JP4323189B2 - Optical deflection element and surface light source device - Google Patents
Optical deflection element and surface light source device Download PDFInfo
- Publication number
- JP4323189B2 JP4323189B2 JP2003058255A JP2003058255A JP4323189B2 JP 4323189 B2 JP4323189 B2 JP 4323189B2 JP 2003058255 A JP2003058255 A JP 2003058255A JP 2003058255 A JP2003058255 A JP 2003058255A JP 4323189 B2 JP4323189 B2 JP 4323189B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- prism
- plane
- degrees
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、ノートパソコン、液晶テレビ、携帯電話、携帯情報端末等において表示部として使用される液晶表示装置等を構成するエッジライト方式の光源装置およびそれに使用される光偏向素子に関するものであり、特に導光体の光出射面側に配置される光偏向素子の改良に関するものである。
【0002】
【従来の技術】
近年、カラー液晶表示装置は、携帯用ノートパソコンやパソコン等のモニターとして、あるいは液晶テレビやビデオ一体型液晶テレビ、携帯電話、携帯情報端末等の表示部として、種々の分野で広く使用されてきている。また、情報処理量の増大化、ニーズの多様化、マルチメディア対応等に伴って、液晶表示装置の大画面化、高精細化が盛んに進められている。
【0003】
液晶表示装置は、基本的にバックライト部と液晶表示素子部とから構成されている。バックライト部としては、液晶表示素子部の直下に光源を配置した直下方式のものや導光体の側端面に対向するように光源を配置したエッジライト方式のものがあり、液晶表示装置のコンパクト化の観点からエッジライト方式が多用されている。
【0004】
ところで、近年、比較的小さな画面寸法の表示装置であって観察方向範囲の比較的狭い例えば携帯電話機の表示部として使用される液晶表示装置等では、消費電力の低減の観点から、エッジライト方式のバックライト部として、一次光源から発せられる光量を有効に利用するために、画面から出射する光束の広がり角度をできるだけ小さくして所要の角度範囲に集中して光を出射させるものが利用されてきている。
【0005】
このように観察方向範囲が限定される表示装置であって、一次光源の光量の利用効率を高め消費電力を低減するために比較的狭い範囲に集中して光出射を行う光源装置として、本出願人は、特開2001−143515号公報(特許文献1)において、導光体の光出射面に隣接して両面にプリズム形成面を有するプリズムシートを使用することを提案している。この両面プリズムシートでは、一方の面である入光面及び他方の面である出光面のそれぞれに、互いに平行な複数のプリズム列が形成されており、入光面と出光面とでプリズム列方向を合致させ且つプリズム列どうしを対応位置に配置している。これにより、導光体の光出射面から該光出射面に対して傾斜した方向に出射光のピークを持ち適宜の角度範囲に分布して出射する光を、プリズムシートの入光面の一方のプリズム面から入射させ他方のプリズム面で内面反射させ、更に出光面のプリズムでの屈折作用を受けさせて、比較的狭い所要方向へ光を集中出射させる。
【0006】
【特許文献1】
特開2001−143515号公報
【0007】
【発明が解決しようとする課題】
しかし、このような光源装置によれば、狭い角度範囲の集中出射が可能であるが、光偏向素子として使用されるプリズムシートとして両面に互いに平行な複数のプリズム列を、入光面と出光面とでプリズム列方向を合致させ且つプリズム列どうしを対応位置に配置することが必要であり、この成形が複雑になる。
【0008】
そこで、本発明の目的は、出射光の分布が非常に狭くコントロールされ、一次光源の光量の利用効率の向上が可能となり(即ち、一次光源から発せられる光を所要の観察方向へ集中して出射させる効率が高くなり)、しかも簡素化された構成で画像品位の向上が容易な光偏向素子および光源装置を提供することにある。
【0009】
【課題を解決するための手段】
すなわち、本発明の光偏向素子は、光を入射する入光面とその反対側に位置し入射した光を出射する出光面とを有しており、前記入光面には2つのプリズム面から構成されるプリズム列が互いに略並列に複数配列され、該プリズム列の少なくとも一方のプリズム面が少なくとも2つの傾斜角の異なる平面からなり、前記出光面に近い側に位置する平面ほどその傾斜角が大きく、前記出光面に最も近い平面の傾斜角と前記出光面から最も遠い平面の傾斜角の差が15度以下であることを特徴とするものである。
【0010】
また、本発明の光偏向素子は、光を入射する入光面とその反対側に位置し入射した光を出射する出光面とを有しており、前記入光面には2つのプリズム面から構成されるプリズム列が互いに略並列に複数配列され、該プリズム列の少なくとも一方のプリズム面が少なくとも3つの傾斜角の異なる平面からなり、前記出光面に近い側に位置する平面ほどその傾斜角が大きいことを特徴とするものである。
【0011】
また、本発明の光偏向素子は、光を入射する入光面とその反対側に位置し入射した光を出射する出光面とを有しており、前記入光面には2つのプリズム面から構成されるプリズム列が互いに略並列に複数配列され、該プリズム列の少なくとも一方のプリズム面が少なくとも2つの傾斜角の異なる凸曲面からなり、前記出光面に近い側に位置する凸曲面ほどその傾斜角が大きいことを特徴とするものである。
【0012】
また、本発明の光偏向素子は、光を入射する入光面とその反対側に位置し入射した光を出射する出光面とを有しており、前記入光面には2つのプリズム面から構成されるプリズム列が互いに略並列に複数配列され、該プリズム列の少なくとも一方のプリズム面が少なくとも2つの傾斜角の異なる平面と少なくとの1つの凸曲面からなり、前記出光面に近い側に位置する平面または凸曲面ほどその傾斜角が大きいことを特徴とするものである。
【0013】
さらに、本発明の光源装置は、一次光源と、該一次光源から発せられる光を入射する光入射面及び入射した光を導光して出射する光出射面を有する導光体と、該導光体の光出射面側に隣接配置した上記のような光偏向素子からなることを特徴とするものである。
【0014】
【発明の実施の形態】
以下、図面を参照しながら、本発明の実施の形態を説明する。
図1は、本発明による面光源装置の一つの実施形態を示す模式的斜視図である。図1に示されているように、本発明の面光源装置は、少なくとも一つの側端面を光入射面31とし、これと略直交する一つの表面を光出射面33とする導光体3と、この導光体3の光入射面31に対向して配置され光源リフレクタ2で覆われた一次光源1と、導光体3の光出射面上に配置された光偏向素子4と、導光体3の光出射面33の裏面34に対向して配置された光反射素子5とから構成される。
【0015】
導光体3は、XY面と平行に配置されており、全体として矩形板状をなしている。導光体3は4つの側端面を有しており、そのうちYZ面と平行な1対の側端面のうちの少なくとも一つの側端面を光入射面31とする。光入射面31は光源1と対向して配置されており、光源1から発せられた光は光入射面31から導光体3内へと入射する。本発明においては、例えば、光入射面31と対向する側端面32等の他の側端面にも光源を配置してもよい。
【0016】
導光体3の光入射面31に略直交した2つの主面は、それぞれXY面と略平行に位置しており、いずれか一方の面(図では上面)が光出射面33となる。この光出射面33またはその裏面34のうちの少なくとも一方の面に粗面からなる指向性光出射機能部や、プリズム列、レンチキュラーレンズ列、V字状溝等の多数のレンズ列を光入射面31と略平行に形成したレンズ面からなる指向性光出射機能部などを付与することによって、光入射面31から入射した光を導光体3中を導光させながら光出射面33から光入射面31および光出射面33に直交する面(XZ面)内の出射光光度分布において指向性のある光を出射させる。このXZ面内における出射光光度分布のピークの方向が光出射面33となす角度をaとすると、この角度aは10〜40度とすることが好ましく、出射光光度分布の半値全幅は10〜40度とすることが好ましい。
【0017】
導光体3の表面に形成する粗面やレンズ列は、ISO4287/1−1984による平均傾斜角θaが0.5〜15度の範囲のものとすることが、光出射面33内での輝度の均斉度を図る点から好ましい。平均傾斜角θaは、さらに好ましくは1〜12度の範囲であり、より好ましくは1.5〜11度の範囲である。この平均傾斜角θaは、導光体3の厚さ(t)と入射光が伝搬する方向の長さ(L)との比(L/t)によって最適範囲が設定されることが好ましい。すなわち、導光体3としてL/tが20〜200程度のものを使用する場合は、平均傾斜角θaを0.5〜7.5度とすることが好ましく、さらに好ましくは1〜5度の範囲であり、より好ましくは1.5〜4度の範囲である。また、導光体3としてL/tが20以下程度のものを使用する場合は、平均傾斜角θaを7〜12度とすることが好ましく、さらに好ましくは8〜11度の範囲である。
【0018】
導光体3に形成される粗面の平均傾斜角θaは、ISO4287/1−1984に従って、触針式表面粗さ計を用いて粗面形状を測定し、測定方向の座標をxとして、得られた傾斜関数f(x)から次の(1)式および(2)式を用いて求めることができる。ここで、Lは測定長さであり、Δaは平均傾斜角θaの正接である。
【0019】
【数1】
さらに、導光体3としては、その光出射率が0.5〜5%の範囲にあるものが好ましく、より好ましくは1〜3%の範囲である。これは、光出射率が0.5%より小さくなると導光体3から出射する光量が少なくなり十分な輝度が得られなくなる傾向にあり、光出射率が5%より大きくなると光源1近傍で多量の光が出射して、光出射面33内でのX方向における光の減衰が著しくなり、光出射面33での輝度の均斉度が低下する傾向にあるためである。このように導光体3の光出射率を0.5〜5%とすることにより、光出射面から出射する光の出射光光度分布(XZ面内)におけるピーク光の角度(ピーク角度)が光出射面の法線に対し50〜90度の範囲にあり、出射光光度分布(XZ面内)の半値全幅が10〜40度であるような指向性の高い出射特性の光を導光体3から出射させることができ、その出射方向を光偏向素子4で効率的に偏向させることができ、高い輝度を有する面光源素子を提供することができる。
【0020】
本発明において、導光体3からの光出射率は次のように定義される。光出射面33の光入射面31側の端縁での出射光の光強度(I0 )と光入射面31側の端縁から距離Lの位置での出射光強度(I)との関係は、導光体3の厚さ(Z方向寸法)をtとすると、次の(3)式のような関係を満足する。
【0021】
【数2】
ここで、定数Aが光出射率であり、光出射面33における光入射面31と直交するX方向での単位長さ(導光体厚さtに相当する長さ)当たりの導光体3から光が出射する割合(%)である。この光出射率Aは、縦軸に光出射面23からの出射光の光強度の対数と横軸に(L/t)をプロットすることで、その勾配から求めることができる。
【0022】
また、指向性光出射機能部が付与されていない他の主面には、導光体3からの出射光の光源1と平行な面(YZ面)での指向性を制御するために、光入射面31に対して略垂直の方向(X方向)に延びる多数のレンズ列を配列したレンズ面を形成することが好ましい。図1に示した実施形態においては、光出射面33に粗面を形成し、裏面34に光入射面31に対して略垂直方向(X方向)に延びる多数のレンズ列の配列からなるレンズ面を形成している。本発明においては、図1に示した形態とは逆に、光出射面33にレンズ面を形成し、裏面34を粗面とするものであってもよい。
【0023】
図1に示したように、導光体3の裏面34あるいは光出射面33にレンズ列を形成する場合、そのレンズ列としては略X方向に延びたプリズム列、レンチキュラーレンズ列、V字状溝等が挙げられるが、YZ方向の断面の形状が略三角形状のプリズム列とすることが好ましい。
【0024】
本発明において、導光体3に形成されるレンズ列としてプリズム列を形成する場合には、その頂角を70〜150度の範囲とすることが好ましい。これは、頂角をこの範囲とすることによって導光体3からの出射光を十分集光さることができ、面光源素子としての輝度の十分な向上を図ることができるためである。すなわち、プリズム頂角をこの範囲内とすることによって、出射光光度分布(XZ面内)におけるピーク光を含みXZ面に垂直な面において出射光光度分布の半値全幅が35〜65度である集光された出射光を出射させることができ、面光源素子としての輝度を向上させることができる。なお、プリズム列を光出射面33に形成する場合には、頂角は80〜100度の範囲とすることが好ましく、プリズム列を裏面34に形成する場合には、頂角は70〜80度または100〜150度の範囲とすることが好ましい。
【0025】
なお、本発明では、上記のような光出射面33またはその裏面34に光出射機能部を形成する代わりにあるいはこれと併用して、導光体内部に光拡散性微粒子を混入分散することで指向性光出射機能を付与したものでもよい。また、導光体3としては、図1に示したような断面形状に限定されるものではなく、くさび状、船型状等の種々の断面形状のものが使用できる。
【0026】
図2は、光偏向素子4のプリズム列の形状の説明図であり、光偏向素子4は主表面の一方を入光面41とし他方の面を出光面42とする。入光面41には多数のプリズム列が略並列に配列され、各プリズム列は光源側に位置する第1のプリズム面44と光源から遠い側に位置する第2のプリズム面45の2つのプリズム面から構成されている。図2に示した実施形態においては、第1のプリズム面44が平面であり、第2のプリズム面45が3つの傾斜角の異なる平面46〜48から構成され、出光面に近い平面ほど傾斜角が大きくなっている。また、平面46〜48のうち、最も出光面に近い平面48と最も出光面から遠い平面46との傾斜角の差が15度以下となっている。なお、本発明において、平面の傾斜角とはプリズム列形成平面43に対する各平面の傾斜角度をいう。
【0027】
本発明の光偏向素子4は、第2のプリズム面45を傾斜角の異なる少なくとも2つの平面より構成し、これら平面の傾斜角が出光面に近いほど大きくなり、最も出光面に近い平面と最も出光面から遠い平面との傾斜角の差を15度以下とすることにより、極めて高い集光効果を発揮させることができ、光源装置として極めて高い輝度を得ることができる。この最も出光面に近い平面と最も出光面から遠い平面との傾斜角の差は、好ましくは0.5〜10度の範囲であり、より好ましくは1〜7度の範囲である。なお、傾斜角の異なる平面を3つ以上形成する場合には、この傾斜角の差は上記範囲とすることが好ましいが、特にこの範囲に限定されるものではない。また、第2のプリズム面45をこのような構造にすることにより、所望の集光性を有する偏向素子を容易に設計することもできるとともに、一定の光学特性を有する光偏向素子を安定して製造することもできる。
【0028】
次に、本発明の光偏向素子のプリズム面の形状について説明する。図3〜14は、2つのプリズム面がともに平面であり、プリズム頂角が65.4度である従来の光偏向素子により導光体からの出射光光度分布(XZ面内)のピーク角度が20度である光が、導光体の光入射面および光出射面の両方の面に対して垂直な平面において、どのような出射光輝度分布(XZ面内)で光偏向素子から出射するかを示したものである。図3〜12は、第1プリズム面より入射した入射光が第2のプリズム面によって全反射され出光面42から出射される状態を、第2プリズム面をx方向に10個のエリアに均等に分割し、それぞれのエリアからの出射光輝度分布(XZ面内)を示したものである。10個のエリアは、プリズム頂部に近い方から順にPart1、Part2、・・・Part10とした。第2プリズム面で全反射され出射する全体の光の出射光輝度分布(XZ面内)においては、図13に示すように、そのピ−ク光は法線方向に出射され、22度の半値全幅を有している。
【0029】
しかし、これらをPart1〜Part10の各エリアにおける出射光輝度分布(XZ面内)を見ると、そのピーク角度は、Part1およびPart2では約−9度(負の角度値は法線方向を0度として光源方向に傾いた場合を示す。)付近に出射し、Part3〜Part7では0度方向(法線方向)にピ−ク光がシフトし、さらにPart8〜Part10ではピ−ク光は順に正の角度方向にシフトしているのがわかる。最も出光面42に近いエリア(Part10)で全反射され出射するピーク角度は7度であり、第2のプリズム面(Part1〜Part10の間)ではピーク角度に16度の広がりがある。また、各エリアからのピ−ク光の強度は、Part1からPart10へと徐々に小さくなっている。
【0030】
このように、一つの平面からなるプリズム面で全反射され出射した光は、プリズム面の全反射するエリアに依存してかなり広い範囲で分散していることがわかる。この各エリアからの出射光輝度分布(XZ面内)におけるピ−ク光を、各エリアのプリズム面の傾斜角をそれぞれ調整し、すべてのエリアでピーク角度を略同方向に出射させることによって、大部分の出射光を特定方向に集中して出射させることが可能となる。このとき、各エリアにおけるプリズム面の傾斜角は、Part1からPart10の順に、すなわち出光面42に近いエリアのプリズム面ほど傾斜角を大きくするようにする。このように、各エリアのプリズム面の傾斜角を図14に示したように調整することで、プリズム面全体で全反射される出射光を一定の方向に集光させることができ、より指向性が高く、ピ−ク強度の大きな光を出射することができる。
【0031】
プリズム面を分割した各エリアの設定は、少なくとも2つのエリアを設定すればよいが、このエリア数(傾斜角の異なる平面の数)が少なすぎると、光偏向素子による集光性が低下し、輝度向上効果が損なわれる傾向にあるため、3つ以上とすることが好ましく、より好ましくは5つ以上、さらに好ましくは6つ以上である。なお、エリア数を2つにする場合には、集光特性の低下をある程度抑止できるためには、2つの平面の傾斜角の差を15度以下とすることが必要であり、好ましくは0.5〜10度の範囲、より好ましくは1〜7度の範囲である。エリア数が3つ以上の場合であっても、出光面に最も近い平面の傾斜角と出光面から最も遠い平面の傾斜角の差を15度以下とすることが集光特性の点から好ましく、より好ましくは0.5〜10度、さらに好ましくは1〜7度の範囲である。
【0032】
一方、このエリア数を多くすと、プリズム面で全面にわたってピーク角度を細かく調整することができるため、全体としての集中度を高めることができるが、傾斜角の異なる平面を細かく形成しなければならず、光偏向素子のプリズム面を形成するための金型切削用のバイトの設計や製造が複雑となるとともに、一定の光学特性を有する光偏向素子を安定して得ることも難しくなる。このため、プリズム面に形成するエリア数は20以下とすることが好ましく、より好ましくは12以下である。このプリズム面の分割は均等に分割することが好ましいが、必ずしも均等に分割する必要はなく、所望のプリズム面全体の出射光輝度分布(XZ面内)に応じて調整することができる。また、異なる傾斜角を有する各平面の幅(プリズム列断面における各平面部分の長さ)は、プリズム列のピッチに対して4〜47%の範囲とすることが好ましく、より好ましくは6〜30%、さらに好ましくは7〜20%の範囲である。
【0033】
本発明においては、例えば、図15および図16に示したように、上記のような異なる傾斜角を有する平面の少なくとも1つを凸曲面とすることもでき、全ての平面を凸曲面としてもよい。図15では、第2のプリズム面45を、4つのエリアに分割し、3つの平面49〜51と1つの凸曲面52から構成している。図16では、第2のプリズム面45を2つのエリアに分割し、形状の異なる2つの凸曲面53、54から構成している。図中、55、56は、2つの曲面53、54の形状を決定する非球面形状である。また、第2のプリズム面45を分割した各エリアの境界を通るような曲面で構成することもでき、この場合、輝度の大幅な低下を招かない範囲であれば曲面は各アリアの境界から多少ずれてもよい。例えば、曲面の通過位置(プリズム頂部からの距離)のプリズム列のピッチに対する割合のエリアの境界の割合に対するずれが4%以下であればよく、より好ましくは2%以下、さらに好ましくは1%以下の範囲である。なお、本発明において、凸曲面における傾斜角は、1つの凸曲面の全ての位置における傾斜角を平均したものをいう。このように、プリズム面を異なる傾斜角の複数の凸曲面で構成した場合には、異なる傾斜角の平面により構成する場合と比較して、エリア数は少なくすることができ、2〜10のエリア数とすることができ、好ましくは2〜8の範囲である。しかし、エリア数が少なすぎると所望の出射光輝度分布(XZ面内)を調整するための各凸曲面の設計が困難となるため、エリア数は3〜8の範囲とすることがより好ましい。
【0034】
また、凸曲面の形状は、そのXZ方向の断面形状が球面あるいは非球面とすることができる。さらに、複数の凸曲面によりプリズム面を構成する場合には、各凸曲面の形状が異なることが好ましく、球面形状の凸曲面と非球面形状の凸曲面とを組み合わせることもできるが、少なくとも1つの凸曲面を非球面形状とすることが好ましい。複数の凸曲面を球面形状とする場合には、各凸曲面でその曲率を変えたものであってもよい。非球面形状としては、楕円形状の一部、放物線形状の一部等が挙げられる。
【0035】
さらに、凸曲面は、その曲率半径(r)をプリズム列のピッチ(P)との比(r/P)が2〜50の範囲とすることが好ましく、より好ましくは5〜30、さらに好ましくは7〜10の範囲である。このr/Pが2未満であったり、50を超えると、十分な集光特性を発揮できなくなり、輝度が低下する傾向にある。
【0036】
このような傾斜角の異なる平面および凸曲面は、各平面および凸曲面で全反射した光が出光面から出射した際の出射光輝度分布(XZ面内)におけるピーク角度が略一定の角度になるように設計されるが、この各ピーク角度は必ずしも略一定の角度となるようにする必要はなく、全てのピーク角度が15度以内の範囲内となるような範囲で設計することができ、好ましくは10度以下、より好ましくは7度以下、さらに好ましくは5度以下の範囲である。
【0037】
また、このような構成によるプリズム列においては、図3〜12に示したように、Part1〜Part5のエリアで全反射され出光面から出射した光の出射光輝度分布(XZ面内)における強度は、プリズム面全体で全反射され出光面から出射した光の出射光輝度分布(XZ面内)における強度の75%以上を占めることになるため、これらエリアで全反射され出射される出射光を所望の方向へ集光させることが特に重要となる。このため、プリズム列のプリズム頂部からの高さをh、プリズム列全体の高さをHとした場合に、少なくともh/Hが60%以下となる高さhの領域に傾斜角の異なる平面あるいは凸曲面を少なくとも2つ形成することが好ましく、3つ以上形成することがより好ましい。高さhの領域は、より好ましくはh/Hが50%以下となる領域であり、さらに好ましくは40%以下となる領域である。なお、高さhの領域が小さくなりすぎると十分な集光特性が得られなくなる傾向になるとともに、金型の製造が複雑になることから、h/Hは20%以上であることが好ましい。この場合の高さhの領域におけるエリア数は、3〜8の範囲とすることが好ましく、より好ましくは3〜6、さらに好ましくは3〜4の範囲である。
【0038】
また、プリズム面が傾斜角の異なる複数の平面あるいは凸曲面より構成されるとき、十分な集光特性を確保するためには、プリズム列の頂部と低部とを結ぶ仮想平面Q(図2、15、16)と複数の平面あるいは凸曲面(実際のプリズム面)との最大距離dがプリズム列のピッチ(P)に対する割合(d/P)で0.4〜5%とすることが好ましい。これは、d/Pが0.4%未満あるいは5%を超えると、集光特性が低下する傾向にあり、十分な輝度向上を図れなくなる傾向にあるためであり、より好ましくは0.4〜3%の範囲であり、さらに好ましくは0.7〜2.2%の範囲である。
【0039】
本発明において、プリズム列の頂角は集光特性や光の利用効率を考えると、35〜80度とすることが好ましく、より好ましくは35〜70度の範囲であり、さらに好ましくは40〜70度の範囲である。また、プリズム頂角の法線に対する左右の振り分け角(2つのプリズム面の法線に対する傾斜角度)α、βは、同一でも異なってもよいが、略法線方向(法線方向を0度とした場合のXZ面内における±10度の範囲をいう。)の輝度を効率よく高めようとする場合には、異なった角度に設定することが好ましい。この場合、光源側に位置する振り分け角αを40度以下、βを25〜50度の範囲とすることが好ましい。この頂角の振り分け角α、βは、その差がわずかにある場合が光利用効率が高くなり輝度をより向上させることができるため、振り分け角αを25〜40度、振り分け角βを25〜45度の範囲とし、振り分け角αとβの差の絶対値(Iα−βI)を0.5〜10度とすることが好ましく、より好ましくは1〜10度、さらに好ましくは1〜8度の範囲である。なお、出射光輝度分布(XZ面内)におけるピ−ク光を略法線方向以外とする場合は、プリズム頂角の振り分け角α、βを調整することによって、所望の方向にピーク光を有する出射光輝度分布(XZ面内)を得ることができる。
【0040】
また、振り分け角αを20度以下とすることによっても光利用効率を高くでき輝度をより向上させることができる。この振り分け角αを小さくするほど光利用効率を高くすることができるが、振り分け角αを小さくしすぎるとプリズム列の頂角が小さくなる傾向にありプリズムシートの製造が困難となるため、振り分け角αは3〜15度の範囲とすることが好ましく、より好ましくは5〜10度の範囲である。この場合、出射光輝度分布(XZ面内)におけるピ−ク光を法線方向から±2度の範囲とし法線輝度を向上させるためには、振り分け角βを35〜40度の範囲とすればよい。
【0041】
このように振り分け角αを20度以下とする場合には、プリズム列の断面形状においてプリズム頂部と谷部を結んだ2つの直線の長さの比(光源に近い側の直線の長さL1に対する光源から遠い側の直線の長さL2の比L2/L1)を1.1倍以上とすることが好ましい。これは、L2/L1を1.1倍以上とすることにより光源に近い側のプリズム面から入射した光を光源から遠い側のプリズム面で効率よく受光することができ、光利用効率を高くでき輝度をより向上させることができるためであり、より好ましくは1.15倍以上であり、さらに好ましくは1.17倍以上である。一方、L2/L1を大きくしすぎるとプリズム列の頂角が小さくなる傾向にありプリズムシートの製造が困難となるため、1.3倍以下とすることが好ましく、より好ましくは1.25倍以下、さらに好ましくは1.2倍以下である。また、プリズム列のピッチPに対する光源から遠い側の直線の長さL2の比(L2/P)を1.25倍以上とすることが同様の理由から好ましく、より好ましくは1.3倍以上であり、さらに好ましくは1.4倍以上である。一方、このL2/Pを大きくしすぎるとプリズム列の頂角が小さくなる傾向にありプリズムシートの製造が困難となるため、1.8倍以下とすることが好ましく、より好ましくは1.6倍以下、さらに好ましくは1.5倍以下である。
【0042】
また、本発明の光偏向素子は、図17、18に例示すように隣接するプリズム列の間にプリズム列の傾斜角よりも傾斜角の小さい凸形状や平面(光透過領域)を形成してもよい。このような光透過領域を形成することにより、液晶パネル側から入射した外光をこの部分から光源装置内に導入することができ、導光体の裏面に配置された反射シ−ト5により反射し、再び液晶パネル側に出射することにより、外光も有効に利用することができる。このとき、反射シート5により反射した外光の均一性を維持するため、反射シートに微弱な拡散性を付与したり、光偏向素子の出光面に光拡散層を形成したり、光偏向素子の出光面に光拡散シ−トを載置することが好ましい。また、外光の利用効率を高めると、バックライトとしての光の利用効率が低下するため、使用形態等を考慮して光透過領域の割合を決めることが必要である。例えば、光透過領域の幅は、プリズム列のピッチの20〜50%の範囲とすることが好ましく、より好ましくは20〜40%の範囲である。光透過領域としては、図17に示したような平面形状59、図18に示したような曲面形状60や多角形状等が挙げられる。中でも、光透過領域を多角形状や曲面とすることにより、外光の反射を制御することができるため好ましい。
【0043】
本発明の光偏向素子においては、光を集光させて出射させる際に導光体からの出射光光度分布が強く反映されるため、光偏向素子の出光面からの出射光輝度分布(XZ面内)は法線方向前後の角度において非対称な分布になる傾向がある。特に、第2プリズム面45を1つの曲面で構成した場合には、導光体の光入射面側の出射光輝度分布(XZ面内)が急激に低下し、法線方向から観察した場合に有効視野角範囲内において非対称性が強く視認される。本発明においては、プリズム面を傾斜角の異なる複数の平面あるいは凸曲面より構成することで、上記のような出射光輝度分布(XZ面内)の非対称性を緩和することができる。すなわち、出射光輝度分布(XZ面内)の非対称性は、図19に示すように、光偏向素子から出射した出射光輝度分布(XZ面内)のピーク角度と輝度がピーク光の輝度(ピーク輝度)の1/2となる角度の差の絶対値(広がり幅)ΔθaとΔθbの差(|Δθa−Δθb|)により定義することができる。従って、この|Δθa−Δθb|が9度以下となるように、プリズム面を構成する平面あるいは凸曲面の傾斜角を調整することにより、出射光輝度分布(XZ面内)の非対称性を緩和することができる。この|Δθa−Δθb|は、より好ましくは6度以下、さらい好ましくは4度以下の範囲である。|Δθa−Δθb|を9度以下とすることにより視認性はほぼ良好となり、4度以下とすることにより非対称性に起因する不快さはほとんど感じなくなる。
【0044】
さらに、本発明の光偏向素子4においては、図20に示したように、第1のプリズム面44の平面が、プリズム列パターン形成の際に発生するそり等による形状の変化(プリズム列の頂部と底部を結ぶ平面からの変位)が起こる場合がある。しかし、このような平面の変位が大きい場合には、光偏向素子4の光学特性に影響を及ぼすことになり、微小な変位に抑えることが好ましい。すなわち、プリズム列の頂部と底部を結ぶ平面からのプリズム面の変位がプリズム列のピッチPに対する前記平面との最大距離Sの割合(S/P)で0.008以下であることが好ましく、さらに好ましくは0.0065以下、より好ましくは0.005以下の範囲である。このような略平面の変形は、プリズム列パターンを形成する際の重合収縮などの影響に主として起因するため、あらかじめ重合収縮による変形の程度を定量化しておき、それを相殺するように金型のプリズム列の形状を設計しておくことが好ましい。
【0045】
本発明において、上記のような凸曲面形状部46を有するプリズム面は、少なくとも一次光源1から遠い側の面(第2のプリズム面45)に形成することが好ましい。これによれば、導光体3の端面32にも一次光源を配置する場合の光偏向素子4から出射する光の出射光輝度分布(XZ面内)における分布を十分に小さくすることができる。凸曲面形状部46を有するプリズム面は、例えば、導光体3を伝搬する光が光入射面31と反対側の端面32で反射して戻ってくる割合が比較的高い場合、導光体3の対向する2つの端面にそれぞれ一次光源1を配置する場合には、一次光源1に近い側のプリズム面(第1のプリズム面44)も同様の形状とすることがより好ましい。一方、導光体3を伝搬する光が光入射面31と反対側の端面32で反射して戻ってくる割合が比較的低い場合には、一次光源1に近い側のプリズム面を略平面としてもよい。また、本発明の光偏向素子4は、そのプリズム列の頂部のどちらかが略平面より構成されるのが好ましい。プリズム列形成のための成形用型部材の形状転写面形状のより正確な形成が可能になり、導光体3に光偏向素子4を載置した際のスティッキング現象の発生を抑止することができる。
【0046】
このように、導光体3の光出射面33上に上記のような光偏向素子4を、そのプリズム列形成面が入光面側となるように載置することによって、導光体3の光出射面33から出射する指向性出射光の出射光光度分布(XZ面内)をより狭くすることができ、光源装置としての高輝度化、狭視野化を図ることができる。このような光偏向素子4からの出射光の出射光輝度分布(XZ面内)の半値全幅は、5〜25度の範囲であることが好ましく、より好ましくは10〜20度の範囲であり、さらに好ましくは12〜18度の範囲である。これは、この出射光輝度分布(XZ面内)の半値全幅を5度以上とすることによって極端な狭視野化による画像等の見づらさをなくすことができ、25度以下とすることによって高輝度化と狭視野化を図ることができるためである。
【0047】
本発明における光偏向素子4の狭視野化は、導光体3の光出射面33からの出射光光度分布(XZ面内)の広がりの程度(半値全幅)に影響されるため、光偏向素子4の出光面42からの出射光輝度分布(XZ面内)の半値全幅Aの導光体3の光出射面33からの出射光光度分布(XZ面内)の半値全幅Bに対する割合も、導光体3からの出射光光度分布(XZ面内)の半値全幅Bによって変わる。例えば、導光体3からの出射光光度分布(XZ面内)の半値全幅Bが26度未満の場合には、半値全幅Aが半値全幅Bの30〜95%の範囲であることが好ましく、より好ましくは30〜80%の範囲であり、さらに好ましくは30〜70%の範囲である。また、導光体3からの出射光光度分布(XZ面内)の半値全幅Bが26度以上の場合には、半値全幅Aが半値全幅Bの30〜80%の範囲であることが好ましく、より好ましくは30〜70%の範囲であり、さらに好ましくは30〜60%の範囲である。特に、導光体3からの出射光光度分布(XZ面内)の半値全幅Bが26〜36度の場合には、半値全幅Aが半値全幅Bの30〜80%の範囲であることが好ましく、より好ましくは30〜70%の範囲であり、さらに好ましくは30〜60%の範囲である。さらに、導光体3からの出射光光度分布(XZ面内)の半値全幅Bが36度を超える場合には、半値全幅Aが半値全幅Bの30〜70%の範囲であることが好ましく、より好ましくは30〜60%の範囲であり、さらに好ましくは30〜50%の範囲である。
【0048】
一般に導光板の出射効率を高めようとすると、導光体3からの出射光光度分布(XZ面内)の半値全幅Bは大きくなり集光効率は低下するように思えるが、実際は上記のように狭視野化の効果は大きくなるため、狭視野化の効率および面光源装置としての光利用効率という点では出射光光度分布(XZ面内)の半値全幅Bが26度以上である導光体との組み合わせで光偏向素子を使用することが好ましく、より好ましくは半値全幅Bが36度を超える導光体である。また、導光体3からの出射光光度分布(XZ面内)の半値全幅が小さい場合には狭視野化の効果は小さくなるが、導光体3からの出射光光度分布(XZ面内)の半値全幅が小さいものほど高輝度化を図ることができるため、高輝度化という点では出射光光度分布(XZ面内)の半値全幅Bが26度未満である導光体との組み合わせで光偏向素子を使用することが好ましい。
【0049】
一次光源1はY方向に延在する線状の光源であり、該一次光源1としては例えば蛍光ランプや冷陰極管を用いることができる。なお、本発明においては、一次光源1としては線状光源に限定されるものではなく、LED光源、ハロゲンランプ、メタハロランプ等のような点光源を使用することもできる。特に、携帯電話機や携帯情報端末機等の比較的小さな画面寸法の表示装置に使用する場合には、LED等の小さな点光源を使用することが好ましい。また、一次光源1は、図1に示したように、導光体3の一方の側端面に設置する場合だけでなく、必要に応じて対向する他方の側端面にもさらに設置することもできる。
【0050】
例えば、一次光源1としてLED光源等の略点状光源を導光体3のコーナー等に配置して使用する場合には、導光体3に入射した光は光出射面33と同一の平面内において一次光源1を略中心とした放射状に導光体3中を伝搬し、光出射面33から出射する出射光も同様に一次光源1を中心とした放射状に出射する。このような放射状に出射する出射光を、その出射方向に関わらず効率よく所望の方向に偏向させるためには、光偏向素子4に形成するプリズム列を一次光源1を取り囲むように略弧状に略並列して配置することが好ましい。このように、プリズム列を一次光源1を取り囲むように略弧状に略並列して配置することにより、光出射面33から放射状に出射する光の殆どが光偏向素子4のプリズム列に対して略垂直に入射するため、導光体3の光出射面33の全領域で出射光を効率良く特定の方向に向けることができ、輝度の均一性を向上させることができる。光偏向素子4に形成する略弧状のプリズム列は、導光体3中を伝搬する光の分布に応じてその弧状の程度を選定し、光出射面33から放射状に出射する光の殆どが光偏向素子4のプリズム列に対して略垂直に入射するようにすることが好ましい。具体的には、LED等の点状光源を略中心とした同心円状に円弧の半径が少しずつ大きくなるように略並列して配置されたものが挙げられ、プリズム列の半径の範囲は、面光源システムにおける点状光源の位置と、液晶表示エリアに相当する面光源の有効エリアとの位置関係や大きさによって決定される。
【0051】
光源リフレクタ2は一次光源1の光をロスを少なく導光体3へ導くものである。材質としては、例えば表面に金属蒸着反射層有するプラスチックフィルムを用いることができる。図1に示されているように、光源リフレクタ2は、光反射素子5の端縁部外面から一次光源1の外面を経て光偏向素子4の出光面端縁部へと巻きつけられている。他方、光源リフレクタ2は、光偏向素子4を避けて、光反射素子5の端縁部外面から一次光源1の外面を経て導光体3の光出射面端縁部へと巻きつけることも可能である。
【0052】
このような光源リフレクタ2と同様な反射部材を、導光体3の側端面31以外の側端面に付することも可能である。光反射素子5としては、例えば表面に金属蒸着反射層を有するプラスチックシートを用いることができる。本発明においては、光反射素子5として反射シートに代えて、導光体3の裏面34に金属蒸着等により形成された光反射層等とすることも可能である。
【0053】
本発明の導光体3及び光偏向素子4は、光透過率の高い合成樹脂から構成することができる。このような合成樹脂としては、メタクリル樹脂、アクリル樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂が例示できる。特に、メタクリル樹脂が、光透過率の高さ、耐熱性、力学的特性、成形加工性に優れており、最適である。このようなメタクリル樹脂としては、メタクリル酸メチルを主成分とする樹脂であり、メタクリル酸メチルが80重量%以上であるものが好ましい。導光体3及び光偏向素子4の粗面の表面構造やプリズム列等の表面構造を形成するに際しては、透明合成樹脂板を所望の表面構造を有する型部材を用いて熱プレスすることで形成してもよいし、スクリーン印刷、押出成形や射出成形等によって成形と同時に形状付与してもよい。また、熱あるいは光硬化性樹脂等を用いて構造面を形成することもできる。更に、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、ポリメタクリルイミド系樹脂等からなる透明フィルムあるいはシート等の透明基材上に、活性エネルギー線硬化型樹脂からなる粗面構造またレンズ列配列構造を表面に形成してもよいし、このようなシートを接着、融着等の方法によって別個の透明基材上に接合一体化させてもよい。活性エネルギー線硬化型樹脂としては、多官能(メタ)アクリル化合物、ビニル化合物、(メタ)アクリル酸エステル類、アリル化合物、(メタ)アクリル酸の金属塩等を使用することができる。
【0054】
以上のような一次光源1、光源リフレクタ2、導光体3、光偏向素子4および光反射素子5からなる面光源装置の発光面(光偏向素子4の出光面42)上に、液晶表示素子を配置することにより液晶表示装置が構成される。液晶表示装置は、図1における上方から液晶表示素子を通して観察者により観察される。また、本発明においては、十分にコリメートされた狭い分布の光を面光源装置から液晶表示素子に入射させることができるため、液晶表示素子での階調反転等がなく明るさ、色相の均一性の良好な画像表示が得られるとともに、所望の方向に集中した光照射が得られ、この方向の照明に対する一次光源の発光光量の利用効率を高めることができる。
【0055】
さらに、本発明においては、このように光偏向素子4によって狭視野化され高輝度化された光源装置において、輝度の低下をできる限り招くことなく、視野範囲を目的に応じて適度に制御するために、光偏向素子4の出光面上に光拡散素子6を隣接配置する。また、本発明においては、このように光拡散素子6を配置することによって、品位低下の原因となるぎらつきや輝度斑等を抑止し品位向上を図ることもできる。
【0056】
光拡散素子6は、光偏向素子4の出光面側に光偏向素子4と一体化させてもよいし、光拡散素子6を個別に光偏向素子4の出光面側に載置してもよいが、個別に光拡散素子6を配置することが好ましい。個別に光拡散素子6を載置する場合には、光拡散素子6の光偏向素子4に隣接する側の面には、光偏向素子4とのスティッキングを防止するため、凹凸構造を付与することが好ましい。同様に、光拡散素子6の出射面においても、その上に配置される液晶表示素子との間でのスティッキングを考慮する必要があり、光拡散素子6の出射面にも凹凸構造を付与することが好ましい。この凹凸構造は、スティッキング防止の目的のみに付与する場合には、平均傾斜角が0.7度以上となるような構造とすることが好ましく、さらに好ましくは1度以上であり、より好ましくは1.5度以上である。
【0057】
本発明においては、輝度特性、視認性および品位等のバランスを考慮して光偏向素子4からの出射光を適度に拡散させる光拡散特性を有する光拡散素子6を使用することが必要である。すなわち、光拡散素子6の光拡散性が低い場合には、視野角を十分に広げることが困難となり視認性を低下させるとともに、品位改善効果が十分でなくなる傾向にあり、逆に光拡散性が高すぎる場合には光偏向素子4による狭視野化の効果が損なわれるとともに、全光線透過率も低くなり輝度が低下する傾向にある。そこで、本発明の光拡散素子6においては、平行光を入射したときの出射光光度分布(XZ面内)の半値全幅が1〜13度の範囲であるものが使用される。光拡散素子6の半値全幅は、好ましくは3〜11度の範囲、さらに好ましくは4〜8.5度の範囲である。なお、本発明において光拡散素子6の出射光光度分布(XZ面内)の半値全幅とは、図21に示すように、光拡散素子6に入射した平行光線が出射時にどの程度拡散して広がるかを示したもので、光拡散素子6を透過し拡散した光の出射光光度分布(XZ面内)におけるピ−ク値に対する半値での広がり角の全幅の角度(ΔθH)をいう。
【0058】
このような光拡散特性は、光拡散素子6中に光拡散剤を混入したり、光拡散素子6の少なくとも一方の表面に凹凸構造を付与することによって付与することができる。表面に形成する凹凸構造は、光拡散素子6の一方の表面に形成する場合と両方の表面に形成する場合とでは、その程度が異なる。光拡散素子6の一方の表面に凹凸構造を形成する場合には、その平均傾斜角を0.8〜12度の範囲とすることが好ましく、さらに好ましくは3.5〜7度であり、より好ましくは4〜6.5度である。光拡散素子6の両方の表面に凹凸構造を形成する場合には、一方の表面に形成する凹凸構造の平均傾斜角を0.8〜6度の範囲とすることが好ましく、さらに好ましくは2〜4度であり、より好ましくは2.5〜4度である。この場合、光拡散素子6の全光線透過率の低下を抑止するためには、光拡散素子6の入射面側の平均傾斜角を出射面側の平均傾斜角よりも大きくすることが好ましい。また、光拡散素子6のヘイズ値としては8〜82%の範囲とすることが、輝度特性向上と視認性改良の観点から好ましく、さらに好ましくは30〜70%の範囲であり、より好ましくは40〜65%の範囲である。
【0059】
本発明の光源装置においては、その発光面(光拡散素子6の出射面)の法線方向から観察した場合の表示エリア内における輝度が均一であることも要求される。この輝度の均一性は光源の表示エリアの大きさにも依存し、例えば、ノートパソコンやモニター等の表示エリアが大きい大型の光源装置では、比較的広い視野角特性が要求される場合があり、発光面からの出射する出射光光度分布(XZ面内)をより広くすることが要求される。一方、携帯電話や携帯情報端末等の表示エリアが小さい小型の光源装置では、高輝度や表示品位向上が優先される場合があり、発光面からの出射する出射光光度分布(XZ面内)は比較的狭くてもよい。このため、光拡散素子6としては、光源装置の表示エリアの大きさに応じて適切な光拡散特性を有するものを使用することが好ましい。
【0060】
このような光源装置の表示エリアの大きさに応じた光拡散素子6の光拡散特性について、説明する。なお、光源装置の表示エリアの大きさは、その展開長を基準として説明する。ここで、光源装置の展開長(導光体3の展開長)とは、図22に示したように、線状の冷陰極光源が一次光源1として導光体3の光入射面に配置された場合、導光体3に入射した光が導光する方向、すなわち光入射面と垂直な方向における表示エリアの最長距離Lをいう。また、図23に示したように、導光体3のコ−ナにLED等の点光源が一次光源1として配置された場合、光点源から最も遠い有効表示エリアと点光源を結ぶ直線上の表示エリアの距離Lをいう。
【0061】
(1)導光体3の展開長が8cm以下の場合
このような光源装置は、一次光源1として線状の冷陰極管(一灯型)やLED等が使用され、携帯電話、携帯情報端末、デジタルカメラ等の表示エリアが小さい表示装置に使用されるため、視野角をさほど大きくする必要はなく、品位低下の原因となるぎらつきや輝度斑等を抑える程度の光拡散性を光拡散素子6により付与し、光利用効率を高め高輝度を維持するとともに、消費電力を低く抑えることが必要となる。このため、光拡散素子6としては、出射光光度分布(XZ面内)の半値全幅が1〜6度の範囲であることが好ましく、さらに好ましくは1〜5度、より好ましくは2〜5度の範囲である。また、ヘイズ値としては、8〜60%の範囲であることが好ましく、さらに好ましくは8〜50%、より好ましくは20〜50%の範囲である。さらに、光拡散素子6の表面に凹凸構造を形成する場合には、その平均傾斜角が0.8〜5度の範囲であることが好ましく、さらに好ましくは0.8〜4度、より好ましくは2〜4度の範囲である。
【0062】
(2)導光体3の展開長が8cmを超え23cm以下の場合(一次光源1として一灯型の冷陰極管を使用)
このような光源装置は、ノートパソコン、デスクトップ型パソコンのモニター、比較的小型の液晶テレビ等の表示装置に使用されるため、比較的広い視野角が必要であり、液晶表示装置の高解像度化に伴い品位の高い高輝度が必要となる。このため、光拡散素子6としては、出射光光度分布(XZ面内)の半値全幅が3〜11度の範囲であることが好ましく、さらに好ましくは4〜10度、より好ましくは4〜9度の範囲である。また、ヘイズ値としては、30〜80%の範囲であることが好ましく、さらに好ましくは40〜73%、より好ましくは45〜70%の範囲である。さらに、光拡散素子6の表面に凹凸構造を形成する場合には、その平均傾斜角が3〜9.5度の範囲であることが好ましく、さらに好ましくは3.5〜8.5度、より好ましくは4.5〜7度の範囲である。
【0063】
導光体3の展開長が8cmを超え18cm以下の場合には、比較的小型のノートパソコンの表示装置に使用されるため、必要な視野角はやや狭いものである。このため、光拡散素子6としては、出射光光度分布(XZ面内)の半値全幅が3〜8度の範囲であることが好ましく、さらに好ましくは4〜8度、より好ましくは4〜7度の範囲である。また、ヘイズ値としては、30〜70%の範囲であることが好ましく、さらに好ましくは40〜65%、より好ましくは45〜60%の範囲である。さらに、光拡散素子6の表面に凹凸構造を形成する場合には、その平均傾斜角が3〜7度の範囲であることが好ましく、さらに好ましくは3.5〜6.5度、より好ましくは4.5〜6度の範囲である。
【0064】
導光体3の展開長が18cmを超え22cm以下の場合には、比較的大形のノートパソコンの表示装置に使用されるため、比較的広い視野角が必要であるとともに、表示エリア内での輝度の均一性を達成することが必要である。このため、光拡散素子6としては、出射光光度分布(XZ面内)の半値全幅が4〜10度の範囲であることが好ましく、さらに好ましくは5〜9度、より好ましくは5〜8.5度の範囲である。また、ヘイズ値としては、40〜75%の範囲であることが好ましく、さらに好ましくは50〜70%、より好ましくは50〜65%の範囲である。さらに、光拡散素子6の表面に凹凸構造を形成する場合には、その平均傾斜角が3.5〜8度の範囲であることが好ましく、さらに好ましくは4〜7度、より好ましくは4.5〜6.5度の範囲である。
【0065】
導光体3の展開長が22cmを超え23cm以下の場合は、比較的大型のノートパソコン等の表示装置に使用される。一灯型の冷陰極管を一次光源1として使用するノートパソコンとしては表示エリアが大きいものであり、導光体3の展開長が22cm以下のものと比較すると、光利用効率をより高くし輝度を向上させることが必要となる。このように輝度をより高くしようとすると、例えば、光源装置の導光体3の裏面に配置される反射シートとして、指向性反射性の低い発泡PET反射フィルムに代えて指向性反射特性に優れる銀反射シ−トやアルミ反射シ−ト等の金属反射シートを使用する必要がある。しかし、金属反射シ−トを使用した場合には、金属反射特有のぎらつき、入射面近傍に現れる暗線輝線、入射面両端部近傍に現れる暗部等の欠陥が強く発現され、光源装置としての品位が損なわれる傾向にある。このような品位低下を抑止するためには、出射光光度分布(XZ面内)の半値全幅が9度を超えるような光拡散性の高い光拡散素子6を使用することが必要となってくるが、このうような光拡散素子6を使用した場合には光拡散性が大きくなりすぎるとともに、全光線透過率の大幅な低下を招くため、十分に高い輝度が得られないという問題点を有する。このため、このような品位低下を導光体3や光偏向素子4にて抑止し、光拡散素子6としては、出射光光度分布(XZ面内)の半値全幅が5〜11度の範囲のものを使用することが好ましく、さらに好ましくは6〜10度、より好ましくは7〜9度の範囲である。また、ヘイズ値としては、50〜80%の範囲であることが好ましく、さらに好ましくは55〜73%、より好ましくは55〜70%の範囲である。さらに、光拡散素子6の表面に凹凸構造を形成する場合には、その平均傾斜角が4.5〜9.5度の範囲であることが好ましく、さらに好ましくは5〜8.5度、より好ましくは5〜7度の範囲である。
【0066】
(3)導光体3の展開長が22cmを超え28cm以下の場合(一次光源1として多灯型の冷陰極管を使用)
このような光源装置は、デスクトップ型パソコンのモニター、液晶テレビ等の表示装置に使用されるため、比較的広い視野角が必要であるとともに高い輝度が必要となる。このため、一次光源1としては導光体3の対向する2つの端面にそれぞれ1個以上の冷陰極管を配置した多灯型のものが使用される。このような光源装置では、一灯型の一次光源1を用いたものとは品位に関する視認性が異なり、後述するような出射光光度分布(XZ面内)の非対称性はその特性を失い、光源装置の中央部付近の出射光光度分布(XZ面内)は、図24に示したように、光拡散素子6を使用しない場合でも対称性が向上する。さらに、光源に近い両端部近傍での出射光光度分布(XZ面内)は、それぞれ最も近いところから導光される光の影響をうけ、若干非対称性を帯びた出射光光度分布(XZ面内)となる。すなわち、図24の左側の端部近傍では、光源側の出射光光度分布(XZ面内)が急激に低下し、中央側の出射光光度分布(XZ面内)は滑らかなテイリング傾向を有しているため、左端部近傍での光の出射方向はやや中央部へ向いている成分が多くなっている。一方、図24の右側の端部近傍では、これと反対の出射光光度分布(XZ面内)を有しており、光の出射方向はやや中央部へ向いている成分が多くなっている。このため、中央部から両端部近傍を観察したときの視認性に優れた出射光特性が得られ、端部まで高品位な、高い輝度を有する光源装置となる。このため、光拡散素子6としては、広い視野角を得る光拡散性が必要とされ、出射光光度分布(XZ面内)の半値全幅が6〜13度の範囲のものを使用することが好ましく、さらに好ましくは6.5〜11度、より好ましくは7〜9度の範囲である。また、ヘイズ値としては、50〜82%の範囲であることが好ましく、さらに好ましくは60〜75%、より好ましくは65〜70%の範囲である。さらに、光拡散素子6の表面に凹凸構造を形成する場合には、その平均傾斜角が4.5〜12度の範囲であることが好ましく、さらに好ましくは5.5〜8.5度、より好ましくは6〜7度の範囲である。
【0067】
本発明の光源装置においては、上記のような光拡散素子6を用いる場合、光偏向素子4からの出射光輝度分布(XZ面内)の半値全幅が19〜26度程度の集光性が比較的弱い光偏向素子4を使用するとともに、光拡散性の比較的弱い光拡散素子6を使用した方がYZ面での拡散による輝度の低下を抑えられるため、輝度向上の観点からは好ましい場合がある。この場合、光拡散素子6としては、広い視野角を得る光拡散性が必要とされ、出射光光度分布(XZ面内)の半値全幅が1〜8度の範囲のものを使用することが好ましく、さらに好ましくは2〜8度、より好ましくは3〜7度の範囲である。また、ヘイズ値としては、8〜70%の範囲であることが好ましく、さらに好ましくは30〜65%、より好ましくは40〜60%の範囲である。さらに、光拡散素子6の一方の表面に凹凸構造を形成する場合には、その平均傾斜角が0.8〜7度の範囲であることが好ましく、さらに好ましくは3〜6.5度、より好ましくは3.5〜6度の範囲である。凹凸構造を両面に形成する場合には、その一方の表面の平均傾斜角が0.8〜4度の範囲であることが好ましく、さらに好ましくは1〜4度、より好ましくは2〜4度の範囲である。
【0068】
本発明の光源装置においては、光偏向素子4の出光面から出射する出射光は図25に示したような非対称的な出射光輝度分布(XZ面内)を有する場合がある。この出射光輝度分布(XZ面内)は、導光体3から出射した出射光光度分布(XZ面内)に由来するものである。このような非対称的な出射光輝度分布(XZ面内)は、例えば、光偏向素子4からの出射光輝度分布(XZ面内)の半値全幅が、20度以下の指向性の高い出射光が出射される場合に発現する傾向にある。特に、表示エリアの比較的大きな光源装置においては、このような出射光輝度分布(XZ面内)の非対称性を緩和させるためには、光拡散性の比較的強い光拡散素子6を使用することが必要となる。一方、光拡散素子6として、出射光光度分布(XZ面内)の半値全幅が4度以上、ヘイズ値が35%以上のものを使用した場合には、光拡散素子6から出射する出射光光度分布(XZ面内)のピーク角度が光偏向素子4からの出射光輝度分布(XZ面内)のピーク角度に対して、光源と反対側の方向へ1〜3度程度偏角される。このため、光偏角素子からの出射光輝度分布(XZ面内)のピーク角度が所望の方向(例えば法線方向)にある場合には、光拡散素子6を使用することによって所望の方向での輝度の低下を招くことになる。従って、光偏向素子4からの出射光輝度分布(XZ面内)の半値全幅が20度以下である場合に上記のような光拡散素子6を使用する際には、予め、光偏向素子4からの出射光輝度分布(XZ面内)のピーク角度が所望の方向から光源側に0.5〜3度、さらに好ましくは0.5〜2度、より好ましくは1〜2度傾くように光偏向素子4等を設計しておくことが好ましい。
【0069】
本発明においては、光拡散素子6として光拡散性に異方性を有するものを使用することが、光拡散素子6の全光線透過率を高め、光偏向素子4からの出射光を効率的に拡散でき、輝度を向上させることができるため好ましい。例えば、導光体3の一つの端面に線上の冷陰極管を一次光源1として配置した光源装置においては、狭視野化を図る光偏向素子4では、導光体3の光出射面から出射する出射光をXZ面において主として狭視野化を図るものであり、さらに光拡散素子6により狭視野化されたXZ面の光を主として拡散させ視野角を広げることを目的としている。しかし、光拡散素子6として等方性拡散性のものを使用した場合には、光偏角素子により狭視野化されていないYZ面の光も同等に拡散されるため、輝度の低下を招くことになる。そこで、図26に示したように、XZ面よりもYZ面での光拡散性が高いような異方拡散性を有する光拡散素子6を使用することにより、光偏向素子4により狭視野化されたXZ面の光を強く拡散し、狭視野化されていないYZ面の光の拡散を弱くすることができ、光偏向素子4からの出射光を効率的に拡散することができ、輝度の低下をできる限り最小に抑えることができる。
【0070】
本発明においては、このような光拡散素子6の異方拡散性については、どのような異方性を有する光拡散素子6を使用するかは、上記のようにXZ面とYZ面での異方性に限定されるものではなく、導光体3の光出射機構、光偏向素子4のレンズ形状や配列、光源装置の用途等に応じて適宜選定することができる。すなわち、図27に示したように、光拡散素子6の出射面に対する法線軸を含む任意の面(ZP−n面(n=1,2,・・・))を想定し、これらの任意の面における出射光光度分布(XZ面内)の半値全幅を相違させることによって異方性を付与することができる。なお、ZP−n面の中で最も大きい半値全幅を最大半値全幅、最も小さい半値全幅を最小半値全幅とする。同様に、光拡散素子6に異方拡散性を付与する凹凸構造の平均傾斜角についても、ZP−n面と光拡散素子6(XY面)が交差する任意のP-n方向における平均傾斜角を相違させることによって平均傾斜角の異方性を付与することができる。このとき、P−n方向の中で最も大きい平均傾斜角を最大平均傾斜角、最も小さい平均傾斜角を最小平均傾斜角とする。
【0071】
例えば、導光体3の一つの端面に線上の冷陰極管を配置し一次光源1とした場合、光偏向素子4は主としてXZ面で狭視野化を主として図り、YZ面では殆ど作用しないため、XZ面で効果的に出射光を拡散し、YZ面では出射光を拡散させないような異方拡散性を有する光拡散素子6を使用することが最適である。従って、光拡散素子6としては、XZ面で最大半値全幅を示し、YZ面で最小半値全幅を示すような異方拡散性を有するものが好ましい。同様に、光拡散素子6に形成する凹凸構造も、X方向に最大平均傾斜角を有し、Y方向に最小平均傾斜角を有するような構造あるいは配置とすることが好ましい。
【0072】
このような異方拡散性を有する光拡散素子6においても、輝度特性、視認性および品位等のバランスを考慮して光偏向素子4からの出射光を適度に拡散させる光拡散特性を有する光拡散素子6を使用することが必要である。すなわち、光拡散素子6の光拡散性が低い場合には、視野角を十分に広げることが困難となり視認性を低下させるとともに、品位改善効果が十分でなくなる傾向にあり、逆に光拡散性が高すぎる場合には光偏向素子4による狭視野化の効果が損なわれるとともに、全光線透過率も低くなり輝度が低下する傾向にある。そこで、出射光光度分布(XZ面内)の最大半値全幅が1〜13度の範囲であるものが使用され、好ましくは3〜11度の範囲、さらに好ましくは4〜9度の範囲である。また、最小半値全幅に対する最大半値全幅の比(最大半値全幅/最小半値全幅)が1.1〜20の範囲であることが好ましく、さらに好ましくは2〜15の範囲、より好ましくは4〜10の範囲である。これは、最大半値全幅/最小半値全幅を1.1以上とすることによって光の利用効率を向上させ輝度を高めることができるためであり、20以下とすることによって強い光拡散性による輝度の低下を抑止することができるためである。
【0073】
光拡散素子6の一方の表面に凹凸構造を形成する場合には、その最大平均傾斜角を0.8〜15度の範囲とすることが好ましく、さらに好ましくは3.5〜11度であり、より好ましくは4〜9度である。また、最大半値全幅/最小半値全幅と同様の観点から、最小平均傾斜角に対する最大平均傾斜角の比(最大平均傾斜角/最小平均傾斜角)は、1.1〜20の範囲であることが好ましく、さらに好ましくは2〜15の範囲、より好ましくは4〜10の範囲である。凹凸構造は、光拡散素子6の両方の表面に形成してもよく、この場合、光拡散素子6の全光線透過率の低下を抑止するためには、光拡散素子6の入射面側の平均傾斜角を出射面側の平均傾斜角よりも大きくすることが好ましい。また、光拡散素子6のヘイズ値としては8〜82%の範囲とすることが、輝度特性向上と視認性改良の観点から好ましく、さらに好ましくは30〜70%の範囲であり、より好ましくは40〜65%の範囲である。
【0074】
また、光拡散素子6としては、光源装置の表示エリアの大きさに応じて適切な光拡散特性を有するものを使用することが好ましい。導光体3の展開長が8cm以下の場合には、光拡散素子6としては、出射光光度分布(XZ面内)の最大半値全幅が1〜6度の範囲であることが好ましく、さらに好ましくは1〜5度、より好ましくは2〜5度の範囲である。また、ヘイズ値としては、8〜60%の範囲であることが好ましく、さらに好ましくは8〜50%、より好ましくは20〜50%の範囲である。さらに、光拡散素子6の表面に凹凸構造を形成する場合には、その最大平均傾斜角が0.8〜5度の範囲であることが好ましく、さらに好ましくは0.8〜4度、より好ましくは2〜4度の範囲である。
【0075】
導光体3の展開長が8cmを超え23cm以下の場合(一次光源1として一灯型の冷陰極管を使用)には、光拡散素子6としては、出射光光度分布(XZ面内)の最大半値全幅が3〜11度の範囲であることが好ましく、さらに好ましくは4〜10度、より好ましくは4〜9度の範囲である。また、ヘイズ値としては、30〜80%の範囲であることが好ましく、さらに好ましくは40〜73%、より好ましくは45〜70%の範囲である。さらに、光拡散素子6の表面に凹凸構造を形成する場合には、その最大平均傾斜角が3〜15度の範囲であることが好ましく、さらに好ましくは3.5〜10度、より好ましくは4.5〜8度の範囲である。中でも、導光体3の展開長が8cmを超え18cm以下の場合には、光拡散素子6としては、出射光光度分布(XZ面内)の最大半値全幅が3〜10度の範囲であることが好ましく、さらに好ましくは4〜10度、より好ましくは4〜9度の範囲である。また、ヘイズ値としては、30〜70%の範囲であることが好ましく、さらに好ましくは40〜65%、より好ましくは45〜60%の範囲である。さらに、光拡散素子6の表面に凹凸構造を形成する場合には、その最大平均傾斜角が3〜9度の範囲であることが好ましく、さらに好ましくは3.5〜8度、より好ましくは4.5〜8度の範囲である。また、導光体3の展開長が18cmを超え22cm以下の場合には、光拡散素子6としては、出射光光度分布(XZ面内)の最大半値全幅が4〜13度の範囲であることが好ましく、さらに好ましくは5〜11度、より好ましくは5〜8.5度の範囲である。また、ヘイズ値としては、40〜75%の範囲であることが好ましく、さらに好ましくは50〜70%、より好ましくは50〜65%の範囲である。さらに、光拡散素子6の表面に凹凸構造を形成する場合には、その最大平均傾斜角が3.5〜15度の範囲であることが好ましく、さらに好ましくは4〜9度、より好ましくは4.5〜6.5度の範囲である。さらに、導光体3の展開長が22cmを超え23cm以下の場合は、光拡散素子6としては、出射光光度分布(XZ面内)の最大半値全幅が5〜13度の範囲のものを使用することが好ましく、さらに好ましくは6〜12度、より好ましくは7〜9度の範囲である。また、ヘイズ値としては、50〜80%の範囲であることが好ましく、さらに好ましくは55〜73%、より好ましくは55〜70%の範囲である。さらに、光拡散素子6の表面に凹凸構造を形成する場合には、その最大平均傾斜角が4.5〜15度の範囲であることが好ましく、さらに好ましくは5〜10度、より好ましくは5〜7度の範囲である。
【0076】
導光体3の展開長が22cmを超え28cm以下の場合(一次光源1として多灯型の連陰極管を使用)には、光拡散素子6としては、広い視野角を得る光拡散性が必要とされ、出射光光度分布(XZ面内)の最大半値全幅が6〜13度の範囲のものを使用することが好ましく、さらに好ましくは6.5〜11度、より好ましくは7〜9度の範囲である。また、ヘイズ値としては、50〜82%の範囲であることが好ましく、さらに好ましくは60〜75%、より好ましくは65〜70%の範囲である。さらに、光拡散素子6の表面に凹凸構造を形成する場合には、その最大平均傾斜角が4.5〜15度の範囲であることが好ましく、さらに好ましくは5.5〜13度、より好ましくは6〜7度の範囲である。
【0077】
このような異方拡散性を有する光拡散素子6の拡散性付与構造としては、例えば、図28〜30に示したような凹凸構造が挙げられる。図28に示した凹凸構造は、一軸上に長く伸びたレンチキュラーレンズ列等の多数のレンズ列を略並列して連設した配列構造である。このようなレンズ列の配列ピッチは表示装置として使用される液晶素子のピッチおよび光偏向素子4のプリズム列等のレンズ列の配列ピッチに対してモアレの発生しにくいピッチを選定するか、ランダムな配列ピッチとすることが好まし。通常、レンズ列の配列ピッチは1〜70μmの範囲とすることが好ましく、製造の容易さやモアレの発生を防止する観点から5〜40μmがさらに好ましく、より好ましくは10〜30μmの範囲である。また、レンズ列の長手方向と直交する方向の平均傾斜角は0.8〜15度の範囲とすることが輝度向上と視認性の観点から好ましく、さらに好ましくは3.5〜11度、より好ましくは4〜9度の範囲である。
【0078】
図29に示した凹凸構造は、多数のシリンドリカルレンズ形状体を離散的に配列した構造である。シリンドリカルレンズ形状体の配列間隔は、一定の規則的なピッチでもよく、ランダムな配列ピッチであってもよい。通常、シリンドリカルレンズ形状体の配列ピッチは、1〜70μmの範囲とすることが好ましく、製造の容易さやモアレの発生を防止する観点から5〜40μmがさらに好ましく、より好ましくは10〜30μmの範囲である。また、シリンドリカルレンズ形状体の長手方向と直交する方向の平均傾斜角は0.8〜15度とすることが輝度向上と視認性の観点から好ましく、さらに好ましくは3.5〜11度、より好ましくは4〜9度の範囲である。このような離散的な配列構造は、光拡散素子6として最大半値全幅であることが必要な面と光拡散素子6の出射面との交差する線と、シリンドリカルレンズ形状体の長手方向が略直交する量的確率が高くなるように配列することが好ましい。また、光拡散素子6として最小半値全幅であることが必要な面と光拡散素子6の出射面と交差する線と、シリンドリカルレンズ形状体の長手方向が略平行になる量的確率が高くなるよう配列することが好ましい。
【0079】
図30に示した凹凸構造はヘアライン構造である。ヘアラインの延びる方向に直交方向の平均傾斜角は0.8〜15度とすることが輝度向上と視認性の観点から好ましく、さらに好ましくは3.5〜11度、より好ましくは4〜9度の範囲である。ヘアラインの延びる方向は、光拡散素子6として最大半値全幅であることが必要な面と光拡散素子6の出射面との交差する線と略直交する方向が好ましい。
【0080】
このような異方拡散性を付与する凹凸構造が形成された面およびその裏面の少なくとも一方にマット構造を付与することにより、ぎらつきや輝度斑等を抑止することができ品位を向上させることができる。しかし、マット構造の光拡散性が強くなると異方拡散性が損なわれ輝度の低下を招く場合があるため、比較的光拡散性の弱いマット構造を付与することが好ましい。このようなマット構造としては、平均傾斜角度が0.5〜5度の範囲のものが好ましく、さらに好ましくは0.8〜4度、より好ましくは1〜3.5度の範囲である。なお、異方性付与凹凸構造の表面にマット構造を付与した場合のマット構造の平均傾斜角は、凹凸構造に起因する平均傾斜角度を除いたマット構造自体の平均傾斜角をいう。すなわち、凹凸構造の無い部分や凹凸構造の長手方向に平行な平均傾斜角を測定することができ、触針粗さ計による計測、光拡散素子6の断面形状を画像解析する方法、原子間力顕微鏡等によって測定することができる。
【0081】
本発明においては、光偏向素子4を用いて導光体3からの出射光を法線方向等の特定な方向に出射させ、この出射光を異方拡散性を有する光拡散素子6を用いて所望の方向に出射させることもできる。この場合、光拡散素子6に異方拡散作用と光偏向角作用の両方の機能を付与することもできる。例えば、凹凸構造としてレンチキュラーレンズ列やシリンドリカルレンズ形状体を用いたものでは、その断面形状を非対称形状にすることで、異方拡散作用と光偏向作用の両機能を付与することができる。
【0082】
また、本発明においては、光源装置としての視野角を調整し、品位を向上させる目的で、光偏向素子4や光拡散素子6に光拡散材を含有させることもできる。このような光拡散材としては、光偏向素子4や光拡散素子6を構成する材料と屈折率が異なる透明な微粒子を使用することができ、例えば、シリコンビーズ、ポリスチレン、ポリメチルメタクリレ−ト、フッ素化メタクリレ−ト等の単独重合体あるいは共重合体等が挙げられる。光拡散材としては、光偏向素子4による狭視野効果や光拡散素子6による適度な拡散効果を損なわないように、含有量、粒径、屈折率等を適宜選定する必要がある。例えば、光拡散材の屈折率は、光偏向素子4や光拡散素子6を構成する材料との屈折率差が小さすぎると拡散効果が小さく、大きすぎると過剰な散乱屈折作用が生じるため、屈折率差が0.01〜0.1の範囲とすることが好ましく、さらに好ましくは0.03〜0.08、より好ましくは0.03〜0.05の範囲である。また、拡散材の粒径は、粒径が大きすぎると散乱が強くなりぎらつきや輝度の低下を引き起こし、小さすぎると着色が発生するため、平均粒径が0.5〜20μmの範囲とすることが好ましく、さらに好ましくは2〜15μm、より好ましくは2〜10μmの範囲である。
【0083】
なお、本発明のような光偏向素子を用いた光源装置の出射光輝度分布(XZ面内)は、ピ−ク位置を境に、光源側での出射光輝度分布(XZ面内)がピ−ク光から遠くなるにつれ急激に輝度が低下し、光源から遠い側での出射光輝度分布(XZ面内)は比較的緩やかに輝度が低下する非対称な出射光輝度分布(XZ面内)を示す場合がある。例えば、このような出射光輝度分布(XZ面内)の光源装置を10インチ以上のノ−ト型パソコン等の比較的広い視野角を必要とする液晶表示装置に用いる場合、比較的光拡散性の高い光拡散素子を光偏向素子の出光面上に配置し、出射光光度分布(XZ面内)を広げて視野角を広げることが行われている。ヘイズ値が50%以上という光拡散性の強い光拡散素子を用いる場合には、出射光光度分布(XZ面内)のピーク角度が1〜3度程度光源から遠い側に偏向される。このため、光偏向素子からの出射光輝度分布(XZ面内)のピーク角度がその出光面の法線方向に位置する場合、光拡散素子により出射光光度分布(XZ面内)のピーク角度が、法線方向から1〜3度程度光源から遠い側に偏光され、結果として法線方向から観察した場合の輝度を極端に低下させることになる。これは、光拡散素子を使用することにより、光偏向素子から出射した出射光輝度分布(XZ面内)の非対称性は幾分緩和されるものの、比較的急激に輝度が低下する出射光輝度分布(XZ面内)の部位が法線方向位置するためである。このような輝度の極端な低下を避けるために、あらかじめ光偏向素子からの出射光輝度分布(XZ面内)のピーク角度を法線方向から光源側に1〜3度傾けておくことが好ましい。
【0084】
【実施例】
以下、実施例によって本発明を具体的に説明する。
なお、以下の実施例における各物性の測定は下記のようにして行った。
【0085】
面光源装置の法線輝度、光度半値全幅の測定
光源として冷陰極管を用い、インバータ(ハリソン社製HIU−742A)にDC12Vを印加して高周波点灯させた。輝度は、面光源装置あるいは導光体の表面を20mm四方の正方形に3×5分割し、各正方形の法線方向の輝度値の15点平均を求めた。導光体の光度半値全幅は、導光体の表面に4mmφのピンホールを有する黒色の紙をピンホールが表面の中央に位置するように固定し、輝度計の測定円が8〜9mmとなるように距離を調整し、冷陰極管の長手方向軸と垂直方向および平行方向でピンホールを中心にゴニオ回転軸が回転するように調節した。それぞれの方向で回転軸を+80°〜−80°まで1°間隔で回転させながら、輝度計で出射光の光度分布(XZ面内)を測定し、ピーク角度、光度分布(XZ面内)の半値全幅(ピーク値の1/2の分布(XZ面内)の広がり角)を求めた。また、面光源装置の輝度半値全幅は、輝度計の視野角度を0.1度にし、面光源装置の中央の面に位置するよう調整し、ゴニオ回転軸が回転するように調節した。それぞれの方向で回転軸を+80°〜−80°まで1°間隔で回転させながら、輝度計で出射光の輝度分布(XZ面内)を測定し、ピーク輝度、ピーク角度を求めた。
【0086】
平均傾斜角(θa)の測定
ISO4287/1−1987に従って、触針として010−2528(1μmR、55°円錐、ダイヤモンド)を用いた触針式表面粗さ計(東京精器(株)製サーフコム570A)にて、粗面の表面粗さを駆動速度0.03mm/秒で測定した。この測定により得られたチャートより、その平均線を差し引いて傾斜を補正し、前記式(1)式および(2)式によって計算して求めた。
【0087】
ヘイズ値の測定
ヘイズ値は、JIS K−7105のB法に従って、50mm×50mmの大きさの試料を積分球式反射透過率計(村上色彩技術研究社製RT−100型)を用いて得られた全光線透過率(Tt)、拡散光線透過率(Td)から、次の式(4)によって計算して求めた。
【0088】
【数3】
光拡散分布角度の測定
光拡散分布角度は、50mm×50mmの大きさの試料を自動変角光度計(村上色彩研究所社製GP−200型)を用いて測定し、求めたピーク光度の1/2光度である半値半幅角度の2倍をサンプルの半値全幅角度(a)とした。なお、試料に入射させる光は、光源からの光をコンデンサーレンズによりピンホールに集光し、コリメーターレンズを通して平行光(平行度±0.5度以下)とし、光束絞り(開口径10.5mm)を通過し試料の入射面に入射させる。試料を透過した光は、受光レンズ(開口径11.4mmを通り(試料面が平滑である場合は、受光絞りの位置に集光する)、受光絞りを通過して受光素子に達し、電圧値として出力する。また、試料を回転させ同様の測定を行い、最大半値全幅(Maxa)と最小半値全幅(Mina)を求めた。
【0089】
実施例1
アクリル樹脂(三菱レイヨン(株)製アクリペットVH5#000)を用い射出成形することによって一方の面がマットである導光体を作製した。該導光体は、216mm×290mm、厚さ2.0mm−0.7mmのクサビ板状をなしていた。この導光体の鏡面側に、導光体の長さ230mmの辺(短辺)と平行になるように、アクリル系紫外線硬化樹脂によってプリズム列のプリズム頂角100°、ピッチ50μmのプリズム列が並列に連設配列されたプリズム層を形成した。導光体の長さ290mmの辺(長辺)に対応する一方の側端面(厚さ2.0mmの側の端面)に沿って冷陰極管を光源リフレクター(麗光社製銀反射フィルム)で覆い配置した。さらに、その他の側端面に光拡散反射フィルム(東レ社製E60)を貼付し、プリズム列配列(裏面)に反射シートを配置した。以上の構成を枠体に組み込んだ。この導光体は、光入射面および光出射面の双方に垂直な面内での出射光光度分布(XZ面内)の最大ピーク角度は光出射面法線方向に対して70度、半値全幅は22.5度であった。
【0090】
一方、屈折率1.5064のアクリル系紫外線硬化性樹脂を用いて、表1に示したように、プリズム列を構成する一方のプリズム面(第1のプリズム面)を法線とのなす角度(α)が32.5度の平面とし、他方のプリズム面(第2のプリズム面)をプリズム頂部からプリズム列の高さ21.4μmまでを短軸の曲率半径400μm、長軸の曲率半径800μmの非球面形状(曲率半径800μmの曲面)の凸曲面(傾斜角=56.6度、β=33.8度)、プリズム頂部からプリズム列の高さ21.4μm以上を曲率半径400μmの球面形状の凸曲面(傾斜角=59.0度)とする2つの凸曲面(プリズム頂部側からエリア1、2)で構成したピッチ56.5μmのプリズム列が略並列に連設されたプリズム列形成面を、厚さ125μmのポリエステルフィルムの一方の表面に形成したプリズムシートを作製した。プリズムシートの第2のプリズム面の仮想平面との最大距離(d)のプリズム列のピッチ(P)に対する割合(d/P)は1.03%であった。
【0091】
得られたプリズムシートを、上記導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表2に示した。
【0092】
実施例2
プリズム列を構成する第2のプリズム面を、表1に示したように、プリズム頂部からプリズム列の高さ16μmまでを傾斜角を55.2度の平面(β=34.8度)、プリズム列の高さ16μmからプリズム底部までをプリズム頂部に近い側から傾斜角が55.5度、56.2度、57.0度、57.8度、58.4度、59.4度の同一幅の6つの平面とする7つの平面(プリズム頂部側からエリア1、2・・・7)で構成した以外は、実施例1と同様にしてプリズムシートを作製した。プリズムシートの第2のプリズム面の仮想平面との最大距離(d)のプリズム列のピッチ(P)に対する割合(d/P)は1.10%であった。
【0093】
得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表2に示した。
【0094】
実施例3
プリズム列を構成する第2のプリズム面を、表1に示したように、プリズム頂部からプリズム列の高さ10.6μmまでを傾斜角が56.4度の平面(β=33.6度)、プリズム列の高さ10.6〜21.3μmまでを傾斜角が56.8度の平面、プリズム列の高さ21.3μm以上を曲率半径400μmの球面形状の凸曲面(傾斜角=59.2度)とする2つの平面と1つの凸曲面(プリズム頂部側からエリア1、2、3)から構成した以外は、実施例1と同様にしてプリズムシートを作製した。プリズムシートの第2のプリズム面の仮想平面との最大距離(d)のプリズム列のピッチ(P)に対する割合(d/P)は1.03%であった。
【0095】
得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表2に示した。
【0096】
実施例4
プリズム列を構成する第2のプリズム面を、表1に示したように、プリズム頂部からプリズム列の高さ21.5μmまでを傾斜角が56.8度の平面(β=33.2度)、プリズム列の高さ21.5μm以上を傾斜角が58.7度の平面とする2つの平面(プリズム頂部側からエリア1、2)とから構成した以外は、実施例1と同様にしてプリズムシートを作製した。プリズムシートの第2のプリズム面の仮想平面との最大距離(d)のプリズム列のピッチ(P)に対する割合(d/P)は0.76%であった。
【0097】
得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表2に示した。
【0098】
実施例5
表1に示したように、プリズム列を構成する第1のプリズム面と法線となす角度(α)を29.0度、プリズム列を構成する第2のプリズム面を、プリズム頂部からプリズム列の高さ16.0μmまでを傾斜角を55.3度の平面(β=34.7度)、プリズム列の高さ16.0μmからプリズム底部までをプリズム頂部に近い側から傾斜角が55.7度、56.5度、57.4度、58.2度、59.0度、59.6、60.3度の同一幅の7つの平面とする8つの平面(プリズム頂部側からエリア1,2,・・ ・8)で構成した以外は、実施例1と同様にしてプリズムシートを作製した。プリズムシートの第2のプリズム面の仮想平面との最大距離(d)のプリズム列のピッチ(P)に対する割合(d/P)は0.73%であった。
【0099】
得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表2に示した。
【0100】
実施例6
表1に示したように、実施例5のプリズム列高さ16.0μmからプリズム底部までの7つのエリアの境界を通る曲面で構成した(プリズム頂部に近い側からの各エリアの傾斜角が55.4度、56.2度、57.1度、57.9度、58.7度、59.3、60.0度)以外は、実施例1と同様にしてプリズムシートを作製した。プリズムシートの第2のプリズム面の仮想平面との最大距離(d)のプリズム列のピッチ(P)に対する割合(d/P)は0.0.68%であった。
【0101】
得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表2に示した。
【0102】
実施例7
表1に示したように、プリズム列を構成する第1のプリズム面を法線となす角度(α)が15.0度の平面とし、第2のプリズム面をプリズム頂部からプリズム列の高さ10.4μmまでを傾斜角を52.0度の平面(β=38度)、プリズム列の高さ10.4μmからプリズム底部までをプリズム頂部に近い側から傾斜角が52.6度、52.8度、53.7度、54.5度、55.3度、56.1度、56.8度、57.5度、58.4度、60.0度の同一幅の10の平面とする11の平面(プリズム頂部側からエリア1,2,・・ ・11)で構成した以外は、実施例1と同様にしてプリズムシートを作製した。プリズムシートの第2のプリズム面の仮想平面との最大距離(d)のプリズム列のピッチ(P)に対する割合(d/P)は1.48%であった。
【0103】
得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表2に示した。
【0104】
実施例8
表1に示したように、プリズム列を構成する第1のプリズム面と法線となす角度(α)を10.0度、第2のプリズム面をプリズム頂部からプリズム列の高さ11.5μmまでを傾斜角を52.0度の平面(β=38.0度)、プリズム列の高さ11.5μmからプリズム底部までをプリズム頂部に近い側から傾斜角が52.6度、52.8度、53.7度、54.5度、55.3度、56.1度、56.8度、57.5度、58.4度、の同一幅の9つの平面と60度の平面とする11の平面(プリズム頂部側からエリア1,2,・・ ・11)で構成した以外は、実施例1と同様にしてプリズムシートを作製した。プリズムシートの第2のプリズム面の仮想平面との最大距離(d)のプリズム列のピッチ(P)に対する割合(d/P)は1.64%であった。
【0105】
得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表2に示した。
【0106】
実施例9
表1に示したように、プリズム列を構成する第1のプリズム面と法線のなす角度(α)を5度、第2のプリズム面をプリズム頂部からプリズム列の高さ12.9μmまでを傾斜角を52.0度の平面(β=38度)、プリズム列の高さ12.9μmからプリズム底部までをプリズム頂部に近い側から傾斜角が52.6度、52.8度、53.7度、54.5度、55.3度、56.1度、56.8度、57.5度、58.4度、の同一幅の9つの平面と60度の平面とする11の平面(プリズム頂部側からエリア1,2,・・ ・11)で構成した以外は、実施例1と同様にしてプリズムシートを作製した。プリズムシートの第2のプリズム面の仮想平面との最大距離(d)のプリズム列のピッチ(P)に対する割合(d/P)は1.83%であった。
【0107】
得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表2に示した。
【0108】
実施例10
表1に示したように、プリズム列を構成する第1のプリズム面と法線のなす角度(α)を0.1度、第2のプリズム面をプリズム頂部からプリズム列の高さ14.5μmまでを傾斜角を52.0度の平面(β=38度)、プリズム列の高さ14.5μmからプリズム底部までをプリズム頂部に近い側から傾斜角が52.6度、52.8度、53.7度、54.5度、55.3度、56.1度、56.8度、57.5度、58.4度、の同一幅の9つの平面と60度の平面とする11の平面(プリズム頂部側からエリア1,2,・・ ・11)で構成した以外は、実施例1と同様にしてプリズムシートを作製した。プリズムシートの第2のプリズム面の仮想平面との最大距離(d)のプリズム列のピッチ(P)に対する割合(d/P)は2.06%であった。
【0109】
得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表2に示した。
【0110】
比較例1
プリズムシートのプリズム列を、2つのプリズム面がともに平面であり、プリズム頂角が65.4度である断面二等辺三角形(α=β=32.7度)とした以外は、実施例1と同様にして面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、ピーク輝度を1.00とし、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表2に示した。
【0111】
【表1】
【表2】
実施例11〜22
プリズム列を構成する第2のプリズム面を、表2に示した傾斜角および分割高さの3つの平面(プリズム頂部側からエリア1、2、3)で構成した以外は、実施例1と同様にしてプリズムシートを作製した。得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表3に示した。
【0112】
比較例2
プリズム列を構成する第2のプリズム面全体を曲率半径452μmの球面形状の凸曲面(傾斜角=57.3度、β=36.3度)とした以外は、実施例1と同様にしてプリズムシートを作製した。得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表3に示した。
【0113】
【表3】
実施例23〜34
アクリル樹脂(三菱レイヨン(株)製アクリペットVH5#000)を用い射出成形することによって一方の面がマットである導光体を作製した。該導光体は、230mm×310mm、厚さ3.5mm−1.2mmのクサビ板状をなしていた。この導光体の鏡面側に、導光体の長さ230mmの辺(短辺)と平行になるように、アクリル系紫外線硬化樹脂によってプリズム列のプリズム頂角100°、ピッチ50μmのプリズム列が略並列に連設配列されたプリズム層を形成した。導光体の長さ310mmの辺(長辺)に対応する一方の側端面(厚さ3.5mmの側の端面)に沿って冷陰極管を光源リフレクター(麗光社製銀反射フィルム)で覆い配置した。さらに、その他の側端面に光拡散反射フィルム(東レ社製E60)を貼付し、プリズム列配列(裏面)に反射シートを配置した。以上の構成を枠体に組み込んだ。この導光体は、光入射面および光出射面の双方に垂直な面内での出射光光度分布(XZ面内)の最大ピーク角度は光出射面法線方向に対して70度、半値全幅は33度であった。
【0114】
一方、プリズム列を構成する第2のプリズム面を、表3に示した傾斜角および分割高さの3つの平面(プリズム頂部側からエリア1、2、3)で構成した以外は、実施例1と同様にしてプリズムシートを作製した。
【0115】
得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、比較例4を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表4に示した。
【0116】
比較例3
比較例2のプリズムシートを使用した以外は、実施例23〜34と同様にして、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、比較例4を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表4に示した。
【0117】
比較例4
比較例1のプリズムシートを使用した以外は、実施例23〜34と同様にして、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、このピーク輝度を1.00とし、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表4に示した。
【0118】
【表4】
実施例35〜39
プリズム列を構成する一方のプリズム面(第1のプリズム面)と法線とのなす角度(α)、他方のプリズム面(第2のプリズム面)と法線とのなす角度(β)を表4に示した角度とし、第2のプリズム面を表4に示した傾斜角および分割高さの2つの平面(プリズム頂部側からエリア1、2)で構成した以外は、実施例1と同様にしてプリズムシートを作製した。得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表5に示した。
【0119】
比較例5
プリズム列を構成する第2のプリズム面全体を傾斜角55.0度(β=35.0度)の平面とした以外は、実施例1と同様にしてプリズムシートを作製した。得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、比較例5を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表5に示した。
【0120】
【表5】
実施例40〜44
プリズム列を構成する一方のプリズム面(第1のプリズム面)と法線とのなす角度(α)、他方のプリズム面(第2のプリズム面)と法線とのなす角度(β)を表5に示した角度とし、第2のプリズム面を表5に示した傾斜角および分割高さの2つの平面(プリズム頂部側からエリア1、2)で構成した以外は、実施例23〜34と同様にしてプリズムシートを作製した。得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、比較例6を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表6に示した。
【0121】
比較例6
プリズム列を構成する第2のプリズム面全体を傾斜角55.0度(β=35.0度)の平面とした以外は、実施例1と同様にしてプリズムシートを作製した。得られたプリズムシートを、実施例23〜34の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布(XZ面内)を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)、ピーク輝度の1/2の輝度を有する角度の差の絶対値(|Δθa−Δθb|)を測定し、その結果を表6に示した。
【0122】
【表6】
実施例45
実施例1の面光源装置に一方の表面が平均傾斜角度7.27度のマット面で、他方の表面が平均傾斜角度が0.7度のマット面であり、出射光光度分布(XZ面内)の半値全幅が9.4度の光拡散素子を光偏向素子の出光面上に、平均傾斜角度が7.27度のマット面が光偏光素子側に向くように載置し、面光源装置を得た。作製された面光源装置の出射光輝度分布(XZ面内)における比較例5を基準とした場合のピーク輝度比率、輝度半値全幅、目視で確認した品位の評価結果を表7に示した。
【0123】
実施例46
一方の表面が平均傾斜角度5.0度のマット面で、他方の表面が平均傾斜角度が0.7度のマット面であり、出射光光度分布(XZ面内)の半値全幅が6度の光拡散素子を光偏向素子の出光面上に、平均傾斜角度が5.0度のマット面が光偏光素子側に向くように載置した以外は、実施例1と同様にして面光源装置を得た。作製された面光源装置の出射光輝度分布(XZ面内)における比較例5を基準とした場合のピーク輝度比率、輝度半値全幅、目視で確認した品位の評価結果を表7に示した。
【0124】
実施例47
厚さ125μmのポリエステルフィルムの一方の表面にピッチ30μmの多数のレンチキュラーレンズ列が略並列して連設され、レンチキュラーレンズ列の表面を平均傾斜角1度に粗面化した最大平均傾斜角度が10.4度であり、最大傾斜角度/最小傾斜角度が10.4であるレンズ配列構造を形成し、他方の表面には平均傾斜角度0.7度のマット面を形成した出射光光度分布(XZ面内)の半値全幅が11.2度の光拡散素子を、レンチキュラーレンズ列が光偏向素子のプリズム列と平行となり、レンズ配列構造面が光偏光素子側に向くように載置した以外は、実施例1と同様にして面光源装置を得た。作製された面光源装置の出射光輝度分布(XZ面内)における比較例5を基準とした場合のピーク輝度比率、輝度半値全幅、目視で確認した品位の評価結果を表7に示した。
【0125】
実施例48
厚さ125μmのポリエステルフィルムの一方の表面に最大平均傾斜角度が8.2度のヘアラインを形成し、他方の表面には平均傾斜角度0.7度のマット面を形成した出射光光度分布(XZ面内)の半値全幅が10.5度の光拡散素子を、ヘアラインの方向を光偏向素子のプリズム列と略平行となり、ヘアライン形成面が光偏向素子側に向くように載置したとした以外は実施例1と同様にして、面光源装置を得た。作製された面光源装置の出射光輝度分布(XZ面内)における比較例5を基準とした場合のピーク輝度比率、輝度半値全幅、目視で確認した品位の評価結果を表7に示した。
【0126】
実施例49
厚さ125μmのポリエステルフィルムの一方の表面にエッチングにより形成した幅30μm、長さ60μmの多数のシリンドリカルレンズが同一方向に離散的に配列した最大平均傾斜角度が6.0度であり、最大傾斜角度/最小傾斜角度が6.0、であるレンズ配列構造を形成し、他方の表面には平均傾斜角度0.7度のマット面を形成した出射光光度分布(XZ面内)の半値全幅が7.0度の光拡散素子を、シリンドリカルレンズの配列方向と光偏向素子のプリズム列が略平行となり、レンズ配列構造面が光偏向素子側に向くように載置したとした以外は実施例1と同様にして、面光源装置を得た。作製された面光源装置の出射光輝度分布(XZ面内)における比較例5を基準とした場合のピーク輝度比率、輝度半値全幅、目視で確認した品位の評価結果を表7に示した。
【0127】
【表7】
【0128】
【発明の効果】
以上説明したように、本発明によれば、光偏向素子の入光面に形成されるプリズム列の少なくとも一方のプリズム面を傾斜角の異なる複数の平面あるいは凸曲面から構成することにより、一次光源から発せられる光を所要の観察方向へ集中して出射させる効率(一次光源の光量の利用効率)のい光源装置を提供することができる。
【図面の簡単な説明】
【図1】本発明による光源装置を示す模式的斜視図である。
【図2】本発明の光偏向素子の入光面のプリズム列の形状の説明図である。
【図3】光偏向素子の第2プリズム面(平面)の各エリアからの出射光輝度分布(XZ面内)を示す説明図である。
【図4】光偏向素子の第2プリズム面(平面)の各エリアからの出射光輝度分布(XZ面内)を示す説明図である。
【図5】光偏向素子の第2プリズム面(平面)の各エリアからの出射光輝度分布(XZ面内)を示す説明図である。
【図6】光偏向素子の第2プリズム面(平面)の各エリアからの出射光輝度分布(XZ面内)を示す説明図である。
【図7】光偏向素子の第2プリズム面(平面)の各エリアからの出射光輝度分布(XZ面内)を示す説明図である。
【図8】光偏向素子の第2プリズム面(平面)の各エリアからの出射光輝度分布(XZ面内)を示す説明図である。
【図9】光偏向素子の第2プリズム面(平面)の各エリアからの出射光輝度分布(XZ面内)を示す説明図である。
【図10】光偏向素子の第2プリズム面(平面)の各エリアからの出射光輝度分布(XZ面内)を示す説明図である。
【図11】光偏向素子の第2プリズム面(平面)の各エリアからの出射光輝度分布(XZ面内)を示す説明図である。
【図12】光偏向素子の第2プリズム面(平面)の各エリアからの出射光輝度分布(XZ面内)を示す説明図である。
【図13】光偏向素子の第2プリズム面(平面)全体からの出射光輝度分布(XZ面内)を示す説明図である。
【図14】本発明の光偏向素子の第2プリズム面全体からの出射光輝度分布(XZ面内)を示す説明図である。
【図15】本発明の光偏向素子の入光面のプリズム列の形状の説明図である。
【図16】本発明の光偏向素子の入光面のプリズム列の形状の説明図である。
【図17】本発明の光偏向素子の入光面のプリズム列の形状の説明図である。
【図18】本発明の光偏向素子の入光面のプリズム列の形状の説明図である。
【図19】光偏向素子からの各種出射光輝度分布(XZ面内)を示す説明図である。
【図20】本発明の光偏向素子の入光面のプリズム列の形状の説明図である。
【図21】出射光光度分布(XZ面内)の半値全幅の説明図である。
【図22】光源装置の展開長の説明図である。
【図23】光源装置の展開長の説明図である。
【図24】本発明の光源装置の光偏向素子からの出射光輝度分布(XZ面内)を示す説明図である。
【図25】本発明の光源装置の光偏向素子からの出射光輝度分布(XZ面内)を示すグラフである。
【図26】本発明の光拡散素子の異方拡散性の出射光光度分布(XZ面内)を示す説明図である。
【図27】本発明の光偏向素子の異方拡散性の説明図である。
【図28】本発明の異方拡散性を有する光偏向素子の凹凸構造を示す概略図である。
【図29】本発明の異方拡散性を有する光偏向素子の凹凸構造を示す概略図である。
【図30】本発明の異方拡散性を有する光偏向素子の凹凸構造を示す概略図である。
【符号の説明】
1 一次光源
2 光源リフレクタ
3 導光体
4 光偏向素子
5 光反射素子
6 光拡散素子
31 光入射面
32 端面
33 光出射面
34 裏面
41 入光面
42 出光面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an edge-light-type light source device and a light deflecting element used therefor that constitute a liquid crystal display device used as a display unit in a notebook computer, a liquid crystal television, a mobile phone, a portable information terminal, etc. In particular, the present invention relates to an improvement of a light deflection element disposed on the light exit surface side of a light guide.
[0002]
[Prior art]
In recent years, color liquid crystal display devices have been widely used in various fields as monitors for portable notebook personal computers, personal computers, etc., or as display units for liquid crystal televisions, video integrated liquid crystal televisions, mobile phones, personal digital assistants, and the like. Yes. In addition, with the increase in the amount of information processing, diversification of needs, compatibility with multimedia, and the like, liquid crystal display devices have been increased in screen size and definition.
[0003]
The liquid crystal display device basically includes a backlight unit and a liquid crystal display element unit. As the backlight unit, there are a direct type with a light source arranged directly under the liquid crystal display element unit and an edge light type with a light source arranged so as to face the side end face of the light guide. The edge light method is frequently used from the viewpoint of realizing the same.
[0004]
By the way, in recent years, in a display device having a relatively small screen size and a relatively narrow viewing direction range, for example, a liquid crystal display device used as a display unit of a mobile phone, the edge light system is used from the viewpoint of reducing power consumption. In order to effectively use the amount of light emitted from the primary light source, a backlight unit has been used that emits light by concentrating it in a required angle range by making the spread angle of the light beam emitted from the screen as small as possible. Yes.
[0005]
In this way, the present application is a display device in which the viewing direction range is limited, and is a light source device that emits light concentrated in a relatively narrow range in order to increase the use efficiency of the light amount of the primary light source and reduce power consumption. In Japanese Laid-Open Patent Publication No. 2001-143515 (Patent Document 1), a person proposes to use a prism sheet having prism forming surfaces on both sides adjacent to the light emitting surface of the light guide. In this double-sided prism sheet, a plurality of prism rows parallel to each other are formed on the light incident surface that is one surface and the light exit surface that is the other surface, and the prism row direction is formed by the light incident surface and the light exit surface. And the prism rows are arranged at corresponding positions. Thus, the light emitted from the light exit surface of the light guide having a peak of the emitted light in a direction inclined with respect to the light exit surface and distributed in an appropriate angle range is transmitted to one of the light incident surfaces of the prism sheet. The light is incident from the prism surface, is internally reflected by the other prism surface, and is further refracted by the prism on the light exit surface, so that the light is concentrated and emitted in a relatively narrow required direction.
[0006]
[Patent Document 1]
JP 2001-143515 A
[0007]
[Problems to be solved by the invention]
However, according to such a light source device, concentrated emission in a narrow angle range is possible, but a plurality of prism rows parallel to each other as a prism sheet used as a light deflecting element are arranged on a light incident surface and a light output surface. Therefore, it is necessary to match the prism row directions and to arrange the prism rows at corresponding positions, which complicates the molding.
[0008]
Therefore, an object of the present invention is to control the distribution of the emitted light so as to be very narrow and to improve the utilization efficiency of the light quantity of the primary light source (that is, to concentrate the light emitted from the primary light source in the required observation direction). It is an object of the present invention to provide a light deflection element and a light source device that can easily improve image quality with a simplified configuration.
[0009]
[Means for Solving the Problems]
That is, the light deflection element of the present invention has a light incident surface on which light is incident and a light exit surface that is located on the opposite side and that emits incident light, and the light incident surface includes two prism surfaces. A plurality of prism rows are arranged substantially in parallel with each other, and at least one prism surface of the prism row is composed of at least two planes having different inclination angles, and the inclination angle is closer to a plane located closer to the light exit surface. The difference between the inclination angle of the plane closest to the light exit surface and the inclination angle of the plane farthest from the light exit surface is 15 degrees or less.
[0010]
The light deflecting element of the present invention has a light incident surface on which light is incident and a light exit surface that is located on the opposite side and emits incident light. The light incident surface includes two prism surfaces. A plurality of prism rows are arranged in substantially parallel to each other, and at least one prism surface of the prism row is composed of at least three planes having different inclination angles, and the inclination angle is closer to a plane closer to the light exit surface. It is characterized by being large.
[0011]
The light deflecting element of the present invention has a light incident surface on which light is incident and a light exit surface that is located on the opposite side and emits incident light. The light incident surface includes two prism surfaces. A plurality of prism rows are arranged substantially in parallel with each other, and at least one prism surface of the prism rows is composed of at least two convex curved surfaces having different inclination angles, and the convex curved surface located on the side closer to the light exit surface has a slope thereof. It is characterized by a large angle.
[0012]
The light deflecting element of the present invention has a light incident surface on which light is incident and a light exit surface that is located on the opposite side and emits incident light. The light incident surface includes two prism surfaces. A plurality of prism rows are arranged in substantially parallel to each other, and at least one prism surface of the prism row is composed of at least two planes having different inclination angles and at least one convex curved surface, and is closer to the light exit surface. A flat or convex curved surface is characterized by a larger inclination angle.
[0013]
Furthermore, the light source device of the present invention includes a primary light source, a light incident surface on which light emitted from the primary light source is incident, a light emitting surface that guides and emits incident light, and the light guide. It comprises the above-mentioned light deflection element arranged adjacent to the light exit surface side of the body.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view showing one embodiment of a surface light source device according to the present invention. As shown in FIG. 1, the surface light source device of the present invention includes a
[0015]
The
[0016]
The two principal surfaces substantially orthogonal to the
[0017]
The rough surface and the lens array formed on the surface of the
[0018]
The average inclination angle θa of the rough surface formed on the
[0019]
[Expression 1]
Further, the
[0020]
In the present invention, the light emission rate from the
[0021]
[Expression 2]
Here, the constant A is the light output rate, and the
[0022]
Moreover, in order to control the directivity in the surface (YZ surface) parallel to the
[0023]
As shown in FIG. 1, when a lens array is formed on the
[0024]
In the present invention, when a prism row is formed as a lens row formed on the
[0025]
In the present invention, light diffusing fine particles are mixed and dispersed in the light guide instead of or in combination with the
[0026]
FIG. 2 is an explanatory diagram of the shape of the prism row of the
[0027]
In the
[0028]
Next, the shape of the prism surface of the light deflection element of the present invention will be described. 3 to 14, the peak angle of the luminous intensity distribution (in the XZ plane) of the light emitted from the light guide by the conventional light deflection element in which the two prism surfaces are both flat and the prism apex angle is 65.4 degrees. What kind of outgoing light luminance distribution (in the XZ plane) is emitted from the light deflecting element on a plane perpendicular to both the light incident surface and the light exit surface of the light guide, which is 20 degrees? Is shown. 3 to 12 show a state where incident light incident from the first prism surface is totally reflected by the second prism surface and emitted from the
[0029]
However, when these are seen in the emitted light luminance distribution (in the XZ plane) in each area of
[0030]
Thus, it can be seen that the light that is totally reflected and emitted by the prism surface composed of one plane is dispersed in a considerably wide range depending on the total reflection area of the prism surface. By adjusting the inclination angle of the prism surface of each area, the peak light in each area is emitted in substantially the same direction, with the peak light in the emitted light luminance distribution (in the XZ plane) from each area, Most of the emitted light can be concentrated and emitted in a specific direction. At this time, the inclination angle of the prism surface in each area is made larger in the order of
[0031]
Each area obtained by dividing the prism surface may be set by setting at least two areas. However, if the number of areas (the number of planes having different inclination angles) is too small, the light condensing performance by the light deflecting element is reduced. Since there exists a tendency for a brightness improvement effect to be impaired, it is preferable to set it as 3 or more, More preferably, it is 5 or more, More preferably, it is 6 or more. When the number of areas is two, the difference between the inclination angles of the two planes needs to be 15 degrees or less in order to suppress the deterioration of the light condensing characteristics to some extent. It is in the range of 5 to 10 degrees, more preferably in the range of 1 to 7 degrees. Even in the case where the number of areas is three or more, it is preferable from the viewpoint of light collecting characteristics that the difference between the inclination angle of the plane closest to the light exit surface and the inclination angle of the plane farthest from the light exit surface is 15 degrees or less, More preferably, it is in the range of 0.5 to 10 degrees, more preferably 1 to 7 degrees.
[0032]
On the other hand, if the number of areas is increased, the peak angle can be finely adjusted over the entire surface of the prism surface, so that the concentration level as a whole can be increased. However, planes with different inclination angles must be formed finely. In addition, the design and manufacture of a cutting tool for forming a die for forming the prism surface of the light deflection element is complicated, and it is difficult to stably obtain a light deflection element having a certain optical characteristic. For this reason, the number of areas formed on the prism surface is preferably 20 or less, and more preferably 12 or less. Although it is preferable to divide the prism surface equally, it is not always necessary to divide the prism surface equally, and the prism surface can be adjusted in accordance with the desired emission light intensity distribution (in the XZ plane) of the entire prism surface. Further, the width of each plane having different inclination angles (the length of each plane portion in the prism array section) is preferably in the range of 4 to 47%, more preferably 6 to 30 with respect to the pitch of the prism array. %, More preferably in the range of 7 to 20%.
[0033]
In the present invention, for example, as shown in FIGS. 15 and 16, at least one of the planes having different inclination angles as described above may be a convex curved surface, and all the planes may be convex curved surfaces. . In FIG. 15, the
[0034]
Further, the shape of the convex curved surface can be a spherical or aspherical cross-sectional shape in the XZ direction. Further, when the prism surface is constituted by a plurality of convex curved surfaces, the shape of each convex curved surface is preferably different, and a spherical convex surface and an aspherical convex curved surface can be combined, but at least one The convex curved surface is preferably aspherical. When the plurality of convex curved surfaces are spherical, the curvature may be changed for each convex curved surface. Examples of the aspherical shape include a part of an elliptical shape and a part of a parabolic shape.
[0035]
Furthermore, the convex curved surface preferably has a radius of curvature (r) in the range of 2 to 50 (r / P) with respect to the pitch (P) of the prism row, more preferably 5 to 30, and still more preferably. It is in the range of 7-10. If this r / P is less than 2 or exceeds 50, sufficient light condensing characteristics cannot be exhibited and the luminance tends to decrease.
[0036]
In such planes and convex curved surfaces having different inclination angles, the peak angle in the emitted light luminance distribution (in the XZ plane) when the light totally reflected by each plane and convex curved surface is emitted from the light emitting surface is substantially constant. However, each peak angle does not necessarily have to be a substantially constant angle, and can be designed in a range in which all peak angles are within 15 degrees. Is 10 degrees or less, more preferably 7 degrees or less, and still more preferably 5 degrees or less.
[0037]
Further, in the prism array having such a configuration, as shown in FIGS. 3 to 12, the intensity in the emitted light luminance distribution (in the XZ plane) of the light totally reflected in the areas of
[0038]
Further, when the prism surface is composed of a plurality of planes or convex curved surfaces having different inclination angles, a virtual plane Q (FIG. 2, FIG. 2) that connects the top and the bottom of the prism row in order to ensure sufficient light collection characteristics. 15, 16) and a plurality of flat surfaces or convex curved surfaces (actual prism surfaces), the maximum distance d is preferably 0.4 to 5% as a ratio (d / P) to the pitch (P) of the prism rows. This is because when d / P is less than 0.4% or more than 5%, the light condensing property tends to be lowered, and sufficient luminance cannot be improved. It is in the range of 3%, more preferably in the range of 0.7 to 2.2%.
[0039]
In the present invention, the apex angle of the prism row is preferably 35 to 80 degrees, more preferably 35 to 70 degrees, and still more preferably 40 to 70 in consideration of light collecting characteristics and light utilization efficiency. It is a range of degrees. Further, the left and right distribution angles (inclination angles with respect to the normal lines of the two prism surfaces) α and β with respect to the normal line of the prism apex angle may be the same or different, but the substantially normal direction (the normal direction is 0 degree). In this case, it is preferable that the angle is set to a different angle in order to efficiently increase the brightness of ± 10 degrees in the XZ plane. In this case, it is preferable that the distribution angle α located on the light source side is 40 degrees or less and β is in the range of 25 to 50 degrees. When the apex distribution angles α and β are slightly different, the light utilization efficiency is increased and the luminance can be further improved. Therefore, the distribution angle α is 25 to 40 degrees and the distribution angle β is 25 to 25 degrees. The absolute value of the difference between the distribution angles α and β (Iα−βI) is preferably 0.5 to 10 degrees, more preferably 1 to 10 degrees, and still more preferably 1 to 8 degrees. It is a range. When the peak light in the emitted light luminance distribution (in the XZ plane) is not substantially in the normal direction, the peak light is provided in a desired direction by adjusting the distribution angles α and β of the prism apex angle. An outgoing light luminance distribution (in the XZ plane) can be obtained.
[0040]
Moreover, the light utilization efficiency can be increased and the luminance can be further improved by setting the distribution angle α to 20 degrees or less. The light utilization efficiency can be increased as the distribution angle α is decreased. However, if the distribution angle α is excessively decreased, the apex angle of the prism row tends to decrease, and it becomes difficult to manufacture the prism sheet. α is preferably in the range of 3 to 15 degrees, more preferably in the range of 5 to 10 degrees. In this case, in order to improve the normal luminance by setting the peak light in the emitted light luminance distribution (in the XZ plane) to a range of ± 2 degrees from the normal direction, the distribution angle β is set to a range of 35 to 40 degrees. That's fine.
[0041]
Thus, when the distribution angle α is set to 20 degrees or less, the ratio of the lengths of the two straight lines connecting the top and the valley of the prism in the cross-sectional shape of the prism row (to the length L1 of the straight line closer to the light source) The ratio L2 / L1) of the length L2 of the straight line far from the light source is preferably 1.1 times or more. By setting L2 / L1 to 1.1 times or more, light incident from the prism surface near the light source can be efficiently received by the prism surface far from the light source, and the light utilization efficiency can be increased. This is because the luminance can be further improved, more preferably 1.15 times or more, and still more preferably 1.17 times or more. On the other hand, if L2 / L1 is too large, the apex angle of the prism row tends to be small and it becomes difficult to manufacture the prism sheet. Therefore, the ratio is preferably 1.3 times or less, more preferably 1.25 times or less. More preferably, it is 1.2 times or less. For the same reason, the ratio (L2 / P) of the straight line length L2 on the side far from the light source to the pitch P of the prism row is preferably 1.25 times or more, more preferably 1.3 times or more. Yes, more preferably 1.4 times or more. On the other hand, if this L2 / P is too large, the apex angle of the prism row tends to be small and it becomes difficult to manufacture the prism sheet. Therefore, it is preferably 1.8 times or less, more preferably 1.6 times. Hereinafter, it is more preferably 1.5 times or less.
[0042]
Further, as shown in FIGS. 17 and 18, the light deflection element of the present invention forms a convex shape or a plane (light transmission region) having a smaller inclination angle than the prism array between adjacent prism arrays. Also good. By forming such a light transmission region, external light incident from the liquid crystal panel side can be introduced into the light source device from this portion, and reflected by the
[0043]
In the light deflection element of the present invention, when the light is condensed and emitted, the light intensity distribution emitted from the light guide is strongly reflected. Therefore, the light intensity distribution (XZ plane) from the light emission surface of the light deflection element is reflected. Inner) tends to have an asymmetric distribution in the angle before and after the normal direction. In particular, when the
[0044]
Furthermore, in the
[0045]
In the present invention, it is preferable that the prism surface having the convex-
[0046]
As described above, the
[0047]
Since the narrowing of the field of view of the
[0048]
In general, when it is attempted to increase the emission efficiency of the light guide plate, it seems that the full width at half maximum B of the luminous intensity distribution (in the XZ plane) of the light emitted from the
[0049]
The primary
[0050]
For example, when a substantially point light source such as an LED light source is disposed as the primary
[0051]
The light source reflector 2 guides the light from the primary
[0052]
A reflection member similar to the light source reflector 2 can be attached to a side end surface other than the
[0053]
The
[0054]
On the light emitting surface (the
[0055]
Furthermore, in the present invention, in the light source device having a narrow field of view and a high brightness as described above by the
[0056]
The
[0057]
In the present invention, it is necessary to use a
[0058]
Such light diffusion characteristics can be imparted by mixing a light diffusing agent in the
[0059]
The light source device of the present invention is also required to have uniform luminance in the display area when observed from the normal direction of the light emitting surface (the exit surface of the light diffusing element 6). This uniformity of brightness also depends on the size of the display area of the light source. For example, a large light source device with a large display area such as a notebook computer or a monitor may require a relatively wide viewing angle characteristic. It is required that the luminous intensity distribution (in the XZ plane) emitted from the light emitting surface be wider. On the other hand, in a small light source device with a small display area such as a mobile phone or a portable information terminal, high brightness and display quality improvement may be prioritized, and the emitted light intensity distribution (in the XZ plane) emitted from the light emitting surface is It may be relatively narrow. For this reason, it is preferable to use the
[0060]
The light diffusion characteristics of the
[0061]
(1) When the unfolded length of the
In such a light source device, a linear cold cathode tube (single lamp type), an LED, or the like is used as the primary
[0062]
(2) When the developed length of the
Since such a light source device is used for a display device such as a monitor of a notebook personal computer, a desktop personal computer, a relatively small liquid crystal television, etc., a relatively wide viewing angle is necessary, and the resolution of the liquid crystal display device is increased. Accordingly, high brightness with high quality is required. Therefore, the
[0063]
When the development length of the
[0064]
When the length of the
[0065]
When the developed length of the
[0066]
(3) When the developed length of the
Since such a light source device is used for a display device such as a monitor of a desktop personal computer or a liquid crystal television, it requires a relatively wide viewing angle and high luminance. For this reason, the primary
[0067]
In the light source device of the present invention, when the
[0068]
In the light source device of the present invention, the outgoing light emitted from the outgoing surface of the
[0069]
In the present invention, use of the
[0070]
In the present invention, regarding the anisotropic diffusivity of such a
[0071]
For example, when a cold cathode tube on a line is arranged on one end face of the
[0072]
Also in the
[0073]
In the case of forming a concavo-convex structure on one surface of the
[0074]
Further, as the
[0075]
When the developed length of the
[0076]
When the length of the
[0077]
Examples of the diffusivity imparting structure of the
[0078]
The concavo-convex structure shown in FIG. 29 is a structure in which a large number of cylindrical lens shaped bodies are discretely arranged. The arrangement interval of the cylindrical lens-shaped bodies may be a regular pitch or a random arrangement pitch. In general, the arrangement pitch of the cylindrical lens-shaped bodies is preferably in the range of 1 to 70 μm, more preferably 5 to 40 μm, more preferably in the range of 10 to 30 μm from the viewpoint of ease of manufacture and prevention of moire. is there. In addition, the average inclination angle in the direction orthogonal to the longitudinal direction of the cylindrical lens-shaped body is preferably 0.8 to 15 degrees from the viewpoint of luminance improvement and visibility, more preferably 3.5 to 11 degrees, and more preferably. Is in the range of 4-9 degrees. In such a discrete array structure, a line intersecting the plane where the
[0079]
The uneven structure shown in FIG. 30 is a hairline structure. The average inclination angle in the direction orthogonal to the direction in which the hairline extends is preferably 0.8 to 15 degrees from the viewpoint of luminance improvement and visibility, more preferably 3.5 to 11 degrees, and more preferably 4 to 9 degrees. It is a range. The direction in which the hairline extends is preferably a direction that is substantially orthogonal to a line that intersects the
[0080]
By imparting a mat structure to at least one of the surface on which the uneven structure imparting such anisotropic diffusibility and the back surface thereof are provided, glare, brightness spots, etc. can be suppressed and the quality can be improved. it can. However, if the light diffusibility of the mat structure is increased, the anisotropic diffusibility may be impaired and the luminance may be lowered. Therefore, it is preferable to provide a mat structure having a relatively weak light diffusibility. Such a mat structure preferably has an average inclination angle in the range of 0.5 to 5 degrees, more preferably 0.8 to 4 degrees, and more preferably 1 to 3.5 degrees. The average inclination angle of the mat structure when the mat structure is provided on the surface of the anisotropy imparting concavo-convex structure refers to the average inclination angle of the mat structure itself excluding the average inclination angle caused by the concavo-convex structure. That is, it is possible to measure the average inclination angle parallel to the longitudinal direction of the portion having no concavo-convex structure or the concavo-convex structure, measuring with a stylus roughness meter, image analysis of the cross-sectional shape of the
[0081]
In the present invention, the
[0082]
In the present invention, the
[0083]
Note that the emitted light luminance distribution (in the XZ plane) of the light source device using the light deflection element as in the present invention is the peak of the peak position, and the emitted light luminance distribution (in the XZ plane) on the light source side is the peak. -As the distance from the light increases, the luminance decreases rapidly, and the emitted light luminance distribution (in the XZ plane) on the side far from the light source has an asymmetric emitted light luminance distribution (in the XZ plane) in which the luminance decreases relatively slowly. May show. For example, when such a light source device having an emitted light luminance distribution (in the XZ plane) is used for a liquid crystal display device that requires a relatively wide viewing angle, such as a notebook personal computer of 10 inches or more, it is relatively light diffusive. A high light diffusing element is disposed on the light exit surface of the light deflecting element to widen the outgoing light luminous intensity distribution (in the XZ plane) and widen the viewing angle. When a light diffusing element having a haze value of 50% or more is used, the peak angle of the emitted light luminous intensity distribution (in the XZ plane) is deflected by about 1 to 3 degrees away from the light source. For this reason, when the peak angle of the emitted light luminance distribution (in the XZ plane) from the light deflecting element is positioned in the normal direction of the light emitting surface, the peak angle of the emitted light intensity distribution (in the XZ plane) is increased by the light diffusing element. The light is polarized to the side far from the light source by about 1 to 3 degrees from the normal direction, and as a result, the luminance when observed from the normal direction is extremely reduced. This is because, by using a light diffusing element, the asymmetry of the emitted light luminance distribution (in the XZ plane) emitted from the light deflecting element is somewhat relaxed, but the emitted light luminance distribution in which the luminance decreases relatively abruptly. This is because the region (in the XZ plane) is located in the normal direction. In order to avoid such an extreme decrease in luminance, it is preferable that the peak angle of the emitted light luminance distribution (in the XZ plane) from the light deflection element is previously tilted by 1 to 3 degrees from the normal direction to the light source side.
[0084]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
In addition, the measurement of each physical property in the following examples was performed as follows.
[0085]
Measurement of normal brightness and full width at half maximum of luminous intensity of surface light source device
A cold cathode tube was used as a light source, and DC 12 V was applied to an inverter (HIU-742A manufactured by Harrison Co., Ltd.) for high frequency lighting. For the luminance, the surface of the surface light source device or the light guide was divided into 3 × 5 squares of 20 mm squares, and the average of 15 luminance values in the normal direction of each square was obtained. The full width at half maximum of light intensity of the light guide is fixed with black paper having a pinhole of 4 mmφ on the surface of the light guide so that the pinhole is located at the center of the surface, and the measurement circle of the luminance meter is 8 to 9 mm. The distance was adjusted in such a way that the gonio rotation axis was rotated about the pinhole in the direction perpendicular to and parallel to the longitudinal axis of the cold cathode tube. While rotating the rotation axis in each direction from + 80 ° to -80 ° at 1 ° intervals, the luminous intensity distribution (in the XZ plane) of the emitted light is measured with a luminance meter, and the peak angle and luminous intensity distribution (in the XZ plane) are measured. The full width at half maximum (the spread angle of the distribution of half the peak value (in the XZ plane)) was determined. Further, the full width at half maximum of the luminance of the surface light source device was adjusted so that the viewing angle of the luminance meter was 0.1 degree and positioned on the center surface of the surface light source device, and the gonio rotation axis was rotated. While rotating the rotation axis in each direction from + 80 ° to −80 ° at 1 ° intervals, the luminance distribution of the emitted light (in the XZ plane) was measured with a luminance meter, and the peak luminance and the peak angle were obtained.
[0086]
Measurement of average inclination angle (θa)
In accordance with ISO4287 / 1-1987, the surface of the rough surface was measured with a stylus type surface roughness meter (Surfcom 570A manufactured by Tokyo Seiki Co., Ltd.) using 010-2528 (1 μmR, 55 ° cone, diamond) as a stylus. Roughness was measured at a driving speed of 0.03 mm / sec. From the chart obtained by this measurement, the average line was subtracted to correct the inclination, and the calculation was made according to the equations (1) and (2).
[0087]
Measurement of haze value
The haze value is a total light transmission obtained by using a 50 mm × 50 mm sample with an integrating sphere type reflection transmittance meter (RT-100, manufactured by Murakami Color Research Co., Ltd.) according to the method B of JIS K-7105. It calculated | required by calculating by following Formula (4) from a rate (Tt) and a diffused light transmittance (Td).
[0088]
[Equation 3]
Measurement of light diffusion angle
The light diffusion distribution angle is a half value which is 1/2 light intensity of a peak light intensity obtained by measuring a sample having a size of 50 mm × 50 mm using an automatic variable angle photometer (GP-200 model manufactured by Murakami Color Research Laboratory). The half width angle (a) of the sample was twice the half width angle. The light incident on the sample is collected from the light source into a pinhole by a condenser lens, converted into parallel light (parallelism ± 0.5 degrees or less) through a collimator lens, and a light beam stop (aperture diameter 10.5 mm). ) And enter the incident surface of the sample. The light transmitted through the sample passes through a light receiving lens (passes through the aperture diameter of 11.4 mm (when the sample surface is smooth, it is condensed at the position of the light receiving aperture), reaches the light receiving element through the light receiving aperture, and has a voltage value. Further, the same measurement was performed by rotating the sample, and the maximum full width at half maximum (Maxa) and the full width at half maximum (Mina) were obtained.
[0089]
Example 1
A light guide with one surface being a mat was produced by injection molding using an acrylic resin (Acrypet VH5 # 000 manufactured by Mitsubishi Rayon Co., Ltd.). The light guide had a wedge plate shape of 216 mm × 290 mm and a thickness of 2.0 mm-0.7 mm. On the mirror surface side of the light guide, a prism row having a prism apex angle of 100 ° and a pitch of 50 μm is made of acrylic ultraviolet curable resin so as to be parallel to a side (short side) of 230 mm in length of the light guide. A prism layer arranged in parallel was formed. A cold-cathode tube along a side end surface (end surface on the thickness side of 2.0 mm) corresponding to the side (long side) of the light guide with a length of 290 mm is a light source reflector (silver reflection film manufactured by Reiko Co., Ltd.). Covered. Furthermore, a light diffusion reflection film (E60 manufactured by Toray Industries, Inc.) was attached to the other side end face, and a reflection sheet was arranged on the prism array (back face). The above configuration was incorporated into the frame. In this light guide, the maximum peak angle of the emitted light luminous intensity distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light emitting surface is 70 degrees with respect to the normal direction of the light emitting surface, and the full width at half maximum Was 22.5 degrees.
[0090]
On the other hand, using an acrylic ultraviolet curable resin having a refractive index of 1.5064, as shown in Table 1, an angle formed between one prism surface (first prism surface) constituting the prism array and a normal line ( α) is a flat surface of 32.5 degrees, and the other prism surface (second prism surface) is from the top of the prism to the height of the prism row of 21.4 μm with a minor axis curvature radius of 400 μm and a major axis curvature radius of 800 μm. A convex surface (inclination angle = 56.6 degrees, β = 33.8 degrees) having an aspherical shape (curved surface with a radius of curvature of 800 μm), a prism row height of 21.4 μm or more from the top of the prism with a spherical shape with a radius of curvature of 400 μm A prism array forming surface in which prism arrays with a pitch of 56.5 μm composed of two convex curved surfaces (
[0091]
The obtained prism sheet is arranged such that the prism array forming surface faces the light exit surface side of the light guide, the prism ridge line is parallel to the light entrance surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. An outgoing light luminance distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and peak when Comparative Example 1 is used as a reference. The absolute value (| Δθ) of the difference between the angle having half the luminance (full width at half maximum) and the angle having the half luminance of the peak luminancea−Δθb|) Was measured and the results are shown in Table 2.
[0092]
Example 2
As shown in Table 1, the second prism surface constituting the prism array is a flat surface with a tilt angle of 55.2 degrees (β = 34.8 degrees) from the top of the prism to the height of the prism array of 16 μm. Same angle of inclination of 55.5 degrees, 56.2 degrees, 57.0 degrees, 57.8 degrees, 58.4 degrees, 59.4 degrees from the side close to the prism top from the row height of 16 μm to the prism bottom A prism sheet was produced in the same manner as in Example 1 except that it was composed of seven planes (
[0093]
In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. An outgoing light luminance distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and peak when Comparative Example 1 is used as a reference. The absolute value (| Δθ) of the difference between the angle having half the luminance (full width at half maximum) and the angle having the half luminance of the peak luminancea−Δθb|) Was measured and the results are shown in Table 2.
[0094]
Example 3
As shown in Table 1, the second prism surface constituting the prism array is a plane having an inclination angle of 56.4 degrees from the top of the prism to the height of the prism array of 10.6 μm (β = 33.6 degrees). A prismatic height of 10.6 to 21.3 μm is a flat surface with an inclination angle of 56.8 degrees, and a prismatic height of 21.3 μm or more is a spherical convex surface with a curvature radius of 400 μm (inclination angle = 59. A prism sheet was fabricated in the same manner as in Example 1 except that the sheet was composed of two flat surfaces and two convex curved surfaces (
[0095]
In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. An outgoing light luminance distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and peak when Comparative Example 1 is used as a reference. The absolute value (| Δθ) of the difference between the angle having half the luminance (full width at half maximum) and the angle having the half luminance of the peak luminancea−Δθb|) Was measured and the results are shown in Table 2.
[0096]
Example 4
As shown in Table 1, the second prism surface constituting the prism array is a plane having an inclination angle of 56.8 degrees from the top of the prism to a height of 21.5 μm (β = 33.2 degrees). The prism array was constructed in the same manner as in Example 1 except that the prism array had a height of 21.5 μm or more and was composed of two planes (
[0097]
In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. An outgoing light luminance distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and peak when Comparative Example 1 is used as a reference. The absolute value (| Δθ) of the difference between the angle having half the luminance (full width at half maximum) and the angle having the half luminance of the peak luminancea−Δθb|) Was measured and the results are shown in Table 2.
[0098]
Example 5
As shown in Table 1, the angle (α) between the first prism surface constituting the prism row and the normal line is 29.0 degrees, and the second prism surface constituting the prism row is arranged from the prism top to the prism row. A flat surface with an inclination angle of 55.3 degrees (β = 34.7 degrees) up to a height of 16.0 μm, and an inclination angle of 55.degree. From the side close to the prism top from the height of the prism row from 16.0 μm to the prism bottom. 7 planes of the same width of 7 degrees, 56.5 degrees, 57.4 degrees, 58.2 degrees, 59.0 degrees, 59.6 degrees, and 60.3 degrees (
[0099]
In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The absolute value (| Δθ) of the difference between the angle having the brightness of (the full width at half maximum) and the angle having the brightness of half the peak brightnessa−Δθb|) Was measured and the results are shown in Table 2.
[0100]
Example 6
As shown in Table 1, it was composed of curved surfaces passing through the boundaries of seven areas from the prism row height of 16.0 μm to the prism bottom in Example 5 (the inclination angle of each area from the side close to the prism top was 55 A prism sheet was produced in the same manner as in Example 1 except for 4 degrees, 56.2 degrees, 57.1 degrees, 57.9 degrees, 58.7 degrees, 59.3, and 60.0 degrees). The ratio (d / P) of the maximum distance (d) between the second prism surface of the prism sheet and the virtual plane to the pitch (P) of the prism row was 0.0.68%.
[0101]
In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The absolute value (| Δθ) of the difference between the angle having the brightness of (the full width at half maximum) and the angle having the brightness of half the peak brightnessa−Δθb|) Was measured and the results are shown in Table 2.
[0102]
Example 7
As shown in Table 1, the angle (α) that makes the first prism surface constituting the prism array normal to the plane is a plane having a 15.0 degree angle, and the second prism surface is the height of the prism array from the top of the prism. A plane with an inclination angle of 52.0 degrees (β = 38 degrees) up to 10.4 μm, and an inclination angle of 52.6 degrees from the side closer to the prism top from the height of the prism row of 10.4 μm to the prism bottom. 10 planes of the same width of 8 degrees, 53.7 degrees, 54.5 degrees, 55.3 degrees, 56.1 degrees, 56.8 degrees, 57.5 degrees, 58.4 degrees, and 60.0 degrees A prism sheet was produced in the same manner as in Example 1 except that the structure was composed of 11 planes (
[0103]
In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The absolute value (| Δθ) of the difference between the angle having the brightness of (the full width at half maximum) and the angle having the brightness of half the peak brightnessa−Δθb|) Was measured and the results are shown in Table 2.
[0104]
Example 8
As shown in Table 1, the angle (α) between the first prism surface constituting the prism row and the normal line is 10.0 degrees, and the second prism surface is 11.5 μm in height from the prism top to 11.5 μm. A plane with an inclination angle of 52.0 degrees (β = 38.0 degrees), and a prism row height of 11.5 μm to the prism bottom is 52.6 degrees, 52.8 degrees from the side close to the prism top. 9 planes of the same width of 5 °, 53.7 °, 55.3 °, 55.3 °, 56.1 °, 56.8 °, 57.5 °, and 58.4 ° and a plane of 60 ° A prism sheet was produced in the same manner as in Example 1 except that the structure was composed of 11 planes (
[0105]
In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The absolute value (| Δθ) of the difference between the angle having the brightness of (the full width at half maximum) and the angle having the brightness of half the peak brightnessa−Δθb|) Was measured and the results are shown in Table 2.
[0106]
Example 9
As shown in Table 1, the angle (α) formed between the first prism surface constituting the prism array and the normal line is 5 degrees, and the second prism surface is arranged from the top of the prism to the height of the prism array of 12.9 μm. A plane having an inclination angle of 52.0 degrees (β = 38 degrees), and from the side close to the prism top from the height of the prism row from 12.9 μm to the prism bottom, the inclination angles are 52.6 degrees, 52.8 degrees, 53. Nine planes with the same width of 7 degrees, 54.5 degrees, 55.3 degrees, 56.1 degrees, 56.8 degrees, 57.5 degrees, and 58.4 degrees and 11 planes with a 60-degree plane A prism sheet was manufactured in the same manner as in Example 1 except that the area was composed of (
[0107]
In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The absolute value (| Δθ) of the difference between the angle having the brightness of (the full width at half maximum) and the angle having the brightness of half the peak brightnessa−Δθb|) Was measured and the results are shown in Table 2.
[0108]
Example 10
As shown in Table 1, the angle (α) formed by the normal line with the first prism surface constituting the prism row is 0.1 degree, and the second prism surface is 14.5 μm in height from the prism top to 14.5 μm. A plane with an inclination angle of 52.0 degrees (β = 38 degrees), and an inclination angle of 52.6 degrees, 52.8 degrees from the side close to the prism top from the prism row height of 14.5 μm to the prism bottom, Nine planes of the same width of 53.7 degrees, 54.5 degrees, 55.3 degrees, 56.1 degrees, 56.8 degrees, 57.5 degrees, and 58.4 degrees and a plane of 60 degrees 11 A prism sheet was produced in the same manner as in Example 1 except that the flat sheet was composed of the flat surfaces (
[0109]
In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The absolute value (| Δθ) of the difference between the angle having the brightness of (the full width at half maximum) and the angle having the brightness of half the peak brightnessa−Δθb|) Was measured and the results are shown in Table 2.
[0110]
Comparative Example 1
The prism row of the prism sheet is the same as in Example 1 except that the two prism surfaces are both flat and the isosceles triangle section (α = β = 32.7 degrees) having a prism apex angle of 65.4 degrees. Similarly, a surface light source device was obtained. An outgoing light luminance distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, the peak luminance is set to 1.00, the peak angle, and 1/2 of the peak luminance. The absolute value (| Δθ) of the difference between the angle having the brightness of (the full width at half maximum) and the angle having the brightness of 1/2 of the peak brightnessa−Δθb|) Was measured and the results are shown in Table 2.
[0111]
[Table 1]
[Table 2]
Examples 11-22
The second prism surface constituting the prism row is the same as in Example 1 except that the second prism surface is composed of three planes (
[0112]
Comparative Example 2
A prism is formed in the same manner as in Example 1 except that the entire second prism surface constituting the prism row is a spherical convex surface having a radius of curvature of 452 μm (inclination angle = 57.3 degrees, β = 36.3 degrees). A sheet was produced. In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. An outgoing light luminance distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and peak when Comparative Example 1 is used as a reference. The absolute value (| Δθ) of the difference between the angle having half the luminance (full width at half maximum) and the angle having the half luminance of the peak luminancea−Δθb|) Was measured and the results are shown in Table 3.
[0113]
[Table 3]
Examples 23-34
A light guide with one surface being a mat was produced by injection molding using an acrylic resin (Acrypet VH5 # 000 manufactured by Mitsubishi Rayon Co., Ltd.). The light guide had a wedge plate shape of 230 mm × 310 mm and a thickness of 3.5 mm to 1.2 mm. On the mirror surface side of the light guide, a prism row having a prism apex angle of 100 ° and a pitch of 50 μm is made of acrylic ultraviolet curable resin so as to be parallel to a side (short side) having a length of 230 mm of the light guide. Prism layers arranged in a row substantially in parallel were formed. A cold-cathode tube along a side end surface (end surface on the side of 3.5 mm thickness) corresponding to a 310 mm long side (long side) of the light guide with a light source reflector (silver reflective film manufactured by Reiko Co., Ltd.) Covered. Furthermore, a light diffusion reflection film (E60 manufactured by Toray Industries, Inc.) was attached to the other side end face, and a reflection sheet was arranged on the prism array (back face). The above configuration was incorporated into the frame. In this light guide, the maximum peak angle of the emitted light luminous intensity distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light emitting surface is 70 degrees with respect to the normal direction of the light emitting surface, and the full width at half maximum Was 33 degrees.
[0114]
On the other hand, Example 1 except that the second prism surface constituting the prism row is composed of three planes (
[0115]
In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. An outgoing light luminance distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and peak when Comparative Example 4 is used as a reference. The absolute value (| Δθ) of the difference between the angle having half the luminance (full width at half maximum) and the angle having the half luminance of the peak luminancea−Δθb|) Was measured and the results are shown in Table 4.
[0116]
Comparative Example 3
A surface light source device was obtained in the same manner as in Examples 23 to 34 except that the prism sheet of Comparative Example 2 was used. An outgoing light luminance distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and peak when Comparative Example 4 is used as a reference. The absolute value (| Δθ) of the difference between the angle having half the luminance (full width at half maximum) and the angle having the half luminance of the peak luminancea−Δθb|) Was measured and the results are shown in Table 4.
[0117]
Comparative Example 4
A surface light source device was obtained in the same manner as in Examples 23 to 34 except that the prism sheet of Comparative Example 1 was used. An outgoing light luminance distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, this peak luminance is set to 1.00, the peak angle, and 1 / of the peak luminance. The absolute value of the difference between the angle having the luminance of 2 (full width at half maximum) and the angle having the luminance of 1/2 of the peak luminance (| Δθa−Δθb|) Was measured and the results are shown in Table 4.
[0118]
[Table 4]
Examples 35-39
An angle (α) formed between one prism surface (first prism surface) and a normal line constituting the prism row, and an angle (β) formed between the other prism surface (second prism surface) and a normal line are represented. 4 except that the second prism surface is composed of two planes having the inclination angle and the divided height shown in Table 4 (
[0119]
Comparative Example 5
A prism sheet was produced in the same manner as in Example 1 except that the entire second prism surface constituting the prism row was a flat surface having an inclination angle of 55.0 degrees (β = 35.0 degrees). In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. An outgoing light luminance distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and peak when Comparative Example 5 is used as a reference. The absolute value (| Δθ) of the difference between the angle having half the luminance (full width at half maximum) and the angle having the half luminance of the peak luminancea−Δθb|) Was measured and the results are shown in Table 5.
[0120]
[Table 5]
Examples 40-44
An angle (α) formed between one prism surface (first prism surface) and a normal line constituting the prism row, and an angle (β) formed between the other prism surface (second prism surface) and a normal line are represented. Example 23-34 except that the angle shown in FIG. 5 was used, and the second prism surface was composed of two planes (
[0121]
Comparative Example 6
A prism sheet was produced in the same manner as in Example 1 except that the entire second prism surface constituting the prism row was a flat surface having an inclination angle of 55.0 degrees (β = 35.0 degrees). In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guides of Examples 23 to 34, the prism ridges are parallel to the light incident surface of the light guide, and the first prism surface is the light source. The surface light source device was obtained. An outgoing light luminance distribution (in the XZ plane) in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and peak when Comparative Example 1 is used as a reference. The absolute value (| Δθ) of the difference between the angle having half the luminance (full width at half maximum) and the angle having the half luminance of the peak luminancea−Δθb|) Was measured and the results are shown in Table 6.
[0122]
[Table 6]
Example 45
In the surface light source device of Example 1, one surface is a mat surface having an average inclination angle of 7.27 degrees, and the other surface is a mat surface having an average inclination angle of 0.7 degrees, and the emitted light intensity distribution (in the XZ plane) ) Is placed on the light exit surface of the light deflection element such that the matte surface having an average inclination angle of 7.27 degrees faces the light polarization element side. Got. Table 7 shows the peak luminance ratio, the full width at half maximum of the luminance, and the visually evaluated quality evaluation results in the emitted light luminance distribution (in the XZ plane) of the manufactured surface light source device with reference to Comparative Example 5.
[0123]
Example 46
One surface is a mat surface having an average inclination angle of 5.0 degrees, the other surface is a mat surface having an average inclination angle of 0.7 degrees, and the full width at half maximum of the emitted light luminous intensity distribution (in the XZ plane) is 6 degrees. The surface light source device was the same as in Example 1 except that the light diffusing element was placed on the light exit surface of the light deflecting element so that the matte surface with an average inclination angle of 5.0 degrees was directed to the light polarizing element side. Obtained. Table 7 shows the peak luminance ratio, the full width at half maximum of the luminance, and the visually evaluated quality evaluation results in the emitted light luminance distribution (in the XZ plane) of the manufactured surface light source device with reference to Comparative Example 5.
[0124]
Example 47
A large number of lenticular lens rows having a pitch of 30 μm are arranged in parallel on one surface of a polyester film having a thickness of 125 μm, and the surface of the lenticular lens row is roughened to an average tilt angle of 1 degree. A luminous intensity distribution (XZ) in which a lens arrangement structure having a maximum inclination angle / minimum inclination angle of 10.4 is formed and a matte surface having an average inclination angle of 0.7 degrees is formed on the other surface. Except that the light diffusing element having an in-plane full width at half maximum of 11.2 degrees is placed such that the lenticular lens array is parallel to the prism array of the light deflecting element and the lens arrangement structure surface faces the light polarizing element side. A surface light source device was obtained in the same manner as in Example 1. Table 7 shows the evaluation results of the peak luminance ratio, the full width at half maximum, and the visually confirmed quality when the emission light luminance distribution (in the XZ plane) of the manufactured surface light source device is based on Comparative Example 5.
[0125]
Example 48
A luminous intensity distribution (XZ) in which a hairline having a maximum average inclination angle of 8.2 degrees is formed on one surface of a polyester film having a thickness of 125 μm and a mat surface having an average inclination angle of 0.7 degrees is formed on the other surface. Except that the light diffusing element having a full width at half maximum of 10.5 degrees is placed so that the hairline direction is substantially parallel to the prism array of the light deflecting element and the hairline forming surface faces the light deflecting element side. Obtained a surface light source device in the same manner as in Example 1. Table 7 shows the peak luminance ratio, the full width at half maximum of the luminance, and the visually evaluated quality evaluation results in the emitted light luminance distribution (in the XZ plane) of the manufactured surface light source device with reference to Comparative Example 5.
[0126]
Example 49
A maximum average tilt angle of 6.0 degrees, in which a large number of cylindrical lenses having a width of 30 μm and a length of 60 μm formed by etching on one surface of a 125 μm thick polyester film are arranged in the same direction, is the maximum tilt angle. The full width at half maximum of the emitted light intensity distribution (in the XZ plane) is 7 in which a lens arrangement structure having a minimum inclination angle of 6.0 and a mat surface having an average inclination angle of 0.7 degrees is formed on the other surface. Example 1 except that the .0 degree light diffusing element is placed so that the arrangement direction of the cylindrical lenses and the prism array of the light deflection element are substantially parallel and the lens arrangement structure surface faces the light deflection element side. Similarly, a surface light source device was obtained. Table 7 shows the peak luminance ratio, the full width at half maximum of the luminance, and the visually evaluated quality evaluation results in the emitted light luminance distribution (in the XZ plane) of the manufactured surface light source device with reference to Comparative Example 5.
[0127]
[Table 7]
[0128]
【The invention's effect】
As described above, according to the present invention, at least one prism surface of the prism array formed on the light incident surface of the light deflection element is composed of a plurality of flat surfaces or convex curved surfaces having different inclination angles, thereby providing a primary light source. Thus, it is possible to provide a light source device that has a high efficiency (a use efficiency of the light amount of the primary light source) for concentrating and emitting light emitted from the light source in a required observation direction.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a light source device according to the present invention.
FIG. 2 is an explanatory diagram of the shape of prism rows on the light incident surface of the light deflection element of the present invention.
FIG. 3 is an explanatory diagram showing emitted light luminance distribution (in the XZ plane) from each area of the second prism surface (plane) of the light deflection element;
FIG. 4 is an explanatory diagram showing an emitted light luminance distribution (in the XZ plane) from each area of the second prism surface (plane) of the light deflection element;
FIG. 5 is an explanatory diagram showing emitted light luminance distribution (in the XZ plane) from each area of the second prism surface (plane) of the light deflection element;
FIG. 6 is an explanatory diagram showing emitted light luminance distribution (in the XZ plane) from each area of the second prism surface (plane) of the light deflection element;
FIG. 7 is an explanatory diagram showing emitted light luminance distribution (in the XZ plane) from each area of the second prism surface (plane) of the light deflection element;
FIG. 8 is an explanatory diagram showing emitted light luminance distribution (in the XZ plane) from each area of the second prism surface (plane) of the light deflection element;
FIG. 9 is an explanatory diagram showing emitted light luminance distribution (in the XZ plane) from each area of the second prism surface (plane) of the light deflection element;
FIG. 10 is an explanatory diagram showing an emitted light luminance distribution (in the XZ plane) from each area of the second prism surface (plane) of the light deflection element;
FIG. 11 is an explanatory diagram showing emitted light luminance distribution (in the XZ plane) from each area of the second prism surface (plane) of the light deflection element;
FIG. 12 is an explanatory diagram showing an emitted light luminance distribution (in the XZ plane) from each area of the second prism surface (plane) of the light deflection element;
FIG. 13 is an explanatory diagram showing an emitted light luminance distribution (in the XZ plane) from the entire second prism surface (plane) of the light deflection element;
FIG. 14 is an explanatory diagram showing an emitted light luminance distribution (in the XZ plane) from the entire second prism surface of the light deflection element of the present invention.
FIG. 15 is an explanatory diagram of the shape of a prism row on the light incident surface of the light deflection element of the present invention.
FIG. 16 is an explanatory diagram of the shape of the prism row on the light incident surface of the light deflection element of the present invention.
FIG. 17 is an explanatory diagram of the shape of the prism row on the light incident surface of the light deflection element of the present invention.
FIG. 18 is an explanatory diagram of the shape of the prism row on the light incident surface of the light deflection element of the present invention.
FIG. 19 is an explanatory diagram showing various emitted light luminance distributions (in the XZ plane) from the light deflection element;
FIG. 20 is an explanatory diagram of the shape of the prism row on the light incident surface of the light deflection element of the invention.
FIG. 21 is an explanatory diagram of the full width at half maximum of the emitted light luminous intensity distribution (in the XZ plane).
FIG. 22 is an explanatory diagram of a development length of the light source device.
FIG. 23 is an explanatory diagram of a developed length of the light source device.
FIG. 24 is an explanatory diagram showing a luminance distribution (in the XZ plane) of emitted light from the light deflection element of the light source device of the present invention.
FIG. 25 is a graph showing the luminance distribution (in the XZ plane) of the emitted light from the light deflection element of the light source device of the present invention.
FIG. 26 is an explanatory diagram showing an emitted light intensity distribution (in the XZ plane) of anisotropic diffusivity of the light diffusing element of the present invention.
FIG. 27 is an explanatory diagram of the anisotropic diffusivity of the optical deflection element of the present invention.
FIG. 28 is a schematic view showing a concavo-convex structure of an optical deflecting element having anisotropic diffusivity according to the present invention.
FIG. 29 is a schematic view showing a concavo-convex structure of an optical deflection element having anisotropic diffusivity according to the present invention.
FIG. 30 is a schematic view showing a concavo-convex structure of an optical deflecting element having anisotropic diffusivity according to the present invention.
[Explanation of symbols]
1 Primary light source
2 Light source reflector
3 Light guide
4 Light deflection elements
5 Light reflecting elements
6 Light diffusing element
31 Light incident surface
32 End face
33 Light exit surface
34 Back
41 Light entrance
42 Light emitting surface
Claims (6)
前記平面と、プリズム頂部とプリズム底部とを結ぶ仮想平面と、の最大距離(d)のプリズム列のピッチ(P)に対する割合(d/P)が0.4〜5%であることを特徴とする光偏向素子。A light incident surface on which light is incident and a light exit surface on the opposite side that emits incident light, and the light incident surface includes prism rows formed of two prism surfaces substantially parallel to each other. A plurality of arranged, at least one prism surface of the prism row is composed of two or three planes having different tilt angles, and a plane located closer to the light exit surface has a greater tilt angle and is the plane closest to the light exit surface. And the difference between the inclination angle of the plane farthest from the light exit surface and 7 degrees or less ,
The ratio (d / P) of the maximum distance (d) to the pitch (P) of the prism row between the plane and the virtual plane connecting the prism top and the prism bottom is 0.4 to 5%. An optical deflection element.
前記平面と、プリズム頂部とプリズム底部とを結ぶ仮想平面と、の最大距離(d)のプリズム列のピッチ(P)に対する割合(d/P)が0.4〜5%であることを特徴とする光偏向素子。A light incident surface on which light is incident, and a light exit surface on the opposite side that emits incident light. The light incident surface includes prism rows formed of two prism surfaces substantially parallel to each other. A plurality of arranged, at least one prism surface of the prism row is composed of 4 or more and 12 or less planes having different inclination angles, and a plane located closer to the light emitting surface has a larger inclination angle and is closest to the light emitting surface. The difference between the inclination angle of the plane and the inclination angle of the plane farthest from the light exit surface is 15 degrees or less,
The ratio (d / P) of the maximum distance (d) to the pitch (P) of the prism row between the plane and the virtual plane connecting the prism top and the prism bottom is 0.4 to 5%. An optical deflection element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003058255A JP4323189B2 (en) | 2002-03-15 | 2003-03-05 | Optical deflection element and surface light source device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002072971 | 2002-03-15 | ||
JP2002137098 | 2002-05-13 | ||
JP2003058255A JP4323189B2 (en) | 2002-03-15 | 2003-03-05 | Optical deflection element and surface light source device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009098993A Division JP4889130B2 (en) | 2002-03-15 | 2009-04-15 | Optical deflection element and surface light source device |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004046076A JP2004046076A (en) | 2004-02-12 |
JP2004046076A5 JP2004046076A5 (en) | 2006-04-13 |
JP4323189B2 true JP4323189B2 (en) | 2009-09-02 |
Family
ID=31721257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003058255A Expired - Lifetime JP4323189B2 (en) | 2002-03-15 | 2003-03-05 | Optical deflection element and surface light source device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4323189B2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4539160B2 (en) * | 2004-04-28 | 2010-09-08 | 日立化成工業株式会社 | Optical element, optical element manufacturing method, and surface light source device |
JP4802466B2 (en) * | 2004-09-09 | 2011-10-26 | 東レ株式会社 | Diffusion film |
CN101013218B (en) * | 2005-10-14 | 2010-12-15 | 大日本印刷株式会社 | Light-control sheet and surface illuminant unit |
JP4923671B2 (en) | 2006-03-29 | 2012-04-25 | ソニー株式会社 | Liquid crystal display |
JP4105736B2 (en) | 2006-04-28 | 2008-06-25 | 日立マクセル株式会社 | Lens sheet, backlight and display device using the same |
JP2007311176A (en) * | 2006-05-18 | 2007-11-29 | Puratekku:Kk | Lighting fitting and lighting cover |
US7530721B2 (en) * | 2007-04-18 | 2009-05-12 | Skc Haas Display Films Co., Ltd. | Double-sided turning film |
JP2009086446A (en) * | 2007-10-01 | 2009-04-23 | Dainippon Printing Co Ltd | Optical sheet, mold, manufacturing method of mold and manufacturing method of optical sheet |
TWI414673B (en) * | 2009-12-08 | 2013-11-11 | Ind Tech Res Inst | Light guide microstructure plate, light guiding method, and application on window structure |
JP5360592B2 (en) * | 2009-12-28 | 2013-12-04 | 大日本印刷株式会社 | Prism sheet, surface light source device and display device |
JP5803320B2 (en) * | 2010-09-14 | 2015-11-04 | 大日本印刷株式会社 | Surface light source device, liquid crystal display device, and optical member |
JP2012128252A (en) * | 2010-12-16 | 2012-07-05 | Dainippon Printing Co Ltd | Deflection optical sheet, surface light source device, video source module, and liquid crystal display device |
JP5820609B2 (en) * | 2011-05-09 | 2015-11-24 | 大日本印刷株式会社 | Surface light source device and liquid crystal display device |
JP5330457B2 (en) * | 2011-06-14 | 2013-10-30 | 大日本印刷株式会社 | Surface light source device and liquid crystal display device |
JP2014056042A (en) * | 2012-09-11 | 2014-03-27 | Dainippon Printing Co Ltd | Optical sheet, surface light source device, transmissive display device, and production method of optical sheet |
JP6424428B2 (en) * | 2012-10-26 | 2018-11-21 | 三菱ケミカル株式会社 | Light guide, method of manufacturing light guide, optical shutter and surface light source device |
JP6450995B2 (en) * | 2014-02-04 | 2019-01-16 | シャープ株式会社 | Daylighting member, daylighting device, and method for installing daylighting member |
JP6110826B2 (en) * | 2014-09-26 | 2017-04-05 | 大日本印刷株式会社 | Prism sheet, surface light source device, video source unit, and liquid crystal display device |
JP2018146809A (en) * | 2017-03-06 | 2018-09-20 | 恵和株式会社 | Optical sheet and backlight unit |
JP7130921B2 (en) * | 2017-05-31 | 2022-09-06 | 大日本印刷株式会社 | optical structure, display device |
-
2003
- 2003-03-05 JP JP2003058255A patent/JP4323189B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004046076A (en) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4677019B2 (en) | Light source device | |
JP4454020B2 (en) | Light source device and light deflection element | |
US7401962B2 (en) | Light deflection element and light source apparatus using the same | |
JP4323189B2 (en) | Optical deflection element and surface light source device | |
US7534024B2 (en) | Optical deflector element and light source device | |
JP4889130B2 (en) | Optical deflection element and surface light source device | |
JP2008209928A (en) | Light source device and light deflector for use therein | |
JP4242162B2 (en) | Light source device | |
JP2002245824A (en) | Light source device and light polarization element used for it | |
JP4210053B2 (en) | Light source device | |
JP2004287415A (en) | Optical deflection device and light source device | |
JP4730873B2 (en) | Optical deflection element and surface light source device using the same | |
JP4160297B2 (en) | Optical deflection element | |
JP4960327B2 (en) | Light deflection element and light source device | |
JP4118043B2 (en) | Light source device | |
JP4485416B2 (en) | Light deflection element and light source device | |
JP2003187618A (en) | Light source device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060228 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081009 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20081202 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090415 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090602 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090604 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4323189 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |