JP4022758B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4022758B2
JP4022758B2 JP2003094106A JP2003094106A JP4022758B2 JP 4022758 B2 JP4022758 B2 JP 4022758B2 JP 2003094106 A JP2003094106 A JP 2003094106A JP 2003094106 A JP2003094106 A JP 2003094106A JP 4022758 B2 JP4022758 B2 JP 4022758B2
Authority
JP
Japan
Prior art keywords
heat radiating
heat
semiconductor element
radiating plate
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003094106A
Other languages
Japanese (ja)
Other versions
JP2004303900A (en
Inventor
孝紀 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003094106A priority Critical patent/JP4022758B2/en
Publication of JP2004303900A publication Critical patent/JP2004303900A/en
Application granted granted Critical
Publication of JP4022758B2 publication Critical patent/JP4022758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子の両面に放熱板を装着した半導体装置に関する。
【0002】
【従来の技術】
近年、高耐圧、大電流に適した半導体チップ(半導体素子)が内蔵されたインバータパワーモジュールが、機器の小型化が図れるため多く使われている。この半導体素子として、例えば、IGBT(絶縁ゲート型バイポーラトランジスタ)等がある。これら半導体素子は、使用時の発熱を効率よく放熱することが要求され、半導体素子の放熱性を向上させるために種々の提案がされている。ここで、半導体素子を挟むように第1、第2の放熱板を配置した状態で、それを樹脂モールドして封止する工程が一般に実施されるが、第1、第2の放熱板の各外側面は放熱面として樹脂が付かない露出面として、放熱効率を低下させないことが求められる。第2の放熱板は圧縮方向に型締めされるが、型締め力が不足すると第1、第2の放熱板の放熱面に樹脂が回り込んで付着しやすい(一種のバリ)ため、型締め力を高める必要がある。しかし、型締め力を大きくすると間にある半導体素子が損傷するおそれがあるため型締め力の増大には限界がある。
【0003】
【特許文献1】
特開2001−267469号公報
【特許文献2】
特開2002−324816号公報
【0004】
【発明が解決しようとする課題】
従来技術として、特許文献1には、半導体素子の両面に放熱板を設けて、成形型で樹脂封止の際、上側の放熱板の外周のみを加圧し変形させることにより、半導体素子へのダメージを抑え、かつ放熱板の露出面への樹脂の回り込みを防止する提案がされている。しかしながら、該公報技術では、複数の半導体素子を搭載した半導体装置の場合、素子と素子の間の部分の放熱板が成形時の樹脂圧力により膨らむ可能性があるためよくない。やはり放熱板全面を加圧することが本来的には望ましいといえる。
【0005】
また、特許文献2には、放熱板の外面に絶縁シートを貼り付けた状態で樹脂モールドする提案がされている。しかしながら、該公報技術は、樹脂の回り込みを防止する手段としては有効であるが、使用時の放熱シートをこのシートで兼ねるようにしており、シートの絶縁性等を考慮すると信頼性に劣る面もありうる。
【0006】
本発明は、上記した点を背景になされたもので、半導体素子を損傷することなく、成形時の放熱面への樹脂の回り込みを防止するための十分な加圧を可能とし、かつ信頼性も高められる半導体装置を提供することを課題とする。
【0007】
【課題を解決するための手段及び発明の効果】
上記課題を解決するために本発明の半導体装置は、半導体素子の一側面に第1の放熱板が設けられ、半導体素子の他側面に第1の放熱板と略平行に第2の放熱板が設けられた状態で成形型に収容され、第1および第2の放熱板のそれぞれ前記半導体素子と面した側と反対側を放熱面として露出するように樹脂で封止された半導体装置であって、第1の放熱板と第2の放熱板との間に、半導体素子に近接するとともにその外側の位置において、第1および第2の放熱板の間隔を両放熱板間の電気的絶縁を維持した状態で第1および第2の放熱板間に両放熱板によって挟まれるように第1および第2の放熱板の間隔を維持するスペーサ部材が複数設けられ、そのスペーサ部材は、導体部と絶縁材料からなるスペーサ部とから形成されることを特徴とする。
【0008】
上記構成により、成形時に放熱板の露出すべき放熱面を全面的に十分加圧でき、半導体素子にダメージを与えずに、放熱面への樹脂の回り込みを防止できる。
【0009】
具体的には、スペーサ部材は、第1および第2の放熱板の接近方向に作用する圧縮荷重に対抗する受圧構造部とされ、一端部が第1の放熱板に、他端部が第2の放熱板に当接または係合しており、型締め力を受け止め両放熱板間の間隔を保持して半導体素子の損傷を防ぐことができる。
【0010】
また、本発明は、第1の放熱板の同一平面上に複数の半導体素子が設けられ、これら半導体素子の第1の放熱板に面した側と反対側に、第1の放熱板と略平行に第2の放熱板が設けられた状態で成形型に収容され、第1および第2の放熱板のそれぞれ半導体素子と面した側と反対側を放熱面として露出するように樹脂で封止される半導体装置であって、
第1および第2の放熱板の間に、複数の半導体素子のそれぞれに近接するとともにその外側の位置において、第1および第2の放熱板の間隔を両放熱板間の電気的絶縁を維持した状態で第1および第2の放熱板間に両放熱板によって挟まれるように第1および第2の放熱板の間隔を維持するスペーサ部材が複数設けられ、そのスペーサ部材は、導体部と絶縁材料からなるスペーサ部とから形成されることを特徴とする。
【0011】
上記構成により、複数の半導体素子を搭載した半導体装置の場合に、放熱面の全面加圧が可能で素子と素子の間の部分においても放熱板が成形時の樹脂圧力により膨らむことがなく、放熱板の平行性は保たれ、かつ樹脂の放熱面への回り込みを防ぐことができる。
【0012】
具体的には、スペーサ部材は、電気的な絶縁材料からなり、円柱状と角柱状と球状と直方体状とのうちのいずれかをなすスペーサ部材であり、第1および第2の放熱板間に両放熱板によって挟まれるように複数設けられることを特徴とし、複数のスペーサで間隔が保持され、半導体素子が損傷することがなく、かつ十分な加圧が可能で放熱面への樹脂の回り込みを防ぐことができ、信頼性を高めることができる。また、このスペーサ部材は、半導体素子と両放熱板をはんだ等で接合する際の治具も兼ねることができ有用である。
【0013】
また、具体的には、スペーサ部材は、導体部と絶縁材料からなるスペーサ部とを含んで形成され、第1および第2の放熱板間に両放熱板によって挟まれるように複数設けられることを特徴とし、このように導体部とスペーサ部とで構成した場合も十分な加圧が可能で半導体素子を損傷することなく、樹脂の回り込みを防止できる。スペーサ部材は種々の構成を選択できる。
【0014】
さらに、具体的には、導体部は、第1および第2の放熱板の少なくとも一方に他方と面する側に一体形成した突出部として形成され、この突出部と他方の放熱板との間に絶縁材料からなるスペーサ部が設けられることを特徴とし、放熱板をプレス加工することで導体部を比較的簡単に作ることが可能である。
【0015】
また、具体的には、スペーサ部材は、成形金型で樹脂モールドする前に、半導体素子の周りを一次的に封止する一次樹脂とすることにより、このように樹脂で行うことも可能である。
【0016】
さらに、本発明は、第1および第2の放熱板の少なくとも1つの放熱板の放熱面の外周部に、成形型で加圧時に変形する突起部をその外周部に沿って設けることを特徴とし、この放熱面の突起部が成形時の加圧によりつぶれ、これを樹脂の進入を防ぐ壁として機能させることにより樹脂の回り込み防止効果をさらに増すことができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態につき図面に示す実施例を参照して説明する。図1は、本発明の一実施例である半導体装置の縦断面図である。半導体装置1は、矩形状(または方形状)の第1の半導体素子(例えば、IGBT(絶縁ゲート型バイポーラトランジスタ))2と、この第1の半導体素子2と適間隔を置いて同じ平面上に並べて設けられる第1の半導体素子2とは異なる第2の半導体素子(例えば、FWD(フリーホイールダイオード)3と、これら第1および第2の半導体素子2、3の一側面側に、接合材料としてはんだ4で接合された第1の放熱板としての下側放熱板5と、これら第1および第2の半導体素子2、3の他側面側に、半導体素子2より小さい矩形状をなし、はんだ4で接合された第1の電極ブロック6と、半導体素子3より小さい矩形状をなし、はんだ4で接合された第2の電極ブロック7と、これら第1および第2の電極ブロック6、7の半導体素子2および半導体素子3の接合面とは反対面側に、はんだ4で接合された第2の放熱板としての上側放熱板8とを含み構成される。
【0018】
第1の放熱板としての下側放熱板5、第2の放熱板としての上側放熱板8および電極ブロック6、電極ブロック7は、銅、アルミニウム等の熱伝導性のよい材料で形成されている。下側放熱板5および上側放熱板8は、方形または矩形板状に形成されている。
【0019】
下側放熱板5および上側放熱板8の間に、半導体素子2および半導体素子3のそれぞれに近接して外側に(干渉しない部位に)位置して、円柱状のスペーサ(スペーサ部材)9が複数(本実施例では、半導体素子2および半導体素子3の間と外側に配置され(図3も参照)、各素子の4隅に位置するように6個)設けている。下側放熱板5と上側放熱板8とにはそれぞれスペーサ9の位置決めおよび嵌合用の穴(凹所)10と11が複数設けられている。
【0020】
この例のスペーサ9は円柱状(角柱状でもよい)の本体9aとその両端から同軸状にかつ小径に突出した係合部9bとを備え、本体9aと各嵌合部9bとの境界からの軸方向に直角な肩面9cとされ、このようなピン状のスペーサ9の両端の嵌合部9bが下側および上側放熱板5、8の穴10、11(ピン穴)に嵌まり、各肩面9cがそれら放熱板5、8の内側対向面に当接またはごく近接してこのスペーサ9は位置決めされるとともに、両放熱板5、8間の圧縮荷重を受け止めるようになっている。つまり、これらのスペーサ9は一種の突張り棒として機能するとも言うことができる。
【0021】
図2は、図1の側面図である。半導体素子2の電極(図示せず)は、外部の信号端子用リード12と、金あるいはアルミニウム等のボンディングワイヤ13で接続されている。電極ブロック6は、半導体素子2と上側放熱板8との間の間隔を保持する働きをして、ボンディングワイヤ13の部分の形態は保持される。図2を除き、信号端子用リード12およびボンディングワイヤ13は省略してある。
【0022】
図3は、図1におけるスペーサ9の配置を示す説明図である。半導体素子2、半導体素子3の間を含み各素子の4隅に位置するように配置している。スペーサ9は、半導体素子2、および半導体素子3のできるだけ近傍で、かつできるだけ全周を均等にカバーすることが好ましい。スペーサ9は、材料として、セラミック等の絶縁材料を用いることができる。スペーサ9が第1、第2の放熱板5、8によって挟まれる結果となっても、そのスペーサ9によって両放熱板5、8の導通(短絡)を防ぐことが求められるため、スペーサ9(広くスペーサ部材)は、電気的な絶縁性を維持することが求められる。ただし、スペーサ9の全体がすべて絶縁材料で形成されていなくても、例えば肉部のコア材が金属棒(非絶縁材料)で、それが絶縁材料としての例えばセラミックや樹脂で包み込まれて、または外側が被覆されたものでもよいし、セラミック板の少なくとも片側に金属板を貼りつけたものでもよい。
【0023】
半導体装置1は、半導体素子2、半導体素子3と下側放熱板5および電極ブロック6、電極ブロック7とのはんだ接合、信号端子用リード12との結線、上側放熱板8とのはんだ接合がなされ、その後、熱硬化性の樹脂20、例えばエポキシ樹脂でモールドすることにより封止される。
【0024】
次に、図1に示す半導体装置1の製造方法について説明する。下側放熱板5の上にそれぞれはんだ箔を介して半導体素子2と半導体素子3とを載せ、さらに、半導体素子2の上にはんだ箔を介在して電極ブロック6を載せ、かつ半導体素子3の上にはんだ箔を介して電極ブロック7を載せる。加熱装置によって所定の温度ではんだ箔を溶融させ、その後硬化させることにより、半導体素子2、半導体素子3と下側放熱板5および電極ブロック6、電極ブロック7とのはんだ付けを行い、これらがはんだ4で接合される。
【0025】
次に、信号用電極9と半導体素子2の電極とがワイヤボンディングにより結線される。そして、電極ブロック6と電極ブロック7の上にそれぞれはんだ箔を介在して上側放熱板8を載せる。この際に複数のスペーサ9を下側および上側放熱板5、8間に立て、各スペーサ9の両端の嵌合部9bを両放熱板5、8の穴10、11に嵌合して、複数のスペーサ9が両放熱板5、8に挟まれた状態とし、これらのスペーサ9を両放熱板5、8に加えられる型締めの際の圧縮荷重に対する抵抗体として機能させる。上側放熱板8は下側放熱板5と平行に配置する。スペーサ9は、平行に位置を合わせるための治具を兼ねる。電極ブロック6,7と上側放熱板8との間のはんだ箔を加熱、溶融させ、その後硬化させて、電極ブロック6、電極ブロック7と上側放熱板8とがそれぞれはんだ4によってはんだ付け(接合)される。
【0026】
この後、半導体装置1をモールド金型(図示せず)にセットし、熱硬化性樹脂(例えば、エポキシ樹脂)を注入し硬化する。このとき、下側放熱板5の外面(露出した放熱面14側)および上側放熱板8の外面(露出した放熱面15側)から金型で加圧される。全面的に加圧されるが、スペーサ9がその型締め力(圧縮荷重)を受け、電極ブロック6,7への負荷をなくすかまたは減ずることにより、半導体素子2および半導体素子3へはダメージを与えずに、放熱面14および放熱面15への樹脂の回りこみを防ぎ、半導体装置1は樹脂20で封止される。これにより、外部からの機械的および環境ストレスから半導体素子2および半導体素子3が保護される。下側放熱板5の下面と上側放熱板8の上面は、樹脂が回り込まないようにして露出した放熱面14および放熱面15となり、半導体素子2および半導体素子3の使用時の発熱を効率よく放熱できる。このように、全面加圧しても複数のスペーサ9で間隔が保持され(型締め力が受けられ)、半導体素子2、3が損傷することがなく、かつ十分な加圧が可能で放熱面14、15への樹脂の回り込みを防ぐことができ、装置の信頼性を高めることができる。また、このスペーサ9は、半導体素子2、3と両放熱板5、8をはんだ等で接合する際の治具も兼ねることができ有用である。
【0027】
なお、スペーサ9は、円柱状としているが、前述のように角柱状としてもよい。その他、スペーサ9は種々の形態が挙げられる。図4は、図1におけるスペーサ9の他の実施例を示す要部断面図である。この例のスペーサ19は、球状に形成されている。下側放熱板5および上側放熱板8のそれぞれ対応する部位に位置決め用の球面状の凹部21,22が形成され、スペーサ19はそれら凹部に一部が嵌まった状態で両放熱板5,8間で位置決めされ、かつそれら放熱板5、8の間に介在して圧縮荷重(型締め力)を受け止める。このスペーサ19はセラミック等の絶縁材料を材料として形成され、複数設けられる。このように球状等の点状のスペーサ部材でも前述と同様の効果が得られる。
【0028】
さらに、図5は、図1におけるスペーサ9の他の実施例を示す説明図である。この例のスペーサ29は、横長のブロック状、例えば直方体状とし、セラミック等の絶縁材料からなり複数(この実施例では半導体素子2、3の間と各外側に位置するように3個)設けられる。このようにブロック状のスペーサ部材でも、型締めの際に十分な加圧が可能で、半導体素子2、3を損傷することなく、樹脂の回り込みを防止できる。なお、スペーサ19は、横長の棒状タイプのスペーサとも言え、横長棒状とする場合も、角柱状の棒材(軸状部材)あるいは横長の円柱状の棒材(軸状部材)としてもよい。上述のブロック状ないし棒状のスペーサを用いる場合でも、位置決めのための、それらスペーサが嵌まる凹部を両放熱板5、8の対向内面に形成することが望ましい。ただし、そのような凹部を形成することなく、スペーサと放熱板5、8とを接着剤等で仮止めしてもよいし、スペーサを一時的に保持する治具を用いることにより、そうした仮止めを省略することができる。
【0029】
また、図6は、図1におけるスペーサ部材のさらに変形例を示す要部断面図である。この例でのスペーサ部材27は、スペーサ部39と導体部26とを含んで構成される。なお、スペーサ部39のみをスペーサ部材と把握する場合は、スペーサ部39と導体部26との全体を、双方の放熱板5、8の間隔を保持する(圧縮荷重を受けとめる)間隔保持部材とみることができる。なお、ここでは狭義のスペーサ部39とこれと協働してスペーサ機能を果たす導体部26とを併せて広義のスペーサ部材(分割タイプのもの)として説明する。つまりスペーサ部材は一体の必要はなく、複数が積み上げられる等、組立てられたものでもよい。スペーサ部39は、セラミック等の絶縁材料を材料として、下側放熱面5および導体部26とにはんだ等接合材料で接合される。導体部26は、銅等の熱伝導性のよい材料からなり、上側放熱板8にはんだ等接合材料で接合される。このように、絶縁材料からなるスペーサ部39と導体部26とを含む複合的なスペーサ部材27が複数設けられ、型締め時の圧縮力を受け止める。この複合的なスペーサ部材27は全体としては絶縁性を有する。なお、スペーサ部39を含んで間隔保持部材(ユニット)27が複数組設けられるとも言える。
【0030】
さらに、図7は、図6の変形例を示す要部断面図であり、中間にスペーサ部49を設け、その上下に導体部36を形成している。それぞれ材料は、図5に示す実施例と同じである。このようにスペーサ部49とこれを両側から挟む導体部36との複合的なスペーサ部材46としてもよく、この場合でも全体として放熱板5、8間は絶縁されかつ型締めの際の圧縮力に対する抵抗となる。
【0031】
また、図8は、図6の変形例を示す要部断面図である。上側放熱板8の下面側に突出して導体部56がプレス加工で一体形成され、この導体部56と下側放熱板5との間にスペーサ部69が設けられる。上側放熱板8をプレス加工することで導体部56を比較的簡単に作ることが可能であり、このように複合的スペーサ部材48を形成しても上述と同様の効果が得られる。ここで、図6〜図8において、導体部を各放熱板5、8の一部とみればスペーサ部39、49、69は、単純な単体のスペーサ部材とみることができる。
【0032】
さらに、図9は、図1におけるスペーサ9の他の実施例を示す断面図である。成形金型で樹脂モールドする前に半導体素子2および半導体素子3の周りを一次樹脂、例えば、エポキシ樹脂によって、ポッティング法(注型法)等で一次的に封止しスペーサ部材79を形成している。このように樹脂で行うことも可能である。
【0033】
また、図10は、本発明の他の実施例を示す縦断面図である。上側放熱板8の放熱面15の外周部の板面から突出する、つぶししろ(環状突起ともいう)18を設けている。図11は、上面からみた説明図である。環状突起18は、放熱板8の外周に沿って環状に、この例では長方形状に連なって突出形成される。この環状突起18は、成形型での加圧時に塑性変形してつぶされた形となり、放熱面15上に樹脂の遮蔽壁となって、樹脂の回りこみを防止する。上側放熱板8をこのように形成することにより、つぶししろ18が壁となり樹脂の回り込み防止効果をさらに増すことができる。ここで、放熱板8の外周部板面に沿って環状に樹脂遮蔽壁を予め突出して形成しておき、型締め時に金型がその樹脂遮蔽壁(つぶされることを予定しない剛体壁)に当接して樹脂の回り込みを防ぐことが考えられる。ただし、型締め時の加工で環状突起が塑性変形(つぶされる)することにより金型と環状突起との密着性が単に当接する場合と比べて著しく高まるので、最初からつぶされることを予定した環状突起の方が好ましいと言える。この環状突起18を形成するには放熱板8をプレス加工等で外周部に沿って環状に打刻し、その打刻(刻印加工)により移動、隆起した肉部を環状突起(つぶししろ)とする等適宜の手法を採用できる。
【0034】
なお、下側放熱板5に押さえ部19を設け、成形時に金型で下側放熱板5を加圧することができるようにしている。これは型締めのとき下側放熱板5を十分に加圧することを可能にする意義がある。この下側放熱板5の放熱面14側に同じようにつぶししろ(環状突起18)を設けてもよい。同様に加圧時に塑性変形してつぶされ、樹脂の遮蔽壁となり放熱面14への樹脂の回りこみを防止できる。
【図面の簡単な説明】
【図1】本発明の半導体装置の一例を示す縦断面図。
【図2】図1の側面図。
【図3】図1におけるスペーサの配置を示す説明図。
【図4】本発明に係るスペーサの他の実施例を示す要部断面図。
【図5】本発明に係るスペーサの他の実施例を示す説明図。
【図6】本発明に係るスペーサの変形例を示す要部断面図。
【図7】本発明に係るスペーサの他の変形例を示す要部断面図。
【図8】本発明に係るスペーサの変形例を示す要部断面図。
【図9】本発明に係るスペーサの他の実施例を示す断面図。
【図10】本発明の他の実施例を示す縦断面図。
【図11】図10に示したつぶししろ(環状突起)の説明図。
【符号の説明】
1 半導体装置
2 半導体素子
3 半導体素子
4 はんだ
5 下側放熱板
6 電極ブロック
7 電極ブロック
8 上側放熱板
9,19,27,29,46,48,79 スペーサ(スペーサ部材)
14 放熱面(下側放熱板)
15 放熱面(上側放熱板)
18 つぶししろ(環状突起)
20 樹脂
26,36,56 導体部
39,49,69 スペーサ部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device in which a heat sink is mounted on both sides of a semiconductor element.
[0002]
[Prior art]
In recent years, an inverter power module having a built-in semiconductor chip (semiconductor element) suitable for high withstand voltage and large current has been widely used because the size of the device can be reduced. As this semiconductor element, for example, there is an IGBT (insulated gate bipolar transistor) or the like. These semiconductor elements are required to efficiently dissipate heat generated during use, and various proposals have been made to improve the heat dissipation of the semiconductor elements. Here, in a state where the first and second heat radiating plates are arranged so as to sandwich the semiconductor element, a step of sealing them by resin molding is generally performed. The outer surface is an exposed surface where no resin is attached as a heat radiating surface, and it is required not to lower the heat radiating efficiency. The second heat radiating plate is clamped in the compression direction, but if the clamping force is insufficient, the resin tends to wrap around and adhere to the heat radiating surfaces of the first and second heat radiating plates (a kind of burr). It is necessary to increase power. However, if the clamping force is increased, there is a risk that a semiconductor element in the middle may be damaged, so there is a limit to increase of the clamping force.
[0003]
[Patent Document 1]
JP 2001-267469 A [Patent Document 2]
JP 2002-324816 A [0004]
[Problems to be solved by the invention]
As a prior art, Patent Document 1 discloses that a heat dissipation plate is provided on both surfaces of a semiconductor element, and only the outer periphery of the upper heat dissipation plate is pressed and deformed when resin molding is performed with a molding die. There has been a proposal to suppress the resin and prevent the resin from wrapping around the exposed surface of the heat sink. However, in the technique of the publication, in the case of a semiconductor device in which a plurality of semiconductor elements are mounted, the heat dissipation plate in the portion between the elements may be swollen by the resin pressure during molding, which is not good. It can be said that it is inherently desirable to pressurize the entire surface of the heat sink.
[0005]
Patent Document 2 proposes resin molding with an insulating sheet attached to the outer surface of a heat sink. However, although this publication technique is effective as a means for preventing the resin from wrapping around, this sheet also serves as a heat-dissipating sheet at the time of use. It is possible.
[0006]
The present invention has been made against the background described above, and enables sufficient pressurization to prevent the resin from wrapping around the heat radiation surface during molding without damaging the semiconductor element, and also has reliability. It is an object to provide a semiconductor device that can be enhanced.
[0007]
[Means for Solving the Problems and Effects of the Invention]
In order to solve the above problems, a semiconductor device of the present invention is provided with a first heat sink on one side of a semiconductor element, and a second heat sink on the other side of the semiconductor element substantially parallel to the first heat sink. A semiconductor device that is housed in a mold in a provided state and is sealed with a resin so that a side opposite to the side facing the semiconductor element of the first and second heat radiating plates is exposed as a heat radiating surface. In the vicinity of the semiconductor element between the first heat radiating plate and the second heat radiating plate, the distance between the first and second heat radiating plates is maintained at the position outside the semiconductor element to maintain electrical insulation between the two heat radiating plates. In this state, a plurality of spacer members are provided to maintain the distance between the first and second heat radiating plates so as to be sandwiched between the first and second heat radiating plates, and the spacer members are insulated from the conductor portion. characterized in that it is formed from a spacer unit of a material To.
[0008]
With the above configuration, the heat dissipation surface to be exposed of the heat dissipation plate can be fully pressurized during molding, and the resin can be prevented from wrapping around the heat dissipation surface without damaging the semiconductor element.
[0009]
Specifically, the spacer member is a pressure receiving structure portion that resists a compressive load acting in the approach direction of the first and second heat radiating plates, one end is the first heat radiating plate, and the other end is the second. It is possible to prevent the semiconductor element from being damaged by receiving or holding the mold clamping force and maintaining the distance between the two heat sinks.
[0010]
Further, according to the present invention, a plurality of semiconductor elements are provided on the same plane of the first heat radiating plate, and the side opposite to the side facing the first heat radiating plate of these semiconductor elements is substantially parallel to the first heat radiating plate. The second heat radiating plate is provided in the mold and is sealed with a resin so that the opposite side of the first and second heat radiating plates facing the semiconductor element is exposed as a heat radiating surface. A semiconductor device comprising:
Between the first and second heat radiating plates, in proximity to each of the plurality of semiconductor elements and at the outer position, the distance between the first and second heat radiating plates is maintained while maintaining electrical insulation between the two heat radiating plates. A plurality of spacer members are provided to maintain the distance between the first and second heat radiating plates so as to be sandwiched between the first and second heat radiating plates , and the spacer members are made of a conductor portion and an insulating material. And a spacer portion .
[0011]
With the above configuration, in the case of a semiconductor device mounted with a plurality of semiconductor elements, the entire heat radiation surface can be pressurized, and the heat radiation plate does not swell due to the resin pressure at the time of molding between the elements. The parallelism of the plate can be maintained and the wraparound of the resin to the heat radiating surface can be prevented.
[0012]
Specifically, the spacer member is a spacer member made of an electrically insulating material and having any one of a columnar shape, a prismatic shape, a spherical shape, and a rectangular parallelepiped shape, and is interposed between the first and second radiator plates. A plurality of spacers are provided so as to be sandwiched between the two heat sinks. Spaces are maintained by a plurality of spacers, the semiconductor element is not damaged, and sufficient pressure can be applied to prevent the resin from wrapping around the heat dissipation surface. Can be prevented and reliability can be increased. This spacer member is also useful because it can also serve as a jig for joining the semiconductor element and both heat sinks with solder or the like.
[0013]
Specifically, the spacer member is formed to include a conductor portion and a spacer portion made of an insulating material, and a plurality of spacer members are provided so as to be sandwiched between the first and second radiator plates. As a feature, even when the conductor portion and the spacer portion are configured as described above, sufficient pressurization is possible, and the wraparound of the resin can be prevented without damaging the semiconductor element. Various configurations can be selected for the spacer member.
[0014]
More specifically, the conductor portion is formed as a protruding portion integrally formed on at least one of the first and second heat radiating plates on the side facing the other, and between the protruding portion and the other heat radiating plate. A spacer portion made of an insulating material is provided, and the conductor portion can be made relatively easily by pressing the heat sink.
[0015]
Specifically, the spacer member can be made of resin in this way by using a primary resin that primarily seals the periphery of the semiconductor element before resin molding with a molding die. .
[0016]
Furthermore, the present invention is characterized in that a protrusion that deforms when pressed by a molding die is provided along the outer peripheral portion of the heat radiating surface of at least one of the first and second heat radiating plates. The protrusion of the heat radiating surface is crushed by pressurization during molding and functions as a wall that prevents the resin from entering, thereby further increasing the effect of preventing the resin from entering.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to examples shown in the drawings. FIG. 1 is a longitudinal sectional view of a semiconductor device according to an embodiment of the present invention. The semiconductor device 1 includes a rectangular (or rectangular) first semiconductor element (for example, an IGBT (Insulated Gate Bipolar Transistor)) 2 and an appropriate interval from the first semiconductor element 2 on the same plane. As a bonding material, a second semiconductor element (for example, FWD (free wheel diode) 3) different from the first semiconductor element 2 provided side by side, and a side surface of the first and second semiconductor elements 2 and 3 are used. A lower heat sink 5 as a first heat sink joined by solder 4 and a rectangular shape smaller than the semiconductor element 2 are formed on the other side surfaces of the first and second semiconductor elements 2 and 3. The first electrode block 6 joined by the solder, the rectangular shape smaller than the semiconductor element 3, the second electrode block 7 joined by the solder 4, and the semiconductors of the first and second electrode blocks 6, 7. element And on the opposite side to the joint surface of the semiconductor element 3, and comprises an upper heat dissipation plate 8 as a second heat radiating plate which is joined by solder 4.
[0018]
The lower heat radiating plate 5 as the first heat radiating plate, the upper heat radiating plate 8 as the second heat radiating plate, the electrode block 6, and the electrode block 7 are made of a material having good thermal conductivity such as copper or aluminum. . The lower radiator plate 5 and the upper radiator plate 8 are formed in a square or rectangular plate shape.
[0019]
A plurality of cylindrical spacers (spacer members) 9 are provided between the lower heat radiating plate 5 and the upper heat radiating plate 8 so as to be close to each of the semiconductor element 2 and the semiconductor element 3 and located outside (in a portion not interfering). (In this embodiment, the semiconductor elements 2 and 6 are arranged between and outside the semiconductor element 2 (see also FIG. 3), and six are located at the four corners of each element). The lower radiator plate 5 and the upper radiator plate 8 are provided with a plurality of holes (recesses) 10 and 11 for positioning and fitting the spacer 9 respectively.
[0020]
The spacer 9 in this example includes a columnar (or may be a prismatic) main body 9a and engaging portions 9b that protrude coaxially from both ends of the main body 9a and have a small diameter, from the boundary between the main body 9a and each fitting portion 9b. A shoulder surface 9c perpendicular to the axial direction is formed, and fitting portions 9b at both ends of such a pin-shaped spacer 9 are fitted into holes 10 and 11 (pin holes) of the lower and upper radiator plates 5 and 8, respectively. The spacer 9 is positioned with the shoulder surface 9c in contact with or very close to the inner facing surfaces of the heat radiating plates 5 and 8 and receives the compressive load between the heat radiating plates 5 and 8. In other words, it can be said that these spacers 9 function as a kind of thrust bar.
[0021]
FIG. 2 is a side view of FIG. An electrode (not shown) of the semiconductor element 2 is connected to an external signal terminal lead 12 by a bonding wire 13 such as gold or aluminum. The electrode block 6 serves to maintain a distance between the semiconductor element 2 and the upper heat radiating plate 8, and the form of the bonding wire 13 is maintained. Except for FIG. 2, the signal terminal lead 12 and the bonding wire 13 are omitted.
[0022]
FIG. 3 is an explanatory view showing the arrangement of the spacers 9 in FIG. The semiconductor element 2 and the semiconductor element 3 are disposed so as to be positioned at the four corners of each element. The spacer 9 preferably covers the semiconductor element 2 and the semiconductor element 3 as close as possible and covers the entire circumference as evenly as possible. The spacer 9 can be made of an insulating material such as ceramic. Even if the spacer 9 is sandwiched between the first and second heat sinks 5 and 8, the spacer 9 is required to prevent conduction (short circuit) between the heat sinks 5 and 8. The spacer member is required to maintain electrical insulation. However, even if the spacer 9 is not entirely formed of an insulating material, for example, the core material of the flesh is a metal rod (non-insulating material), and it is wrapped with an insulating material such as ceramic or resin, or The outside may be coated, or a metal plate may be attached to at least one side of the ceramic plate.
[0023]
In the semiconductor device 1, the semiconductor element 2, the semiconductor element 3 and the lower heat sink 5, the electrode block 6, the electrode block 7 are soldered, the signal terminal leads 12 are connected, and the upper heat sink 8 is soldered. Then, sealing is performed by molding with a thermosetting resin 20, for example, an epoxy resin.
[0024]
Next, a method for manufacturing the semiconductor device 1 shown in FIG. 1 will be described. The semiconductor element 2 and the semiconductor element 3 are placed on the lower heat radiation plate 5 via the solder foil, and the electrode block 6 is placed on the semiconductor element 2 with the solder foil interposed therebetween. The electrode block 7 is placed on the solder foil. The solder foil is melted at a predetermined temperature by a heating device and then cured, whereby the semiconductor element 2, the semiconductor element 3 and the lower radiator plate 5, the electrode block 6, and the electrode block 7 are soldered. 4 is joined.
[0025]
Next, the signal electrode 9 and the electrode of the semiconductor element 2 are connected by wire bonding. And the upper side heat sink 8 is mounted on the electrode block 6 and the electrode block 7, respectively via the solder foil. At this time, a plurality of spacers 9 are erected between the lower and upper radiator plates 5 and 8, and fitting portions 9 b at both ends of each spacer 9 are fitted into the holes 10 and 11 of both radiator plates 5 and 8. The spacers 9 are sandwiched between the heat radiating plates 5 and 8, and these spacers 9 function as a resistance against the compressive load applied to the heat radiating plates 5 and 8 during clamping. The upper radiator plate 8 is arranged in parallel with the lower radiator plate 5. The spacer 9 also serves as a jig for aligning the positions in parallel. The solder foil between the electrode blocks 6, 7 and the upper radiator plate 8 is heated, melted and then cured, and the electrode block 6, the electrode block 7 and the upper radiator plate 8 are soldered (joined) with the solder 4. Is done.
[0026]
Thereafter, the semiconductor device 1 is set in a mold (not shown), and a thermosetting resin (for example, epoxy resin) is injected and cured. At this time, a pressure is applied from the outer surface of the lower heat radiating plate 5 (exposed heat radiating surface 14 side) and from the outer surface of the upper heat radiating plate 8 (exposed heat radiating surface 15 side). Although pressure is applied to the entire surface, the spacer 9 receives the clamping force (compression load) and eliminates or reduces the load on the electrode blocks 6 and 7, thereby damaging the semiconductor element 2 and the semiconductor element 3. Without being applied, the sneaking of the resin into the heat radiating surface 14 and the heat radiating surface 15 is prevented, and the semiconductor device 1 is sealed with the resin 20. Thereby, the semiconductor element 2 and the semiconductor element 3 are protected from external mechanical and environmental stresses. The lower surface of the lower heat radiating plate 5 and the upper surface of the upper heat radiating plate 8 become a heat radiating surface 14 and a heat radiating surface 15 which are exposed so that the resin does not go around, and efficiently radiate heat generated when the semiconductor element 2 and the semiconductor element 3 are used. it can. Thus, even if the entire surface is pressed, the intervals are held by the plurality of spacers 9 (the clamping force is received), the semiconductor elements 2 and 3 are not damaged, and sufficient pressure can be applied, so that the heat radiation surface 14 , 15 can be prevented from wrapping around the resin, and the reliability of the apparatus can be improved. In addition, the spacer 9 is useful because it can also serve as a jig for joining the semiconductor elements 2 and 3 and the heat radiating plates 5 and 8 with solder or the like.
[0027]
The spacer 9 has a cylindrical shape, but may have a prismatic shape as described above. In addition, the spacer 9 can take various forms. FIG. 4 is a cross-sectional view of an essential part showing another embodiment of the spacer 9 in FIG. The spacer 19 in this example is formed in a spherical shape. Spherical recesses 21 and 22 for positioning are formed in the corresponding portions of the lower heat sink 5 and the upper heat sink 8, respectively, and the spacer 19 has both the heat sinks 5 and 8 in a state in which a part of the spacer 19 is fitted. And a compression load (clamping force) is received between the heat radiating plates 5 and 8. A plurality of the spacers 19 are formed by using an insulating material such as ceramic. In this way, the same effect as described above can be obtained with a spherical spacer or the like.
[0028]
FIG. 5 is an explanatory view showing another embodiment of the spacer 9 in FIG. The spacer 29 in this example has a horizontally long block shape, for example, a rectangular parallelepiped shape, and is made of a plurality of insulating materials such as ceramics (in this embodiment, three so as to be positioned between the semiconductor elements 2 and 3 and on the outside). . Thus, even with a block-shaped spacer member, sufficient pressure can be applied during mold clamping, and the resin can be prevented from wrapping around without damaging the semiconductor elements 2 and 3. The spacer 19 can also be said to be a horizontally long rod-shaped spacer, and may be a horizontally long rod or a prismatic rod (axial member) or a horizontally long cylindrical rod (axial member). Even when the above-described block-shaped or bar-shaped spacers are used, it is desirable to form recesses into which the spacers are fitted on the opposing inner surfaces of the heat radiating plates 5, 8 for positioning. However, the spacer and the heat sinks 5 and 8 may be temporarily fixed with an adhesive or the like without forming such a concave portion, or such a temporary fixing by using a jig for temporarily holding the spacer. Can be omitted.
[0029]
FIG. 6 is a cross-sectional view of the main part showing a further modification of the spacer member in FIG. The spacer member 27 in this example includes a spacer portion 39 and a conductor portion 26. When only the spacer portion 39 is grasped as a spacer member, the entire spacer portion 39 and the conductor portion 26 are regarded as a distance holding member that holds the distance between the heat radiation plates 5 and 8 (receives a compressive load). be able to. Here, the spacer portion 39 in the narrow sense and the conductor portion 26 that performs the spacer function in cooperation with the spacer portion 39 will be described together as a spacer member in a broad sense (divided type). That is, the spacer members do not need to be integrated, and may be assembled such that a plurality of spacer members are stacked. The spacer portion 39 is joined to the lower heat radiating surface 5 and the conductor portion 26 with a joining material such as solder, using an insulating material such as ceramic. The conductor portion 26 is made of a material having good thermal conductivity such as copper, and is joined to the upper radiator plate 8 with a joining material such as solder. As described above, a plurality of composite spacer members 27 including the spacer portion 39 made of an insulating material and the conductor portion 26 are provided to receive the compressive force at the time of clamping. The composite spacer member 27 has an insulating property as a whole. In addition, it can be said that a plurality of sets of interval holding members (units) 27 including the spacer portion 39 are provided.
[0030]
Further, FIG. 7 is a cross-sectional view of an essential part showing a modification of FIG. 6, in which a spacer part 49 is provided in the middle, and a conductor part 36 is formed above and below. The materials are the same as those in the embodiment shown in FIG. In this way, a composite spacer member 46 of the spacer portion 49 and the conductor portion 36 sandwiching the spacer portion 49 from both sides may be used. Even in this case, the heat sinks 5 and 8 are insulated as a whole and against the compressive force at the time of clamping. It becomes resistance.
[0031]
FIG. 8 is a cross-sectional view of an essential part showing a modification of FIG. A conductor portion 56 is integrally formed by pressing so as to protrude to the lower surface side of the upper radiator plate 8, and a spacer portion 69 is provided between the conductor portion 56 and the lower radiator plate 5. The conductor portion 56 can be made relatively easily by pressing the upper heat radiating plate 8. Even if the composite spacer member 48 is formed in this way, the same effect as described above can be obtained. Here, in FIGS. 6 to 8, if the conductor portion is regarded as a part of each of the heat sinks 5, 8, the spacer portions 39, 49, 69 can be regarded as simple single spacer members.
[0032]
FIG. 9 is a sectional view showing another embodiment of the spacer 9 in FIG. Before resin molding with a molding die, the periphery of the semiconductor element 2 and the semiconductor element 3 is primarily sealed with a primary resin, for example, epoxy resin by a potting method (casting method) or the like to form a spacer member 79. Yes. Thus, it is also possible to carry out with resin.
[0033]
FIG. 10 is a longitudinal sectional view showing another embodiment of the present invention. A crushing margin (also referred to as an annular projection) 18 that protrudes from the outer peripheral plate surface of the heat radiating surface 15 of the upper heat radiating plate 8 is provided. FIG. 11 is an explanatory diagram viewed from above. The annular protrusion 18 is formed to project along the outer periphery of the heat radiating plate 8 in an annular manner, in this example, in a rectangular shape. The annular protrusion 18 is deformed by being plastically deformed when pressed by the mold, and becomes a resin shielding wall on the heat radiating surface 15 to prevent the resin from wrapping around. By forming the upper heat radiating plate 8 in this way, the crushing margin 18 becomes a wall, and the effect of preventing the resin from flowing in can be further increased. Here, a resin shielding wall is projected in advance in a ring shape along the outer peripheral plate surface of the heat radiating plate 8, and the mold contacts the resin shielding wall (a rigid wall that is not expected to be crushed) during mold clamping. It is conceivable to prevent the resin from wrapping around. However, since the annular protrusion is plastically deformed (crushed) during the process of clamping, the adhesion between the mold and the annular protrusion is significantly increased compared to the case where the mold and the annular protrusion are simply in contact with each other. It can be said that the protrusion is preferable. In order to form the annular protrusion 18, the heat radiating plate 8 is formed into an annular shape along the outer peripheral portion by pressing or the like, and the meat portion moved and raised by the stamping (engraved processing) is formed as an annular protrusion (smashing). Appropriate techniques can be employed.
[0034]
In addition, the holding | suppressing part 19 is provided in the lower heat sink 5, and the lower heat sink 5 can be pressurized with a metal mold | die at the time of shaping | molding. This has the significance of enabling the lower heat radiating plate 5 to be sufficiently pressurized during mold clamping. A crushing margin (annular protrusion 18) may be provided in the same manner on the heat radiating surface 14 side of the lower heat radiating plate 5. Similarly, plastic deformation during pressing can be crushed to become a resin shielding wall and prevent the resin from wrapping around the heat radiation surface 14.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a semiconductor device of the present invention.
FIG. 2 is a side view of FIG.
3 is an explanatory view showing the arrangement of spacers in FIG. 1. FIG.
FIG. 4 is a cross-sectional view of an essential part showing another embodiment of the spacer according to the present invention.
FIG. 5 is an explanatory view showing another embodiment of the spacer according to the present invention.
FIG. 6 is a cross-sectional view of an essential part showing a modification of the spacer according to the present invention.
FIG. 7 is a cross-sectional view of an essential part showing another modification of the spacer according to the present invention.
FIG. 8 is a cross-sectional view of an essential part showing a modification of the spacer according to the present invention.
FIG. 9 is a cross-sectional view showing another embodiment of the spacer according to the present invention.
FIG. 10 is a longitudinal sectional view showing another embodiment of the present invention.
11 is an explanatory diagram of a crushing margin (annular protrusion) shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 Semiconductor element 3 Semiconductor element 4 Solder 5 Lower heat sink 6 Electrode block 7 Electrode block 8 Upper heat sink 9, 19, 27, 29, 46, 48, 79 Spacer (spacer member)
14 Heat dissipation surface (lower heat sink)
15 Heat dissipation surface (upper heat sink)
18 Squeeze (annular protrusion)
20 Resin 26, 36, 56 Conductor 39, 49, 69 Spacer

Claims (9)

半導体素子の一側面に第1の放熱板が設けられ、半導体素子の他側面に前記第1の放熱板と略平行に第2の放熱板が設けられた状態で成形型に収容され、前記第1および第2の放熱板のそれぞれ前記半導体素子と面した側と反対側を放熱面として露出するように樹脂で封止された半導体装置であって、前記第1の放熱板と第2の放熱板との間に、前記半導体素子に近接するとともにその外側の位置において、第1および第2の放熱板の間隔を両放熱板間の電気的絶縁を維持した状態で前記第1および第2の放熱板間に両放熱板によって挟まれるように第1および第2の放熱板の間隔を維持するスペーサ部材が複数設けられ、そのスペーサ部材は、導体部と絶縁材料からなるスペーサ部とから形成されることを特徴とする半導体装置。A first heat radiating plate is provided on one side of the semiconductor element, and a second heat radiating plate is provided on the other side of the semiconductor element substantially in parallel with the first heat radiating plate. A semiconductor device sealed with a resin so that a side opposite to the side facing the semiconductor element of each of the first and second heat radiating plates is exposed as a heat radiating surface, the first heat radiating plate and the second heat radiating plate The first and second heat dissipating plates are spaced apart from each other while maintaining electrical insulation between the heat dissipating plates at a position close to the semiconductor element and outside the plate . A plurality of spacer members are provided to maintain the distance between the first and second heat radiating plates so as to be sandwiched between the heat radiating plates between the heat radiating plates, and the spacer members are formed of a conductor portion and a spacer portion made of an insulating material. wherein a that. 第1の放熱板の同一平面上に複数の半導体素子が設けられ、これら半導体素子の前記第1の放熱板に面した側と反対側に、前記第1の放熱板と略平行に第2の放熱板が設けられた状態で成形型に収容され、前記第1および第2の放熱板のそれぞれ前記半導体素子と面した側と反対側を放熱面として露出するように樹脂で封止される半導体装置であって、前記第1および第2の放熱板の間に、前記複数の半導体素子のそれぞれに近接するとともにその外側の位置において、第1および第2の放熱板の間隔を両放熱板間の電気的絶縁を維持した状態で前記第1および第2の放熱板間に両放熱板によって挟まれるように第1および第2の放熱板の間隔を維持するスペーサ部材が複数設けられ、そのスペーサ部材は、導体部と絶縁材料からなるスペーサ部とから形成されることを特徴とする半導体装置。 A plurality of semiconductor elements are provided on the same plane of the first heat radiating plate, and a second side substantially parallel to the first heat radiating plate is provided on the opposite side of the semiconductor element facing the first heat radiating plate. A semiconductor that is housed in a mold in a state in which a heat radiating plate is provided and is sealed with a resin so that the side opposite to the side facing the semiconductor element of each of the first and second heat radiating plates is exposed as a heat radiating surface. In the apparatus, between the first and second heat sinks, the distance between the first and second heat sinks is set between the first and second heat sinks at a position adjacent to each of the plurality of semiconductor elements. A plurality of spacer members are provided to maintain the distance between the first and second heat radiating plates so as to be sandwiched between the first and second heat radiating plates in a state in which the electrical insulation is maintained. Space consisting of conductor and insulating material Wherein a is formed from the parts. 半導体素子の一側面に第1の放熱板が設けられ、半導体素子の他側面に前記第1の放熱板と略平行に第2の放熱板が設けられた状態で成形型に収容され、前記第1および第2の放熱板のそれぞれ前記半導体素子と面した側と反対側を放熱面として露出するように樹脂で封止された半導体装置であって、前記第1の放熱板と第2の放熱板との間に、前記半導体素子に近接するとともにその外側の位置において、第1および第2の放熱板の間隔を両放熱板間の電気的絶縁を維持した状態で維持するスペーサ部材が設けられ、
前記スペーサ部材は、成形金型で樹脂モールドする前に、前記半導体素子の周りを一次的に封止する一次樹脂であることを特徴とする半導体装置。
A first heat radiating plate is provided on one side of the semiconductor element, and a second heat radiating plate is provided on the other side of the semiconductor element substantially in parallel with the first heat radiating plate. A semiconductor device sealed with a resin so that a side opposite to the side facing the semiconductor element of each of the first and second heat radiating plates is exposed as a heat radiating surface, the first heat radiating plate and the second heat radiating plate A spacer member is provided between the first and second heat sinks in a state of maintaining electrical insulation between the two heat sinks at a position adjacent to the semiconductor element and outside the board. ,
The said spacer member is a primary resin which primarily seals the circumference | surroundings of the said semiconductor element, before resin-molding with a shaping die .
第1の放熱板の同一平面上に複数の半導体素子が設けられ、これら半導体素子の前記第1の放熱板に面した側と反対側に、前記第1の放熱板と略平行に第2の放熱板が設けられた状態で成形型に収容され、前記第1および第2の放熱板のそれぞれ前記半導体素子と面した側と反対側を放熱面として露出するように樹脂で封止される半導体装置であって、前記第1および第2の放熱板の間に、前記複数の半導体素子のそれぞれに近接するとともにその外側の位置において、第1および第2の放熱板の間隔を両放熱板間の電気的絶縁を維持した状態で維持するスペーサ部材が設けられ、
前記スペーサ部材は、成形金型で樹脂モールドする前に、前記半導体素子の周りを一次的に封止する一次樹脂であることを特徴とする半導体装置。
A plurality of semiconductor elements are provided on the same plane of the first heat radiating plate, and a second side substantially parallel to the first heat radiating plate is provided on the opposite side of the semiconductor element facing the first heat radiating plate. A semiconductor that is housed in a mold in a state in which a heat radiating plate is provided and is sealed with a resin so that the side opposite to the side facing the semiconductor element of each of the first and second heat radiating plates is exposed as a heat radiating surface. In the apparatus, between the first and second heat sinks, the distance between the first and second heat sinks is set between the first and second heat sinks at a position adjacent to each of the plurality of semiconductor elements. A spacer member is provided to maintain the electrical insulation,
The said spacer member is a primary resin which primarily seals the circumference | surroundings of the said semiconductor element, before resin-molding with a shaping die .
半導体素子の一側面に第1の放熱板が設けられ、半導体素子の他側面に前記第1の放熱板と略平行に第2の放熱板が設けられた状態で成形型に収容され、前記第1および第2の放熱板のそれぞれ前記半導体素子と面した側と反対側を放熱面として露出するように樹脂で封止された半導体装置であって、前記第1および第2の放熱板の少なくとも1つの放熱板の放熱面の外周部に、成形型で加圧時に変形する突起部をその外周部に沿って設け、
前記第1および第2の放熱板の間に、前記半導体素子に近接するとともにその外側の位置において、第1および第2の放熱板の間隔を両放熱板間の電気的絶縁を維持した状態で維持するスペーサ部材が設けられたことを特徴とする半導体装置。
A first heat radiating plate is provided on one side of the semiconductor element, and a second heat radiating plate is provided on the other side of the semiconductor element substantially in parallel with the first heat radiating plate. A semiconductor device sealed with a resin so that a side opposite to the side facing the semiconductor element of each of the first and second heat dissipation plates is exposed as a heat dissipation surface, wherein at least one of the first and second heat dissipation plates Protruding portions that deform when pressed with a molding die are provided along the outer peripheral portion of the heat radiating surface of one heat radiating plate,
Between the first and second heat radiating plates, the distance between the first and second heat radiating plates is maintained while maintaining electrical insulation between the two heat radiating plates at a position close to the semiconductor element and outside thereof. A semiconductor device comprising a spacer member .
第1の放熱板の同一平面上に複数の半導体素子が設けられ、これら半導体素子の前記第1の放熱板に面した側と反対側に、前記第1の放熱板と略平行に第2の放熱板が設けられた状態で成形型に収容され、前記第1および第2の放熱板のそれぞれ前 記半導体素子と面した側と反対側を放熱面として露出するように樹脂で封止される半導体装置であって、前記第1および第2の放熱板の少なくとも1つの放熱板の放熱面の外周部に、成形型で加圧時に変形する突起部をその外周部に沿って設け、
前記第1および第2の放熱板の間に、前記複数の半導体素子のそれぞれに近接するとともにその外側の位置において、第1および第2の放熱板の間隔を両放熱板間の電気的絶縁を維持した状態で維持するスペーサ部材が設けられたことを特徴とする半導体装置。
A plurality of semiconductor elements are provided on the same plane of the first heat radiating plate, and a second side substantially parallel to the first heat radiating plate is provided on the opposite side of the semiconductor element facing the first heat radiating plate. housed in the mold in a state in which the heat radiating plate is provided, are sealed with a resin so as to expose the opposite side to the side facing the front Symbol semiconductor elements each of said first and second heat radiating plate as a heat radiation surface In the semiconductor device, the outer peripheral portion of the heat radiating surface of at least one heat radiating plate of the first and second heat radiating plates is provided with a protrusion along the outer peripheral portion that is deformed at the time of pressurization with a mold.
Between the first and second heat radiating plates, close to each of the plurality of semiconductor elements and at the outer position, the distance between the first and second heat radiating plates is maintained to maintain electrical insulation between the two heat radiating plates. A semiconductor device , characterized in that a spacer member for maintaining the state is provided .
前記スペーサ部材は、第1および第2の放熱板の接近方向に作用する圧縮荷重に対抗する受圧構造部とされ、一端部が第1の放熱板に、他端部が第2の放熱板に当接または係合している請求項1または3または5に記載の半導体装置。 The spacer member is a pressure receiving structure that resists a compressive load acting in the approaching direction of the first and second heat sinks, one end being the first heat sink and the other end being the second heat sink. The semiconductor device according to claim 1, 3 or 5 , which is in contact with or engaged with the semiconductor device. 前記スペーサ部材は、電気的な絶縁材料からなり、円柱状と角柱状と球状と直方体状とのうちのいずれかをなすスペーサ部材であり、前記第1および第2の放熱板間に両放熱板によって挟まれるように複数設けられることを特徴とする請求項1ないし7のいずれか1項に記載の半導体装置。 The spacer member is a spacer member made of an electrically insulating material and having any one of a columnar shape, a prismatic shape, a spherical shape, and a rectangular parallelepiped shape, and both heat radiating plates are disposed between the first and second heat radiating plates. The semiconductor device according to claim 1 , wherein a plurality of the semiconductor devices are provided so as to be sandwiched between the semiconductor devices. 前記導体部は、前記第1および前記第2の放熱板の少なくとも一方に、他方と面する側に一体形成した突出部として形成され、この突出部と前記他方の放熱板との間に絶縁材料からなる前記スペーサ部が設けられることを特徴とする請求項1または2に記載の半導体装置。The conductor is formed as a protrusion integrally formed on at least one of the first and second heat dissipation plates on the side facing the other, and an insulating material is provided between the protrusion and the other heat dissipation plate. The semiconductor device according to claim 1, wherein the spacer portion is provided.
JP2003094106A 2003-03-31 2003-03-31 Semiconductor device Expired - Fee Related JP4022758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094106A JP4022758B2 (en) 2003-03-31 2003-03-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094106A JP4022758B2 (en) 2003-03-31 2003-03-31 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2004303900A JP2004303900A (en) 2004-10-28
JP4022758B2 true JP4022758B2 (en) 2007-12-19

Family

ID=33406745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094106A Expired - Fee Related JP4022758B2 (en) 2003-03-31 2003-03-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4022758B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136332A (en) * 2003-10-31 2005-05-26 Toyota Motor Corp Semiconductor device
WO2007066401A1 (en) * 2005-12-08 2007-06-14 Fujitsu Limited Process for producing electronic part, process for producing heat conducting member, and method of mounting heat conducting member for electronic part
JP4637784B2 (en) * 2006-04-14 2011-02-23 三菱電機株式会社 Power semiconductor device
JP4967447B2 (en) * 2006-05-17 2012-07-04 株式会社日立製作所 Power semiconductor module
JP4861749B2 (en) * 2006-05-31 2012-01-25 トヨタ自動車株式会社 Mold apparatus and method for manufacturing molded product
US7999369B2 (en) * 2006-08-29 2011-08-16 Denso Corporation Power electronic package having two substrates with multiple semiconductor chips and electronic components
JP4765918B2 (en) * 2006-12-06 2011-09-07 株式会社デンソー Manufacturing method of semiconductor device
JP5398269B2 (en) * 2009-01-07 2014-01-29 三菱電機株式会社 Power module and power semiconductor device
JP2011114176A (en) * 2009-11-27 2011-06-09 Mitsubishi Electric Corp Power semiconductor device
JP5542567B2 (en) * 2010-07-27 2014-07-09 三菱電機株式会社 Semiconductor device
US8900933B2 (en) 2010-12-27 2014-12-02 Nissan Motor Co., Ltd. Semiconductor module, molding apparatus, and molding method
JP5681025B2 (en) * 2011-04-08 2015-03-04 ニチコン株式会社 Power module
JP5807432B2 (en) * 2011-08-03 2015-11-10 株式会社明電舎 Semiconductor module and spacer
JP5840933B2 (en) * 2011-11-15 2016-01-06 トヨタ自動車株式会社 Semiconductor device
JP2013115206A (en) * 2011-11-28 2013-06-10 Nissan Motor Co Ltd Semiconductor device manufacturing method
JP5800716B2 (en) * 2012-01-05 2015-10-28 三菱電機株式会社 Power semiconductor device
JP5895549B2 (en) * 2012-01-19 2016-03-30 株式会社デンソー Semiconductor device and manufacturing method thereof
JP2013171891A (en) * 2012-02-17 2013-09-02 Toshiba Corp Semiconductor device, semiconductor module, and semiconductor module manufacturing method
JP5930070B2 (en) * 2012-12-28 2016-06-08 富士電機株式会社 Semiconductor device
JP5700092B2 (en) 2013-09-06 2015-04-15 トヨタ自動車株式会社 Semiconductor device
JP2015090924A (en) * 2013-11-06 2015-05-11 株式会社豊田自動織機 Semiconductor device
JP6064890B2 (en) * 2013-12-18 2017-01-25 トヨタ自動車株式会社 Manufacturing method of semiconductor module
EP3343603B1 (en) 2015-08-26 2020-05-20 Hitachi Automotive Systems, Ltd. Structure
KR101897641B1 (en) * 2016-11-29 2018-10-04 현대오트론 주식회사 Method for manufacturing power module package and the power module package using the same
WO2018133069A1 (en) * 2017-01-22 2018-07-26 乐健科技(珠海)有限公司 Igbt module and method for manufacturing same
JP7000871B2 (en) * 2018-01-16 2022-01-19 三菱電機株式会社 Semiconductor devices and power converters
JP2019125721A (en) * 2018-01-17 2019-07-25 トヨタ自動車株式会社 Semiconductor device
DE112020005302T5 (en) * 2020-01-21 2022-11-03 Rohm Co., Ltd. SEMICONDUCTOR COMPONENT
KR102611687B1 (en) * 2021-06-25 2023-12-08 주식회사 아모센스 Power module

Also Published As

Publication number Publication date
JP2004303900A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4022758B2 (en) Semiconductor device
TWI404177B (en) Electric power semiconductor circuit device and method for making same
JP4634497B2 (en) Power semiconductor module
US8183094B2 (en) Method of manufacturing a semiconductor device having a semiconductor chip and resin sealing portion
JP4479121B2 (en) Manufacturing method of semiconductor device
US8952520B2 (en) Power semiconductor device
JP5279632B2 (en) Semiconductor module
JP6743916B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP5659938B2 (en) Semiconductor unit and semiconductor device using the same
JP5126278B2 (en) Semiconductor device and manufacturing method thereof
JP2010129867A (en) Power semiconductor device
JP2008288414A (en) Semiconductor module and its manufacturing method
JP2008199022A (en) Power semiconductor module and its manufacturing method
JP5836298B2 (en) Semiconductor device
JP5452210B2 (en) Semiconductor device and manufacturing method thereof
US10256168B2 (en) Semiconductor device and lead frame therefor
WO2021261136A1 (en) Power module and power conversion device using said power module
JP2016092184A (en) Power module
JP5895549B2 (en) Semiconductor device and manufacturing method thereof
JP2001267475A (en) Mounting structure of semiconductor device and its mounting method
JP2020072094A (en) Power unit, method of manufacturing the same, and electric device having power unit
CN212342611U (en) Plastic package power module and plastic package mold
JP2020072102A (en) Power unit, method of manufacturing the same, and electric device having power unit
JPH05166979A (en) Semiconductor device and manufacture thereof
CN111769090A (en) Plastic packaging power module, plastic packaging mold and plastic packaging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Ref document number: 4022758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees