JP3913507B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP3913507B2
JP3913507B2 JP2001295859A JP2001295859A JP3913507B2 JP 3913507 B2 JP3913507 B2 JP 3913507B2 JP 2001295859 A JP2001295859 A JP 2001295859A JP 2001295859 A JP2001295859 A JP 2001295859A JP 3913507 B2 JP3913507 B2 JP 3913507B2
Authority
JP
Japan
Prior art keywords
rotary compression
cylinder
rotary
compression element
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001295859A
Other languages
Japanese (ja)
Other versions
JP2003097476A (en
Inventor
兼三 松本
昌也 只野
晴久 山崎
大 松浦
里  和哉
隆泰 斎藤
俊行 江原
悟 今井
淳志 小田
孝 佐藤
裕之 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001295859A priority Critical patent/JP3913507B2/en
Priority to US10/225,442 priority patent/US7128540B2/en
Priority to EP06013470A priority patent/EP1703132B1/en
Priority to EP02256240A priority patent/EP1298324A3/en
Priority to ES06013468T priority patent/ES2398963T3/en
Priority to ES06013467T priority patent/ES2398363T3/en
Priority to EP06013468A priority patent/EP1703130B1/en
Priority to EP04030238A priority patent/EP1517036A3/en
Priority to EP04030233A priority patent/EP1517041A3/en
Priority to EP04030239A priority patent/EP1522733A3/en
Priority to ES06013470T priority patent/ES2398245T3/en
Priority to EP06013469A priority patent/EP1703131A3/en
Priority to EP06013467A priority patent/EP1703129B1/en
Priority to EP06013471A priority patent/EP1703133A3/en
Priority to CN2008101256471A priority patent/CN101307764B/en
Priority to CN2006100743692A priority patent/CN1847756B/en
Priority to CN2008101256522A priority patent/CN101307765B/en
Priority to CNB2006100743724A priority patent/CN100425842C/en
Priority to CNB021435065A priority patent/CN100376799C/en
Priority to KR1020020058289A priority patent/KR20030028388A/en
Publication of JP2003097476A publication Critical patent/JP2003097476A/en
Priority to US10/747,285 priority patent/US7174725B2/en
Priority to US10/747,288 priority patent/US20040151603A1/en
Priority to US10/790,085 priority patent/US7435063B2/en
Priority to US10/790,181 priority patent/US7435062B2/en
Priority to US11/377,402 priority patent/US7302803B2/en
Publication of JP3913507B2 publication Critical patent/JP3913507B2/en
Application granted granted Critical
Priority to US11/896,347 priority patent/US7837449B2/en
Priority to US11/896,346 priority patent/US7762792B2/en
Priority to KR1020080067904A priority patent/KR100862822B1/en
Priority to KR1020080067914A priority patent/KR20080071959A/en
Priority to KR1020080067917A priority patent/KR100892841B1/en
Priority to KR1020080067907A priority patent/KR100892839B1/en
Priority to KR1020080067906A priority patent/KR20080071956A/en
Priority to KR1020080067910A priority patent/KR100892840B1/en
Priority to KR1020080067905A priority patent/KR100892838B1/en
Priority to KR1020080067919A priority patent/KR20080071961A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を設け、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するロータリコンプレッサにに関するものである。
【0002】
【従来の技術】
従来のこの種ロータリコンプレッサ、特に、内部中間圧型多段圧縮式のロータリコンプレッサでは、第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て放熱器に流入し、放熱した後、膨張弁で絞られて蒸発器で吸熱し、第1の回転圧縮要素に吸入されるサイクルを繰り返す。
【0003】
係るロータリコンプレッサに、高低圧差の大きい冷媒、例えば炭酸ガスの一例としての二酸化炭素(CO2)を冷媒として用いた場合、冷媒圧力は高圧となる第2の回転圧縮要素で12MPaGに達し、一方、低段側となる第1の回転圧縮要素で8MPaG(中間圧)となる。
【0004】
【発明が解決しようとする課題】
このような内部中間圧型多段圧縮式のロータリコンプレッサでは、底部がオイル溜めとなる密閉容器内の圧力(中間圧)よりも第2の回転圧縮要素のシリンダ内の圧力(高圧)の方が高くなるため、回転軸のオイル孔から圧力差を利用してシリンダ内にオイルを供給することが極めて困難となり、吸入冷媒に溶け込んだオイルのみによって専ら潤滑されるかたちとなって給油量が不足してしまう問題があった。
【0005】
本発明は、係る従来技術の課題を解決するために成されたものであり、内部中間圧型多段圧縮式のロータリコンプレッサにおいて、2段目となる第2の回転圧縮要素のシリンダ内への給油を円滑且つ確実に行うことを目的とする。
【0006】
【課題を解決するための手段】
即ち、本発明のロータリコンプレッサは、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するものであって、各回転圧縮要素をそれぞれ構成するためのシリンダと、各シリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔と、中間仕切板内に形成され、オイル孔と第2の回転圧縮要素の吸込側とを連通するための給油路とを備え、この給油路を、中間仕切板内に穿設されて中間仕切板の外周面と回転軸側の内周面とを連通し、外周面側の開口が封止された貫通孔により構成すると共に、この貫通孔と吸込側とを連通する連通孔を第2の回転圧縮要素を構成するためのシリンダに穿設したことを特徴とする。
【0007】
本発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、各回転圧縮要素をそれぞれ構成するためのシリンダと、各シリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔と、中間仕切板内に形成され、オイル孔と第2の回転圧縮要素の吸込側とを連通するための給油路とを備え、この給油路を、中間仕切板内に穿設されて中間仕切板の外周面と回転軸側の内周面とを連通し、外周面側の開口が封止された貫通孔により構成すると共に、この貫通孔と吸込側とを連通する連通孔を第2の回転圧縮要素を構成するためのシリンダに穿設したので、中間圧となる密閉容器内よりも第2の回転圧縮要素のシリンダ内の圧力が高くなる状況であっても、第2の回転圧縮要素における吸入過程での吸入圧損を利用して、中間仕切板内に形成した給油路からシリンダ内に確実にオイルを供給することができるようになる。これにより、第2の回転圧縮要素の潤滑を確実に行い、性能の確保と信頼性の向上を図ることができるようなるものである。
【0008】
特に、給油路を、中間仕切板内に穿設されて中間仕切板の外周面と回転軸側の内周面とを連通し、外周面側の開口が封止された貫通孔により構成すると共に、この貫通孔と吸込側とを連通する連通孔を第2の回転圧縮要素を構成するためのシリンダに穿設したので、給油路を構成するための中間仕切板の加工が容易となり、生産コストも低く抑えられるようになるものである。
【0009】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明のロータリコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式のロータリコンプレッサ10の縦断面図、図2はロータリコンプレッサ10の正面図、図3ロータリコンプレッサ10の側面図、図4はロータリコンプレッサ10のもう一つの縦断面図、図5はロータリコンプレッサ10の更にもう一つの縦断面図、図6はロータリコンプレッサ10の電動要素14部分の平断面図、図7はロータリコンプレッサ10の回転圧縮機構部18の拡大断面図をそれぞれ示している。
【0010】
各図において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段圧縮式のロータリコンプレッサで、このロータリコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。
【0011】
密閉容器12は、底部をオイル溜とし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0012】
この場合、ターミナル20の周囲のエンドキャップ12Bには、座押成形によって所定曲率の段差部12Cが環状に形成されている。また、ターミナル20は電気的端子139が貫通して取り付けられた円形のガラス部20Aと、このガラス部20Aの周囲に形成され、斜め外下方に鍔状に張り出した金属製の取付部20Bとから構成されている。取付部20Bの厚さ寸法は2.4±0.5mmとされている。そして、ターミナル20は、そのガラス部20Aを下側から取付孔12Dに挿入して上側に臨ませ、取付部20Bを取付孔12Dの周縁に当接させた状態でエンドキャップ12Bの取付孔12D周縁に取付部20Bを溶接することで、エンドキャップ12Bに固定されている。
【0013】
電動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隙を設けて挿入配置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0014】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している(図6)。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して構成されている。
【0015】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置されたシリンダ38、シリンダ40と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けた上下偏心部42、44に嵌合されて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画する後述する上下ベーン50(下側のベーンは図示せず)と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成される。
【0016】
上部支持部材54および下部支持部材56には、吸込ポート161、162にて上下シリンダ38、40の内部とそれぞれ連通する吸込通路58、60と、凹陥した吐出消音室62、64が形成されると共に、これら両吐出消音室62、64の各シリンダ38、40とは反対側の開口部はそれぞれカバーにより閉塞される。即ち、吐出消音室62はカバーとしての上部カバー66、吐出消音室64はカバーとしての下部カバー68にて閉塞される。
【0017】
この場合、上部支持部材54の中央には軸受け54Aが起立形成されており、この軸受け54A内面には筒状のブッシュ122が装着されている。また、下部支持部材56の中央には軸受け56Aが貫通形成され、下部支持部材56の下面(下シリンダ40とは反対側の面)は平坦面とされており、更に、軸受け56A内面にも筒状のブッシュ123が装着されている。これらブッシュ122、123は後述する如き摺動性・耐摩耗性の良い材料にて構成されており、回転軸16はこれらブッシュ122、123を介して上部支持部材54の軸受け54Aと下部支持部材56の軸受け56Aに保持される。
【0018】
この場合、下部カバー68はドーナッツ状の円形鋼板から構成されており、周辺部の4カ所を主ボルト129・・・によって下から下部支持部材56に固定され、吐出ポート41にて第1の回転圧縮要素32の下シリンダ40内部と連通する吐出消音室64の下面開口部を閉塞する。この主ボルト129・・・の先端は上部支持部材54に螺合する。下部カバー68の内周縁は下部支持部材56の軸受け56A内面より内方に突出しており、これによって、ブッシュ123の下端面(下シリンダ40とは反対側の端部)は下部カバー68によって保持され、脱落が防止されている(図9)。
【0019】
これにより、下部支持部材56の軸受け56Aの下端部にブッシュ123の抜け止め形状を成形する必要が無くなり、下部支持部材56の形状が簡素化され、生産コストの削減が図れるようになる。尚、図10は下部支持部材56の下面を示しており、128は吐出消音室64内において吐出ポート41を開閉する第1の回転圧縮要素32の吐出弁である。
【0020】
ここで、下部支持部材56は鉄系の焼結材料(鋳物でも可)により構成されており、下部カバー68を取り付ける側の面(下面)は、平面度0.1mm以下に加工された後、スチーム処理が加えられている。このスチーム処理によって下部カバー68を取り付ける側の面は酸化鉄となるため、焼結材料内部の孔が塞がれてシール性が向上する。これにより、下部カバー68と下部支持部材56間にガスケットを介設する必要が無くなる。
【0021】
尚、吐出消音室64と密閉容器12内における上部カバー66の電動要素14側は、上下シリンダ38、40や中間仕切板36を貫通する孔である連通路63にて連通されている(図4)。この場合、連通路63の上端には中間吐出管121が立設されており、この中間吐出管121は上方の電動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向している(図6)。
【0022】
また、上部カバー66は吐出ポート39にて第2の回転圧縮要素34の上シリンダ38内部と連通する吐出消音室62の上面開口部を閉塞し、密閉容器12内を吐出消音室62と電動要素14側とに仕切る。この上部カバー66は図11に示す如く厚さ2mm以上10mm以下(実施例では最も望ましい6mmとされている)であって、前記上部支持部材54の軸受け54Aが貫通する孔が形成された略ドーナッツ状の円形鋼板から構成されており、上部支持部材54との間にビード付きのガスケット124を挟み込んだ状態で、当該ガスケット124を介して周辺部が4本の主ボルト78・・・により、上から上部支持部材54に固定されている。この主ボルト78・・・の先端は下部支持部材56に螺合する。
【0023】
上部カバー66を係る厚さ寸法とすることで、密閉容器12内よりも高圧となる吐出消音室62の圧力に十分に耐えながら、小型化を達成し、電動要素14との絶縁距離を確保することもできるようになる。更に、この上部カバー66の内周縁と軸受け54Aの外面間にはOリング126が設けられている(図12)。係るOリング126により軸受け54A側のシールを行うことで、上部カバー66の内周縁で十分にシールを行い、ガスリークを防ぐことができるようになり、吐出消音室62の容積拡大が図れると共に、Cリングにより上部カバー66の内周縁側を軸受け54Aに固定する必要も無くなる。ここで、図11において127は吐出消音室62内において吐出ポート39を開閉する第2の回転圧縮要素34の吐出弁である。
【0024】
次に、上シリンダ38の下側の開口面及び下シリンダ40の上側の開口面を閉塞する中間仕切板36内には、上シリンダ38内の吸込側に対応する位置に、図13、図14に示す如く外周面から内周面に至り、外周面と内周面とを連通して給油路を構成する貫通孔131が細孔加工により穿設されており、この貫通路131の外周面側の封止材(メクラピン)132を圧入して外周面側の開口を封止している。また、この貫通孔131の中途部には上側に延在する連通孔(縦孔)133が穿設されている。
【0025】
一方、上シリンダ38の吸込ポート161(吸込側)には中間仕切板36の連通孔133に連通するインジェクション用の連通孔134が穿設されている。また、回転軸16内には図7に示す如く軸中心に鉛直方向のオイル孔80と、このオイル孔80に連通する横方向の給油孔82、84(上下偏心部42、44にも形成されている)が形成されており、中間仕切板36の貫通孔131の内周面側の開口は、これらの給油孔82、84を介してオイル孔80に連通している。
【0026】
後述する如く密閉容器12内は中間圧となるため、2段目で高圧となる上シリンダ38内にはオイルの供給が困難となるが、中間仕切板36を係る構成としたことにより、密閉容器12内底部のオイル溜めから汲み上げられてオイル孔80を上昇し、給油孔82、84から出たオイルは、中間仕切板36の貫通孔131に入り、連通孔133、134から上シリンダ38の吸込側(吸込ポート161)に供給されるようになる。
【0027】
図16中Lは上シリンダ38内の吸入側の圧力変動を示し、図中P1は中間仕切板36の内周面の圧力を示す。この図にL1で示す如く上シリンダ38の吸込側の圧力(吸入圧力)は、吸入過程においては吸入圧損により中間仕切板36の内周面側の圧力よりも低下する。この期間に回転軸16のオイル孔80から中間仕切板36の貫通孔131、連通孔133を経て上シリンダ38の連通孔134より上シリンダ38内にオイルがインジェクションされ、給油が成されることになる。
【0028】
上述の如く上下シリンダ38、40、中間仕切板36、上下支持部材54、56及び上下カバー66、68はそれぞれ4本の主ボルト78・・・と主ボルト129・・・にて上下から締結されるが、更に、上下シリンダ38、40、中間仕切板36、上下支持部材54、56は、これら主ボルト78、129の外側に位置する補助ボルト136、136により締結される(図4)。この補助ボルト136は上部支持部材54側から挿入され、先端は下支持部材56に螺合している。
【0029】
また、この補助ボルト136は前述したベーン50の後述する案内溝70の近傍に位置している。このように補助ボルト136、136を追加して回転圧縮機構部18を一体化することで、内部が極めて高圧となることに対するシール性の確保が成されると共に、ベーン50の案内溝70の近傍を締め付けるので、案内溝70からの背圧ガスリークも防止できるようになる。
【0030】
一方、上シリンダ38内には前述したベーン50を収納する案内溝70と、この案内溝70の外側に位置してバネ部材としてのスプリング76を収納する収納部70Aが形成されており、この収納部70Aは案内溝70側と密閉容器12(容器本体12A)側に開口している(図8)。前記スプリング76はベーン50の外側端部に当接し、常時ベーン50をローラ46側に付勢する。そして、このスプリング76の密閉容器12側の収納部70A内には金属製のプラグ137が設けられ、スプリング76の抜け止めの役目を果たす。案内溝70には図示しない背圧室が連通しており、第2の回転圧縮要素34の吐出圧力(高圧)が背圧室に加えられるので、プラグ137のスプリング76側は高圧、密閉容器12側は中間圧となる。
【0031】
この場合、プラグ137の外寸は収納部70Aの内寸よりも小さく設定され、プラグ137は収納部70A内に隙間嵌めにより挿入される。また、プラグ137の周面には当該プラグ137と収納部70Aの内面間をシールするためのOリング138が取り付けられている。そして、上シリンダ38の外端、即ち、収納部70Aの外端と密閉容器12の容器本体12A間の間隔は、Oリング138からプラグ137の密閉容器12側の端部までの距離よりも小さく設定されている。
【0032】
係る寸法関係としたことにより、プラグ137を収納部70A内に圧入固定する場合の如く、上シリンダ38が変形して上部支持部材54との間のシール性が低下し、性能悪化を来す不都合を未然に回避することができるようになる。また、係る隙間嵌めであっても、上シリンダ38と密閉容器12間の間隔をOリング138からプラグ137の密閉容器12側の端部までの距離よりも小さく設定しているので、プラグ137が収納部70Aから押し出される方向に移動しても、密閉容器12に当接して移動が阻止された時点で依然Oリング138は収納部70A内に位置してシールするので、プラグ138の機能には何ら問題は生じない。
【0033】
ところで、回転軸16と一体に180度の位相差を持って形成される上下偏心部42、44の相互間を連結する連結部90は、その断面形状を回転軸16の円形断面より断面積を大きくして剛性を持たせるために非円形状の例えばラグビーボール状とされている(図17)。即ち、回転軸16に設けた上下偏心部42、44を連結する連結部90の断面形状は上下偏心部42、44の偏心方向に直交する方向でその肉厚を大きくしている(図中ハッチングの部分)。
【0034】
これにより、回転軸16に一体に設けられた上下偏心部42、44を連結する連結部90の断面積が大きくし、断面2次モーメントを増加させて強度(剛性)を増し、耐久性と信頼性を向上させている。特に使用圧力の高い冷媒を2段圧縮する場合、高低圧の圧力差が大きいために回転軸16にかかる荷重も大きくなるが、連結部90の断面積を大きくしてその強度(剛性)を増し、回転軸16が弾性変形してしまうのを防止している。
【0035】
この場合、上側の偏心部42の中心をO1とし、下側の偏心部44の中心をO2とすると、偏心部42の偏心方向側の連結部90の面の円弧の中心はO1、偏心部44の偏心方向側の連結部90の面の円弧の中心はO2としている。これにより、回転軸16を切削加工機にチャックして上下偏心部42、44と連結部90を切削加工する際、偏心部42を加工した後、半径のみを変更して連結部90の一面を加工し、チャック位置を変更して連結部90の他面を加工し、半径のみを変更して偏心部44を加工すると云う作業が可能となる。これにより、回転軸16をチャックし直す回数が減少して生産性が著しく改善されるようになる。
【0036】
そして、この場合冷媒としては地球環境にやさしく、可燃性および毒性等を考慮して自然冷媒である炭酸ガスの一例としての前記二酸化炭素(CO2)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油等既存のオイルが使用される。
【0037】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路58、60、吐出消音室62及び上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141と略90度ずれた位置にある。
【0038】
そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の吸込通路58に連通される。この冷媒導入管92は密閉容器12の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0039】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60に連通される。この冷媒導入管94の他端はアキュムレータ146の下端に接続されている。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62に連通される。
【0040】
上記アキュムレータ146は吸込冷媒の気液分離を行うタンクであり、密閉容器12の容器本体12Aの上部側面に溶接固定された密閉容器側のブラケット147にアキュムレータ側のブラケット148を介して取り付けられている。このブラケット148はブラケット147から上方に延在し、アキュムレータ146の上下方向の略中央部を保持しており、その状態でアキュムレータ146は密閉容器12の側方に沿うかたちで配置される。冷媒導入管92はスリーブ141から出た後、実施例では右方に屈曲した後、上昇しており、アキュムレータ146の下端はこの冷媒導入管92に近接するかたちとなる。そこで、アキュムレータ146の下端から降下する冷媒導入管94は、スリーブ141から見て冷媒導入管92の屈曲方向とは反対の左側を迂回してスリーブ142に至るように引き回されている(図3)。
【0041】
即ち、上部支持部材38と下部支持部材40の吸込通路58、60にそれぞれ連通する冷媒導入管92、94は密閉容器12から見て水平方向で反対の方向に屈曲されたかたちとされており、これにより、アキュムレータ146の上下寸法を拡大して容積を増やしても、各冷媒導入管92、94が相互に干渉しないように配慮されている。
【0042】
また、スリーブ141、143、144の外面周囲には配管接続用のカプラが係合可能な鍔部151が形成されており、スリーブ142の内面には配管接続用のネジ溝152が形成されている。これにより、スリーブ141、143、144にはロータリコンプレッサ10の製造工程における完成検査で気密試験を行う場合に試験用配管のカプラを鍔部151に容易に接続できるようになると共に、スリーブ142にはネジ溝152を使用して試験用配管を容易にネジ止めできるようになる。特に、上下で隣接するスリーブ141と142は、一方のスリーブ141に鍔部151が、他方のスリーブ142にネジ溝152が形成されていることで、狭い空間で試験用配管を各スリーブ141、142に接続可能となる。
【0043】
そして、実施例のロータリコンプレッサ10は図18に示すような給湯装置153の冷媒回路に使用される。即ち、ロータリコンプレッサ10の冷媒吐出管96は水加熱用のガスクーラ154の入口に接続される。このガスクーラ154が給湯装置153の図示しない貯湯タンクに設けられる。ガスクーラ154を出た配管は減圧装置としての膨張弁156を経て蒸発器157の入口に至り、蒸発器157の出口は冷媒導入管94に接続される。また、冷媒導入管92の中途部からは図2、図3では図示していないが除霜回路を構成するデフロスト管158が分岐し、流路制御装置としての電磁弁159を介してガスクーラ154の入口に至る冷媒吐出管96に接続されている。尚、図18ではアキュムレータ146は省略されている。
【0044】
以上の構成で次に動作を説明する。尚、加熱運転では電磁弁159は閉じているものとする。ターミナル20および図示されない配線を介して電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0045】
これにより、冷媒導入管94および下部支持部材56に形成された吸込通路60を経由して吸込ポート162から下シリンダ40の低圧室側に吸入された低圧(一段目吸入圧LP:4MPaG)の冷媒ガスは、ローラ48とベーンの動作により圧縮されて中間圧(MP1:8MPaG)となり下シリンダ40の高圧室側より吐出ポート41、下部支持部材56に形成された吐出消音室64から連通路63を経て中間吐出管121から密閉容器12内に吐出される。
【0046】
このとき、中間吐出管121は上方の電動要素14のステータ22に巻装された相隣接するステータコイル28、28間の隙間に指向しているので、未だ比較的温度の低い冷媒ガスを電動要素14方向に積極的に供給できるようになり、電動要素14の温度上昇が抑制されるようになる。また、これによって、密閉容器12内は中間圧(MP1)となる。
【0047】
そして、密閉容器12内の中間圧の冷媒ガスは、スリーブ144から出て(中間吐出圧は前記MP1)冷媒導入管92及び上部支持部材54に形成された吸込通路58を経由して吸込ポート161から上シリンダ38の低圧室側に吸入される(2段目吸入圧MP2)。吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり(2段目吐出圧HP:12MPaG)、高圧室側から吐出ポート39を通り上部支持部材54に形成された吐出消音室62、冷媒吐出管96を経由してガスクーラ154内に流入する。このときの冷媒温度は略+100℃まで上昇しており、係る高温高圧の冷媒ガスは放熱して、貯湯タンク内の水を加熱し、約+90℃の温水を生成する。
【0048】
一方、ガスクーラ154において冷媒自体は冷却され、ガスクーラ154を出る。そして、膨張弁156で減圧された後、蒸発器157に流入して蒸発し、アキュムレータ146(図18では示していない)を経て冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0049】
特に、低外気温の環境ではこのような加熱運転で蒸発器157には着霜が成長する。その場合には電磁弁159を開放し、膨張弁156は全開状態として蒸発器157の除霜運転を実行する。これにより、密閉容器12内の中間圧の冷媒(第2の回転圧縮要素34から吐出された少量の高圧冷媒を含む)は、デフロスト管158を通ってガスクーラ154に至る。この冷媒の温度は+50〜+60℃程であり、ガスクーラ154では放熱せず、当初は逆に冷媒が熱を吸収するかたちとなる。そして、ガスクーラ154から出た冷媒は膨張弁156を通過し、蒸発器157に至るようになる。即ち、蒸発器157には略中間圧の比較的温度の高い冷媒が減圧されずに実質的に直接供給されるかたちとなり、これによって、蒸発器157は加熱され、除霜されることになる。
【0050】
このように、第1の回転圧縮要素32から吐出された中間圧の冷媒ガスを密閉容器12から取り出して蒸発器157の除霜を行うようにしているので、第2の回転圧縮要素34から吐出された高圧冷媒を蒸発器157に減圧せずに供給する場合に発生する第2の回転圧縮要素34の吐出(高圧)と吸込(中間圧)における圧力の逆転現象を防止することができるようになる。
【0051】
尚、実施例ではロータリコンプレッサ10を給湯装置153の冷媒回路に用いたが、これに限らず、室内の暖房用などに用いても本発明は有効である。
【0052】
【発明の効果】
以上詳述した如く本発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されたガスを密閉容器内に吐出し、更にこの吐出された中間圧のガスを第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、各回転圧縮要素をそれぞれ構成するためのシリンダと、各シリンダ間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔と、中間仕切板内に形成され、オイル孔と第2の回転圧縮要素の吸込側とを連通するための給油路とを備え、この給油路を、中間仕切板内に穿設されて中間仕切板の外周面と回転軸側の内周面とを連通し、外周面側の開口が封止された貫通孔により構成すると共に、この貫通孔と吸込側とを連通する連通孔を第2の回転圧縮要素を構成するためのシリンダに穿設したで、中間圧となる密閉容器内よりも第2の回転圧縮要素のシリンダ内の圧力が高くなる状況であっても、第2の回転圧縮要素における吸入過程での吸入圧損を利用して、中間仕切板内に形成した給油路からシリンダ内に確実にオイルを供給することができるようになる。これにより、第2の回転圧縮要素の潤滑を確実に行い、性能の確保と信頼性の向上を図ることができるようなるものである。
【0053】
特に、給油路を、中間仕切板内に穿設されて中間仕切板の外周面と回転軸側の内周面とを連通し、外周面側の開口が封止された貫通孔により構成すると共に、この貫通孔と吸込側とを連通する連通孔を第2の回転圧縮要素を構成するためのシリンダに穿設したので、給油路を構成するための中間仕切板の加工が容易となり、生産コストも低く抑えられるようになるものである。
【図面の簡単な説明】
【図1】 本発明の実施例のロータリコンプレッサの縦断面図である。
【図2】 図1のロータリコンプレッサの正面図である。
【図3】 図1のロータリコンプレッサの側面図である。
【図4】 図1のロータリコンプレッサのもう一つの縦断面図である。
【図5】 図1のロータリコンプレッサの更にもう一つの縦断面図である。
【図6】 図1のロータリコンプレッサの電動要素部分の平断面図である。
【図7】 図1のロータリコンプレッサの回転圧縮機構部の拡大断面図である。
【図8】 図1のロータリコンプレッサの第2の回転圧縮要素のベーン部分の拡大断面図である。
【図9】 図1のロータリコンプレッサの下部支持部材及び下部カバーの断面図である。
【図10】 図1のロータリコンプレッサの下部支持部材の下面図である。
【図11】 図1のロータリコンプレッサの上部支持部材及び上部カバーの上面図である。
【図12】 図1のロータリコンプレッサの上部支持部材及び上カバーの断面図である。
【図13】 図1のロータリコンプレッサの中間仕切板の上面図である。
【図14】 図13A−A線断面図である。
【図15】 図1のロータリコンプレッサの上シリンダの上面図である。
【図16】 図1のロータリコンプレッサの上シリンダの吸入側の圧力変動を示す図である。
【図17】 図1のロータリコンプレッサの回転軸の連結部の形状を説明するための断面図である。
【図18】 図1のロータリコンプレッサを適用した給湯装置の冷媒回路図である。
【符号の説明】
10 ロータリコンプレッサ
12 密閉容器
12A エンドキャップ
14 電動要素
16 回転軸
18 回転圧縮機構部
20 ターミナル
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38、40 シリンダ
39、41 吐出ポート
42 偏心部
44 偏心部
46 ローラ
48 ローラ
50 ベーン
54 上部支持部材
56 下部支持部材
62 吐出消音室
64 吐出消音室
66 上部カバー
68 下部カバー
70 案内溝
70A 収納部
76 スプリング(バネ部材)
78、129 主ボルト
90 連結部
92、94 冷媒導入管
96 冷媒吐出管
131 貫通孔(給油路)
132 封止材
133、134 連通孔
137 プラグ
138 Oリング
141、142、143、144 スリーブ
146 アキュムレータ
147、148 ブラケット
151 鍔部
153 給湯装置
154 ガスクーラ
156 膨張弁
157 蒸発器
158 デフロスト管
159 電磁弁
[0001]
BACKGROUND OF THE INVENTION
In the present invention, an electric element and first and second rotary compression elements driven by the electric element are provided in a sealed container, and gas compressed by the first rotary compression element is discharged into the sealed container. Further, the present invention relates to a rotary compressor that compresses the discharged intermediate-pressure gas by a second rotary compression element.
[0002]
[Prior art]
In a conventional rotary compressor of this type, particularly an internal intermediate pressure type multistage compression type rotary compressor, refrigerant gas is drawn into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element, and is compressed by the operation of the roller and vane. Intermediate pressure is then discharged from the high pressure chamber side of the cylinder through the discharge port and discharge silencer chamber into the sealed container. The intermediate-pressure refrigerant gas in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second stage compression is performed by the operation of the roller and the vane, so The refrigerant gas flows from the high-pressure chamber side through the discharge port and discharge silencer chamber, flows into the radiator, radiates heat, is throttled by the expansion valve, absorbs heat by the evaporator, and is sucked into the first rotary compression element. repeat.
[0003]
When a refrigerant having a large high-low pressure difference, for example, carbon dioxide (CO 2 ) as an example of carbon dioxide gas is used as the refrigerant for the rotary compressor, the refrigerant pressure reaches 12 MPaG in the second rotary compression element having a high pressure, It becomes 8 MPaG (intermediate pressure) by the first rotary compression element on the lower stage side.
[0004]
[Problems to be solved by the invention]
In such an internal intermediate pressure type multi-stage compression rotary compressor, the pressure (high pressure) in the cylinder of the second rotary compression element is higher than the pressure (intermediate pressure) in the sealed container whose bottom is an oil reservoir. For this reason, it becomes extremely difficult to supply oil into the cylinder using the pressure difference from the oil hole of the rotating shaft, and the amount of oil supply becomes insufficient because only the oil dissolved in the suction refrigerant is lubricated. There was a problem.
[0005]
The present invention has been made to solve the problems of the related art, and in the internal intermediate pressure type multistage compression rotary compressor, the second rotary compression element in the second stage is supplied with oil into the cylinder. The purpose is to carry out smoothly and reliably.
[0006]
[Means for Solving the Problems]
That is, the rotary compressor of the present invention includes an electric element and first and second rotary compression elements driven by the electric element in a hermetic container, and hermetically compresses the gas compressed by the first rotary compression element. The gas is discharged into the container, and the discharged intermediate pressure gas is compressed by the second rotary compression element, and each rotary compression element is constituted by a cylinder and interposed between the cylinders. An intermediate partition plate that partitions each rotary compression element, a support member that closes the opening surface of each cylinder and has a bearing for the rotary shaft, an oil hole formed in the rotary shaft, an oil hole formed in the intermediate partition plate, An oil supply passage for communicating the hole and the suction side of the second rotary compression element, and this oil supply passage is formed in the intermediate partition plate so that the outer peripheral surface of the intermediate partition plate and the inner periphery on the rotary shaft side The opening on the outer peripheral surface side is sealed. Together constituting a hole, characterized in that the drilled communication hole which communicates the through hole and the suction side cylinder for constituting the second rotary compression element.
[0007]
According to the present invention, an electric element and a first and a second rotary compression element driven by the electric element are provided in the sealed container, and the gas compressed by the first rotary compression element is placed in the sealed container. In a rotary compressor that discharges and further compresses the discharged intermediate-pressure gas by the second rotary compression element, a cylinder for constituting each rotary compression element, and each rotary compression element interposed between each cylinder An intermediate partition plate that divides the cylinder, a support member that closes the opening surface of each cylinder and has a bearing for the rotary shaft, an oil hole formed in the rotary shaft, an oil hole formed in the intermediate partition plate, And an oil supply passage for communicating with the suction side of the rotary compression element of the rotary compression element, and this oil supply passage is formed in the intermediate partition plate so that the outer peripheral surface of the intermediate partition plate communicates with the inner peripheral surface on the rotary shaft side. And a through hole in which the opening on the outer peripheral surface side is sealed Since the communication hole that connects the through hole and the suction side is formed in the cylinder for forming the second rotary compression element, the second rotary compression is performed more than the inside of the sealed container serving as an intermediate pressure. Even in a situation where the pressure in the cylinder of the element becomes high, the oil is surely injected into the cylinder from the oil supply passage formed in the intermediate partition plate by using the suction pressure loss in the suction process in the second rotary compression element. Will be able to supply. As a result, the second rotary compression element can be reliably lubricated to ensure performance and improve reliability.
[0008]
In particular, the oil supply passage is formed by a through hole which is formed in the intermediate partition plate so as to communicate the outer peripheral surface of the intermediate partition plate and the inner peripheral surface on the rotating shaft side, and the opening on the outer peripheral surface side is sealed. Since the communication hole that connects the through hole and the suction side is formed in the cylinder for forming the second rotary compression element, it is easy to process the intermediate partition plate for forming the oil supply passage, and the production cost Will be kept low.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) rotary rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of the rotary compressor of the present invention. Fig. 3 is a front view of the rotary compressor 10, Fig. 3 is a side view of the rotary compressor 10, Fig. 4 is another longitudinal sectional view of the rotary compressor 10, Fig. 5 is yet another longitudinal sectional view of the rotary compressor 10, and Fig. 6 is a rotary compressor. FIG. 7 is an enlarged sectional view of the rotary compression mechanism portion 18 of the rotary compressor 10.
[0010]
In each figure, reference numeral 10 denotes an internal intermediate pressure multistage compression rotary compressor that uses carbon dioxide (CO 2 ) as a refrigerant. The rotary compressor 10 includes a cylindrical sealed container 12 made of a steel plate, and an interior of the sealed container 12. The electric element 14 arranged and housed on the upper side of the space, and the first rotary compression element 32 (first stage) and the second electric element 14 arranged below the electric element 14 and driven by the rotating shaft 16 of the electric element 14. The rotary compression mechanism section 18 is composed of a rotary compression element 34 (second stage).
[0011]
The sealed container 12 has an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a substantially bowl-shaped end cap (lid body) 12B that closes the upper opening of the container body 12A. A circular mounting hole 12D is formed at the center of the upper surface of the end cap 12B, and a terminal (wiring is omitted) 20 for supplying electric power to the electric element 14 is formed in the mounting hole 12D. It is attached.
[0012]
In this case, the end cap 12B around the terminal 20 is formed with a stepped portion 12C having a predetermined curvature in an annular shape by press-fitting. The terminal 20 includes a circular glass portion 20A through which the electrical terminal 139 is attached, and a metal attachment portion 20B formed around the glass portion 20A and projecting obliquely outward and downward in a bowl shape. It is configured. The thickness dimension of the mounting portion 20B is 2.4 ± 0.5 mm. And the terminal 20 inserts the glass part 20A into the mounting hole 12D from the lower side, faces the upper side, and attaches the mounting part 20B to the peripheral edge of the mounting hole 12D, and the peripheral edge of the mounting hole 12D of the end cap 12B. The attachment portion 20B is welded to the end cap 12B.
[0013]
The electric element 14 includes a stator 22 attached in an annular shape along the inner peripheral surface of the upper space of the hermetic container 12, and a rotor 24 inserted and arranged with a slight gap inside the stator 22. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction.
[0014]
The stator 22 includes a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method (FIG. 6). Similarly to the stator 22, the rotor 24 is also formed by a laminated body 30 of electromagnetic steel plates, and a permanent magnet MG is inserted into the laminated body 30.
[0015]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, a cylinder 38 and a cylinder 40 disposed above and below the intermediate partition plate 36, and the inside of the upper and lower cylinders 38 and 40. The upper and lower rollers 46 and 48 are fitted to the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees and rotate eccentrically, and the upper and lower cylinders 38 are in contact with the upper and lower rollers 46 and 48. , 40 are divided into a low pressure chamber side and a high pressure chamber side, respectively, and upper and lower vanes 50 (lower vanes are not shown), an upper opening surface of the upper cylinder 38 and an opening surface of the lower cylinder 40 below. And an upper support member 54 and a lower support member 56 as support members that also serve as bearings for the rotary shaft 16.
[0016]
The upper support member 54 and the lower support member 56 are formed with suction passages 58 and 60 that communicate with the inside of the upper and lower cylinders 38 and 40 through suction ports 161 and 162, and recessed discharge silencer chambers 62 and 64, respectively. The openings on the side opposite to the cylinders 38 and 40 of both the discharge silencing chambers 62 and 64 are respectively closed by covers. That is, the discharge silence chamber 62 is closed by an upper cover 66 as a cover, and the discharge silence chamber 64 is closed by a lower cover 68 as a cover.
[0017]
In this case, a bearing 54A is erected at the center of the upper support member 54, and a cylindrical bush 122 is mounted on the inner surface of the bearing 54A. A bearing 56A is formed through the center of the lower support member 56, the lower surface of the lower support member 56 (the surface opposite to the lower cylinder 40) is a flat surface, and the inner surface of the bearing 56A is also cylindrical. A bush 123 is attached. The bushes 122 and 123 are made of a material having good slidability and wear resistance as will be described later, and the rotary shaft 16 has a bearing 54A of the upper support member 54 and a lower support member 56 through the bushes 122 and 123. Of the bearing 56A.
[0018]
In this case, the lower cover 68 is made of a donut-shaped circular steel plate, and is fixed to the lower support member 56 from below by main bolts 129... The lower surface opening of the discharge silencing chamber 64 communicating with the inside of the lower cylinder 40 of the compression element 32 is closed. The front ends of the main bolts 129 are screwed into the upper support member 54. The inner periphery of the lower cover 68 protrudes inward from the inner surface of the bearing 56 </ b> A of the lower support member 56, whereby the lower end surface of the bush 123 (the end opposite to the lower cylinder 40) is held by the lower cover 68. Dropping is prevented (FIG. 9).
[0019]
As a result, it is not necessary to form the retaining shape of the bush 123 at the lower end portion of the bearing 56A of the lower support member 56, the shape of the lower support member 56 is simplified, and the production cost can be reduced. FIG. 10 shows the lower surface of the lower support member 56, and 128 is a discharge valve of the first rotary compression element 32 that opens and closes the discharge port 41 in the discharge silencer chamber 64.
[0020]
Here, the lower support member 56 is made of an iron-based sintered material (which may be cast), and the surface (lower surface) on which the lower cover 68 is attached is processed to have a flatness of 0.1 mm or less, Steam processing has been added. Since the surface on which the lower cover 68 is attached by this steam treatment is made of iron oxide, the hole inside the sintered material is blocked and the sealing performance is improved. This eliminates the need for a gasket between the lower cover 68 and the lower support member 56.
[0021]
In addition, the electric element 14 side of the upper cover 66 in the discharge silencer chamber 64 and the sealed container 12 is communicated with a communication passage 63 that is a hole penetrating the upper and lower cylinders 38 and 40 and the intermediate partition plate 36 (FIG. 4). ). In this case, an intermediate discharge pipe 121 is erected at the upper end of the communication path 63, and this intermediate discharge pipe 121 is between the adjacent stator coils 28, 28 wound around the stator 22 of the upper electric element 14. It is directed to the gap (FIG. 6).
[0022]
Further, the upper cover 66 closes the upper opening of the discharge silencer chamber 62 communicating with the inside of the upper cylinder 38 of the second rotary compression element 34 at the discharge port 39, and the discharge silencer chamber 62 and the electric element inside the sealed container 12. Divide into 14 sides. As shown in FIG. 11, the upper cover 66 has a thickness of 2 mm or more and 10 mm or less (6 mm is the most desirable in the embodiment), and a substantially donut having a hole through which the bearing 54A of the upper support member 54 is formed. In the state in which a gasket 124 with a bead is sandwiched between the upper support member 54 and the upper support member 54, the peripheral portion is surrounded by four main bolts 78. To the upper support member 54. The front ends of the main bolts 78 are screwed into the lower support member 56.
[0023]
By setting the upper cover 66 to have such a thickness dimension, it is possible to achieve downsizing and secure an insulation distance from the electric element 14 while sufficiently withstanding the pressure of the discharge silencer chamber 62 that is higher than that in the sealed container 12. You can also do that. Further, an O-ring 126 is provided between the inner peripheral edge of the upper cover 66 and the outer surface of the bearing 54A (FIG. 12). By sealing the bearing 54A side with the O-ring 126, it becomes possible to sufficiently seal the inner periphery of the upper cover 66 and prevent gas leakage, and the volume of the discharge silencer chamber 62 can be increased. The ring eliminates the need to fix the inner peripheral edge of the upper cover 66 to the bearing 54A. Here, in FIG. 11, 127 is a discharge valve of the second rotary compression element 34 that opens and closes the discharge port 39 in the discharge silencer chamber 62.
[0024]
Next, in the intermediate partition plate 36 that closes the lower opening surface of the upper cylinder 38 and the upper opening surface of the lower cylinder 40, a position corresponding to the suction side in the upper cylinder 38 is shown in FIGS. 13 and 14. As shown in FIG. 2, a through hole 131 that is connected to the inner peripheral surface from the outer peripheral surface and forms the oil supply passage by communicating the outer peripheral surface and the inner peripheral surface is formed by fine hole processing. The sealing material (Mekurapin) 132 is press-fitted to seal the opening on the outer peripheral surface side. Further, a communication hole (vertical hole) 133 extending upward is formed in the middle part of the through hole 131.
[0025]
On the other hand, a communication hole 134 for injection communicating with the communication hole 133 of the intermediate partition plate 36 is formed in the suction port 161 (suction side) of the upper cylinder 38. Further, as shown in FIG. 7, a vertical oil hole 80 is formed in the rotating shaft 16 at the center of the shaft, and lateral oil supply holes 82 and 84 (upper and lower eccentric portions 42 and 44) communicating with the oil hole 80 are also formed. The opening on the inner peripheral surface side of the through hole 131 of the intermediate partition plate 36 communicates with the oil hole 80 through these oil supply holes 82 and 84.
[0026]
As will be described later, since the inside of the sealed container 12 is at an intermediate pressure, it is difficult to supply oil into the upper cylinder 38, which is at a high pressure in the second stage. The oil that has been pumped up from the oil sump at the inner bottom of the cylinder 12 and moved up through the oil hole 80 enters the through hole 131 of the intermediate partition plate 36 and is sucked into the upper cylinder 38 through the communication holes 133 and 134. To the side (suction port 161).
[0027]
In FIG. 16, L indicates the pressure fluctuation on the suction side in the upper cylinder 38, and P1 in the drawing indicates the pressure on the inner peripheral surface of the intermediate partition plate. As indicated by L1 in this figure, the suction side pressure (suction pressure) of the upper cylinder 38 is lower than the pressure on the inner peripheral surface side of the intermediate partition plate 36 due to suction pressure loss during the suction process. During this period, oil is injected into the upper cylinder 38 from the communication hole 134 of the upper cylinder 38 through the through hole 131 and the communication hole 133 of the intermediate partition plate 36 from the oil hole 80 of the rotating shaft 16, and oil supply is performed. Become.
[0028]
As described above, the upper and lower cylinders 38 and 40, the intermediate partition plate 36, the upper and lower support members 54 and 56, and the upper and lower covers 66 and 68 are fastened from above and below by the four main bolts 78. However, the upper and lower cylinders 38, 40, the intermediate partition plate 36, and the upper and lower support members 54, 56 are fastened by auxiliary bolts 136, 136 positioned outside the main bolts 78, 129 (FIG. 4). The auxiliary bolt 136 is inserted from the upper support member 54 side, and the tip thereof is screwed to the lower support member 56.
[0029]
The auxiliary bolt 136 is positioned in the vicinity of the guide groove 70 described later of the vane 50 described later. Thus, by adding the auxiliary bolts 136 and 136 and integrating the rotary compression mechanism 18, the sealing performance against the extremely high pressure inside is ensured, and the vicinity of the guide groove 70 of the vane 50. As a result, the back pressure gas leak from the guide groove 70 can be prevented.
[0030]
On the other hand, a guide groove 70 for storing the vane 50 described above and a storage portion 70A for storing a spring 76 as a spring member located outside the guide groove 70 are formed in the upper cylinder 38. The portion 70A is open to the guide groove 70 side and the closed container 12 (container body 12A) side (FIG. 8). The spring 76 is in contact with the outer end of the vane 50 and constantly urges the vane 50 toward the roller 46. A metal plug 137 is provided in the housing portion 70A of the spring 76 on the closed container 12 side, and serves to prevent the spring 76 from coming off. A back pressure chamber (not shown) communicates with the guide groove 70, and the discharge pressure (high pressure) of the second rotary compression element 34 is applied to the back pressure chamber. Side is at intermediate pressure.
[0031]
In this case, the outer dimension of the plug 137 is set smaller than the inner dimension of the storage portion 70A, and the plug 137 is inserted into the storage portion 70A by a clearance fit. An O-ring 138 is attached to the peripheral surface of the plug 137 for sealing between the plug 137 and the inner surface of the storage portion 70A. The distance between the outer end of the upper cylinder 38, that is, the outer end of the storage portion 70A, and the container body 12A of the sealed container 12 is smaller than the distance from the O-ring 138 to the end of the plug 137 on the sealed container 12 side. Is set.
[0032]
Due to such a dimensional relationship, as in the case where the plug 137 is press-fitted and fixed in the housing portion 70A, the upper cylinder 38 is deformed and the sealing performance with the upper support member 54 is deteriorated, resulting in a deterioration in performance. Can be avoided in advance. Even with such a clearance fit, the distance between the upper cylinder 38 and the sealed container 12 is set to be smaller than the distance from the O-ring 138 to the end of the plug 137 on the sealed container 12 side. Even if it moves in the direction pushed out from the storage portion 70A, the O-ring 138 is still positioned and sealed in the storage portion 70A when the movement is prevented by coming into contact with the hermetic container 12; There is no problem.
[0033]
By the way, the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 formed integrally with the rotating shaft 16 with a phase difference of 180 degrees has a cross-sectional shape that is larger than the circular cross section of the rotating shaft 16. In order to enlarge and give rigidity, it is made into a non-circular shape such as a rugby ball (FIG. 17). That is, the cross-sectional shape of the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 is increased in thickness in the direction perpendicular to the eccentric direction of the upper and lower eccentric portions 42 and 44 (hatching in the figure). Part).
[0034]
As a result, the cross-sectional area of the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 is increased, the second moment is increased, and the strength (rigidity) is increased. Improves sex. In particular, when a refrigerant having a high working pressure is compressed in two stages, the load applied to the rotary shaft 16 increases due to the large pressure difference between the high and low pressures. The rotation shaft 16 is prevented from being elastically deformed.
[0035]
In this case, if the center of the upper eccentric portion 42 is O1, and the center of the lower eccentric portion 44 is O2, the center of the arc of the surface of the connecting portion 90 on the eccentric direction side of the eccentric portion 42 is O1, and the eccentric portion 44. The center of the arc of the surface of the connecting portion 90 on the eccentric direction side is O2. Thus, when the rotary shaft 16 is chucked to the cutting machine to cut the upper and lower eccentric portions 42 and 44 and the connecting portion 90, after machining the eccentric portion 42, only the radius is changed and one surface of the connecting portion 90 is changed. It is possible to perform an operation of machining, changing the chuck position, machining the other surface of the connecting portion 90, and machining the eccentric portion 44 by changing only the radius. As a result, the number of times of rechucking the rotating shaft 16 is reduced and the productivity is remarkably improved.
[0036]
In this case, the carbon dioxide (CO 2 ) is used as an example of carbon dioxide gas which is a natural refrigerant in consideration of flammability and toxicity as the refrigerant, and the oil as the lubricating oil is, for example, Existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil and ester oil are used.
[0037]
On the side surface of the container main body 12A of the sealed container 12, the suction passages 58, 60 of the upper support member 54 and the lower support member 56, the upper side of the discharge silencer chamber 62, and the upper cover 66 (position substantially corresponding to the lower end of the electric element 14). The sleeves 141, 142, 143, and 144 are fixed by welding at positions corresponding to. The sleeves 141 and 142 are adjacent to each other vertically, and the sleeve 143 is substantially diagonal to the sleeve 141. Further, the sleeve 144 is located at a position shifted by approximately 90 degrees from the sleeve 141.
[0038]
One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted and connected into the sleeve 141, and one end of the refrigerant introduction pipe 92 is communicated with the suction passage 58 of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the upper side of the sealed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 to communicate with the sealed container 12.
[0039]
Also, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 is communicated with the suction passage 60 of the lower cylinder 40. The other end of the refrigerant introduction tube 94 is connected to the lower end of the accumulator 146. A refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 is communicated with the discharge silencer chamber 62.
[0040]
The accumulator 146 is a tank that performs gas-liquid separation of the suction refrigerant, and is attached to the bracket 147 on the sealed container side that is welded and fixed to the upper side surface of the container body 12A of the sealed container 12 via the bracket 148 on the accumulator side. . The bracket 148 extends upward from the bracket 147 and holds a substantially central portion of the accumulator 146 in the vertical direction. In this state, the accumulator 146 is arranged along the side of the sealed container 12. The refrigerant introduction pipe 92 rises after exiting from the sleeve 141, bent in the right direction in the embodiment, and then rises, and the lower end of the accumulator 146 becomes close to the refrigerant introduction pipe 92. Therefore, the refrigerant introduction pipe 94 descending from the lower end of the accumulator 146 is routed around the left side opposite to the bending direction of the refrigerant introduction pipe 92 when viewed from the sleeve 141 so as to reach the sleeve 142 (FIG. 3). ).
[0041]
That is, the refrigerant introduction pipes 92 and 94 respectively communicating with the suction passages 58 and 60 of the upper support member 38 and the lower support member 40 are bent in the opposite direction in the horizontal direction when viewed from the sealed container 12. Thereby, even if the vertical dimension of the accumulator 146 is enlarged to increase the volume, consideration is given so that the refrigerant introduction pipes 92 and 94 do not interfere with each other.
[0042]
Further, a flange 151 that can be engaged with a coupler for pipe connection is formed around the outer surfaces of the sleeves 141, 143, and 144, and a thread groove 152 for pipe connection is formed on the inner surface of the sleeve 142. . As a result, the sleeves 141, 143, 144 can be easily connected to the coupler 151 of the test pipe when the airtight test is performed in the completion inspection in the manufacturing process of the rotary compressor 10. It becomes possible to easily screw the test pipe using the screw groove 152. In particular, the sleeves 141 and 142 that are adjacent in the vertical direction are formed with a flange 151 on one sleeve 141 and a thread groove 152 on the other sleeve 142, so that the test pipes can be connected to the sleeves 141 and 142 in a narrow space. Can be connected.
[0043]
And the rotary compressor 10 of an Example is used for the refrigerant circuit of the hot-water supply apparatus 153 as shown in FIG. That is, the refrigerant discharge pipe 96 of the rotary compressor 10 is connected to the inlet of the gas cooler 154 for water heating. This gas cooler 154 is provided in a hot water storage tank (not shown) of the hot water supply device 153. The pipe exiting the gas cooler 154 reaches the inlet of the evaporator 157 through an expansion valve 156 as a decompression device, and the outlet of the evaporator 157 is connected to the refrigerant introduction pipe 94. Further, although not shown in FIGS. 2 and 3, a defrost pipe 158 constituting a defrosting circuit branches off from the middle of the refrigerant introduction pipe 92, and the gas cooler 154 is connected via an electromagnetic valve 159 as a flow path control device. It is connected to a refrigerant discharge pipe 96 that reaches the inlet. In FIG. 18, the accumulator 146 is omitted.
[0044]
Next, the operation of the above configuration will be described. In the heating operation, the solenoid valve 159 is closed. When the stator coil 28 of the electric element 14 is energized through the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 rotate eccentrically in the upper and lower cylinders 38 and 40.
[0045]
As a result, the low-pressure refrigerant (first-stage suction pressure LP: 4 MPaG) is sucked from the suction port 162 to the low-pressure chamber side of the lower cylinder 40 via the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56. The gas is compressed by the operation of the roller 48 and the vane to become an intermediate pressure (MP1: 8 MPaG), and from the high pressure chamber side of the lower cylinder 40 to the discharge port 41 and the discharge silencer chamber 64 formed in the lower support member 56, through the communication path 63. Then, it is discharged from the intermediate discharge pipe 121 into the sealed container 12.
[0046]
At this time, since the intermediate discharge pipe 121 is directed to the gap between the adjacent stator coils 28 and 28 wound around the stator 22 of the upper electric element 14, the refrigerant gas still having a relatively low temperature is supplied to the electric element. It becomes possible to actively supply in the 14 directions, and the temperature rise of the electric element 14 is suppressed. Moreover, the inside of the airtight container 12 becomes intermediate pressure (MP1) by this.
[0047]
Then, the intermediate pressure refrigerant gas in the sealed container 12 exits from the sleeve 144 (intermediate discharge pressure is MP1), and the suction port 161 passes through the refrigerant introduction pipe 92 and the suction passage 58 formed in the upper support member 54. To the low pressure chamber side of the upper cylinder 38 (second-stage suction pressure MP2). The suctioned intermediate-pressure refrigerant gas is compressed in the second stage by the operation of the roller 46 and the vane 50 to become a high-temperature and high-pressure refrigerant gas (second-stage discharge pressure HP: 12 MPaG), and is discharged from the high-pressure chamber side. The gas flows into the gas cooler 154 through the discharge silencer chamber 62 formed in the upper support member 54 and the refrigerant discharge pipe 96. The refrigerant temperature at this time has risen to approximately + 100 ° C., and the high-temperature and high-pressure refrigerant gas dissipates heat to heat the water in the hot water storage tank and generate hot water of about + 90 ° C.
[0048]
On the other hand, the refrigerant itself is cooled in the gas cooler 154 and exits the gas cooler 154. Then, after the pressure is reduced by the expansion valve 156, the refrigerant flows into the evaporator 157 to evaporate, and is sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94 through the accumulator 146 (not shown in FIG. 18). repeat.
[0049]
In particular, in an environment of low outside air temperature, frost forms on the evaporator 157 by such heating operation. In that case, the electromagnetic valve 159 is opened, the expansion valve 156 is fully opened, and the defrosting operation of the evaporator 157 is executed. As a result, the intermediate-pressure refrigerant in the sealed container 12 (including a small amount of high-pressure refrigerant discharged from the second rotary compression element 34) reaches the gas cooler 154 through the defrost pipe 158. The temperature of this refrigerant is about +50 to + 60 ° C., and the gas cooler 154 does not radiate heat, but initially the refrigerant absorbs heat. Then, the refrigerant discharged from the gas cooler 154 passes through the expansion valve 156 and reaches the evaporator 157. That is, the refrigerant having a relatively high intermediate pressure is supplied directly to the evaporator 157 without being depressurized, whereby the evaporator 157 is heated and defrosted.
[0050]
In this way, the intermediate pressure refrigerant gas discharged from the first rotary compression element 32 is taken out from the hermetic container 12 and the evaporator 157 is defrosted, so that it is discharged from the second rotary compression element 34. So as to prevent the reverse phenomenon of the pressure in the discharge (high pressure) and suction (intermediate pressure) of the second rotary compression element 34 that occurs when supplying the high-pressure refrigerant to the evaporator 157 without reducing the pressure. Become.
[0051]
In the embodiment, the rotary compressor 10 is used for the refrigerant circuit of the hot water supply device 153. However, the present invention is not limited to this, and the present invention is also effective when used for indoor heating.
[0052]
【The invention's effect】
As described above in detail, according to the present invention, an electric element and a first and a second rotary compression element driven by the electric element are provided in a sealed container, and the gas compressed by the first rotary compression element. In a rotary compressor for discharging the discharged intermediate pressure gas into the sealed container and compressing the discharged intermediate pressure gas with the second rotary compression element, a cylinder for constituting each rotary compression element, and a cylinder interposed between the cylinders. An intermediate partition plate for partitioning each rotary compression element, an opening surface of each cylinder, a support member having a bearing for the rotary shaft, an oil hole formed in the rotary shaft, and an intermediate partition plate, An oil supply passage for communicating the oil hole with the suction side of the second rotary compression element, and the oil supply passage is formed in the intermediate partition plate so that the inner periphery of the intermediate partition plate and the inner surface of the rotary shaft Communicating with the peripheral surface, the opening on the outer peripheral surface side Together constituting a sealed through-hole, than bored communication hole communicating with the through hole and the suction side in the cylinder for constituting the second rotary compression element, from the intermediate pressure sealed vessel Even in a situation where the pressure in the cylinder of the second rotary compression element is high, the cylinder is removed from the oil supply passage formed in the intermediate partition plate by using the suction pressure loss in the suction process in the second rotary compression element. The oil can be reliably supplied into the inside. As a result, the second rotary compression element can be reliably lubricated to ensure performance and improve reliability.
[0053]
In particular, the oil supply passage is formed by a through hole which is formed in the intermediate partition plate so as to communicate the outer peripheral surface of the intermediate partition plate and the inner peripheral surface on the rotating shaft side, and the opening on the outer peripheral surface side is sealed. Since the communication hole that connects the through hole and the suction side is formed in the cylinder for forming the second rotary compression element, it is easy to process the intermediate partition plate for forming the oil supply passage, and the production cost Will be kept low.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a rotary compressor according to an embodiment of the present invention.
FIG. 2 is a front view of the rotary compressor of FIG.
FIG. 3 is a side view of the rotary compressor of FIG. 1;
4 is another longitudinal sectional view of the rotary compressor of FIG. 1. FIG.
FIG. 5 is still another longitudinal sectional view of the rotary compressor of FIG. 1;
6 is a plan sectional view of an electric element portion of the rotary compressor of FIG. 1;
7 is an enlarged cross-sectional view of a rotary compression mechanism portion of the rotary compressor in FIG. 1. FIG.
8 is an enlarged cross-sectional view of a vane portion of a second rotary compression element of the rotary compressor of FIG. 1. FIG.
9 is a cross-sectional view of a lower support member and a lower cover of the rotary compressor of FIG.
10 is a bottom view of a lower support member of the rotary compressor in FIG. 1. FIG.
11 is a top view of an upper support member and an upper cover of the rotary compressor of FIG. 1. FIG.
12 is a cross-sectional view of an upper support member and an upper cover of the rotary compressor in FIG. 1. FIG.
13 is a top view of an intermediate partition plate of the rotary compressor in FIG. 1. FIG.
14 is a cross-sectional view taken along line AA in FIG.
15 is a top view of an upper cylinder of the rotary compressor in FIG. 1. FIG.
FIG. 16 is a diagram showing pressure fluctuation on the suction side of the upper cylinder of the rotary compressor of FIG. 1;
17 is a cross-sectional view for explaining the shape of a connecting portion of a rotary shaft of the rotary compressor in FIG. 1;
18 is a refrigerant circuit diagram of a hot water supply apparatus to which the rotary compressor of FIG. 1 is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Rotary compressor 12 Airtight container 12A End cap 14 Electric element 16 Rotating shaft 18 Rotation compression mechanism part 20 Terminal 32 1st rotation compression element 34 2nd rotation compression element 36 Intermediate | middle partition plate 38, 40 Cylinder 39, 41 Discharge port 42 Eccentric part 44 Eccentric part 46 Roller 48 Roller 50 Vane 54 Upper support member 56 Lower support member 62 Discharge silencer chamber 64 Discharge silencer chamber 66 Upper cover 68 Lower cover 70 Guide groove 70A Storage part 76 Spring (spring member)
78, 129 Main bolt 90 Connecting portion 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 131 Through hole (oil supply passage)
132 Sealant 133, 134 Communication hole 137 Plug 138 O-ring 141, 142, 143, 144 Sleeve 146 Accumulator 147, 148 Bracket 151 Hook 153 Hot water supply device 154 Gas cooler 156 Expansion valve 157 Evaporator 158 Defrost tube 159 Solenoid valve

Claims (1)

密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮されたガスを前記密閉容器内に吐出し、更にこの吐出された中間圧のガスを前記第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、
前記各回転圧縮要素をそれぞれ構成するためのシリンダと、
各シリンダ間に介在して前記各回転圧縮要素を仕切る中間仕切板と、
前記各シリンダの開口面をそれぞれ閉塞し、前記回転軸の軸受けを有する支持部材と、
前記回転軸に形成されたオイル孔と、
前記中間仕切板内に形成され、前記オイル孔と前記第2の回転圧縮要素の吸込側とを連通するための給油路とを備え、
該給油路を、前記中間仕切板内に穿設されて該中間仕切板の外周面と前記回転軸側の内周面とを連通し、外周面側の開口が封止された貫通孔により構成すると共に、該貫通孔と前記吸込側とを連通する連通孔を前記第2の回転圧縮要素を構成するためのシリンダに穿設したことを特徴とするロータリコンプレッサ。
An electric element and a first and a second rotary compression element driven by the electric element are provided in the sealed container, and the gas compressed by the first rotary compression element is discharged into the sealed container. In the rotary compressor for compressing the discharged intermediate pressure gas by the second rotary compression element,
A cylinder for constituting each of the rotary compression elements;
An intermediate partition plate that is interposed between the cylinders and partitions the rotary compression elements;
A support member that closes the opening surface of each cylinder and has a bearing for the rotating shaft;
An oil hole formed in the rotating shaft ;
An oil supply passage formed in the intermediate partition plate for communicating the oil hole and the suction side of the second rotary compression element;
The oil supply passage is formed by a through hole that is formed in the intermediate partition plate so as to connect the outer peripheral surface of the intermediate partition plate and the inner peripheral surface on the rotating shaft side, and the opening on the outer peripheral surface side is sealed. In addition , the rotary compressor is characterized in that a communication hole that communicates the through hole and the suction side is formed in a cylinder that constitutes the second rotary compression element .
JP2001295859A 2001-09-27 2001-09-27 Rotary compressor Expired - Fee Related JP3913507B2 (en)

Priority Applications (35)

Application Number Priority Date Filing Date Title
JP2001295859A JP3913507B2 (en) 2001-09-27 2001-09-27 Rotary compressor
US10/225,442 US7128540B2 (en) 2001-09-27 2002-08-22 Refrigeration system having a rotary compressor
EP02256240A EP1298324A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor with vane holding plug
ES06013468T ES2398963T3 (en) 2001-09-27 2002-09-10 Rotary vane compressor and defroster
EP06013470A EP1703132B1 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP06013468A EP1703130B1 (en) 2001-09-27 2002-09-10 Rotary vane compressor and defroster
EP04030238A EP1517036A3 (en) 2001-09-27 2002-09-10 A high pressure pump for an internal-combustion engine
EP04030233A EP1517041A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor with vane holding plug
EP04030239A EP1522733A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor with vane holding plug
ES06013470T ES2398245T3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP06013469A EP1703131A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP06013467A EP1703129B1 (en) 2001-09-27 2002-09-10 Rotary vane compressor
EP06013471A EP1703133A3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
ES06013467T ES2398363T3 (en) 2001-09-27 2002-09-10 Rotary vane compressor
CNB021435065A CN100376799C (en) 2001-09-27 2002-09-26 Compressor and its producing method, frost removing device of coolant loop, and freezing device
CN2006100743692A CN1847756B (en) 2001-09-27 2002-09-26 Defroster of refrigerant circuit
CN2008101256522A CN101307765B (en) 2001-09-27 2002-09-26 Compressor
CNB2006100743724A CN100425842C (en) 2001-09-27 2002-09-26 Compressor
CN2008101256471A CN101307764B (en) 2001-09-27 2002-09-26 Compressor
KR1020020058289A KR20030028388A (en) 2001-09-27 2002-09-26 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/747,285 US7174725B2 (en) 2001-09-27 2003-12-30 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/747,288 US20040151603A1 (en) 2001-09-27 2003-12-30 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/790,085 US7435063B2 (en) 2001-09-27 2004-03-02 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US10/790,181 US7435062B2 (en) 2001-09-27 2004-03-02 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigeration unit
US11/377,402 US7302803B2 (en) 2001-09-27 2006-03-17 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigerant unit
US11/896,346 US7762792B2 (en) 2001-09-27 2007-08-31 Compressor
US11/896,347 US7837449B2 (en) 2001-09-27 2007-08-31 Compressor, method for manufacturing the compressor, defroster of refrigerant circuit, and refrigerant unit
KR1020080067919A KR20080071961A (en) 2001-09-27 2008-07-14 Refrigeration unit
KR1020080067904A KR100862822B1 (en) 2001-09-27 2008-07-14 Rotary compressor
KR1020080067914A KR20080071959A (en) 2001-09-27 2008-07-14 Compressor
KR1020080067917A KR100892841B1 (en) 2001-09-27 2008-07-14 Defroster of refrigerant circuit
KR1020080067907A KR100892839B1 (en) 2001-09-27 2008-07-14 Closed type electric compressor
KR1020080067906A KR20080071956A (en) 2001-09-27 2008-07-14 Rotary compressor
KR1020080067910A KR100892840B1 (en) 2001-09-27 2008-07-14 Compressor
KR1020080067905A KR100892838B1 (en) 2001-09-27 2008-07-14 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001295859A JP3913507B2 (en) 2001-09-27 2001-09-27 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2003097476A JP2003097476A (en) 2003-04-03
JP3913507B2 true JP3913507B2 (en) 2007-05-09

Family

ID=19117215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001295859A Expired - Fee Related JP3913507B2 (en) 2001-09-27 2001-09-27 Rotary compressor

Country Status (1)

Country Link
JP (1) JP3913507B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223082B2 (en) * 2003-03-25 2007-05-29 Sanyo Electric Co., Ltd. Rotary compressor
JP6978359B2 (en) * 2018-03-22 2021-12-08 東芝キヤリア株式会社 Sealed compressor and refrigeration cycle device

Also Published As

Publication number Publication date
JP2003097476A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
US6732542B2 (en) Defroster of refrigerant circuit and rotary compressor
JP3728227B2 (en) Rotary compressor
JP3963740B2 (en) Rotary compressor
JP2006214445A (en) Rotary compressor
JP4020612B2 (en) Rotary compressor
JP3913507B2 (en) Rotary compressor
JP4024056B2 (en) Rotary compressor
JP4236400B2 (en) Defroster for refrigerant circuit
JP3963695B2 (en) Manufacturing method of rotary compressor
JP3963703B2 (en) Electric compressor
JP3986283B2 (en) Rotary compressor
JP2003201982A (en) Rotary compressor
JP3883837B2 (en) Rotary compressor
JP3963691B2 (en) Hermetic electric compressor
JP3762690B2 (en) Rotary compressor
JP3825670B2 (en) Electric compressor
JP4020622B2 (en) Rotary compressor
JP2006200541A (en) Hermetic electric compressor
JP4401365B2 (en) Rotary compressor
JP2003176796A (en) Rotary compressor
JP2006200542A (en) Hermetic electric compressor
JP2003206879A (en) Rotary compressor
JP4401364B2 (en) Rotary compressor
JP2003201981A (en) Rotary compressor
JP4169620B2 (en) Refrigerant cycle equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

R151 Written notification of patent or utility model registration

Ref document number: 3913507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees