JP4226101B2 - Substrate removal method from electrostatic chuck plate surface - Google Patents

Substrate removal method from electrostatic chuck plate surface Download PDF

Info

Publication number
JP4226101B2
JP4226101B2 JP12799898A JP12799898A JP4226101B2 JP 4226101 B2 JP4226101 B2 JP 4226101B2 JP 12799898 A JP12799898 A JP 12799898A JP 12799898 A JP12799898 A JP 12799898A JP 4226101 B2 JP4226101 B2 JP 4226101B2
Authority
JP
Japan
Prior art keywords
substrate
electrode
electrostatic chuck
amount
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12799898A
Other languages
Japanese (ja)
Other versions
JPH11330217A (en
Inventor
耕 不破
謙 前平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP12799898A priority Critical patent/JP4226101B2/en
Publication of JPH11330217A publication Critical patent/JPH11330217A/en
Application granted granted Critical
Publication of JP4226101B2 publication Critical patent/JP4226101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基板を静電チャックプレート上に固定する(チャック)する技術にかかり、特に静電吸着解除後、静電チャックプレート表面から基板を離脱させる技術に関する。
【0002】
【従来の技術】
従来より、薄膜形成やプラズマエッチング等を行う真空処理装置では、その真空槽内に静電チャックプレートを配置し、静電チャックプレート表面に基板を静電吸着し、静電チャックプレート内のヒータや冷却装置で基板の温度制御を行いながら真空雰囲気内で処理している。
【0003】
図4(a)の符号102は模式的に示した静電チャックプレートであり、その表面には、ガラス基板や半導体ウェハ等から成る基板103が配置されている。
【0004】
静電チャックプレート102内にはリフトピン104が挿通されており、基板103を真空雰囲気に置き、静電チャックプレート2内の電極に電圧を印加し、静電吸着力によって静電チャックプレート102表面に基板を密着させながらプロセス処理を行い、次いで、静電吸着を解除した後、リフトピン104を上方に移動させ、基板103を静電チャックプレート102上から離脱させるようになっている。
【0005】
図4(b)の符号113は、リフトピン104上に正常に乗せられた基板を示しており、その状態で、リフトピン104間に基板搬送ロボットのアームを挿入し、リフトピン104を降下させると、基板113をアーム上に移し替えることができる。
このような静電チャックプレート102を用いれば、真空雰囲気内で基板を静電吸着できるので、複雑な基板保持機構や密着機構が不要となっている。
【0006】
しかしながら、電極への電圧印加を停止し、静電吸着を解除しても、静電チャックプレート102と基板103の間に蓄積された電荷は完全には消滅せず、電荷が残留してしまう。その残留電荷により、基板103と静電チャックプレート102間に静電吸着力が残留し、基板103を静電チャックプレート102上から離脱させる際に、基板が振動したり、基板が位置ずれを起こす等の問題がある。
【0007】
図4(c)の符号123は、リフトピン104で静電チャックプレート102上から持ち上げられる際に、残留吸着力の影響で跳ね上がり、リフトピン104上から脱落してしまった基板を示している。また、図4(d)の符号133は、残留吸着力によってリフトピン104上で振動し、位置ずれを起こした基板を示している。
【0008】
上記のような脱落や位置ずれを防止するために、静電吸着を解除した後、静電チャックプレート102内の電極に、静電吸着時とは逆極性の電圧を印加し、残留電荷を低減させる方法が考えられる。
【0009】
本発明の発明者等は、静電チャックプレート102表面から基板103を離脱させる際に、残留電荷に起因する静電誘導電流パルス、及びその時間積分値から、残留電荷量とその極性を知る方法を提案した(特願平10−66132、66133)。
【0010】
しかし、静電チャックプレートが双極方式を採用している場合、その内部の2枚の電極間に正負の電圧を印加して基板を静電吸着するため、プロセス処理の終了後、静電吸着を解除すると、正電圧を印加していた電極上の静電チャックプレートと基板間の残留電荷量と、負電圧を印加していた電極上の残留電荷量とが異なることを見出した。
【0011】
例えば、プロセス処理がスパッタやエッチング等であり、基板上にプラズマを生成して処理する場合には、基板がマイナスに帯電するため、プロセス処理中では正電圧を印加している電極上での静電吸着力が強くなる。その結果、正負両電極の上での残留電荷量にも差が生じてしまい、正負の電極に、同じ印加量の逆電圧を印加しても、両電極上での残留電荷量の減少量にも差が生じてしまうことがあった。
【0012】
例えば逆バイアスの印加により、正電極上の残留電荷量は消滅したが、負電極上には残留電荷があった場合、負電極上ではその残留電荷による静電吸着力が生じており、そのため、基板を離脱させようとすると、正電極上では抵抗なく基板が離脱するのに対し、負電極上では残留電荷によりウエハーが吸着されており、そのため、基板が引っかかったように傾いて上がる、いわゆる片上がりの状態となってしまう。その結果、基板がリフトピン上で振動してしまい、極端な場合にはリフトピンから脱落してしまうことになる。
【0013】
さらに悪い場合としては、リフトピンあるいはロボットアームなどで、強い力を加えて基板を離脱させようとしているため、基板が破損してしまうことがある。
【0014】
【発明が解決しようとする課題】
本発明は、上記課題を解決するために創作されたものであり、正電極の残留電荷と負電極の残留電荷の間に差がある場合であっても、基板を静電チャックプレートからスムーズに離脱させることができる技術を提供することにある。
【0015】
【課題を解決するための手段】
本発明の発明者等は、静電チャックプレートが正負一対の電極を有している場合に、静電吸着時とは逆極性の電圧(逆電圧)を印加しても、離脱させる際に基板が振動したり、静電チャックプレート上から飛び上がる原因は、正負電極間の残留電荷量の片寄りにあると考え、その片寄りを小さくしたところ、静電チャックプレート上から基板がスムーズに離脱することを見出した。
【0016】
本発明は、上記知見に基づいて創作されたものであり、請求項1記載の発明は、誘電体内に一対の電極が配置された双極型静電チャックプレート上に基板を配置し、前記一対の電極に正負の電圧を印加して前記基板を静電吸着した状態で前記基板を真空雰囲気中で処理し、次いで、前記一対の電極に、前記静電吸着時とは極性が逆の逆電圧を印加して残留電荷を減少させた後、前記基板を前記双極型チャックプレート上から離脱させる基板離脱方法であって、前記一対の電極に同じ印加量の前記逆電圧を印加する場合に、一方の電極の残留電荷がゼロになる逆電圧を印加すると、他方の電極の残留電荷がゼロにならない双極型静電チャックプレートに対し、前記基板の種類や前記処理の内容に応じ、予め、前記逆電圧の印加量と、印加後の残留電荷量の関係を前記電極毎に個別に求めておき、前記関係から、前記逆電圧の印加量であって、前記各電極に印加すると、前記各電極の残留電荷量がゼロではなく同符号で絶対値が等しい値になる印加量を求め、前記双極型静電チャックプレート上に基板を配置した状態で、前記一対の電極の各電極に求めた印加量の逆電圧を印加することを特徴とする。
【0017】
また、請求項2記載の発明は、請求項1記載の基板離脱方法であって、前記各電極に対する前記逆電圧印加量の絶対値と前記残留電荷量との関係をグラフにし、その交点から前記印加量を求めることを特徴とする。
【0018】
【0019】
【0020】
本発明は上記のように構成されており、双極型、又は単極型の静電チャックプレートの誘電体内に配置された電極に電圧を印加し、真空雰囲気内で基板を静電吸着した状態で、スパッタリングやエッチング等の処理を行うようになっている。
【0021】
静電吸着プレートには、誘電体内に一対の電極(正電極と負電極)が配置された双極型の静電チャックプレートと、一枚の電極が配置された単極型の静電チャックプレートがある。双極型の静電チャックプレートの場合は、一方の電極に正電圧を印加し、他方の電極に負電圧を印加して基板を静電吸着するが、静電吸着を解除した後は、正電圧を印加した電極上では負電荷が残留し、負電圧を印加した電極上には正電荷が残留してしまう場合が多い。
【0022】
このような残留電荷は、基板を静電吸着した後の基板の熱膨張により、エキソ電子が放出されたり、あるいは電圧印加に伴うウエハーと静電チャックプレート間の電子放出(電界放射)が原因で発生すると推定されるが、その因果関係はここでは述べない。
【0023】
いずれにしろ、静電吸着を解除した後、静電チャックプレート表面から基板を離脱させる前に、電極に、静電吸着時とは逆極性の電圧を印加すると、残留電荷量が減少することが知られている。
【0024】
しかしながら、一対の電極間の残留電荷量(絶対値)は等しいとは限らず、そのため、各電極に同じ量の逆電圧を印加すると、一方の電極の残留電荷は消滅しても、他方の電極の残留電荷が残る場合がある。また、逆電圧の印加量が大きすぎると、今度は逆に電荷を注入してしまい、極性が逆の残留電荷が発生してしまう。
従って、基板に印加する逆電圧は適切な印加量に設定する必要がある。
【0025】
本発明の場合、逆電圧の印加量と、印加後の残留電荷量との関係を、予め電極毎に求めておき、その関係から、各電極の残留電荷量が略等しくなる逆電圧の印加量を求め、真空処理を行った後、その印加量の逆電圧を印加するようにする。
【0026】
上記のようにすると、残留電荷量自体が小さくなるばかりでなく、正負電極上での残留電荷による吸着力が等しくなるので、離脱の際に基板が片寄って吸着されず、スムーズな基板離脱を行うことができる。
【0027】
各電極に印加する逆電圧の印加量の絶対値を略等しくする場合、逆電圧の印加量の絶対値と、逆電圧印加後の残留電荷量との関係を、各電極毎にグラフに書き、2つのグラフの交点の印加量を読みとればよい。逆電圧の印加量は電圧値と印加時間とにより決まるので、印加時間と電圧値のいずれか一方を固定すると、他方の大きさを求めることが可能になる。
【0028】
誘電体内に一枚の電極が配置される単極型の静電チャックプレートの場合は、静電吸着は、その電極と、真空槽等の接地電位に置かれた部材との間に電圧が印加されることで行われると考えられる。接地電位に置かれた部材は、常に残留電荷量がゼロであるから、誘電体内の電極について、逆電圧の印加量と、印加後の残留電荷量との関係をグラフに書き、そのグラフと、残留電荷がゼロである直線との交点を求めればよい。
【0029】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図面を参照して詳細に説明する。
図1の符号1は、本発明を適用できる真空処理装置の一例であり、真空槽10を有している。
真空槽10の天井側にはスパッタリングターゲット5が配置されており、底壁上には、載置台11が配置されている。
【0030】
載置台11上には、誘電体7を有し、該誘電体7内に一対の電極81、82が配置された双極型の静電チャックプレート2が固定されている。静電チャックプレート2の下側には、リフトピン4が配置されており、その上端部は、誘電体7に設けられた孔9内に挿通されている。
【0031】
真空槽10の外部には、直流電源21と、静電チャック電源22と、基板昇降機構17と、コンピュータ23とが配置されており、リフトピン4の下端部は、真空槽10外に気密に導出され、基板昇降機構17に取り付けられている。基板昇降機構17内にはモータ等が配置されており、真空槽10内の真空雰囲気を維持したまま、リフトピン4を昇降させられるように構成されている。
【0032】
真空槽10底壁の外部位置には絶縁碍子121、122が気密に取り付けられており、静電チャック電源22は、絶縁碍子121、122を介して各電極81、82に接続されている。ここでは、静電チャック電源22の正電圧側に一方の電極81が接続され、負電圧側に他方の電極82が接続されているものとする。静電チャック電源は22は、電圧印加終了時(チャックOFF時)には、チャック電極を直ちに設置させるようになっている。
また、直流電源21は、ターゲット5に接続されており、真空槽10を接地電位に置いた状態で、ターゲット5に負電圧を印加できるように構成されている。
【0033】
この真空処理装置1に対して本発明の基板離脱方法を適用する場合には、予め、基板やプロセスの種類に応じ、各電極81、82の残留電荷を個別に測定しておく。
その測定方法を説明すると、真空槽10内を真空排気した後、真空槽10内に基板を搬入し、静電チャックプレート2上に載置する。図1の符号3はその状態の基板を示している。
【0034】
基板昇降機構17と、直流電源21と、静電チャック電源22は、コンピュータ23に接続されており、コンピュータ23の制御に従って動作するように構成されており、基板3の載置後、コンピュータ23は静電チャック電源22を起動し、一対の電極81、82に正負の電圧をそれぞれ印加し、静電吸着力を発生させ、基板3を静電チャックプレート2の誘電体7表面に密着させる。
【0035】
その状態で真空槽10内にアルゴンガス等のスパッタリングガスを導入し、直流電源21を起動してターゲット5に負電圧を印加すると、真空槽10内にプラズマが生成し、ターゲット5のスパッタリングが行われる。
基板3表面に所定膜厚の薄膜が形成されたら、直流電源21を停止させ、プラズマを消滅させる。
【0036】
次いで、静電チャック電源22を停止させ、一対の電極81、82への電圧印加を終了させる。このとき、静電チャック電源22内で、各電極81、82を接地電位に接続し、基板3と各電極81、82間に蓄積された電荷を放出させる。
【0037】
しかし、各電極81、82を接地電位に接続しただけでは、静電吸着時の電荷は完全には消滅せず、残留電荷が残ってしまう。しかも、基板3上でプラズマが生成されていたため、正負の電極81、82に蓄積された残留電荷は異なる大きさになっている。
【0038】
その状態でリフトイン4を上方に移動させると、各電極81、82と基板間に残留電荷が存在している場合には、電極81、82とアース間に残留電荷量に比例した静電誘導電流が流れる。電流計131、132でそれぞれ計測される電流値は、各電極81、82上の残留電荷量に比例した電流が流れる。
【0039】
静電チャック電源22と各電極81、82の間には、電流計131、132がそれぞれ挿入されており、それら電流計131、132はコンピュータ23に接続され、ており、各電流計131、132を流れる電流の大きさは、コンピュータ23によって自動的に記録できるように構成されている。
従って、基板3を離脱させる際に各電極81、82を流れる電流は、電流計131、132によって測定され、その値はコンピュータ23内に記録される。
【0040】
ここではプロセス終了後、逆電圧を印加せずに基板3を離脱させた場合の電流(放出された電荷量)が測定されたものとすると、次に、他の基板3を真空槽10内に搬入し、上記と同じ大きさの電圧を電極81、82に印加し、同様にスパッタリングを行い、基板3表面に所定膜厚の薄膜を形成する。
【0041】
静電吸着を解除した後、静電チャック電源22によって、各電極81、82に静電吸着時とは逆極性の電圧を所望の印加量で印加する(静電吸着時には、正電圧を印加していた電極81には負電圧を、負電圧を印加していた電極82には正電圧を印加する。)。
【0042】
次いで、リフトピン4を上昇させ、基板3を静電チャックプレート2表面から離脱させ、その際に電流計131、132に流れる電流値を、逆電圧の印加量と対応させてコンピュータ23内に記録する。
【0043】
複数の基板に対し、印加量が異なる逆電圧を印加し、基板を離脱させて電流値を測定し、逆電圧の印加量と対応付けてコンピュータ23に記録する。逆電圧の印加量は、逆電圧の大きさと印加時間によって決まるが、ここでは逆電圧の印加時間を一定値にし、逆電圧の大きさを異ならせた。
【0044】
図1は、印加した逆電圧値と電流計131、132によって測定した残留電荷量の関係を示すグラフであり、静電吸着時に正電圧を印加した電極81を正電極、負電圧を印加した電極82を負電極として記載してある。
【0045】
この図1のグラフを求めたときの基板3は、裏面に膜厚1μmのシリコン酸化膜が形成されたシリコンウエハーであり、スパッタリングは、静電チャックプレート2内部のセラミックヒータに通電し、基板3を300℃に昇温させた状態で行った。
【0046】
また、静電吸着時には、電極81、82に+100Vと−100Vの電圧を印加した。静電吸着時間は60秒に設定した。また、静電吸着を解除した後の逆電圧の印加時間は3秒間に固定し、逆電圧印加の終了後、15秒経過したときに基板3を静電チャックプレート2上から離脱させた。
【0047】
図2のグラフ横軸は、印加した逆電圧の大きさの絶対値を示しており(正電極に対しては印加した負電圧の大きさ、負電極に対しては印加した正電圧の大きさ)、縦軸は、印加後、基板3を離脱させる際に流れた電流値から求めた残留電荷量を示している。
【0048】
このグラフでは、±130Vの電圧を印加したときに、正電極81の残留電荷はゼロになるが、負電極82には、1.5μCの残留電荷が残っている。従って、±130Vの逆電圧を印加すると、基板3は1.5μCの力で負電極82に吸着されていることになる。
【0049】
他方、正負の各電極81、82のグラフは、150Vのところで交差している。従って、正負の電極81、82のそれぞれに、−150V、+150Vの逆電圧を印加すれば、各電極81、82上の残留電荷量は等しくなる(約0.8μクーロン)。
【0050】
上記真空処理装置1を使用して、多数の基板に連続して薄膜を形成する場合、予めコンピュータ23内に設定される逆電圧印加量を±150V×3秒間にし、実際に薄膜を形成する基板に対し、上記と同じ条件で静電吸着しながらターゲット5をスパッタリングし、静電吸着の解除後、コンピュータ23内に設定された条件で各電極81、82に逆電圧を印加すると、各電極81、82の残留電荷量は等しくなる。
従って、その状態でリフトピン4を上昇させると、基板をスムーズに静電チャックプレート2上から離脱させることが可能になる。
【0051】
以上説明したように、本発明の基板離脱方法によれば、正電極(電極81)の残留電荷量と負電極(電極82)の残留電荷量とが等しくなり、残留電荷による静電吸着力は基板に均等に加わるようになるので、振動や、リフトピン4上からの脱落がなくなる。
【0052】
また、上記のように、電極81、82に対し、最適な印加量の逆電圧を印加すると、基板の離脱後に静電チャックプレート2上に残る残留電荷量は極めて小さくなる(0.1μC以下)。
従って、本発明の基板離脱方法により、多数の基板を連続して処理する場合には、静電チャックプレート2の除電処理が不要になる。
【0053】
なお、上記図2のグラフでは、各電極81、82の残留電荷はゼロにはならなかったが、プロセス条件や基板の種類によっては図3に示すように、残留電荷量がゼロのところがグラフの交点になる場合もある。この図3のグラフでは、−200V、+200Vを印加すると、電極81、82の残留電荷が消滅する。
【0054】
以上は、印加時間を固定し、逆電圧の大きさを変えてグラフを作成し、そのグラフの交点から最適な逆電圧の印加量(電圧値×印加時間)を求めたが、その逆、すなわち逆電圧の大きさを固定し、印加時間を変えてグラフを作成した場合でも、逆電圧の印加量は同じ値になる。
【0055】
上記実施例は双極型の静電チャックプレート2についての基板離脱方法を説明したが、静電チャックプレートの種類によっては、1枚の電極で基板を静電吸着する単極型の方式を採用するものがある。その単極型の静電チャックプレートの場合に、逆電圧の大きさと印加時間のいずれか一方を固定し、他方を変化させると、1つの曲線から成るグラフが得られる。
【0056】
単極型の静電チャックプレートでは、静電チャックプレート内の電極と、真空槽等のアース電位に置かれた部材との間で一対の電極が形成されていると考えることができるから、残留電荷がゼロの直線(図2、3では横軸)を仮想的な電極の曲線と考え、その直線との交点の印加量を求めればよい。
【0057】
なお、上記例ではグラフから交点を求めたが、コンピュータ23により、スプライン法等の数値計算で交点を求めてもよい。
その場合、プロセスを開始する前に、コンピュータ23によって逆電圧の印加量と残留電荷量の関係を求めておき、各基板に、正負電極の残留電荷量が同じ大きさになる印加量の逆電圧を印加するようにしてもよい。
【0058】
上記は、スパッタリング法によって薄膜を形成する真空処理装置1について説明したが、本発明はそれに限定されるものではなく、CVD装置、エッチング装置、蒸着装置、アニール装置等の静電チャックプレートを用いる全ての装置で有効である。
【0059】
上記例では、静電チャックプレートから基板を離脱させる際にリフトピンを用いる方法を説明したが、Z軸方向(上下方向)への移動機構を有する搬送ロボットを用いて基板を離脱させる場合も本発明に含まれる。
【0060】
【発明の効果】
本発明によれば、残留電荷による不均一な静電吸着がなくなるので、基板の跳ね上がりや脱落がなくなる。
【図面の簡単な説明】
【図1】本発明方法を適用できる真空処理装置の一例
【図2】逆電圧印加量と残留電荷量の関係を示すグラフの一例
【図3】逆電圧印加量と残留電荷量の関係を示すグラフの他の例
【図4】(a)〜(d):基板の離脱状態を説明するための図
【符号の説明】
7……誘電体 81、82……電極 2……静電チャックプレート 3……基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for fixing (chucking) a substrate onto an electrostatic chuck plate, and more particularly to a technique for removing the substrate from the surface of the electrostatic chuck plate after the electrostatic adsorption is released.
[0002]
[Prior art]
Conventionally, in a vacuum processing apparatus that performs thin film formation, plasma etching, and the like, an electrostatic chuck plate is disposed in the vacuum chamber, the substrate is electrostatically adsorbed on the surface of the electrostatic chuck plate, Processing is performed in a vacuum atmosphere while controlling the temperature of the substrate with a cooling device.
[0003]
Reference numeral 102 in FIG. 4A is an electrostatic chuck plate schematically shown, on which a substrate 103 made of a glass substrate, a semiconductor wafer, or the like is disposed.
[0004]
Lift pins 104 are inserted into the electrostatic chuck plate 102, the substrate 103 is placed in a vacuum atmosphere, a voltage is applied to the electrodes in the electrostatic chuck plate 2, and the electrostatic chucking force is applied to the surface of the electrostatic chuck plate 102. The process is performed while the substrate is in close contact, and after the electrostatic attraction is released, the lift pins 104 are moved upward to separate the substrate 103 from the electrostatic chuck plate 102.
[0005]
Reference numeral 113 in FIG. 4B indicates a substrate that is normally placed on the lift pins 104. In this state, when the arm of the substrate transfer robot is inserted between the lift pins 104 and the lift pins 104 are lowered, 113 can be transferred onto the arm.
If such an electrostatic chuck plate 102 is used, the substrate can be electrostatically attracted in a vacuum atmosphere, so that a complicated substrate holding mechanism and contact mechanism are not required.
[0006]
However, even if the voltage application to the electrode is stopped and electrostatic attraction is released, the charge accumulated between the electrostatic chuck plate 102 and the substrate 103 does not disappear completely, and the charge remains. Due to the residual charge, an electrostatic attraction force remains between the substrate 103 and the electrostatic chuck plate 102, and when the substrate 103 is detached from the electrostatic chuck plate 102, the substrate vibrates or the substrate is displaced. There are problems such as.
[0007]
Reference numeral 123 in FIG. 4C indicates a substrate that has been lifted off from the lift pins 104 by being lifted from the electrostatic chuck plate 102 by the lift pins 104 due to the influence of the residual adsorption force. Also, reference numeral 133 in FIG. 4D indicates a substrate that has been displaced on the lift pins 104 due to the residual attracting force and has been displaced.
[0008]
In order to prevent the above-mentioned dropout and displacement, the electrostatic charge is released, and then a voltage having a polarity opposite to that at the time of electrostatic adsorption is applied to the electrode in the electrostatic chuck plate 102 to reduce the residual charge. A method of making it possible is considered.
[0009]
The inventors of the present invention, when releasing the substrate 103 from the surface of the electrostatic chuck plate 102, knows the residual charge amount and its polarity from the electrostatic induction current pulse caused by the residual charge and its time integral value. (Japanese Patent Application Nos. 10-66132 and 66133).
[0010]
However, when the electrostatic chuck plate adopts a bipolar system, a positive and negative voltage is applied between the two electrodes inside to electrostatically attract the substrate. It was found that the residual charge amount between the electrostatic chuck plate and the substrate on the electrode to which the positive voltage was applied was different from the residual charge amount on the electrode to which the negative voltage was applied when released.
[0011]
For example, if the process is sputtering or etching and plasma is generated on the substrate, the substrate will be negatively charged, so that static electricity on the electrode to which a positive voltage is being applied during the process. Electroadsorptive power increases. As a result, there is also a difference in the amount of residual charge on both the positive and negative electrodes, and even if a reverse voltage of the same applied amount is applied to the positive and negative electrodes, the amount of residual charge on both electrodes is reduced. There was also a difference.
[0012]
For example, when the reverse bias is applied, the residual charge amount on the positive electrode disappears, but when there is a residual charge on the negative electrode, an electrostatic adsorption force is generated on the negative electrode due to the residual charge. When trying to detach, the substrate detaches without resistance on the positive electrode, but the wafer is adsorbed by the residual charge on the negative electrode, so the substrate rises as if it was caught, so-called one-side-up state End up. As a result, the substrate vibrates on the lift pins, and in an extreme case, the substrate falls off the lift pins.
[0013]
As a worse case, the substrate may be damaged because the substrate is removed by applying a strong force with a lift pin or a robot arm.
[0014]
[Problems to be solved by the invention]
The present invention was created to solve the above problems, and even when there is a difference between the residual charge on the positive electrode and the residual charge on the negative electrode, the substrate can be smoothly removed from the electrostatic chuck plate. It is to provide a technology that can be detached.
[0015]
[Means for Solving the Problems]
When the electrostatic chuck plate has a pair of positive and negative electrodes, the inventors of the present invention apply a voltage (reverse voltage) opposite in polarity to that at the time of electrostatic attraction. The cause of the vibration or jumping up from the electrostatic chuck plate is considered to be the deviation of the residual charge amount between the positive and negative electrodes. When the deviation is reduced, the substrate is smoothly detached from the electrostatic chuck plate. I found out.
[0016]
The present invention was created based on the above knowledge, and the invention according to claim 1 is characterized in that a substrate is disposed on a bipolar electrostatic chuck plate in which a pair of electrodes are disposed in a dielectric body, and the pair of electrodes is disposed. The substrate is treated in a vacuum atmosphere with positive and negative voltages applied to the electrodes and the substrate is electrostatically adsorbed, and then a reverse voltage having a polarity opposite to that during the electrostatic adsorption is applied to the pair of electrodes. A method for removing a substrate from the bipolar chuck plate after applying and reducing a residual charge, wherein when the reverse voltage of the same applied amount is applied to the pair of electrodes, Depending on the type of substrate and the content of the treatment, the reverse voltage is applied in advance to a bipolar electrostatic chuck plate in which the residual charge of the electrode is zero when the residual charge of the other electrode is zero. Applied amount and remaining after application The charge amount relation to previously obtain individually for each of the electrodes, from the relationship, a applying amount of the reverse voltage, is applied to the respective electrodes, wherein the same reference numerals residual charge amount not zero for each electrode An application amount having an equal absolute value is obtained, and a reverse voltage of the obtained application amount is applied to each electrode of the pair of electrodes in a state where a substrate is disposed on the bipolar electrostatic chuck plate. To do.
[0017]
The invention according to claim 2 is the substrate removal method according to claim 1, wherein the relationship between the absolute value of the reverse voltage application amount and the residual charge amount for each of the electrodes is graphed, and from the intersection, The application amount is obtained.
[0018]
[0019]
[0020]
The present invention is configured as described above, and a voltage is applied to an electrode disposed in a dielectric body of a bipolar or unipolar electrostatic chuck plate, and the substrate is electrostatically adsorbed in a vacuum atmosphere. In addition, processes such as sputtering and etching are performed.
[0021]
The electrostatic chuck plate includes a bipolar electrostatic chuck plate in which a pair of electrodes (positive and negative electrodes) are disposed in a dielectric body, and a monopolar electrostatic chuck plate in which one electrode is disposed. is there. In the case of a bipolar electrostatic chuck plate, a positive voltage is applied to one electrode and a negative voltage is applied to the other electrode to electrostatically attract the substrate. In many cases, a negative charge remains on the electrode to which is applied, and a positive charge remains on the electrode to which a negative voltage is applied.
[0022]
Such residual charges are caused by exoelectrons being emitted due to thermal expansion of the substrate after electrostatic adsorption of the substrate, or electron emission (field emission) between the wafer and the electrostatic chuck plate due to voltage application. Although it is presumed to occur, the causal relationship is not described here.
[0023]
In any case, if a voltage having a polarity opposite to that at the time of electrostatic attraction is applied to the electrode before releasing the substrate from the surface of the electrostatic chuck plate after releasing the electrostatic attraction, the residual charge amount may be reduced. Are known.
[0024]
However, the residual charge amount (absolute value) between a pair of electrodes is not always equal, so if the same amount of reverse voltage is applied to each electrode, the residual charge of one electrode disappears, but the other electrode May remain. On the other hand, if the application amount of the reverse voltage is too large, charges are injected in reverse, and residual charges having a reverse polarity are generated.
Therefore, it is necessary to set the reverse voltage applied to the substrate to an appropriate amount.
[0025]
In the case of the present invention, the relationship between the amount of applied reverse voltage and the amount of residual charge after application is obtained for each electrode in advance, and from the relationship, the amount of applied reverse voltage at which the amount of residual charge of each electrode becomes substantially equal After performing vacuum processing, a reverse voltage of the applied amount is applied.
[0026]
As described above, not only the residual charge amount itself becomes small, but also the adsorption force due to the residual charge on the positive and negative electrodes becomes equal. be able to.
[0027]
When making the absolute value of the reverse voltage applied to each electrode substantially equal, write the relationship between the absolute value of the reverse voltage applied and the residual charge amount after applying the reverse voltage on a graph for each electrode, What is necessary is just to read the application amount of the intersection of two graphs. Since the application amount of the reverse voltage is determined by the voltage value and the application time, if one of the application time and the voltage value is fixed, the other magnitude can be obtained.
[0028]
In the case of a unipolar electrostatic chuck plate in which a single electrode is placed in a dielectric, electrostatic chucking applies a voltage between the electrode and a member placed at a ground potential such as a vacuum chamber. It is thought that this is done. The member placed at the ground potential always has a residual charge amount of zero, so for the electrodes in the dielectric, write the relationship between the amount of reverse voltage applied and the amount of residual charge after application in a graph. What is necessary is just to obtain | require the intersection with the straight line whose residual charge is zero.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
Reference numeral 1 in FIG. 1 is an example of a vacuum processing apparatus to which the present invention can be applied, and has a vacuum chamber 10.
A sputtering target 5 is disposed on the ceiling side of the vacuum chamber 10, and a mounting table 11 is disposed on the bottom wall.
[0030]
A bipolar electrostatic chuck plate 2 having a dielectric 7 and a pair of electrodes 8 1 and 8 2 disposed in the dielectric 7 is fixed on the mounting table 11. A lift pin 4 is disposed below the electrostatic chuck plate 2, and an upper end portion thereof is inserted into a hole 9 provided in the dielectric 7.
[0031]
A DC power source 21, an electrostatic chuck power source 22, a substrate lifting / lowering mechanism 17, and a computer 23 are disposed outside the vacuum chamber 10, and a lower end portion of the lift pin 4 is led out to the outside of the vacuum chamber 10. And attached to the substrate lifting mechanism 17. A motor or the like is disposed in the substrate lifting mechanism 17 so that the lift pins 4 can be lifted and lowered while maintaining the vacuum atmosphere in the vacuum chamber 10.
[0032]
Insulators 12 1 and 12 2 are airtightly attached to the external position of the bottom wall of the vacuum chamber 10, and the electrostatic chuck power supply 22 is connected to the electrodes 8 1 and 8 2 via the insulators 12 1 and 12 2. It is connected. Here is one electrode 81 is connected to the positive voltage side of the electrostatic chuck power supply 22, it is assumed that the other electrode 8 2 is connected to the negative voltage side. The electrostatic chuck power source 22 immediately installs the chuck electrode when the voltage application is completed (when the chuck is OFF).
The DC power source 21 is connected to the target 5 and is configured to apply a negative voltage to the target 5 while the vacuum chamber 10 is placed at the ground potential.
[0033]
When the substrate removal method of the present invention is applied to the vacuum processing apparatus 1, the residual charges of the electrodes 8 1 and 8 2 are individually measured in advance according to the type of substrate and process.
The measurement method will be described. After the vacuum chamber 10 is evacuated, the substrate is loaded into the vacuum chamber 10 and placed on the electrostatic chuck plate 2. Reference numeral 3 in FIG. 1 indicates the substrate in that state.
[0034]
The substrate lifting mechanism 17, the DC power source 21, and the electrostatic chuck power source 22 are connected to a computer 23, and are configured to operate according to the control of the computer 23. The electrostatic chuck power source 22 is activated, and positive and negative voltages are respectively applied to the pair of electrodes 8 1 and 8 2 to generate an electrostatic adsorption force so that the substrate 3 is brought into close contact with the surface of the dielectric 7 of the electrostatic chuck plate 2. .
[0035]
In this state, when sputtering gas such as argon gas is introduced into the vacuum chamber 10, the DC power source 21 is activated and a negative voltage is applied to the target 5, plasma is generated in the vacuum chamber 10, and sputtering of the target 5 is performed. Is called.
When a thin film having a predetermined thickness is formed on the surface of the substrate 3, the DC power source 21 is stopped and the plasma is extinguished.
[0036]
Next, the electrostatic chuck power source 22 is stopped, and voltage application to the pair of electrodes 8 1 and 8 2 is terminated. At this time, in the electrostatic chuck power source 22, the electrodes 8 1 and 8 2 are connected to the ground potential, and charges accumulated between the substrate 3 and the electrodes 8 1 and 8 2 are released.
[0037]
However, if the electrodes 8 1 and 8 2 are simply connected to the ground potential, the charges at the time of electrostatic attraction do not disappear completely, and residual charges remain. Moreover, since the plasma is generated on the substrate 3, the residual charges accumulated in the positive and negative electrodes 8 1 and 8 2 have different sizes.
[0038]
When the lift-in 4 is moved upward in this state, if there is a residual charge between each electrode 8 1 , 8 2 and the substrate, it is proportional to the amount of residual charge between the electrode 8 1 , 8 2 and the ground. Electrostatic induction current flows. As the current values measured by the ammeters 13 1 and 13 2 , currents proportional to the residual charges on the electrodes 8 1 and 8 2 flow.
[0039]
Ammeters 13 1 and 13 2 are respectively inserted between the electrostatic chuck power source 22 and the electrodes 8 1 and 8 2 , and these ammeters 13 1 and 13 2 are connected to a computer 23. The magnitude of the current flowing through each ammeter 13 1 , 13 2 can be automatically recorded by the computer 23.
Therefore, the currents flowing through the electrodes 8 1 and 8 2 when the substrate 3 is detached are measured by the ammeters 13 1 and 13 2 , and the values are recorded in the computer 23.
[0040]
Here, after the process is completed, assuming that the current (discharged charge amount) when the substrate 3 is detached without applying a reverse voltage is measured, another substrate 3 is then placed in the vacuum chamber 10. Then, a voltage having the same magnitude as described above is applied to the electrodes 8 1 and 8 2 and sputtering is performed in the same manner to form a thin film having a predetermined thickness on the surface of the substrate 3.
[0041]
After canceling the electrostatic adsorption, the electrostatic chuck power supply 22 applies a voltage having a polarity opposite to that at the electrostatic adsorption to each of the electrodes 8 1 and 8 2 (a positive voltage is applied during the electrostatic adsorption). the electrodes 8 1 which has a negative voltage is applied, the electrode 82 which has a negative voltage is applied to a positive voltage.).
[0042]
Next, the lift pins 4 are lifted, the substrate 3 is detached from the surface of the electrostatic chuck plate 2, and the current value flowing through the ammeters 13 1 and 13 2 at that time is matched with the amount of reverse voltage applied in the computer 23. Record.
[0043]
A reverse voltage with a different application amount is applied to a plurality of substrates, the substrate is detached, a current value is measured, and the current value is recorded in the computer 23 in association with the application amount of the reverse voltage. The application amount of the reverse voltage is determined by the magnitude of the reverse voltage and the application time. Here, the application time of the reverse voltage is set to a constant value, and the magnitude of the reverse voltage is varied.
[0044]
FIG. 1 is a graph showing the relationship between the applied reverse voltage value and the residual charge amount measured by the ammeters 13 1 and 13 2. The positive electrode is applied to the electrode 8 1 applied with a positive voltage during electrostatic adsorption, and the negative voltage is applied. the applied electrode 8 2 are described as the negative electrode.
[0045]
When the graph of FIG. 1 is obtained, the substrate 3 is a silicon wafer having a silicon oxide film having a thickness of 1 μm formed on the back surface, and sputtering is performed by energizing the ceramic heater inside the electrostatic chuck plate 2. Was carried out with the temperature raised to 300 ° C.
[0046]
Further, during electrostatic adsorption, voltages of +100 V and −100 V were applied to the electrodes 8 1 and 8 2 . The electrostatic adsorption time was set to 60 seconds. In addition, the application time of the reverse voltage after releasing the electrostatic adsorption was fixed to 3 seconds, and the substrate 3 was detached from the electrostatic chuck plate 2 when 15 seconds passed after the application of the reverse voltage.
[0047]
The horizontal axis of the graph in FIG. 2 indicates the absolute value of the magnitude of the applied reverse voltage (the magnitude of the negative voltage applied to the positive electrode and the magnitude of the positive voltage applied to the negative electrode. The vertical axis represents the amount of residual charge obtained from the current value that flows when the substrate 3 is detached after application.
[0048]
In this graph, when a voltage of ± 130 V is applied, the residual charge of the positive electrode 8 1 becomes zero, but the residual charge of 1.5 μC remains on the negative electrode 8 2 . Therefore, when applying a reverse voltage of ± 130 V, the substrate 3 will be adsorbed on the negative electrode 82 with a force of 1.5MyuC.
[0049]
On the other hand, the graphs of the positive and negative electrodes 8 1 and 8 2 intersect at 150V. Therefore, each of the positive and negative electrodes 81, 82, -150 V, by applying a reverse voltage of + 150 V, the residual charge amount of the respective electrodes 81, on 8 2 equal (about 0.8μ coulombs).
[0050]
When thin films are continuously formed on a large number of substrates using the vacuum processing apparatus 1, the reverse voltage applied amount set in the computer 23 in advance is ± 150 V × 3 seconds, and the substrate on which the thin films are actually formed On the other hand, when the target 5 is sputtered while being electrostatically attracted under the same conditions as described above, and after the electrostatic attraction is released, a reverse voltage is applied to each of the electrodes 8 1 and 8 2 under the conditions set in the computer 23. The residual charge amounts of the electrodes 8 1 and 8 2 are equal.
Accordingly, if the lift pins 4 are raised in this state, the substrate can be smoothly detached from the electrostatic chuck plate 2.
[0051]
As described above, according to the substrate removal method of the present invention, the residual charge amount of the positive electrode (electrode 8 1 ) is equal to the residual charge amount of the negative electrode (electrode 8 2 ), and electrostatic adsorption due to the residual charge is performed. Since the force is applied evenly to the substrate, vibrations and falling off from the lift pins 4 are eliminated.
[0052]
Further, as described above, when a reverse voltage having an optimum applied amount is applied to the electrodes 8 1 and 8 2 , the residual charge amount remaining on the electrostatic chuck plate 2 after the substrate is detached becomes extremely small (0.1 μC). Less than).
Therefore, when a large number of substrates are successively processed by the substrate removing method of the present invention, the static elimination processing of the electrostatic chuck plate 2 becomes unnecessary.
[0053]
In the graph of FIG. 2, the residual charges of the electrodes 8 1 and 8 2 did not become zero. However, depending on the process conditions and the type of the substrate, as shown in FIG. It may be an intersection of graphs. In the graph of FIG. 3, when −200 V and +200 V are applied, the residual charges of the electrodes 8 1 and 8 2 disappear.
[0054]
As described above, the application time is fixed, the magnitude of the reverse voltage is changed to create a graph, and the optimum reverse voltage application amount (voltage value × application time) is obtained from the intersection of the graph. Even when the magnitude of the reverse voltage is fixed and the graph is created by changing the application time, the application amount of the reverse voltage becomes the same value.
[0055]
In the above embodiment, the substrate detachment method for the bipolar electrostatic chuck plate 2 has been described. However, depending on the type of the electrostatic chuck plate, a single-pole system in which the substrate is electrostatically attracted by one electrode is adopted. There is something. In the case of the unipolar electrostatic chuck plate, if one of the reverse voltage and the application time is fixed and the other is changed, a graph composed of one curve is obtained.
[0056]
In a monopolar type electrostatic chuck plate, it can be considered that a pair of electrodes are formed between an electrode in the electrostatic chuck plate and a member placed at a ground potential such as a vacuum chamber. A straight line with zero charge (the horizontal axis in FIGS. 2 and 3) is considered as a virtual electrode curve, and the amount of application at the intersection with the straight line may be obtained.
[0057]
In the above example, the intersection point is obtained from the graph. However, the computer 23 may obtain the intersection point by numerical calculation such as a spline method.
In that case, before starting the process, the relationship between the applied amount of the reverse voltage and the residual charge amount is obtained by the computer 23, and the reverse voltage of the applied amount at which the residual charge amounts of the positive and negative electrodes are the same in each substrate. May be applied.
[0058]
Although the vacuum processing apparatus 1 which forms a thin film by sputtering method was demonstrated above, this invention is not limited to it, All using electrostatic chuck plates, such as a CVD apparatus, an etching apparatus, a vapor deposition apparatus, and an annealing apparatus, are used. It is effective in the device of.
[0059]
In the above example, the method of using the lift pins when detaching the substrate from the electrostatic chuck plate has been described. However, the present invention also applies to the case where the substrate is detached using a transfer robot having a moving mechanism in the Z-axis direction (vertical direction). include.
[0060]
【The invention's effect】
According to the present invention, non-uniform electrostatic adsorption due to residual charges is eliminated, so that the substrate does not jump up or drop off.
[Brief description of the drawings]
FIG. 1 shows an example of a vacuum processing apparatus to which the method of the present invention can be applied. FIG. 2 shows an example of a graph showing a relationship between a reverse voltage application amount and a residual charge amount. FIG. 3 shows a relationship between a reverse voltage application amount and a residual charge amount. Other examples of graphs [Fig. 4] (a) to (d): diagrams for explaining the state of separation of the substrate [Explanation of symbols]
7 …… Dielectric 8 1 , 8 2 …… Electrode 2 …… Electrostatic chuck plate 3 …… Substrate

Claims (2)

誘電体内に一対の電極が配置された双極型静電チャックプレート上に基板を配置し、
前記一対の電極に正負の電圧を印加して前記基板を静電吸着した状態で前記基板を真空雰囲気中で処理し、
次いで、前記一対の電極に、前記静電吸着時とは極性が逆の逆電圧を印加して残留電荷を減少させた後、
前記基板を前記双極型チャックプレート上から離脱させる基板離脱方法であって、
前記一対の電極に同じ印加量の前記逆電圧を印加する場合に、一方の電極の残留電荷がゼロになる逆電圧を印加すると、他方の電極の残留電荷がゼロにならない双極型静電チャックプレートに対し、
前記基板の種類や前記処理の内容に応じ、予め、前記逆電圧の印加量と、印加後の残留電荷量の関係を前記電極毎に個別に求めておき、
前記関係から、前記逆電圧の印加量であって、前記各電極に印加すると、前記各電極の残留電荷量がゼロではなく同符号で絶対値が等しい値になる印加量を求め、前記双極型静電チャックプレート上に基板を配置した状態で、前記一対の電極の各電極に求めた印加量の逆電圧を印加することを特徴とする基板離脱方法。
A substrate is disposed on a bipolar electrostatic chuck plate having a pair of electrodes disposed in a dielectric;
The substrate is treated in a vacuum atmosphere while positively and negatively applying a voltage to the pair of electrodes and electrostatically adsorbing the substrate.
Next, after applying a reverse voltage having a polarity opposite to that during the electrostatic adsorption to the pair of electrodes to reduce the residual charge,
A substrate detachment method for detaching the substrate from the bipolar chuck plate,
A bipolar electrostatic chuck plate in which, when applying the reverse voltage of the same applied amount to the pair of electrodes, applying a reverse voltage that makes the residual charge of one electrode zero, the residual charge of the other electrode does not become zero Whereas
According to the type of the substrate and the content of the treatment, in advance, the relationship between the application amount of the reverse voltage and the residual charge amount after application is individually determined for each electrode,
From the above relationship , when the application amount of the reverse voltage is applied to each electrode, the residual charge amount of each electrode is not zero but the application amount with the same sign and the absolute value is equal , and the bipolar type A substrate detachment method, wherein a reverse voltage of an applied amount is applied to each electrode of the pair of electrodes in a state where the substrate is disposed on an electrostatic chuck plate.
前記各電極に対する前記逆電圧印加量の絶対値と前記残留電荷量との関係をグラフにし、その交点から前記印加量を求めることを特徴とする請求項1記載の基板離脱方法。2. The substrate removal method according to claim 1, wherein the relationship between the absolute value of the reverse voltage application amount for each electrode and the residual charge amount is graphed, and the application amount is obtained from the intersection.
JP12799898A 1998-05-12 1998-05-12 Substrate removal method from electrostatic chuck plate surface Expired - Fee Related JP4226101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12799898A JP4226101B2 (en) 1998-05-12 1998-05-12 Substrate removal method from electrostatic chuck plate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12799898A JP4226101B2 (en) 1998-05-12 1998-05-12 Substrate removal method from electrostatic chuck plate surface

Publications (2)

Publication Number Publication Date
JPH11330217A JPH11330217A (en) 1999-11-30
JP4226101B2 true JP4226101B2 (en) 2009-02-18

Family

ID=14973936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12799898A Expired - Fee Related JP4226101B2 (en) 1998-05-12 1998-05-12 Substrate removal method from electrostatic chuck plate surface

Country Status (1)

Country Link
JP (1) JP4226101B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609632B2 (en) 2006-05-25 2013-12-17 Momenta Pharmaceuticals, Inc. Low molecular weight heparin composition and uses thereof
KR101960194B1 (en) * 2017-11-29 2019-03-19 캐논 톡키 가부시키가이샤 Film forming apparatus, film forming method and manufacturing method of organic el display device
CN109837507A (en) * 2017-11-29 2019-06-04 佳能特机株式会社 The manufacturing method of film formation device, film build method and organic EL display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100316535B1 (en) * 1999-12-31 2001-12-12 박종섭 Electro static lifting apparatus for wafer
KR100480817B1 (en) * 2002-03-20 2005-04-06 엘지.필립스 엘시디 주식회사 Method for controlling a bonding device
JP2007048986A (en) 2005-08-10 2007-02-22 Hitachi High-Technologies Corp Device and method for processing plasma
KR101403328B1 (en) * 2007-02-16 2014-06-05 엘아이지에이디피 주식회사 Electro-Static Chuck Having Embossing Electrode Pattern and Method for Processing Substrate Using The Same
TWI390582B (en) * 2008-07-16 2013-03-21 Sumitomo Heavy Industries Plasma processing device and plasma processing method
JP6789099B2 (en) * 2016-12-26 2020-11-25 東京エレクトロン株式会社 Measurement method, static elimination method and plasma processing equipment
CN112201576B (en) * 2020-09-30 2022-10-18 上海华力集成电路制造有限公司 Ion implantation control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609632B2 (en) 2006-05-25 2013-12-17 Momenta Pharmaceuticals, Inc. Low molecular weight heparin composition and uses thereof
KR101960194B1 (en) * 2017-11-29 2019-03-19 캐논 톡키 가부시키가이샤 Film forming apparatus, film forming method and manufacturing method of organic el display device
CN109837507A (en) * 2017-11-29 2019-06-04 佳能特机株式会社 The manufacturing method of film formation device, film build method and organic EL display device
KR20190063133A (en) * 2017-11-29 2019-06-07 캐논 톡키 가부시키가이샤 Film forming apparatus, film forming method and manufacturing method of organic el display apparatus
KR102008581B1 (en) * 2017-11-29 2019-08-07 캐논 톡키 가부시키가이샤 Film forming apparatus, film forming method and manufacturing method of organic el display apparatus

Also Published As

Publication number Publication date
JPH11330217A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
JP4418032B2 (en) Electrostatic chuck
JP3911787B2 (en) Sample processing apparatus and sample processing method
US7541283B2 (en) Plasma processing method and plasma processing apparatus
JP4847909B2 (en) Plasma processing method and apparatus
JP4226101B2 (en) Substrate removal method from electrostatic chuck plate surface
JP2004047511A (en) Method for releasing, method for processing, electrostatic attracting device, and treatment apparatus
TWI612611B (en) Sample detachment method and plasma processing device
US7782591B2 (en) Methods of and apparatus for reducing amounts of particles on a wafer during wafer de-chucking
CN107408503B (en) Substrate processing apparatus and substrate processing method
JP2879887B2 (en) Plasma processing method
US9253862B2 (en) Plasma processing method and plasma processing apparatus
JP7482749B2 (en) Lift pin contact position adjustment method, lift pin contact position detection method, and substrate placement mechanism
JP4647122B2 (en) Vacuum processing method
JP4416911B2 (en) Vacuum processing method
JP2009164620A (en) Sputtering apparatus
JP4009009B2 (en) Adsorption state judgment method
TW202137323A (en) Substrate processing method and substrate processing system
JPH0786383A (en) Electrostatic device and method therefor
JP4073657B2 (en) Processing method
JP2002367967A (en) Method and apparatus for treating plasma
JP4169839B2 (en) Vacuum processing apparatus and vacuum processing method
JP2000100918A (en) Power supply for electrostatic chuck plate
JP2985761B2 (en) Sample processing method
JP7526645B2 (en) SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING SYSTEM
JP2000156400A (en) Separating method and separating equipment of substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081030

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees