JP3913507B2 - Rotary compressor - Google Patents
Rotary compressor Download PDFInfo
- Publication number
- JP3913507B2 JP3913507B2 JP2001295859A JP2001295859A JP3913507B2 JP 3913507 B2 JP3913507 B2 JP 3913507B2 JP 2001295859 A JP2001295859 A JP 2001295859A JP 2001295859 A JP2001295859 A JP 2001295859A JP 3913507 B2 JP3913507 B2 JP 3913507B2
- Authority
- JP
- Japan
- Prior art keywords
- rotary compression
- cylinder
- rotary
- compression element
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
- F04C18/3562—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
- F04C18/3564—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を設け、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するロータリコンプレッサにに関するものである。
【0002】
【従来の技術】
従来のこの種ロータリコンプレッサ、特に、内部中間圧型多段圧縮式のロータリコンプレッサでは、第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て放熱器に流入し、放熱した後、膨張弁で絞られて蒸発器で吸熱し、第1の回転圧縮要素に吸入されるサイクルを繰り返す。
【0003】
係るロータリコンプレッサに、高低圧差の大きい冷媒、例えば炭酸ガスの一例としての二酸化炭素(CO2)を冷媒として用いた場合、冷媒圧力は高圧となる第2の回転圧縮要素で12MPaGに達し、一方、低段側となる第1の回転圧縮要素で8MPaG(中間圧)となる。
【0004】
【発明が解決しようとする課題】
このような内部中間圧型多段圧縮式のロータリコンプレッサでは、底部がオイル溜めとなる密閉容器内の圧力(中間圧)よりも第2の回転圧縮要素のシリンダ内の圧力(高圧)の方が高くなるため、回転軸のオイル孔から圧力差を利用してシリンダ内にオイルを供給することが極めて困難となり、吸入冷媒に溶け込んだオイルのみによって専ら潤滑されるかたちとなって給油量が不足してしまう問題があった。
【0005】
本発明は、係る従来技術の課題を解決するために成されたものであり、内部中間圧型多段圧縮式のロータリコンプレッサにおいて、2段目となる第2の回転圧縮要素のシリンダ内への給油を円滑且つ確実に行うことを目的とする。
【0006】
【課題を解決するための手段】
即ち、本発明のロータリコンプレッサは、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するものであって、各回転圧縮要素をそれぞれ構成するためのシリンダと、各シリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔と、中間仕切板内に形成され、オイル孔と第2の回転圧縮要素の吸込側とを連通するための給油路とを備え、この給油路を、中間仕切板内に穿設されて中間仕切板の外周面と回転軸側の内周面とを連通し、外周面側の開口が封止された貫通孔により構成すると共に、この貫通孔と吸込側とを連通する連通孔を第2の回転圧縮要素を構成するためのシリンダに穿設したことを特徴とする。
【0007】
本発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、各回転圧縮要素をそれぞれ構成するためのシリンダと、各シリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔と、中間仕切板内に形成され、オイル孔と第2の回転圧縮要素の吸込側とを連通するための給油路とを備え、この給油路を、中間仕切板内に穿設されて中間仕切板の外周面と回転軸側の内周面とを連通し、外周面側の開口が封止された貫通孔により構成すると共に、この貫通孔と吸込側とを連通する連通孔を第2の回転圧縮要素を構成するためのシリンダに穿設したので、中間圧となる密閉容器内よりも第2の回転圧縮要素のシリンダ内の圧力が高くなる状況であっても、第2の回転圧縮要素における吸入過程での吸入圧損を利用して、中間仕切板内に形成した給油路からシリンダ内に確実にオイルを供給することができるようになる。これにより、第2の回転圧縮要素の潤滑を確実に行い、性能の確保と信頼性の向上を図ることができるようなるものである。
【0008】
特に、給油路を、中間仕切板内に穿設されて中間仕切板の外周面と回転軸側の内周面とを連通し、外周面側の開口が封止された貫通孔により構成すると共に、この貫通孔と吸込側とを連通する連通孔を第2の回転圧縮要素を構成するためのシリンダに穿設したので、給油路を構成するための中間仕切板の加工が容易となり、生産コストも低く抑えられるようになるものである。
【0009】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明のロータリコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式のロータリコンプレッサ10の縦断面図、図2はロータリコンプレッサ10の正面図、図3ロータリコンプレッサ10の側面図、図4はロータリコンプレッサ10のもう一つの縦断面図、図5はロータリコンプレッサ10の更にもう一つの縦断面図、図6はロータリコンプレッサ10の電動要素14部分の平断面図、図7はロータリコンプレッサ10の回転圧縮機構部18の拡大断面図をそれぞれ示している。
【0010】
各図において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段圧縮式のロータリコンプレッサで、このロータリコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。
【0011】
密閉容器12は、底部をオイル溜とし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0012】
この場合、ターミナル20の周囲のエンドキャップ12Bには、座押成形によって所定曲率の段差部12Cが環状に形成されている。また、ターミナル20は電気的端子139が貫通して取り付けられた円形のガラス部20Aと、このガラス部20Aの周囲に形成され、斜め外下方に鍔状に張り出した金属製の取付部20Bとから構成されている。取付部20Bの厚さ寸法は2.4±0.5mmとされている。そして、ターミナル20は、そのガラス部20Aを下側から取付孔12Dに挿入して上側に臨ませ、取付部20Bを取付孔12Dの周縁に当接させた状態でエンドキャップ12Bの取付孔12D周縁に取付部20Bを溶接することで、エンドキャップ12Bに固定されている。
【0013】
電動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隙を設けて挿入配置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0014】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している(図6)。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して構成されている。
【0015】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置されたシリンダ38、シリンダ40と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けた上下偏心部42、44に嵌合されて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画する後述する上下ベーン50(下側のベーンは図示せず)と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成される。
【0016】
上部支持部材54および下部支持部材56には、吸込ポート161、162にて上下シリンダ38、40の内部とそれぞれ連通する吸込通路58、60と、凹陥した吐出消音室62、64が形成されると共に、これら両吐出消音室62、64の各シリンダ38、40とは反対側の開口部はそれぞれカバーにより閉塞される。即ち、吐出消音室62はカバーとしての上部カバー66、吐出消音室64はカバーとしての下部カバー68にて閉塞される。
【0017】
この場合、上部支持部材54の中央には軸受け54Aが起立形成されており、この軸受け54A内面には筒状のブッシュ122が装着されている。また、下部支持部材56の中央には軸受け56Aが貫通形成され、下部支持部材56の下面(下シリンダ40とは反対側の面)は平坦面とされており、更に、軸受け56A内面にも筒状のブッシュ123が装着されている。これらブッシュ122、123は後述する如き摺動性・耐摩耗性の良い材料にて構成されており、回転軸16はこれらブッシュ122、123を介して上部支持部材54の軸受け54Aと下部支持部材56の軸受け56Aに保持される。
【0018】
この場合、下部カバー68はドーナッツ状の円形鋼板から構成されており、周辺部の4カ所を主ボルト129・・・によって下から下部支持部材56に固定され、吐出ポート41にて第1の回転圧縮要素32の下シリンダ40内部と連通する吐出消音室64の下面開口部を閉塞する。この主ボルト129・・・の先端は上部支持部材54に螺合する。下部カバー68の内周縁は下部支持部材56の軸受け56A内面より内方に突出しており、これによって、ブッシュ123の下端面(下シリンダ40とは反対側の端部)は下部カバー68によって保持され、脱落が防止されている(図9)。
【0019】
これにより、下部支持部材56の軸受け56Aの下端部にブッシュ123の抜け止め形状を成形する必要が無くなり、下部支持部材56の形状が簡素化され、生産コストの削減が図れるようになる。尚、図10は下部支持部材56の下面を示しており、128は吐出消音室64内において吐出ポート41を開閉する第1の回転圧縮要素32の吐出弁である。
【0020】
ここで、下部支持部材56は鉄系の焼結材料(鋳物でも可)により構成されており、下部カバー68を取り付ける側の面(下面)は、平面度0.1mm以下に加工された後、スチーム処理が加えられている。このスチーム処理によって下部カバー68を取り付ける側の面は酸化鉄となるため、焼結材料内部の孔が塞がれてシール性が向上する。これにより、下部カバー68と下部支持部材56間にガスケットを介設する必要が無くなる。
【0021】
尚、吐出消音室64と密閉容器12内における上部カバー66の電動要素14側は、上下シリンダ38、40や中間仕切板36を貫通する孔である連通路63にて連通されている(図4)。この場合、連通路63の上端には中間吐出管121が立設されており、この中間吐出管121は上方の電動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向している(図6)。
【0022】
また、上部カバー66は吐出ポート39にて第2の回転圧縮要素34の上シリンダ38内部と連通する吐出消音室62の上面開口部を閉塞し、密閉容器12内を吐出消音室62と電動要素14側とに仕切る。この上部カバー66は図11に示す如く厚さ2mm以上10mm以下(実施例では最も望ましい6mmとされている)であって、前記上部支持部材54の軸受け54Aが貫通する孔が形成された略ドーナッツ状の円形鋼板から構成されており、上部支持部材54との間にビード付きのガスケット124を挟み込んだ状態で、当該ガスケット124を介して周辺部が4本の主ボルト78・・・により、上から上部支持部材54に固定されている。この主ボルト78・・・の先端は下部支持部材56に螺合する。
【0023】
上部カバー66を係る厚さ寸法とすることで、密閉容器12内よりも高圧となる吐出消音室62の圧力に十分に耐えながら、小型化を達成し、電動要素14との絶縁距離を確保することもできるようになる。更に、この上部カバー66の内周縁と軸受け54Aの外面間にはOリング126が設けられている(図12)。係るOリング126により軸受け54A側のシールを行うことで、上部カバー66の内周縁で十分にシールを行い、ガスリークを防ぐことができるようになり、吐出消音室62の容積拡大が図れると共に、Cリングにより上部カバー66の内周縁側を軸受け54Aに固定する必要も無くなる。ここで、図11において127は吐出消音室62内において吐出ポート39を開閉する第2の回転圧縮要素34の吐出弁である。
【0024】
次に、上シリンダ38の下側の開口面及び下シリンダ40の上側の開口面を閉塞する中間仕切板36内には、上シリンダ38内の吸込側に対応する位置に、図13、図14に示す如く外周面から内周面に至り、外周面と内周面とを連通して給油路を構成する貫通孔131が細孔加工により穿設されており、この貫通路131の外周面側の封止材(メクラピン)132を圧入して外周面側の開口を封止している。また、この貫通孔131の中途部には上側に延在する連通孔(縦孔)133が穿設されている。
【0025】
一方、上シリンダ38の吸込ポート161(吸込側)には中間仕切板36の連通孔133に連通するインジェクション用の連通孔134が穿設されている。また、回転軸16内には図7に示す如く軸中心に鉛直方向のオイル孔80と、このオイル孔80に連通する横方向の給油孔82、84(上下偏心部42、44にも形成されている)が形成されており、中間仕切板36の貫通孔131の内周面側の開口は、これらの給油孔82、84を介してオイル孔80に連通している。
【0026】
後述する如く密閉容器12内は中間圧となるため、2段目で高圧となる上シリンダ38内にはオイルの供給が困難となるが、中間仕切板36を係る構成としたことにより、密閉容器12内底部のオイル溜めから汲み上げられてオイル孔80を上昇し、給油孔82、84から出たオイルは、中間仕切板36の貫通孔131に入り、連通孔133、134から上シリンダ38の吸込側(吸込ポート161)に供給されるようになる。
【0027】
図16中Lは上シリンダ38内の吸入側の圧力変動を示し、図中P1は中間仕切板36の内周面の圧力を示す。この図にL1で示す如く上シリンダ38の吸込側の圧力(吸入圧力)は、吸入過程においては吸入圧損により中間仕切板36の内周面側の圧力よりも低下する。この期間に回転軸16のオイル孔80から中間仕切板36の貫通孔131、連通孔133を経て上シリンダ38の連通孔134より上シリンダ38内にオイルがインジェクションされ、給油が成されることになる。
【0028】
上述の如く上下シリンダ38、40、中間仕切板36、上下支持部材54、56及び上下カバー66、68はそれぞれ4本の主ボルト78・・・と主ボルト129・・・にて上下から締結されるが、更に、上下シリンダ38、40、中間仕切板36、上下支持部材54、56は、これら主ボルト78、129の外側に位置する補助ボルト136、136により締結される(図4)。この補助ボルト136は上部支持部材54側から挿入され、先端は下支持部材56に螺合している。
【0029】
また、この補助ボルト136は前述したベーン50の後述する案内溝70の近傍に位置している。このように補助ボルト136、136を追加して回転圧縮機構部18を一体化することで、内部が極めて高圧となることに対するシール性の確保が成されると共に、ベーン50の案内溝70の近傍を締め付けるので、案内溝70からの背圧ガスリークも防止できるようになる。
【0030】
一方、上シリンダ38内には前述したベーン50を収納する案内溝70と、この案内溝70の外側に位置してバネ部材としてのスプリング76を収納する収納部70Aが形成されており、この収納部70Aは案内溝70側と密閉容器12(容器本体12A)側に開口している(図8)。前記スプリング76はベーン50の外側端部に当接し、常時ベーン50をローラ46側に付勢する。そして、このスプリング76の密閉容器12側の収納部70A内には金属製のプラグ137が設けられ、スプリング76の抜け止めの役目を果たす。案内溝70には図示しない背圧室が連通しており、第2の回転圧縮要素34の吐出圧力(高圧)が背圧室に加えられるので、プラグ137のスプリング76側は高圧、密閉容器12側は中間圧となる。
【0031】
この場合、プラグ137の外寸は収納部70Aの内寸よりも小さく設定され、プラグ137は収納部70A内に隙間嵌めにより挿入される。また、プラグ137の周面には当該プラグ137と収納部70Aの内面間をシールするためのOリング138が取り付けられている。そして、上シリンダ38の外端、即ち、収納部70Aの外端と密閉容器12の容器本体12A間の間隔は、Oリング138からプラグ137の密閉容器12側の端部までの距離よりも小さく設定されている。
【0032】
係る寸法関係としたことにより、プラグ137を収納部70A内に圧入固定する場合の如く、上シリンダ38が変形して上部支持部材54との間のシール性が低下し、性能悪化を来す不都合を未然に回避することができるようになる。また、係る隙間嵌めであっても、上シリンダ38と密閉容器12間の間隔をOリング138からプラグ137の密閉容器12側の端部までの距離よりも小さく設定しているので、プラグ137が収納部70Aから押し出される方向に移動しても、密閉容器12に当接して移動が阻止された時点で依然Oリング138は収納部70A内に位置してシールするので、プラグ138の機能には何ら問題は生じない。
【0033】
ところで、回転軸16と一体に180度の位相差を持って形成される上下偏心部42、44の相互間を連結する連結部90は、その断面形状を回転軸16の円形断面より断面積を大きくして剛性を持たせるために非円形状の例えばラグビーボール状とされている(図17)。即ち、回転軸16に設けた上下偏心部42、44を連結する連結部90の断面形状は上下偏心部42、44の偏心方向に直交する方向でその肉厚を大きくしている(図中ハッチングの部分)。
【0034】
これにより、回転軸16に一体に設けられた上下偏心部42、44を連結する連結部90の断面積が大きくし、断面2次モーメントを増加させて強度(剛性)を増し、耐久性と信頼性を向上させている。特に使用圧力の高い冷媒を2段圧縮する場合、高低圧の圧力差が大きいために回転軸16にかかる荷重も大きくなるが、連結部90の断面積を大きくしてその強度(剛性)を増し、回転軸16が弾性変形してしまうのを防止している。
【0035】
この場合、上側の偏心部42の中心をO1とし、下側の偏心部44の中心をO2とすると、偏心部42の偏心方向側の連結部90の面の円弧の中心はO1、偏心部44の偏心方向側の連結部90の面の円弧の中心はO2としている。これにより、回転軸16を切削加工機にチャックして上下偏心部42、44と連結部90を切削加工する際、偏心部42を加工した後、半径のみを変更して連結部90の一面を加工し、チャック位置を変更して連結部90の他面を加工し、半径のみを変更して偏心部44を加工すると云う作業が可能となる。これにより、回転軸16をチャックし直す回数が減少して生産性が著しく改善されるようになる。
【0036】
そして、この場合冷媒としては地球環境にやさしく、可燃性および毒性等を考慮して自然冷媒である炭酸ガスの一例としての前記二酸化炭素(CO2)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油等既存のオイルが使用される。
【0037】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路58、60、吐出消音室62及び上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141と略90度ずれた位置にある。
【0038】
そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の吸込通路58に連通される。この冷媒導入管92は密閉容器12の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0039】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60に連通される。この冷媒導入管94の他端はアキュムレータ146の下端に接続されている。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62に連通される。
【0040】
上記アキュムレータ146は吸込冷媒の気液分離を行うタンクであり、密閉容器12の容器本体12Aの上部側面に溶接固定された密閉容器側のブラケット147にアキュムレータ側のブラケット148を介して取り付けられている。このブラケット148はブラケット147から上方に延在し、アキュムレータ146の上下方向の略中央部を保持しており、その状態でアキュムレータ146は密閉容器12の側方に沿うかたちで配置される。冷媒導入管92はスリーブ141から出た後、実施例では右方に屈曲した後、上昇しており、アキュムレータ146の下端はこの冷媒導入管92に近接するかたちとなる。そこで、アキュムレータ146の下端から降下する冷媒導入管94は、スリーブ141から見て冷媒導入管92の屈曲方向とは反対の左側を迂回してスリーブ142に至るように引き回されている(図3)。
【0041】
即ち、上部支持部材38と下部支持部材40の吸込通路58、60にそれぞれ連通する冷媒導入管92、94は密閉容器12から見て水平方向で反対の方向に屈曲されたかたちとされており、これにより、アキュムレータ146の上下寸法を拡大して容積を増やしても、各冷媒導入管92、94が相互に干渉しないように配慮されている。
【0042】
また、スリーブ141、143、144の外面周囲には配管接続用のカプラが係合可能な鍔部151が形成されており、スリーブ142の内面には配管接続用のネジ溝152が形成されている。これにより、スリーブ141、143、144にはロータリコンプレッサ10の製造工程における完成検査で気密試験を行う場合に試験用配管のカプラを鍔部151に容易に接続できるようになると共に、スリーブ142にはネジ溝152を使用して試験用配管を容易にネジ止めできるようになる。特に、上下で隣接するスリーブ141と142は、一方のスリーブ141に鍔部151が、他方のスリーブ142にネジ溝152が形成されていることで、狭い空間で試験用配管を各スリーブ141、142に接続可能となる。
【0043】
そして、実施例のロータリコンプレッサ10は図18に示すような給湯装置153の冷媒回路に使用される。即ち、ロータリコンプレッサ10の冷媒吐出管96は水加熱用のガスクーラ154の入口に接続される。このガスクーラ154が給湯装置153の図示しない貯湯タンクに設けられる。ガスクーラ154を出た配管は減圧装置としての膨張弁156を経て蒸発器157の入口に至り、蒸発器157の出口は冷媒導入管94に接続される。また、冷媒導入管92の中途部からは図2、図3では図示していないが除霜回路を構成するデフロスト管158が分岐し、流路制御装置としての電磁弁159を介してガスクーラ154の入口に至る冷媒吐出管96に接続されている。尚、図18ではアキュムレータ146は省略されている。
【0044】
以上の構成で次に動作を説明する。尚、加熱運転では電磁弁159は閉じているものとする。ターミナル20および図示されない配線を介して電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0045】
これにより、冷媒導入管94および下部支持部材56に形成された吸込通路60を経由して吸込ポート162から下シリンダ40の低圧室側に吸入された低圧(一段目吸入圧LP:4MPaG)の冷媒ガスは、ローラ48とベーンの動作により圧縮されて中間圧(MP1:8MPaG)となり下シリンダ40の高圧室側より吐出ポート41、下部支持部材56に形成された吐出消音室64から連通路63を経て中間吐出管121から密閉容器12内に吐出される。
【0046】
このとき、中間吐出管121は上方の電動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向しているので、未だ比較的温度の低い冷媒ガスを電動要素14方向に積極的に供給できるようになり、電動要素14の温度上昇が抑制されるようになる。また、これによって、密閉容器12内は中間圧(MP1)となる。
【0047】
そして、密閉容器12内の中間圧の冷媒ガスは、スリーブ144から出て(中間吐出圧は前記MP1)冷媒導入管92及び上部支持部材54に形成された吸込通路58を経由して吸込ポート161から上シリンダ38の低圧室側に吸入される(2段目吸入圧MP2)。吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり(2段目吐出圧HP:12MPaG)、高圧室側から吐出ポート39を通り上部支持部材54に形成された吐出消音室62、冷媒吐出管96を経由してガスクーラ154内に流入する。このときの冷媒温度は略+100℃まで上昇しており、係る高温高圧の冷媒ガスは放熱して、貯湯タンク内の水を加熱し、約+90℃の温水を生成する。
【0048】
一方、ガスクーラ154において冷媒自体は冷却され、ガスクーラ154を出る。そして、膨張弁156で減圧された後、蒸発器157に流入して蒸発し、アキュムレータ146(図18では示していない)を経て冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0049】
特に、低外気温の環境ではこのような加熱運転で蒸発器157には着霜が成長する。その場合には電磁弁159を開放し、膨張弁156は全開状態として蒸発器157の除霜運転を実行する。これにより、密閉容器12内の中間圧の冷媒(第2の回転圧縮要素34から吐出された少量の高圧冷媒を含む)は、デフロスト管158を通ってガスクーラ154に至る。この冷媒の温度は+50〜+60℃程であり、ガスクーラ154では放熱せず、当初は逆に冷媒が熱を吸収するかたちとなる。そして、ガスクーラ154から出た冷媒は膨張弁156を通過し、蒸発器157に至るようになる。即ち、蒸発器157には略中間圧の比較的温度の高い冷媒が減圧されずに実質的に直接供給されるかたちとなり、これによって、蒸発器157は加熱され、除霜されることになる。
【0050】
このように、第1の回転圧縮要素32から吐出された中間圧の冷媒ガスを密閉容器12から取り出して蒸発器157の除霜を行うようにしているので、第2の回転圧縮要素34から吐出された高圧冷媒を蒸発器157に減圧せずに供給する場合に発生する第2の回転圧縮要素34の吐出(高圧)と吸込(中間圧)における圧力の逆転現象を防止することができるようになる。
【0051】
尚、実施例ではロータリコンプレッサ10を給湯装置153の冷媒回路に用いたが、これに限らず、室内の暖房用などに用いても本発明は有効である。
【0052】
【発明の効果】
以上詳述した如く本発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、各回転圧縮要素をそれぞれ構成するためのシリンダと、各シリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔と、中間仕切板内に形成され、オイル孔と第2の回転圧縮要素の吸込側とを連通するための給油路とを備え、この給油路を、中間仕切板内に穿設されて中間仕切板の外周面と回転軸側の内周面とを連通し、外周面側の開口が封止された貫通孔により構成すると共に、この貫通孔と吸込側とを連通する連通孔を第2の回転圧縮要素を構成するためのシリンダに穿設したので、中間圧となる密閉容器内よりも第2の回転圧縮要素のシリンダ内の圧力が高くなる状況であっても、第2の回転圧縮要素における吸入過程での吸入圧損を利用して、中間仕切板内に形成した給油路からシリンダ内に確実にオイルを供給することができるようになる。これにより、第2の回転圧縮要素の潤滑を確実に行い、性能の確保と信頼性の向上を図ることができるようなるものである。
【0053】
特に、給油路を、中間仕切板内に穿設されて中間仕切板の外周面と回転軸側の内周面とを連通し、外周面側の開口が封止された貫通孔により構成すると共に、この貫通孔と吸込側とを連通する連通孔を第2の回転圧縮要素を構成するためのシリンダに穿設したので、給油路を構成するための中間仕切板の加工が容易となり、生産コストも低く抑えられるようになるものである。
【図面の簡単な説明】
【図1】 本発明の実施例のロータリコンプレッサの縦断面図である。
【図2】 図1のロータリコンプレッサの正面図である。
【図3】 図1のロータリコンプレッサの側面図である。
【図4】 図1のロータリコンプレッサのもう一つの縦断面図である。
【図5】 図1のロータリコンプレッサの更にもう一つの縦断面図である。
【図6】 図1のロータリコンプレッサの電動要素部分の平断面図である。
【図7】 図1のロータリコンプレッサの回転圧縮機構部の拡大断面図である。
【図8】 図1のロータリコンプレッサの第2の回転圧縮要素のベーン部分の拡大断面図である。
【図9】 図1のロータリコンプレッサの下部支持部材及び下部カバーの断面図である。
【図10】 図1のロータリコンプレッサの下部支持部材の下面図である。
【図11】 図1のロータリコンプレッサの上部支持部材及び上部カバーの上面図である。
【図12】 図1のロータリコンプレッサの上部支持部材及び上カバーの断面図である。
【図13】 図1のロータリコンプレッサの中間仕切板の上面図である。
【図14】 図13A−A線断面図である。
【図15】 図1のロータリコンプレッサの上シリンダの上面図である。
【図16】 図1のロータリコンプレッサの上シリンダの吸入側の圧力変動を示す図である。
【図17】 図1のロータリコンプレッサの回転軸の連結部の形状を説明するための断面図である。
【図18】 図1のロータリコンプレッサを適用した給湯装置の冷媒回路図である。
【符号の説明】
10 ロータリコンプレッサ
12 密閉容器
12A エンドキャップ
14 電動要素
16 回転軸
18 回転圧縮機構部
20 ターミナル
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38、40 シリンダ
39、41 吐出ポート
42 偏心部
44 偏心部
46 ローラ
48 ローラ
50 ベーン
54 上部支持部材
56 下部支持部材
62 吐出消音室
64 吐出消音室
66 上部カバー
68 下部カバー
70 案内溝
70A 収納部
76 スプリング(バネ部材)
78、129 主ボルト
90 連結部
92、94 冷媒導入管
96 冷媒吐出管
131 貫通孔(給油路)
132 封止材
133、134 連通孔
137 プラグ
138 Oリング
141、142、143、144 スリーブ
146 アキュムレータ
147、148 ブラケット
151 鍔部
153 給湯装置
154 ガスクーラ
156 膨張弁
157 蒸発器
158 デフロスト管
159 電磁弁[0001]
BACKGROUND OF THE INVENTION
In the present invention, an electric element and first and second rotary compression elements driven by the electric element are provided in a sealed container, and gas compressed by the first rotary compression element is discharged into the sealed container. Further, the present invention relates to a rotary compressor that compresses the discharged intermediate-pressure gas by a second rotary compression element.
[0002]
[Prior art]
In a conventional rotary compressor of this type, particularly an internal intermediate pressure type multistage compression type rotary compressor, refrigerant gas is drawn into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element, and is compressed by the operation of the roller and vane. Intermediate pressure is then discharged from the high pressure chamber side of the cylinder through the discharge port and discharge silencer chamber into the sealed container. The intermediate-pressure refrigerant gas in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second stage compression is performed by the operation of the roller and the vane, so The refrigerant gas flows from the high-pressure chamber side through the discharge port and discharge silencer chamber, flows into the radiator, radiates heat, is throttled by the expansion valve, absorbs heat by the evaporator, and is sucked into the first rotary compression element. repeat.
[0003]
When a refrigerant having a large high-low pressure difference, for example, carbon dioxide (CO 2 ) as an example of carbon dioxide gas is used as the refrigerant for the rotary compressor, the refrigerant pressure reaches 12 MPaG in the second rotary compression element having a high pressure, It becomes 8 MPaG (intermediate pressure) by the first rotary compression element on the lower stage side.
[0004]
[Problems to be solved by the invention]
In such an internal intermediate pressure type multi-stage compression rotary compressor, the pressure (high pressure) in the cylinder of the second rotary compression element is higher than the pressure (intermediate pressure) in the sealed container whose bottom is an oil reservoir. For this reason, it becomes extremely difficult to supply oil into the cylinder using the pressure difference from the oil hole of the rotating shaft, and the amount of oil supply becomes insufficient because only the oil dissolved in the suction refrigerant is lubricated. There was a problem.
[0005]
The present invention has been made to solve the problems of the related art, and in the internal intermediate pressure type multistage compression rotary compressor, the second rotary compression element in the second stage is supplied with oil into the cylinder. The purpose is to carry out smoothly and reliably.
[0006]
[Means for Solving the Problems]
That is, the rotary compressor of the present invention includes an electric element and first and second rotary compression elements driven by the electric element in a hermetic container, and hermetically compresses the gas compressed by the first rotary compression element. The gas is discharged into the container, and the discharged intermediate pressure gas is compressed by the second rotary compression element, and each rotary compression element is constituted by a cylinder and interposed between the cylinders. An intermediate partition plate that partitions each rotary compression element, a support member that closes the opening surface of each cylinder and has a bearing for the rotary shaft, an oil hole formed in the rotary shaft, an oil hole formed in the intermediate partition plate, An oil supply passage for communicating the hole and the suction side of the second rotary compression element, and this oil supply passage is formed in the intermediate partition plate so that the outer peripheral surface of the intermediate partition plate and the inner periphery on the rotary shaft side The opening on the outer peripheral surface side is sealed. Together constituting a hole, characterized in that the drilled communication hole which communicates the through hole and the suction side cylinder for constituting the second rotary compression element.
[0007]
According to the present invention, an electric element and a first and a second rotary compression element driven by the electric element are provided in the sealed container, and the gas compressed by the first rotary compression element is placed in the sealed container. In a rotary compressor that discharges and further compresses the discharged intermediate-pressure gas by the second rotary compression element, a cylinder for constituting each rotary compression element, and each rotary compression element interposed between each cylinder An intermediate partition plate that divides the cylinder, a support member that closes the opening surface of each cylinder and has a bearing for the rotary shaft, an oil hole formed in the rotary shaft, an oil hole formed in the intermediate partition plate, And an oil supply passage for communicating with the suction side of the rotary compression element of the rotary compression element, and this oil supply passage is formed in the intermediate partition plate so that the outer peripheral surface of the intermediate partition plate communicates with the inner peripheral surface on the rotary shaft side. And a through hole in which the opening on the outer peripheral surface side is sealed Since the communication hole that connects the through hole and the suction side is formed in the cylinder for forming the second rotary compression element, the second rotary compression is performed more than the inside of the sealed container serving as an intermediate pressure. Even in a situation where the pressure in the cylinder of the element becomes high, the oil is surely injected into the cylinder from the oil supply passage formed in the intermediate partition plate by using the suction pressure loss in the suction process in the second rotary compression element. Will be able to supply. As a result, the second rotary compression element can be reliably lubricated to ensure performance and improve reliability.
[0008]
In particular, the oil supply passage is formed by a through hole which is formed in the intermediate partition plate so as to communicate the outer peripheral surface of the intermediate partition plate and the inner peripheral surface on the rotating shaft side, and the opening on the outer peripheral surface side is sealed. Since the communication hole that connects the through hole and the suction side is formed in the cylinder for forming the second rotary compression element, it is easy to process the intermediate partition plate for forming the oil supply passage, and the production cost Will be kept low.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) rotary
[0010]
In each figure,
[0011]
The sealed
[0012]
In this case, the
[0013]
The
[0014]
The
[0015]
An
[0016]
The
[0017]
In this case, a bearing 54A is erected at the center of the
[0018]
In this case, the
[0019]
As a result, it is not necessary to form the retaining shape of the
[0020]
Here, the
[0021]
In addition, the
[0022]
Further, the
[0023]
By setting the
[0024]
Next, in the
[0025]
On the other hand, a
[0026]
As will be described later, since the inside of the sealed
[0027]
In FIG. 16, L indicates the pressure fluctuation on the suction side in the
[0028]
As described above, the upper and
[0029]
The
[0030]
On the other hand, a
[0031]
In this case, the outer dimension of the
[0032]
Due to such a dimensional relationship, as in the case where the
[0033]
By the way, the connecting
[0034]
As a result, the cross-sectional area of the connecting
[0035]
In this case, if the center of the upper
[0036]
In this case, the carbon dioxide (CO 2 ) is used as an example of carbon dioxide gas which is a natural refrigerant in consideration of flammability and toxicity as the refrigerant, and the oil as the lubricating oil is, for example, Existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil and ester oil are used.
[0037]
On the side surface of the container
[0038]
One end of a
[0039]
Also, one end of a
[0040]
The
[0041]
That is, the
[0042]
Further, a
[0043]
And the
[0044]
Next, the operation of the above configuration will be described. In the heating operation, the
[0045]
As a result, the low-pressure refrigerant (first-stage suction pressure LP: 4 MPaG) is sucked from the
[0046]
At this time, since the
[0047]
Then, the intermediate pressure refrigerant gas in the sealed
[0048]
On the other hand, the refrigerant itself is cooled in the
[0049]
In particular, in an environment of low outside air temperature, frost forms on the
[0050]
In this way, the intermediate pressure refrigerant gas discharged from the first
[0051]
In the embodiment, the
[0052]
【The invention's effect】
As described above in detail, according to the present invention, an electric element and a first and a second rotary compression element driven by the electric element are provided in a sealed container, and the gas compressed by the first rotary compression element. In a rotary compressor for discharging the discharged intermediate pressure gas into the sealed container and compressing the discharged intermediate pressure gas with the second rotary compression element, a cylinder for constituting each rotary compression element, and a cylinder interposed between the cylinders. An intermediate partition plate for partitioning each rotary compression element, an opening surface of each cylinder, a support member having a bearing for the rotary shaft, an oil hole formed in the rotary shaft, and an intermediate partition plate, An oil supply passage for communicating the oil hole with the suction side of the second rotary compression element, and the oil supply passage is formed in the intermediate partition plate so that the inner periphery of the intermediate partition plate and the inner surface of the rotary shaft Communicating with the peripheral surface, the opening on the outer peripheral surface side Together constituting a sealed through-hole, than bored communication hole communicating with the through hole and the suction side in the cylinder for constituting the second rotary compression element, from the intermediate pressure sealed vessel Even in a situation where the pressure in the cylinder of the second rotary compression element is high, the cylinder is removed from the oil supply passage formed in the intermediate partition plate by using the suction pressure loss in the suction process in the second rotary compression element. The oil can be reliably supplied into the inside. As a result, the second rotary compression element can be reliably lubricated to ensure performance and improve reliability.
[0053]
In particular, the oil supply passage is formed by a through hole which is formed in the intermediate partition plate so as to communicate the outer peripheral surface of the intermediate partition plate and the inner peripheral surface on the rotating shaft side, and the opening on the outer peripheral surface side is sealed. Since the communication hole that connects the through hole and the suction side is formed in the cylinder for forming the second rotary compression element, it is easy to process the intermediate partition plate for forming the oil supply passage, and the production cost Will be kept low.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a rotary compressor according to an embodiment of the present invention.
FIG. 2 is a front view of the rotary compressor of FIG.
FIG. 3 is a side view of the rotary compressor of FIG. 1;
4 is another longitudinal sectional view of the rotary compressor of FIG. 1. FIG.
FIG. 5 is still another longitudinal sectional view of the rotary compressor of FIG. 1;
6 is a plan sectional view of an electric element portion of the rotary compressor of FIG. 1;
7 is an enlarged cross-sectional view of a rotary compression mechanism portion of the rotary compressor in FIG. 1. FIG.
8 is an enlarged cross-sectional view of a vane portion of a second rotary compression element of the rotary compressor of FIG. 1. FIG.
9 is a cross-sectional view of a lower support member and a lower cover of the rotary compressor of FIG.
10 is a bottom view of a lower support member of the rotary compressor in FIG. 1. FIG.
11 is a top view of an upper support member and an upper cover of the rotary compressor of FIG. 1. FIG.
12 is a cross-sectional view of an upper support member and an upper cover of the rotary compressor in FIG. 1. FIG.
13 is a top view of an intermediate partition plate of the rotary compressor in FIG. 1. FIG.
14 is a cross-sectional view taken along line AA in FIG.
15 is a top view of an upper cylinder of the rotary compressor in FIG. 1. FIG.
FIG. 16 is a diagram showing pressure fluctuation on the suction side of the upper cylinder of the rotary compressor of FIG. 1;
17 is a cross-sectional view for explaining the shape of a connecting portion of a rotary shaft of the rotary compressor in FIG. 1;
18 is a refrigerant circuit diagram of a hot water supply apparatus to which the rotary compressor of FIG. 1 is applied.
[Explanation of symbols]
DESCRIPTION OF
78, 129
132
Claims (1)
前記各回転圧縮要素をそれぞれ構成するためのシリンダと、
各シリンダ間に介在して前記各回転圧縮要素を仕切る中間仕切板と、
前記各シリンダの開口面をそれぞれ閉塞し、前記回転軸の軸受けを有する支持部材と、
前記回転軸に形成されたオイル孔と、
前記中間仕切板内に形成され、前記オイル孔と前記第2の回転圧縮要素の吸込側とを連通するための給油路とを備え、
該給油路を、前記中間仕切板内に穿設されて該中間仕切板の外周面と前記回転軸側の内周面とを連通し、外周面側の開口が封止された貫通孔により構成すると共に、該貫通孔と前記吸込側とを連通する連通孔を前記第2の回転圧縮要素を構成するためのシリンダに穿設したことを特徴とするロータリコンプレッサ。An electric element and a first and a second rotary compression element driven by the electric element are provided in the sealed container, and the gas compressed by the first rotary compression element is discharged into the sealed container. In the rotary compressor for compressing the discharged intermediate pressure gas by the second rotary compression element,
A cylinder for constituting each of the rotary compression elements;
An intermediate partition plate that is interposed between the cylinders and partitions the rotary compression elements;
A support member that closes the opening surface of each cylinder and has a bearing for the rotating shaft;
An oil hole formed in the rotating shaft ;
An oil supply passage formed in the intermediate partition plate for communicating the oil hole and the suction side of the second rotary compression element;
The oil supply passage is formed by a through hole that is formed in the intermediate partition plate so as to connect the outer peripheral surface of the intermediate partition plate and the inner peripheral surface on the rotating shaft side, and the opening on the outer peripheral surface side is sealed. In addition , the rotary compressor is characterized in that a communication hole that communicates the through hole and the suction side is formed in a cylinder that constitutes the second rotary compression element .
Priority Applications (35)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001295859A JP3913507B2 (en) | 2001-09-27 | 2001-09-27 | Rotary compressor |
US10/225,442 US7128540B2 (en) | 2001-09-27 | 2002-08-22 | Refrigeration system having a rotary compressor |
EP02256240A EP1298324A3 (en) | 2001-09-27 | 2002-09-10 | Rotary vane compressor with vane holding plug |
ES06013468T ES2398963T3 (en) | 2001-09-27 | 2002-09-10 | Rotary vane compressor and defroster |
EP06013470A EP1703132B1 (en) | 2001-09-27 | 2002-09-10 | Rotary vane compressor |
EP06013468A EP1703130B1 (en) | 2001-09-27 | 2002-09-10 | Rotary vane compressor and defroster |
EP04030238A EP1517036A3 (en) | 2001-09-27 | 2002-09-10 | A high pressure pump for an internal-combustion engine |
EP04030233A EP1517041A3 (en) | 2001-09-27 | 2002-09-10 | Rotary vane compressor with vane holding plug |
EP04030239A EP1522733A3 (en) | 2001-09-27 | 2002-09-10 | Rotary vane compressor with vane holding plug |
ES06013470T ES2398245T3 (en) | 2001-09-27 | 2002-09-10 | Rotary vane compressor |
EP06013469A EP1703131A3 (en) | 2001-09-27 | 2002-09-10 | Rotary vane compressor |
EP06013467A EP1703129B1 (en) | 2001-09-27 | 2002-09-10 | Rotary vane compressor |
EP06013471A EP1703133A3 (en) | 2001-09-27 | 2002-09-10 | Rotary vane compressor |
ES06013467T ES2398363T3 (en) | 2001-09-27 | 2002-09-10 | Rotary vane compressor |
CNB021435065A CN100376799C (en) | 2001-09-27 | 2002-09-26 | Compressor and its producing method, frost removing device of coolant loop, and freezing device |
CN2006100743692A CN1847756B (en) | 2001-09-27 | 2002-09-26 | Defroster of refrigerant circuit |
CN2008101256522A CN101307765B (en) | 2001-09-27 | 2002-09-26 | Compressor |
CNB2006100743724A CN100425842C (en) | 2001-09-27 | 2002-09-26 | Compressor |
CN2008101256471A CN101307764B (en) | 2001-09-27 | 2002-09-26 | Compressor |
KR1020020058289A KR20030028388A (en) | 2001-09-27 | 2002-09-26 | Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit |
US10/747,285 US7174725B2 (en) | 2001-09-27 | 2003-12-30 | Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit |
US10/747,288 US20040151603A1 (en) | 2001-09-27 | 2003-12-30 | Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit |
US10/790,085 US7435063B2 (en) | 2001-09-27 | 2004-03-02 | Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit |
US10/790,181 US7435062B2 (en) | 2001-09-27 | 2004-03-02 | Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit |
US11/377,402 US7302803B2 (en) | 2001-09-27 | 2006-03-17 | Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigerant unit |
US11/896,346 US7762792B2 (en) | 2001-09-27 | 2007-08-31 | Compressor |
US11/896,347 US7837449B2 (en) | 2001-09-27 | 2007-08-31 | Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigerant unit |
KR1020080067919A KR20080071961A (en) | 2001-09-27 | 2008-07-14 | Refrigeration unit |
KR1020080067904A KR100862822B1 (en) | 2001-09-27 | 2008-07-14 | Rotary compressor |
KR1020080067914A KR20080071959A (en) | 2001-09-27 | 2008-07-14 | Compressor |
KR1020080067917A KR100892841B1 (en) | 2001-09-27 | 2008-07-14 | Defroster of refrigerant circuit |
KR1020080067907A KR100892839B1 (en) | 2001-09-27 | 2008-07-14 | Closed type electric compressor |
KR1020080067906A KR20080071956A (en) | 2001-09-27 | 2008-07-14 | Rotary compressor |
KR1020080067910A KR100892840B1 (en) | 2001-09-27 | 2008-07-14 | Compressor |
KR1020080067905A KR100892838B1 (en) | 2001-09-27 | 2008-07-14 | Rotary compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001295859A JP3913507B2 (en) | 2001-09-27 | 2001-09-27 | Rotary compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003097476A JP2003097476A (en) | 2003-04-03 |
JP3913507B2 true JP3913507B2 (en) | 2007-05-09 |
Family
ID=19117215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001295859A Expired - Fee Related JP3913507B2 (en) | 2001-09-27 | 2001-09-27 | Rotary compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3913507B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7223082B2 (en) * | 2003-03-25 | 2007-05-29 | Sanyo Electric Co., Ltd. | Rotary compressor |
JP6978359B2 (en) * | 2018-03-22 | 2021-12-08 | 東芝キヤリア株式会社 | Sealed compressor and refrigeration cycle device |
-
2001
- 2001-09-27 JP JP2001295859A patent/JP3913507B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003097476A (en) | 2003-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6732542B2 (en) | Defroster of refrigerant circuit and rotary compressor | |
JP3728227B2 (en) | Rotary compressor | |
JP3963740B2 (en) | Rotary compressor | |
JP2006214445A (en) | Rotary compressor | |
JP4020612B2 (en) | Rotary compressor | |
JP3913507B2 (en) | Rotary compressor | |
JP4024056B2 (en) | Rotary compressor | |
JP4236400B2 (en) | Defroster for refrigerant circuit | |
JP3963695B2 (en) | Manufacturing method of rotary compressor | |
JP3963703B2 (en) | Electric compressor | |
JP3986283B2 (en) | Rotary compressor | |
JP2003201982A (en) | Rotary compressor | |
JP3883837B2 (en) | Rotary compressor | |
JP3963691B2 (en) | Hermetic electric compressor | |
JP3762690B2 (en) | Rotary compressor | |
JP3825670B2 (en) | Electric compressor | |
JP4020622B2 (en) | Rotary compressor | |
JP2006200541A (en) | Hermetic electric compressor | |
JP4401365B2 (en) | Rotary compressor | |
JP2003176796A (en) | Rotary compressor | |
JP2006200542A (en) | Hermetic electric compressor | |
JP2003206879A (en) | Rotary compressor | |
JP4401364B2 (en) | Rotary compressor | |
JP2003201981A (en) | Rotary compressor | |
JP4169620B2 (en) | Refrigerant cycle equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061016 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070131 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3913507 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130209 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |