JP4063711B2 - Molding drum circumference measuring device and measuring method - Google Patents

Molding drum circumference measuring device and measuring method Download PDF

Info

Publication number
JP4063711B2
JP4063711B2 JP2003144719A JP2003144719A JP4063711B2 JP 4063711 B2 JP4063711 B2 JP 4063711B2 JP 2003144719 A JP2003144719 A JP 2003144719A JP 2003144719 A JP2003144719 A JP 2003144719A JP 4063711 B2 JP4063711 B2 JP 4063711B2
Authority
JP
Japan
Prior art keywords
molding drum
circumference
radius
contact
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003144719A
Other languages
Japanese (ja)
Other versions
JP2004347450A (en
Inventor
千浩 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2003144719A priority Critical patent/JP4063711B2/en
Publication of JP2004347450A publication Critical patent/JP2004347450A/en
Application granted granted Critical
Publication of JP4063711B2 publication Critical patent/JP4063711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Instruments Using Mechanical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成型ドラムの周長を測定する装置および方法に関するものである。
【0002】
【従来の技術】
製品タイヤの寸法精度を高めるため、成型ドラムの周長を、始業時、成型ドラム交換時、台車交換時、成型ドラムのサイズ切り替え時等にタイミングに合わせて、作業員がテープメジャーにて測定し、測定された周長が所定の公差を外れる場合には、成型ドラムの治具等の部品を交換し補修することが広く一般に行われてきている。
【0003】
【発明が解決しようとする課題】
ところがこのようなテープメジャーによる周長の測定では、テープメジャーを成型ドラムに巻きつけるにあたって、テープメジャーの蛇行等によりそれを成型ドラムの円周方向に正確に沿わせることが難しく、かつ、テープメジャーを作業員の手作業で巻きつけるため、巻きつけにあたっての張力にばらつきが生じるため、測定精度があまり高くないという問題点があった。そしてこれらのことは、成型ドラムが樽状等の中高形状を有する場合に特に重大であった。
【0004】
また多くは、成型ドラムの周長を、始業時や成型ドラム交換時、台車交換時、成型ドラムのサイズ切り替え時にだけ測定していたため、成型ドラムの周長に許容範囲を超える誤差が生じていても、成型工程ではその誤差を検知することができず、製品タイヤ及び生タイヤを検査して公差外れが発生することにより初めて、成型ドラムの周長の誤差が発見されるため、製品歩留りが悪くなるという問題点もあった。
【0005】
そこで、接触式のヤードメータにより、生タイヤの成型作業開始の都度に、成型ドラムの周長を測定する方法が考えられるが、ヤードメータによる測定は、ヤードメータを成型ドラムに当接させて成型ドラムを回転させるため時間がかかり、これを生タイヤの成型作業開始の都度に実施すると、タイヤ成型作業のサイクルタイムが長くなり、作業能率が低下してしまい、さらに、接触式のヤードメータはローラ及びベアリングに摩耗が生じるため、頻度の高い測定には必ずしも向いていないという問題点もあった。
【0006】
そこで本発明は、生タイヤの成型作業時間の延伸を招くことなく、測定頻度及び測定精度を高めることができる、成型ドラムの周長測定装置および方法を提案する。
【0007】
【課題を解決するための手段】
本発明に係る成型ドラムの周長測定装置は、成型ドラムの外周面に対向させて配置され、成型ドラムとの接触下で、成型ドラムの半径の基準値のもととなる成型ドラムの周長を測定する接触式周長測定器と、成型ドラムの中心軸線から所定の距離で、成型ドラムの外周面に対向させて固定配置され、成型ドラムとの非接触下で、前記の、半径の基準値と比較される、成型ドラムの測定半径のもととなる、成型ドラムの外周面までの距離を測定する一個以上の非接触式変位測定器とを具えてなり、成型ドラムの中心軸線と直交する横断面内において、非接触式変位測定器の中心軸線を成型ドラムの中心軸線に直交させて配設してなることを特徴とする。
【0008】
この測定装置によれば、接触式周長測定器による精密な周長の測定と、非接触式変位測定器による迅速かつ高い頻度で実施可能な周長の測定とを任意に組合せて、成型ドラムの周長測定を行うことができる。
より具体的には、始業時や成型ドラム交換時、台車交換時、成型ドラムのサイズ切り替え時のみに、接触式周長測定器により成型ドラムの周長をあらかじめ測定し、その測定値から半径の基準値を求め、非接触式変位測定器により成型ドラムの半径を測定し、その半径の測定値と、前記半径の基準値との比較から半径の補正式を求め、非接触式変位測定器により成型ドラムの半径を成型作業の度ごとに測定し補正を行い、半径の補正値から成型ドラムの周長を計算する。
これにより、始業時以外の周長測定は迅速に行うことができ、タイヤ成型作業全体にしめる成型ドラムの周長測定時間を短くすることができる。
【0009】
また、その周長の計算値を接触式周長測定器による周長の測定値と比較して、成型ドラムの良否をより高い頻度で判定することができるため、成型ドラムの周長の誤差の増大により、製品タイヤに公差外れが生じることを事前に防止することができる。
さらに、非接触式変位測定器により、タイヤ成型作業の度ごとに高い頻度で成型ドラムの周長を測定して、周長の経時変化を正確に把握することにより、成型ドラムの周長の誤差を修正するための治工具の交換、補修を、予防保全的かつ計画的に行うことができる。
【0010】
また、好ましくは接触式周長測定器をヤードメータとする。これによれば本発明の成型ドラムの周長測定装置を、汎用の測定機器を用いてより簡単に構成することができる。
さらに好ましくは、非接触式変位測定器をレーザー変位計とする。これによれば本発明の成型ドラムの周長測定装置を、汎用の測定機器を用いてより簡単に構成することができる。
【0011】
本発明に係る成型ドラムの周長測定方法は、成型ドラムの半径の基準値を接触式周長測定器による成型ドラムの周長測定に基いてあらかじめ求め、非接触式変位測定器により成型ドラムの半径を測定し、その半径の測定値と、前記半径の基準値との比較から半径の補正式を求め、非接触式変位測定器により成型ドラムの半径を成型作業の度ごとに測定し補正を行い、半径の補正値から成型ドラムの周長を計算することを特徴とする。
【0012】
これによれば、例えば、始業時のみに、成型ドラムの周長を接触式周長測定器により精密に測定し半径の基準値を求めて、成型ドラムの半径を非接触式変位測定器により測定して、前述の半径の基準値に対する補正式を求めるとともに、その後のタイヤ成型作業前ごとに非接触式変位測定器により成型ドラムの半径を測定し、その半径から補正式により半径を計算して求め、成型ドラムの半径および周長をより高い頻度で測定し監視することができる。
【0013】
また好ましくは、成型ドラムの周長の、接触式周長測定器によるにあらかじめ測定値を基準値とし、成型作業の度ごとに計算した周長の値をその基準値と比較して、成型ドラムの良否を判定する。
これによれば、周長の計算値を接触式周長測定器による周長の測定値と比較して、成型ドラムの良否をより高い頻度で判定することができ、成型ドラムの周長の誤差の増大を事前に検知し、製品タイヤの公差外れを防止することができる。
【0014】
【発明の実施の形態】
以下に、本発明の実施の形態を、図面に示すところに基づいて説明する。
図1は、本発明に係る成型ドラムの周長測定装置を適用した成型ドラムの概略を表す模式図である。図中1は成型ドラムを、2はヤードメータを、3はレーザー変位計を表わす。レーザー変位計3は、その中心軸線を成型ドラム1の中心軸線Cに対して直交するように配設する。
始業時には、ヤードメータ2のローラを成型ドラム1に当接させ、成型ドラム1を回転させて、成型ドラムの周長を測定し、半径の基準値を計算する。それとともに、レーザー変位計3により、成型ドラム1の外周面のレーザー変位計3からの距離を求め、あらかじめ測定したレーザー変位計3から中心軸線Cまでの距離から、レーザー変位計3から成型ドラム1の外周面までの距離を減算して、半径を求める。
【0015】
ここで、レーザー変位計3の中心軸線が中心軸線Cに対してわずかに心ずれを起こしている場合には、レーザー変位計3による半径の測定値と、ヤードメータ2により求めた半径の基準値とはわずかに誤差が生じるため、レーザー変位計3による半径の測定値と、半径の基準値とを比較して、レーザー変位計3により測定した半径の測定値の基準値に対する補正式を求める。
【0016】
その後、タイヤ成型作業の度ごとに、レーザー変位計3により、成型ドラム1の半径を測定する。それらの半径の測定値を用いて前述の補正式により成型ドラム1の半径を補正し、その半径の補正値を用いて周長を計算する。
そこで計算された周長と、あらかじめヤードメータ2で測定した周長とを比較し、その差が規定値以内であれば、成型ドラムを良と判定し、規定値以外であれば、不良と判定し、成型ドラムの治具や部品等の交換もしくは補修を行い、成型ドラムの周長を調整する。
【0017】
本発明の他の実施の形態を、図面に示すところに基づいて説明する。
図2は、非接触式変位測定器だけからなる成型ドラムの周長測定装置を適用した成型ドラムの概略を表す模式図である。図中1は成型ドラムを、3、4、5はレーザー変位計を表わす。レーザー変位計3、4、5は、成型ドラム1の中心軸線Cに対して直交する横断面内で、それぞれのレーザー変位計の中心軸線が周方向に相互に120度の角度をなすように配設する。
始業時には、レーザー変位計3、4、5により、成型ドラム1の半径および心ずれを測定し、半径の基準値を求め、半径の測定値の基準値に対する補正式を求める。
【0018】
その後、タイヤ成型作業の度ごとに、レーザー変位計3、4、5により、成型ドラム1の半径を測定して、それらの半径の測定値から、前述の補正式により成型ドラム1の半径を補正し、その半径の補正値から周長を求める。
そこで計算された周長と、始業時に測定した半径から求めた周長とを比較し、その差が規定値以内であれば、成型ドラムを良と判定し、規定値以外であれば、不良と判定し、成型ドラムの治具や部品等の交換もしくは補修を行い、成型ドラムの周長を調整する。
【0019】
図3は、成型ドラムの中心とレーザー変位計の位置関係を表わす模式図である。
(a)はレーザー変位計を成型ドラムの中心の周りに等間隔に三個配設した態様をあらわし、(b)は1つ配設した態様をあらわす。
図3(a)において、三個のレーザー変位計3、4、5は、それぞれの中心軸線が、成型ドラム1の中心Cで交わるように配設されるが、経年変化により成型ドラム1が、三個のレーザー変位計3、4、5のそれぞれの中心軸線の交点に対し図に点線で示す位置にずれた場合には、レーザー変位計3で測定される成型ドラムの半径は増加し、レーザー変位計4で測定される半径は減少し、レーザー変位計5で測定される半径は増大する。
このような場合には、成型ドラムのそれぞれの測定点の半径が変化したものとはみなさずに、成型ドラム3が所定の位置から芯ずれを起こしていると判定することができる。
【0020】
また、レーザー変位計3、4、5により測定した成型ドラム1の外周面までの距離とレーザー変位計3、4、5の成型ドラム1に対する配設角度から、各々の測定点の座標位置を演算して、始業時およびタイヤ成型作業の度ごとに、三個のレーザー変位計3、4、5で測定した三つの測定点の座標を通る仮想円とその仮想中心をもとめ、始業時の仮想中心から、タイヤ成型作業ごとの仮想中心とのずれを監視して、成型ドラムの芯ずれを判定することもできる。
【0021】
図3(b)に示すように、レーザー変位計を一つだけ配設した場合には、同じく成型ドラム1が芯ずれを起こした場合に、成型ドラムの半径が減少したことしか分からないため、その原因が成型ドラムの周長変化なのか芯ずれなのかの判別がつかない。このことはレーザー変位計を二つ配設したときも同様である。
このように、成型ドラムの周長測定装置を、非接触変位計のみで構成する場合には、レーザー変位計は成型ドラムに対し、三個以上設ける必要があることが分かる。
【0022】
【発明の効果】
以上に述べたところから明らかなように、本発明によれば、接触式周長測定器による精密な周長の測定と、非接触式変位測定器による迅速かつ高い頻度で実施可能な周長の測定とを任意に組合せて測定を行うことができる。また、始業時のみに、成型ドラムの周長を接触式周長測定器により精密に測定し、その後のタイヤ成型作業前ごとに非接触式変位測定器により成型ドラムの半径を測定し、その半径から周長を計算して求めることができる。これにより、始業時以外の周長測定は迅速に行うことができ、タイヤ成型作業全体にしめる成型ドラムの周長測定時間を短くすることができる。また、その周長の計算値を接触式周長測定器による周長の測定値と比較して、成型ドラムの良否をより高い頻度で判定することができるため、成型ドラムの周長の誤差の増大により、製品タイヤに公差外れが生じることを事前に防止することができる。さらに、非接触式変位測定器により高い頻度で成型ドラムの周長を測定して、周長の経時変化を正確に把握することにより、成型ドラムの周長の誤差を修正するための治工具の交換、補修をより計画的に行うことができる。
【図面の簡単な説明】
【図1】 本発明に係る成型ドラムの周長測定装置を適用した成型ドラムの概略を表す模式図である。
【図2】 非接触式変位測定器だけからなる成型ドラムの周長測定装置を適用した成型ドラムの概略を表す模式図である。
【図3】 成型ドラムの中心とレーザー変位計の位置関係を表わす模式図である。
【符号の説明】
1 成型ドラム
2 ヤードメータ
3 レーザー変位計
4 レーザー変位計
5 レーザー変位計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and a method for measuring the circumference of a molding drum .
[0002]
[Prior art]
In order to improve the dimensional accuracy of the product tire, the circumference of the molding drum is measured by a tape measure at the start of work, when the molding drum is changed, when the carriage is changed, or when the size of the molding drum is changed. When the measured circumference deviates from a predetermined tolerance, it has been widely performed to replace and repair parts such as a molding drum jig.
[0003]
[Problems to be solved by the invention]
However, in the measurement of the circumference with such a tape measure, when winding the tape measure around the molding drum, it is difficult to make the tape measure follow the circumferential direction of the molding drum accurately by meandering of the tape measure, and the tape measure. Since the wrapping is manually performed by the operator, the tension in the winding varies, so that the measurement accuracy is not so high. These matters were particularly serious when the molding drum had a medium-high shape such as a barrel shape.
[0004]
In many cases, the circumference of the molding drum was measured only at the start of work, when the molding drum was changed, when the carriage was changed, or when the size of the molding drum was changed. However, the error in the molding process cannot be detected, and the error in the circumference of the molding drum is discovered only when the product tire and the raw tire are inspected and the tolerance is out of tolerance, resulting in poor product yield. There was also the problem of becoming.
[0005]
Therefore, a method of measuring the circumference of the molding drum with a contact-type yard meter every time the green tire molding operation starts can be considered, but the measurement with the yard meter is performed by bringing the yard meter into contact with the molding drum. It takes time to rotate the drum, and if this is carried out every time the green tire molding operation starts, the cycle time of the tire molding operation becomes longer, the work efficiency decreases, and the contact-type yard meter is a roller. In addition, since the bearing is worn, there is a problem that it is not necessarily suitable for frequent measurement.
[0006]
Therefore, the present invention proposes a molding drum circumference measuring apparatus and method that can increase the measurement frequency and measurement accuracy without incurring the length of the green tire molding operation.
[0007]
[Means for Solving the Problems]
The molding drum circumference measuring apparatus according to the present invention is arranged so as to face the outer peripheral surface of the molding drum, and is the circumference of the molding drum that is the basis of the reference value of the radius of the molding drum in contact with the molding drum. A contact-type circumference measuring device that measures the distance between the center axis of the molding drum and a fixed distance facing the outer peripheral surface of the molding drum at a predetermined distance, and in the non-contact with the molding drum, the above-mentioned radius reference Comparing the value with one or more non-contact displacement measuring instruments that measure the distance to the outer periphery of the molding drum, which is the basis for the measurement radius of the molding drum, and perpendicular to the central axis of the molding drum In the cross section, the center axis of the non-contact displacement measuring device is arranged so as to be orthogonal to the center axis of the molding drum.
[0008]
According to this measuring apparatus, a precise measurement of the circumference by a contact type circumference measuring device and a circumference measurement that can be carried out quickly and frequently by a non-contact type displacement measuring device are arbitrarily combined to form a molding drum. Can be measured.
More specifically, the circumference of the molding drum is measured in advance using a contact-type circumference measuring instrument only at the start of work, when the molding drum is changed, when the carriage is changed, or when the size of the molding drum is changed. Obtain a reference value, measure the radius of the molding drum with a non-contact displacement measuring instrument, find a correction formula for the radius by comparing the measured value of the radius with the reference value of the radius, and use a non-contact displacement measuring instrument. The radius of the molding drum is measured and corrected every molding operation, and the circumference of the molding drum is calculated from the radius correction value.
As a result, circumference measurement other than at the start of work can be performed quickly, and the circumference measurement time of the molding drum for the entire tire molding operation can be shortened.
[0009]
Also, since the calculated value of the circumference can be compared with the measured value of the circumference by the contact type circumference measuring device, the quality of the molding drum can be judged more frequently. By the increase, it is possible to prevent the product tire from being out of tolerance in advance.
In addition, by measuring the circumference of the molding drum at a high frequency for each tire molding operation using a non-contact displacement measuring instrument and accurately grasping the change in circumference over time, errors in the circumference of the molding drum can be obtained. It is possible to perform preventive maintenance and systematic replacement and repair of jigs and tools to correct the problem.
[0010]
Preferably, the contact circumference measuring instrument is a yard meter. According to this, the circumference measuring apparatus of the molding drum of this invention can be comprised more easily using a general purpose measuring instrument.
More preferably, the non-contact displacement measuring device is a laser displacement meter. According to this, the circumference measuring apparatus of the molding drum of this invention can be comprised more easily using a general purpose measuring instrument.
[0011]
According to the molding drum circumference measuring method of the present invention, the reference value of the radius of the molding drum is obtained in advance based on the measurement of the circumference of the molding drum by a contact type circumference measuring device, and the molding drum is measured by a non-contact type displacement measuring device. Measure the radius, find the correction formula of the radius from the comparison of the measured value of the radius and the reference value of the radius, and measure and correct the radius of the molding drum for each molding operation using a non-contact displacement measuring instrument. And the circumference of the forming drum is calculated from the correction value of the radius.
[0012]
According to this, for example, only at the start of work, the circumference of the molding drum is precisely measured with a contact-type circumference measuring device to obtain a reference value of the radius, and the radius of the molding drum is measured with a non-contact type displacement measuring device. Then, the correction formula for the reference value of the radius described above is obtained, and the radius of the molding drum is measured by a non-contact displacement measuring instrument before each subsequent tire molding operation, and the radius is calculated from the radius by the correction formula. In addition, the radius and circumference of the molding drum can be measured and monitored more frequently.
[0013]
Also preferably, the circumferential length of the building drum, a pre-measured values by contact circumference measurement instrument as a reference value, the value of the calculated circumferential length each time the molding operation as compared to the reference value, molded Judge the quality of the drum.
According to this, the calculation value of the circumference can be compared with the measurement value of the circumference by the contact-type circumference measuring device, and the quality of the molding drum can be determined at a higher frequency, and the circumference error of the molding drum can be determined. Can be detected in advance, and the tolerance of the product tire can be prevented.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing an outline of a molding drum to which a molding drum circumference measuring apparatus according to the present invention is applied. In the figure, 1 represents a molding drum, 2 represents a yard meter, and 3 represents a laser displacement meter. The laser displacement meter 3 is disposed so that its central axis is orthogonal to the central axis C of the molding drum 1.
At the start of business, the roller of the yard meter 2 is brought into contact with the molding drum 1, the molding drum 1 is rotated, the circumference of the molding drum is measured, and the reference value of the radius is calculated. At the same time, the distance from the laser displacement meter 3 to the outer peripheral surface of the molding drum 1 is obtained by the laser displacement meter 3, and the distance from the laser displacement meter 3 to the center axis C is measured in advance from the laser displacement meter 3 to the molding drum 1. Subtract the distance to the outer peripheral surface to find the radius.
[0015]
Here, when the center axis of the laser displacement meter 3 is slightly decentered with respect to the center axis C, the measured value of the radius by the laser displacement meter 3 and the reference value of the radius obtained by the yard meter 2 are used. Therefore, a correction formula for the reference value of the measured value of the radius measured by the laser displacement meter 3 is obtained by comparing the measured value of the radius by the laser displacement meter 3 with the reference value of the radius.
[0016]
Thereafter, the radius of the molding drum 1 is measured by the laser displacement meter 3 every time the tire is molded. Using the measured values of these radii, the radius of the molding drum 1 is corrected by the above-described correction formula, and the circumference is calculated using the correction value of the radius.
The calculated circumference is compared with the circumference measured with the yard meter 2 in advance. If the difference is within the specified value, the molding drum is determined to be good. Then, exchange or repair jigs and parts of the molding drum and adjust the circumference of the molding drum.
[0017]
Another embodiment of the present invention will be described with reference to the drawings.
FIG. 2 is a schematic diagram showing an outline of a molding drum to which a molding drum circumference measuring device including only a non-contact displacement measuring device is applied. In the figure, 1 represents a molding drum, and 3, 4, and 5 represent laser displacement meters. The laser displacement meters 3, 4, and 5 are arranged so that the central axes of the respective laser displacement meters make an angle of 120 degrees in the circumferential direction within a cross section orthogonal to the central axis C of the molding drum 1. Set up.
At the start of work, the laser displacement meters 3, 4 and 5 are used to measure the radius and misalignment of the molding drum 1, to obtain a reference value for the radius, and to obtain a correction formula for the reference value of the measured value of the radius.
[0018]
Thereafter, the radius of the molding drum 1 is measured by the laser displacement meters 3, 4 and 5 every time the tire is molded, and the radius of the molding drum 1 is corrected from the measured values of the radii using the correction formula described above. Then, the circumference is obtained from the correction value of the radius.
Compare the circumference calculated there with the circumference obtained from the radius measured at the start of work, and if the difference is within the specified value, the molding drum is determined to be good. Judgment is performed, jigs and parts of the molding drum are replaced or repaired, and the circumference of the molding drum is adjusted.
[0019]
FIG. 3 is a schematic diagram showing the positional relationship between the center of the molding drum and the laser displacement meter.
(A) shows an embodiment in which three laser displacement meters are arranged at equal intervals around the center of the molding drum, and (b) shows an embodiment in which one laser displacement meter is arranged.
In FIG. 3 (a), the three laser displacement meters 3, 4, and 5 are arranged such that their center axes intersect at the center C of the molding drum 1, but the molding drum 1 is When the center axis of each of the three laser displacement meters 3, 4 and 5 is shifted to the position indicated by the dotted line in the figure, the radius of the molding drum measured by the laser displacement meter 3 increases, and the laser The radius measured with the displacement meter 4 decreases and the radius measured with the laser displacement meter 5 increases.
In such a case, it can be determined that the molding drum 3 is misaligned from a predetermined position without assuming that the radius of each measurement point of the molding drum has changed.
[0020]
Further, the coordinate position of each measurement point is calculated from the distance to the outer peripheral surface of the molding drum 1 measured by the laser displacement meters 3, 4 and 5 and the arrangement angle of the laser displacement meters 3, 4 and 5 with respect to the molding drum 1. The virtual center and the virtual center passing through the coordinates of the three measurement points measured by the three laser displacement meters 3, 4 and 5 are obtained at the start and every time the tire is molded. Therefore, it is possible to determine the misalignment of the molding drum by monitoring the deviation from the virtual center for each tire molding operation.
[0021]
As shown in FIG. 3 (b), when only one laser displacement meter is disposed, when the molding drum 1 is similarly misaligned, it is only known that the radius of the molding drum has decreased. It cannot be determined whether the cause is a change in the circumference of the molding drum or misalignment. This is the same when two laser displacement meters are provided.
As described above, when the circumference measuring device of the molding drum is configured only by the non-contact displacement meter, it is understood that three or more laser displacement meters need to be provided for the molding drum.
[0022]
【The invention's effect】
As is clear from the above description, according to the present invention, a precise circumference measurement by a contact-type circumference measuring device and a circumference that can be carried out quickly and frequently by a non-contact displacement measuring device. Measurement can be performed in any combination with measurement. Also, only at the start of work, the circumference of the molding drum is precisely measured with a contact-type circumference measuring instrument, and the radius of the molding drum is measured with a non-contact displacement measuring instrument before each subsequent tire molding operation. The circumference can be calculated from As a result, circumference measurement other than at the start of work can be performed quickly, and the circumference measurement time of the molding drum for the entire tire molding operation can be shortened. Also, since the calculated value of the circumference can be compared with the measured value of the circumference by the contact type circumference measuring device, the quality of the molding drum can be judged more frequently. By the increase, it is possible to prevent the product tire from being out of tolerance in advance. Furthermore, by measuring the circumference of the forming drum with a non-contact displacement measuring instrument at a high frequency and accurately grasping the change in circumference with time, a tool for correcting the circumference error of the forming drum can be used. Replacement and repair can be performed more systematically.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an outline of a molding drum to which a molding drum circumference measuring apparatus according to the present invention is applied.
FIG. 2 is a schematic view showing an outline of a molding drum to which a molding drum circumference measuring device composed only of a non-contact type displacement measuring device is applied.
FIG. 3 is a schematic diagram showing the positional relationship between the center of a molding drum and a laser displacement meter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Molding drum 2 Yard meter 3 Laser displacement meter 4 Laser displacement meter 5 Laser displacement meter

Claims (5)

成型ドラムの外周面に対向させて配置され、成型ドラムとの接触下で、成型ドラムの半径の基準値のもととなる成型ドラムの周長を測定する接触式周長測定器と、成型ドラムの中心軸線から所定の距離で、成型ドラムの外周面に対向させて固定配置され、成型ドラムとの非接触下で、前記の、半径の基準値と比較される、成型ドラムの測定半径のもととなる、成型ドラムの外周面までの距離を測定する一個以上の非接触式変位測定器とを具えてなり、成型ドラムの中心軸線と直交する横断面内において、非接触式変位測定器の中心軸線を成型ドラムの中心軸線に直交させて配設してなる成型ドラムの周長測定装置。 A contact-type circumference measuring device that is arranged to face the outer peripheral surface of the molding drum and measures the circumference of the molding drum, which is a reference value for the radius of the molding drum, in contact with the molding drum , and the molding drum The measurement radius of the molding drum is compared with the reference value of the radius, which is fixedly disposed at a predetermined distance from the central axis of the molding drum so as to face the outer peripheral surface of the molding drum and is not in contact with the molding drum. And one or more non-contact displacement measuring instruments for measuring the distance to the outer peripheral surface of the molding drum, and in the cross section perpendicular to the central axis of the molding drum, the non-contact displacement measuring instrument An apparatus for measuring the circumference of a molding drum in which a central axis is arranged perpendicular to the central axis of the molding drum. 接触式周長測定器をヤードメータとしてなる請求項1に記載の成型ドラムの周長測定装置。  2. The molding drum circumference measuring apparatus according to claim 1, wherein the contact circumference measuring instrument is a yard meter. 非接触式変位測定器をレーザー変位計としてなる請求項1もしくは2に記載の成型ドラムの周長測定装置。 3. The molding drum circumference measurement device according to claim 1, wherein the non-contact displacement measuring instrument is a laser displacement meter. 成型ドラムの半径の基準値を、接触式周長測定器による成型ドラムの周長測定に基いてあらかじめ求め、非接触式変位測定器により成型ドラムの半径を測定し、その半径の測定値と、前記半径の基準値との比較から半径の補正式を求め、非接触式変位測定器により成型ドラムの半径を成型作業の度ごとに測定し補正を行い、半径の補正値から成型ドラムの周長を計算する成型ドラムの周長測定方法。The reference value of the radius of the molding drum is obtained in advance based on the measurement of the circumference of the molding drum by the contact type circumference measuring device, the radius of the molding drum is measured by the non-contact type displacement measuring device, and the measured value of the radius, A radius correction formula is obtained by comparison with the reference value of the radius, and the radius of the molding drum is measured and corrected every time a molding operation is performed by a non-contact displacement measuring instrument. Method for measuring the circumference of the molding drum to calculate 成型ドラムの周長の、接触式周長測定器によるあらかじめ測定値を基準値とし、成型作業の度ごとに計算した周長の値をその基準値と比較して、成型ドラムの良否を判定する請求項に記載の成型ドラムの周長測定方法。The pre-measured value of the circumference of the molding drum with a contact-type circumference measuring instrument is used as a reference value, and the circumference value calculated for each molding operation is compared with the reference value to determine the quality of the molding drum. The method for measuring the circumference of the molding drum according to claim 4 .
JP2003144719A 2003-05-22 2003-05-22 Molding drum circumference measuring device and measuring method Expired - Fee Related JP4063711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003144719A JP4063711B2 (en) 2003-05-22 2003-05-22 Molding drum circumference measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144719A JP4063711B2 (en) 2003-05-22 2003-05-22 Molding drum circumference measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2004347450A JP2004347450A (en) 2004-12-09
JP4063711B2 true JP4063711B2 (en) 2008-03-19

Family

ID=33532101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144719A Expired - Fee Related JP4063711B2 (en) 2003-05-22 2003-05-22 Molding drum circumference measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP4063711B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905116B1 (en) * 2016-11-09 2018-10-08 넥센타이어 주식회사 Tire manufacturing apparatus and method for detecting defect of the same
CN113804441A (en) * 2021-09-16 2021-12-17 西安热工研究院有限公司 On-line monitoring method for cracks of variable-pitch bearing

Also Published As

Publication number Publication date
JP2004347450A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP5255012B2 (en) Calibration method of gear measuring device
KR20140138063A (en) Self-diagnosis of machine and method for precision calibration of machine
JP6012948B2 (en) Tire contour generation machine and related methods
JPWO2008062609A1 (en) Tire measuring method, measuring apparatus and tire forming apparatus
JP2016099287A (en) Tread shape measurement method
EP3163282B1 (en) Method for characterizing tire uniformity machines
CN104985332A (en) Laser cutting machine and closed detection method thereof
JP4929359B2 (en) Raw tire production equipment monitoring system
CN111536876B (en) In-situ measurement method for sealing surface of three-eccentric center butterfly valve
JP4063711B2 (en) Molding drum circumference measuring device and measuring method
TWI251072B (en) Apparatus and method for measuring periphery of tire-forming mold
JP5854661B2 (en) Calibration method of probe for shape measurement
JP4466831B2 (en) Green tire surface inspection equipment
US10132623B2 (en) Method for measuring slant wall thickness dimension of hub
EP3875893A1 (en) Method and device for contactless measurement of geometric objects
JP3976609B2 (en) Method and apparatus for determining bead setting position in tire molding machine
CN114851023A (en) In-situ detection method for large-size aspheric optical element grinding and polishing machine tool
JP4557940B2 (en) Method for measuring the shape of a cross-sectional circle perpendicular to the axis of the cylinder to be measured, and method for measuring the cylindrical shape of the cylinder to be measured
CN104308110B (en) Alignment table centering contact mechanism precision micromatic setting and method
CN112129207A (en) Method for testing positioning accuracy of non-full-circle motion angle of rotary table
CN107830791B (en) Tool for checking left-right symmetry degree of winding tread
CN105312833A (en) Method for replacing tube section of tower tube
JP5550529B2 (en) Method for measuring the inner shape of tire molds
CN111998792A (en) On-line detection method and on-line detection device for tire blank out-of-roundness of tire building machine
KR101421803B1 (en) Diagnostic apparatus for roll and method of diagnostic using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees