epoxy resin composition containing phenolic resin as curing agent, cured product of the same, and electric and electronic component using the cured product
WO2020129248A1 (en) * 2018-12-21 2020-06-25 日立化成株式会社 Sealing resin composition and electronic component device

Also Published As

Publication number Publication date
JP2005171188A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP4451129B2 (en) Epoxy resin composition
US6255365B1 (en) Epoxy resin composition for semiconductor encapsulation
EP1352008B1 (en) Epoxy resin composition for semiconductor encapsulation
JP2014034629A (en) Epoxy resin composition, cured product and semiconductor sealing material
JP4237600B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP5616234B2 (en) Epoxy resin composition, method for producing the epoxy resin composition, and cured product thereof
JP4956879B2 (en) Epoxy resin, method for producing the same, and epoxy resin composition
JP3880912B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3369323B2 (en) Epoxy resin composition for semiconductor encapsulation
JP5040404B2 (en) Epoxy resin composition for sealing material, cured product thereof and semiconductor device
JP4684538B2 (en) Epoxy resin, its production method, epoxy resin composition and semiconductor device
JP5272963B2 (en) Epoxy resin and method for producing the same
JP4956878B2 (en) Polyhydric phenol compound, curing agent for epoxy resin using the compound, and epoxy resin composition
JP5716512B2 (en) Epoxy resin and method for producing the same
JPH1060091A (en) Epoxy resin composition for sealing semiconductor
JP4667753B2 (en) Epoxy resin production method, epoxy resin composition and cured product
JP2002128868A (en) Epoxy resin composition for sealing semiconductor
JP4784374B2 (en) Epoxy resin, method for producing the same, epoxy resin composition, and semiconductor device
JP2004224818A (en) Epoxy resin composition
JP2011017018A (en) Epoxy resin composition and semiconductor device
JP5252671B2 (en) Crystalline epoxy resin, epoxy resin composition and cured product thereof
JP4483463B2 (en) Epoxy resin, method for producing the same, epoxy resin composition, and semiconductor device
JP2000095922A (en) Epoxy resin composition for semiconductor sealing
JP5716511B2 (en) Epoxy resin composition
JP2001270931A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Ref document number: 4451129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term