JP3905692B2 - Wind power generation control method - Google Patents

Wind power generation control method Download PDF

Info

Publication number
JP3905692B2
JP3905692B2 JP2000208987A JP2000208987A JP3905692B2 JP 3905692 B2 JP3905692 B2 JP 3905692B2 JP 2000208987 A JP2000208987 A JP 2000208987A JP 2000208987 A JP2000208987 A JP 2000208987A JP 3905692 B2 JP3905692 B2 JP 3905692B2
Authority
JP
Japan
Prior art keywords
storage battery
wind turbine
output
power
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000208987A
Other languages
Japanese (ja)
Other versions
JP2002027679A (en
Inventor
真司 有永
正人 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000208987A priority Critical patent/JP3905692B2/en
Publication of JP2002027679A publication Critical patent/JP2002027679A/en
Application granted granted Critical
Publication of JP3905692B2 publication Critical patent/JP3905692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/1016Purpose of the control system in variable speed operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Wind Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、風力により発電する風力発電装置の制御方法及びその装置に関し、特に、風速変動による発電電力の変動を抑制するための風力発電制御方法及びその装置に関する。
【0002】
風力発電装置は,風速の変動により発電電力が変動する。その変動に2種類あり、風車の受風領域内の風速分布変化によりロータ回転数の3倍の周波数(ロータが3ブレードの場合)で変動するものと、長周期の風速変動によるものである。前者の変動は系統側の電圧変動をもたらし、後者は周波数変動をもたらすため、風力発電装置導入の阻害要因になっている。これら電力の変動を抑える必要がある。
【0003】
【従来の技術】
風力発電装置の電力変動を抑える制御方法として、風車のブレードのピッチ角を、風車発電出力が一定となるように、フィードバック制御する方法が使用されている。この方法では、風車のブレードへの風の流入角を変化して、風速変化に対し、風車発電出力を一定制御するものである。しかし、この方法では、大きなブレードを駆動するため、応答性が低く、有効に電力変動を防止することは困難である。
【0004】
このため、風車発電出力に応じて、風車発電機を可変速制御するとともに、蓄電池と組合せたハイブリッドシステムが提案されている(例えば、特開平11−82282号公報、特開平11−299295号公報)。
【0005】
このシステムでは、ロータ回転数の3倍の周波数での短周期の変動は,風車発電機を可変速運転することにより取り除くことができ、長周期の変動は蓄電池の充放電により平滑化できる。
【0006】
【発明が解決しようとする課題】
しかし、この方法では風車を可変速制御するインバータ等の可変速制御機構を必要とするため、既に稼動している風車発電装置には適用できないという問題がある。又、蓄電池の他に、可変速制御機構を必要とするため、コストがかかるという問題も生じる。
【0007】
従って、本発明の目的は、可変速制御機構を設けることなく、風車発電出力変動を抑制するための風車発電制御方法及びその装置を提供するにある。
【0008】
又、本発明の他の目的は、既設の風車発電装置に蓄電池を併設して、短周期の出力変動を抑制するための風車発電制御方法及びその装置を提供するにある。
【0009】
更に、本発明の他の目的は、既設の風車発電装置に蓄電池を併設して、長周期の変動も充放電の最適スケジューリングにより平準化するための風車発電制御方法及びその装置を提供するにある。
【0010】
【課題を解決するための手段】
本発明の風力発電制御方法は、併設する蓄電池の充放電により出力を平準化する風力発電装置の制御方法において、風況予測データから風車出力予想値を計算し、該風車出力予想値に基づいて前記蓄電の充放電スケジューリングと平準化目標値の設定とを行うことを特徴とする。
【0011】
本発明の風力発電制御方法は、前記風車出力予想値が前記平準化目標値より大の期間を前記蓄電池充電期間、小の期間を前記蓄電池の放電期間とし、前記蓄電池の充放電量が過大又は過小とならない値に平準化目標値を設定することを特徴とする。
【0012】
本発明は、前記スケジューリング期間において、前記蓄電池の充電電気量が放電電気量よりも大となる前記平準化目標値を設定することを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明を、風車発電装置、蓄電池制御器、他の実施の形態の順で説明する。
【0017】
[風車発電装置]
図1は、本発明の一実施の形態の風車発電装置の制御系統図であり、図2は、図1の風力発電システムの構成図である。
【0018】
図1に示すように、風力発電装置1は、複数の風車ブレード11を有するロータ10を有する。風車ブレード11は、3つ設けられる。ロータ10は、増速機12を介し風車発電機3に接続される。従って、風車ブレード11が受風して、ロータ10が回転する。ロータ10の回転は、増速機12で増速され、風車発電機3を回転して、発電(AC)が行われる。
【0019】
風車制御器17には、風車発電機3の発電出力の電力を検出する電力検出器16の検出電力と、発電出力の電流を検出する電流検出器15の検出電流が入力され、且つ風車の風向、風速を検出する風速風向計14の検出風向、風速が入力される。ロータ10には、ブレード11のピッチ角を可変にするためのピッチ駆動機構が設けられている。風車制御器17は、検出電力と検出電流が所定の値になるようなフィードバック制御値を演算し、且つ検出風向、風速から突風を検出し、制限値を演算する。そして、いずれか大きい方を選択し、ピッチ駆動機構のピッチ角検出値に応じて、ピッチ制御信号を出力する。これにより、ブレード11のピッチ角が、発電電力、電流を所定値になるように、制御される。
【0020】
この風車発電装置1は、既知の構成であり、既存の風車発電装置であり、本発明では、更に、発電制御装置2と蓄電池3が併設されている。
【0021】
発電制御装置2は、風車発電機の発電電力を検出する第1の電力検出器20、風車発電機の発電電流を検出する第1の電流検出器21、蓄電池充放電電力を検出する第2の電力検出器23、蓄電池充放電電流を検出する第2の電流検出器22、蓄電池3の充放電を行う充放電器24、蓄電池充放電電圧(DC)を検出する電圧検出器25、蓄電池充放電電流(DC)を検出する電流検出器26、蓄電池制御器4とを有する。
【0022】
蓄電池制御器4は,風車発電機電力・電流,蓄電池充放電電力・電流(交流),直流部電圧,電流を取り込み,系統へ送られる電力が平滑化されるように充放電器24へ充放電電力指令値を出力する。充放電器24では,その指令値に基ずき蓄電池3の充放電量を制御する。更に、蓄電池制御器4は、電話回線等のネットワークを介し風況予測データを受け、これによっても充放電を制御する。蓄電池制御器4は、例えば、CPUで構成される。
【0023】
図2に示すように、発電制御装置2、蓄電池3を備えた風車発電装置1は、複数並列に接続され、電力系統に大きな電力を供給する。
【0024】
[蓄電池制御器]
図3は、本発明の一実施の形態の蓄電池制御器4のブロック図、図4は、その放電制御動作の説明図、図5は、その充電制御動作の説明図、図6は、その充放電スケジューリングの説明図である。
【0025】
図3に示すように、蓄電池制御器4は、風車出力変動計算部40、充放電切替機能部41、電力上限値設定部42、加算部43、電力下限値設定部44、加算部45、充放電スケジューリング計算部46とを有する。蓄電池制御器4をCPUで構成する場合には、これらは、CPUの実行するプログラムで実現される。
【0026】
風車出力変動計算部40は、第1の電力検出器20、第1の電流検出器21から計算した風車発電機出力の過去一定時間、例えば、10分程度(最大10分で更新する)の計測データから,平均出力,最大出力,最小出力を求める。これら信号は、風車出力変動を抑えた充放電制御を行なうためのものである。既設風車からの信号はもらわない。蓄電池充放電切替部41は、充放電スケジューリングに応じて、充放電の切替えを行う。
【0027】
図4に示すように、蓄電池放電制御が指定された場合には、過去10分程度の風車出力変動の最大出力を上限値として,(風車出力+蓄電池放電電力)が,その上限値となるように放電電力制御を行う。即ち、電力上限値設定部42に、過去10分程度の風車出力変動の最大出力が上限値に設定され、加算部43は、上限値から風車出力を減算し、放電電力指令値を生成する。充放電器24は、放電電力制御回路24−1と、充電電力制御回路24−2とで構成されている。放電電力制御回路24−1は、放電指令値に応じた放電電力を蓄電池3から放電する。
【0028】
ここで、過去10分程度の風車出力変動の最大出力は、次の期間(10分程度)の風車出力の最大出力と予測し、(風車出力+蓄電池放電電力)が,その予測最大出力(上限値)となるように放電電力制御を行う。このため、ロータ回転数の3倍の周波数での短周期の変動を、蓄電池3の放電制御により、抑圧できる。
【0029】
又、過去10分程度の風車出力変動の最大出力を、次の期間(10分程度)の風車出力の最大出力と予測しているため、風速変動があっても、蓄電池3の放電電力を最小限とすることができ、蓄電池3の負担が少なく、蓄電池3の寿命を長く維持できる。
【0030】
次に、蓄電池3へ充電する場合には,図5に示すように、過去の風車出力変動の最小出力を下限値として,(風車出力−蓄電池充電電力)が,その下限値となるように充電電力制御を行う。即ち、電力下限値設定部44に、過去10分程度の風車出力変動の最小出力が下限値に設定され、加算部45は、風車出力から下限値を減算し、充電電力指令値を生成する。充電電力制御回路24−2は、充電指令値に応じた充電電力を蓄電池3に充電する。
【0031】
ここで、過去10分程度の風車出力変動の最小出力は、次の期間(10分程度)の風車出力の最小出力と予測し、(風車出力−蓄電池充電電力)が,その予測最小出力(下限値)となるように充電電力制御を行う。このため、ロータ回転数の3倍の周波数での短周期の変動を、蓄電池3の充電制御により、抑圧できる。
【0032】
又、過去10分程度の風車出力変動の最小出力を、次の期間(10分程度)の風車出力の最小出力と予測しているため、風速変動があっても、蓄電池3の充電電力を最小限とすることができ、蓄電池3の負担が少なく、蓄電池3の寿命を長く維持できる。
【0033】
これらの充放電制御により,風車発電機の可変速運転機構を使用することなく、風車出力変動を抑えることができる。尚、蓄電池制御器4、充放電器24は、充放電中は電気量(充放電電力、電流)の監視を行ない,過放電および過充電とならないように制御するとともに,充放電の切替もなめらかに行う。
【0034】
次に、前述の充放電切替は、風車又は電力系統の中央指令所から充放電スケジューリングコマンドにより、制御できる。この実施の形態では、蓄電池制御器4が、自動的に充放電スケジューリングを計算し、必要なときに充放電ができるようにしている。
【0035】
即ち、充放電スケジューリング計算部46は、図6に示すように、ネットワークを介し気象予報機関から受けた風速,風向などの気象情報から,風車出力値の予想を行い,風車出力が平準化されるように、充放電のスケジューリングを行う。放電したいときに、蓄電池3の容量不足となったり,充電したいときに、蓄電池3が満充電状態とならないようにするためである。充電電気量は,放電電気量よりも約20%多く電力を必要とすることから,平準化目標値Paveは,風車出力予想値において,充電電力の方が20%多くなるように重み付けして計算する。
【0036】
平準化目標値Paveの計算は、予測時間T,風車出力予想値P(t)とし、下記のように行われる。
【0037】
時刻tの充電電力量fchg(t)は、下記(1)式で得られる。
【0038】
【数1】

Figure 0003905692
従って、予測期間Tの平均充電電力量Pchgは、下記(2)式で計算される。
【0039】
【数2】
Figure 0003905692
一方、時刻tの放電電力量fdchg(t)は、下記(3)式で得られる。
【0040】
【数3】
Figure 0003905692
従って、予測期間Tの平均放電電力量Pdchgは、下記(4)式で計算される。
【0041】
【数4】
Figure 0003905692
又、前述のように、下記(5)式が条件であるから、
1.2Pchg=Pdchg (5)
(式5)が成り立つように、(式1)乃至(式4)より平準化目標値Paveを計算する。
【0042】
風車出力予想値P(t)は、各時刻の予想風速値に応じて、風車モデルに従い、計算される。従って、(風車出力予想値P(t)−平準化目標値Pave)を計算し、計算結果が正なら、充電期間、負なら、放電期間と決定する。
【0043】
例えば、24時間毎に、24時間分の風速予想を受ける場合には、24時間毎に、T=24時間の風車出力予想値P(t)、平準化目標値Pave、(風車出力予想値P(t)−平準化目標値Pave)を計算し、24時間の充放電期間をスケジューリングする。
【0044】
このように、蓄電池制御器4が、自動的に充放電スケジューリングを計算し、必要なときに充放電ができるようにしているため、長周期の変動も自動的に、充放電により、平準化できる。
【0045】
[他の実施の形態]
図7は、本発明の他の実施の形態の蓄電池制御器4のブロック図、図8は、その充放電制御動作の説明図である。
【0046】
図7に示すように、蓄電池制御器4は、風車出力変動計算部47、加算部43、加算部45とを有する。蓄電池制御器4をCPUで構成する場合には、これらは、CPUの実行するプログラムで実現される。
【0047】
風車出力変動計算部47は、第1の電力検出器20、第1の電流検出器21から計算した風車発電機出力の過去一定時間、例えば、10分程度(最大10分で更新する)の計測データから,平均出力を求める。
【0048】
図8に示すように、風車出力が、過去10分程度の風車出力変動の平均値以下の場合には、加算部43は、平均値から風車出力を減算し、放電電力指令値を生成する。放電電力制御回路24−1は、放電指令値に応じた放電電力を蓄電池3から放電する。
【0049】
次に、(風車出力−蓄電池充電電力)が,正の場合には、充電電力制御を行う。即ち、加算部45は、風車出力から平均値を減算し、充電電力指令値を生成する。充電電力制御回路24−2は、充電指令値に応じた充電電力を蓄電池3に充電する。
【0050】
ここで、過去10分程度の風車出力変動の平均出力は、次の期間(10分程度)の風車出力の平均出力と予測し、(風車出力+蓄電池充電電力)が,その予測平均値となるように充放電電力制御を行う。このため、ロータ回転数の3倍の周波数での短周期の変動を、蓄電池3の充電制御により、抑圧できる。
【0051】
又、過去10分程度の風車出力変動の平均出力を、次の期間(10分程度)の風車出力の平均出力と予測しているため、充放電のスケジューリングは必要ない。風速変動に対し、充放電量が多くなる可能性があるが、制御を簡易化できるという利点がある。
【0052】
尚、図3の実施の形態において、充放電スケジューリングを中央指令所等で行う場合には、充放電スケジューリング計算部46は不要となる。
【0053】
以上、本発明を実施の形態により説明したが、本発明の趣旨の範囲内において、種々の変形が可能であり、これらを本発明の技術的範囲から排除するものではない。
【0054】
【発明の効果】
併設する蓄電池の充放電により出力を平準化する風力発電制御方法において、風況予測データから風車出力予想値を計算し、該風車出力予想値に基づいて前記蓄電池の充放電スケジューリングと平準化目標値の設定とを行うため、自動的に充放電スケジューリングを計算し、必要なときに充放電ができるようにしているため、長周期の変動も自動的に、充放電により、平準化できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の風車発電装置の制御系統図である。
【図2】図1の風車発電装置のシステム系統図である。
【図3】図1の蓄電池制御器のブロック図である。
【図4】図3の蓄電池放電制御動作の説明図である。
【図5】図3の蓄電池充電制御動作の説明図である。
【図6】図3の蓄電池制御器の充放電スケジューリングの説明図である。
【図7】本発明の他の実施の形態の蓄電池制御器のブロック図である。
【図8】図7の蓄電池充放電制御動作の説明図である。
【符号の説明】
1 風車発電装置
2 発電制御装置
3 蓄電池
4 蓄電池制御器
24 充放電器
40、47 風車出力変動計算部
41 充放電切替部
42 上限値設定部
43、45 加算部
44 下限値設定部
46 充放電スケジューリング計算部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for controlling a wind power generator that generates power using wind power, and more particularly, to a wind power control method and apparatus for suppressing fluctuations in generated power due to wind speed fluctuations.
[0002]
In the wind turbine generator, the generated power fluctuates due to fluctuations in wind speed. There are two types of fluctuations: fluctuations at a frequency three times the rotor speed (when the rotor has three blades) due to changes in the wind speed distribution in the wind-receiving area of the windmill, and long-period fluctuations in wind speed. The former fluctuation causes voltage fluctuation on the grid side, and the latter causes frequency fluctuation, which is an impediment to the introduction of the wind power generator. It is necessary to suppress these power fluctuations.
[0003]
[Prior art]
As a control method for suppressing the power fluctuation of the wind turbine generator, a method is used in which the pitch angle of the wind turbine blade is feedback controlled so that the wind turbine power generation output is constant. In this method, a wind turbine power generation output is controlled to be constant with respect to a wind speed change by changing a wind inflow angle to a blade of a wind turbine. However, since this method drives a large blade, the response is low, and it is difficult to effectively prevent power fluctuation.
[0004]
For this reason, a hybrid system in which the wind turbine generator is controlled at a variable speed according to the wind turbine power generation output and combined with a storage battery has been proposed (for example, Japanese Patent Laid-Open Nos. 11-82282 and 11-299295). .
[0005]
In this system, short-cycle fluctuations at a frequency three times the rotor speed can be eliminated by operating the wind turbine generator at a variable speed, and long-cycle fluctuations can be smoothed by charging and discharging the storage battery.
[0006]
[Problems to be solved by the invention]
However, this method requires a variable speed control mechanism such as an inverter for controlling the wind turbine at a variable speed, and therefore has a problem that it cannot be applied to a wind turbine generator already in operation. Further, since a variable speed control mechanism is required in addition to the storage battery, there is a problem that costs are increased.
[0007]
Accordingly, it is an object of the present invention to provide a wind turbine power generation control method and apparatus for suppressing wind turbine power generation output fluctuation without providing a variable speed control mechanism.
[0008]
Another object of the present invention is to provide a wind turbine power generation control method and apparatus for suppressing output fluctuations in a short cycle by adding a storage battery to an existing wind turbine power generator.
[0009]
Furthermore, another object of the present invention is to provide a wind turbine power generation control method and apparatus for leveling fluctuations of long periods by optimal scheduling of charge and discharge by adding a storage battery to an existing wind turbine power generation device. .
[0010]
[Means for Solving the Problems]
The wind power generation control method of the present invention is a wind power generation apparatus control method for leveling the output by charging / discharging a storage battery, and calculates a wind turbine output predicted value from wind condition prediction data, and based on the wind turbine output predicted value. and performing the setting of the charge and discharge scheduling and leveling target value of the electric storage battery.
[0011]
In the wind power generation control method of the present invention, the period when the wind turbine output expected value is larger than the leveling target value is set as the storage battery charging period, and the small period is set as the discharging period of the storage battery, and the charging / discharging amount of the storage battery is excessive or The leveling target value is set to a value that does not become too small .
[0012]
The present invention, in the scheduling period, characterized in that the charge electrical quantity of the battery is set to the equalization target value becomes larger than the discharge quantity of electricity.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in the order of a wind turbine generator, a storage battery controller, and other embodiments.
[0017]
[Windmill generator]
FIG. 1 is a control system diagram of a wind turbine generator according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of the wind power generation system of FIG.
[0018]
As shown in FIG. 1, the wind power generator 1 includes a rotor 10 having a plurality of windmill blades 11. Three windmill blades 11 are provided. The rotor 10 is connected to the wind turbine generator 3 via the speed increaser 12. Therefore, the windmill blade 11 receives wind and the rotor 10 rotates. The rotation of the rotor 10 is increased by the speed increaser 12, and the wind turbine generator 3 is rotated to generate power (AC).
[0019]
The wind turbine controller 17 receives the detection power of the power detector 16 that detects the power of the power generation output of the wind turbine generator 3 and the detection current of the current detector 15 that detects the current of the power generation output, and the wind direction of the wind turbine. The wind direction and the wind speed detected by the anemometer 14 for detecting the wind speed are input. The rotor 10 is provided with a pitch drive mechanism for making the pitch angle of the blades 11 variable. The windmill controller 17 calculates a feedback control value so that the detected power and the detected current become predetermined values, detects a gust from the detected wind direction and wind speed, and calculates a limit value. Then, the larger one is selected, and a pitch control signal is output according to the detected pitch angle value of the pitch driving mechanism. Thereby, the pitch angle of the blade 11 is controlled so that the generated power and the current become predetermined values.
[0020]
This wind turbine generator 1 is a known configuration and is an existing wind turbine generator. In the present invention, a power generation control device 2 and a storage battery 3 are further provided.
[0021]
The power generation control device 2 includes a first power detector 20 that detects the generated power of the wind turbine generator, a first current detector 21 that detects the generated current of the wind turbine generator, and a second that detects the storage battery charge / discharge power. Power detector 23, second current detector 22 for detecting storage battery charge / discharge current, charger / discharger 24 for charging / discharging storage battery 3, voltage detector 25 for detecting storage battery charge / discharge voltage (DC), storage battery charge / discharge It has a current detector 26 for detecting current (DC) and a storage battery controller 4.
[0022]
The storage battery controller 4 takes in wind turbine generator power / current, storage battery charge / discharge power / current (AC), DC voltage, and current, and charges / discharges to the charger / discharger 24 so that the power sent to the system is smoothed. Output power command value. The charger / discharger 24 controls the charge / discharge amount of the storage battery 3 based on the command value. Furthermore, the storage battery controller 4 receives wind condition prediction data via a network such as a telephone line, and controls charging / discharging also by this. The storage battery controller 4 is constituted by a CPU, for example.
[0023]
As shown in FIG. 2, a plurality of wind turbine generators 1 including a power generation control device 2 and a storage battery 3 are connected in parallel to supply large power to the power system.
[0024]
[Storage battery controller]
FIG. 3 is a block diagram of the storage battery controller 4 according to an embodiment of the present invention, FIG. 4 is an explanatory diagram of the discharge control operation, FIG. 5 is an explanatory diagram of the charge control operation, and FIG. It is explanatory drawing of discharge scheduling.
[0025]
As shown in FIG. 3, the storage battery controller 4 includes a windmill output fluctuation calculation unit 40, a charge / discharge switching function unit 41, a power upper limit setting unit 42, an adding unit 43, a power lower limit setting unit 44, an adding unit 45, and a charging unit 45. And a discharge scheduling calculation unit 46. When the storage battery controller 4 is constituted by a CPU, these are realized by a program executed by the CPU.
[0026]
The wind turbine output fluctuation calculation unit 40 measures the wind turbine generator output calculated from the first power detector 20 and the first current detector 21 for a past fixed time, for example, about 10 minutes (updated at a maximum of 10 minutes). Find the average output, maximum output, and minimum output from the data. These signals are for performing charge / discharge control while suppressing fluctuations in the wind turbine output. No signal from the existing windmill. The storage battery charge / discharge switching unit 41 performs charge / discharge switching according to the charge / discharge scheduling.
[0027]
As shown in FIG. 4, when the storage battery discharge control is designated, the maximum output of the wind turbine output fluctuation in the past 10 minutes or so is set as the upper limit value, and (wind turbine output + storage battery discharge power) is set to the upper limit value. Discharge power control is performed. That is, the maximum output of the wind turbine output fluctuation for the past 10 minutes is set to the upper limit value in the power upper limit setting unit 42, and the adding unit 43 subtracts the wind turbine output from the upper limit value to generate a discharge power command value. The charger / discharger 24 includes a discharge power control circuit 24-1 and a charge power control circuit 24-2. The discharge power control circuit 24-1 discharges the discharge power corresponding to the discharge command value from the storage battery 3.
[0028]
Here, the maximum output of the wind turbine output fluctuation in the past about 10 minutes is predicted as the maximum output of the wind turbine output in the next period (about 10 minutes), and (wind turbine output + storage battery discharge power) is the predicted maximum output (upper limit). Value)). For this reason, short cycle fluctuations at a frequency three times the rotor rotational speed can be suppressed by the discharge control of the storage battery 3.
[0029]
In addition, since the maximum output of the wind turbine output fluctuation in the past 10 minutes is predicted as the maximum output of the wind turbine output in the next period (about 10 minutes), the discharge power of the storage battery 3 is minimized even if there is a wind speed fluctuation. The load of the storage battery 3 is small, and the life of the storage battery 3 can be maintained long.
[0030]
Next, when charging the storage battery 3, as shown in FIG. 5, the minimum output of the past windmill output fluctuation is set as a lower limit value, and (windmill output-storage battery charging power) is charged so as to be the lower limit value. Perform power control. That is, the minimum output of the wind turbine output fluctuation for about the past 10 minutes is set to the lower limit value in the power lower limit setting unit 44, and the adding unit 45 subtracts the lower limit value from the wind turbine output to generate the charging power command value. The charging power control circuit 24-2 charges the storage battery 3 with charging power corresponding to the charging command value.
[0031]
Here, the minimum output of the wind turbine output fluctuation for the past 10 minutes is predicted to be the minimum output of the wind turbine output for the next period (about 10 minutes), and (wind turbine output-battery charging power) is the predicted minimum output (lower limit). Value)). For this reason, short cycle fluctuations at a frequency three times the rotor rotational speed can be suppressed by the charging control of the storage battery 3.
[0032]
Further, since the minimum output of the wind turbine output fluctuation for the past 10 minutes is predicted as the minimum output of the wind turbine output for the next period (about 10 minutes), the charging power of the storage battery 3 is minimized even if there is a wind speed fluctuation. The load of the storage battery 3 is small, and the life of the storage battery 3 can be maintained long.
[0033]
By these charge / discharge control, it is possible to suppress the wind turbine output fluctuation without using the variable speed operation mechanism of the wind turbine generator. The storage battery controller 4 and the charger / discharger 24 monitor the amount of electricity (charging / discharging power and current) during charging / discharging, and control so as not to cause over-discharging and over-charging, and switching between charging / discharging is also smooth. To do.
[0034]
Next, the above-described charge / discharge switching can be controlled by a charge / discharge scheduling command from a central command station of the wind turbine or the power system. In this embodiment, the storage battery controller 4 automatically calculates charge / discharge scheduling so that charge / discharge can be performed when necessary.
[0035]
That is, as shown in FIG. 6, the charge / discharge scheduling calculation unit 46 predicts the wind turbine output value from the weather information such as wind speed and wind direction received from the weather forecast agency via the network, and the wind turbine output is leveled. Thus, scheduling of charging / discharging is performed. This is to prevent the storage battery 3 from being fully charged when the capacity of the storage battery 3 becomes insufficient when it is desired to discharge or when it is desired to charge the battery. Since the amount of charged electricity requires about 20% more electric power than the amount of discharged electricity, the leveling target value Pave is calculated by weighting so that the charged power is 20% larger in the wind turbine output expected value. To do.
[0036]
The calculation of the leveling target value Pave is performed as follows with the prediction time T and the wind turbine output prediction value P (t).
[0037]
The charging power amount fchg (t) at time t is obtained by the following equation (1).
[0038]
[Expression 1]
Figure 0003905692
Therefore, the average charging power amount Pchg in the prediction period T is calculated by the following equation (2).
[0039]
[Expression 2]
Figure 0003905692
On the other hand, the discharge electric energy fdchg (t) at time t is obtained by the following equation (3).
[0040]
[Equation 3]
Figure 0003905692
Therefore, the average discharge power amount Pdchg in the prediction period T is calculated by the following equation (4).
[0041]
[Expression 4]
Figure 0003905692
Also, as mentioned above, the following equation (5) is a condition.
1.2Pchg = Pdchg (5)
The leveling target value Pave is calculated from (Expression 1) to (Expression 4) so that (Expression 5) is satisfied.
[0042]
The predicted wind turbine output value P (t) is calculated according to the wind turbine model according to the predicted wind speed value at each time. Therefore, (wind turbine output expected value P (t) −leveling target value Pave) is calculated, and if the calculation result is positive, it is determined as a charging period, and if it is negative, it is determined as a discharging period.
[0043]
For example, when receiving wind speed predictions for 24 hours every 24 hours, T = 24 hours wind turbine output expected value P (t), leveling target value Pave, (wind turbine output expected value P (T) -leveling target value Pave) is calculated and a charge / discharge period of 24 hours is scheduled.
[0044]
In this way, the storage battery controller 4 automatically calculates charge / discharge scheduling so that charge / discharge can be performed when necessary, so that fluctuations in long periods can also be automatically leveled by charge / discharge. .
[0045]
[Other embodiments]
FIG. 7 is a block diagram of the storage battery controller 4 according to another embodiment of the present invention, and FIG. 8 is an explanatory diagram of the charge / discharge control operation.
[0046]
As shown in FIG. 7, the storage battery controller 4 includes a windmill output fluctuation calculation unit 47, an addition unit 43, and an addition unit 45. When the storage battery controller 4 is constituted by a CPU, these are realized by a program executed by the CPU.
[0047]
The wind turbine output fluctuation calculation unit 47 measures the wind turbine generator output calculated from the first power detector 20 and the first current detector 21 for a past certain time, for example, about 10 minutes (updates at a maximum of 10 minutes). Find the average output from the data.
[0048]
As shown in FIG. 8, when the wind turbine output is equal to or less than the average value of the wind turbine output fluctuation for the past 10 minutes, the adding unit 43 subtracts the wind turbine output from the average value to generate a discharge power command value. The discharge power control circuit 24-1 discharges the discharge power corresponding to the discharge command value from the storage battery 3.
[0049]
Next, when (wind turbine output-storage battery charging power) is positive, charging power control is performed. That is, the adding unit 45 subtracts the average value from the windmill output to generate a charging power command value. The charging power control circuit 24-2 charges the storage battery 3 with charging power corresponding to the charging command value.
[0050]
Here, the average output of the wind turbine output fluctuation for the past 10 minutes is predicted as the average output of the wind turbine output for the next period (about 10 minutes), and (wind turbine output + storage battery charging power) is the predicted average value. Thus, charge / discharge power control is performed. For this reason, short cycle fluctuations at a frequency three times the rotor rotational speed can be suppressed by the charging control of the storage battery 3.
[0051]
In addition, since the average output of the wind turbine output fluctuation in the past 10 minutes is predicted as the average output of the wind turbine output in the next period (about 10 minutes), charging / discharging scheduling is not necessary. Although there is a possibility that the charge / discharge amount increases with respect to the wind speed fluctuation, there is an advantage that the control can be simplified.
[0052]
In the embodiment of FIG. 3, when charge / discharge scheduling is performed at a central command office or the like, the charge / discharge scheduling calculation unit 46 is not necessary.
[0053]
As mentioned above, although this invention was demonstrated by embodiment, in the range of the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the technical scope of this invention.
[0054]
【The invention's effect】
In a wind power generation control method for leveling output by charging / discharging a storage battery , an estimated wind turbine output value is calculated from wind condition prediction data, and charge / discharge scheduling and leveling target value of the storage battery are calculated based on the predicted wind turbine output value. for setting and automatically calculate the charge and discharge scheduling, because it allow charge and discharge when needed, the variation of the long period is also automatically, by charging and discharging, can be leveled.
[Brief description of the drawings]
FIG. 1 is a control system diagram of a wind turbine generator according to an embodiment of the present invention.
FIG. 2 is a system diagram of the wind turbine generator of FIG.
FIG. 3 is a block diagram of the storage battery controller of FIG. 1;
4 is an explanatory diagram of a storage battery discharge control operation of FIG. 3; FIG.
5 is an explanatory diagram of a storage battery charge control operation of FIG. 3; FIG.
6 is an explanatory diagram of charge / discharge scheduling of the storage battery controller of FIG. 3; FIG.
FIG. 7 is a block diagram of a storage battery controller according to another embodiment of the present invention.
FIG. 8 is an explanatory diagram of the storage battery charge / discharge control operation of FIG. 7;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Windmill power generator 2 Power generation control apparatus 3 Storage battery 4 Storage battery controller 24 Charger / discharger 40, 47 Windmill output fluctuation calculation part 41 Charge / discharge switching part 42 Upper limit value setting part 43, 45 Adder part 44 Lower limit value setting part 46 Charge / discharge scheduling Calculation part

Claims (3)

併設する蓄電池の充放電により出力を平準化する風力発電制御方法において、
風況予測データから風車出力予想値を計算し、該風車出力予想値に基づいて前記蓄電の充放電スケジューリングと平準化目標値の設定とを行うことを特徴とする風力発電制御方法。
In the wind power generation control method that equalizes the output by charging and discharging the storage battery provided in the facility ,
Calculate the wind turbine output predicted values from the wind prediction data, wind power control method characterized by performing the setting of the charging and discharging scheduling and leveling target value of the electric storage battery based on該風vehicle output expected value.
前記風車出力予想値が前記平準化目標値より大の期間を前記蓄電池充電期間、小の期間を前記蓄電池の放電期間とし、前記蓄電池の充放電量が過大又は過小とならない値に平準化目標値を設定することを特徴とする請求項1記載の風力発電制御方法。 A period during which the wind turbine output expected value is larger than the leveling target value is the storage battery charging period, and a period during which the windmill output expected value is short is the discharging period of the storage battery. wind power control method according to claim 1, wherein setting the. 前記スケジューリング期間において、前記蓄電池の充電電気量が放電電気量よりも大となる前記平準化目標値を設定することを特徴とする請求項2記載の風力発電制御方法 3. The wind power generation control method according to claim 2, wherein the leveling target value is set such that a charge electricity amount of the storage battery is larger than a discharge electricity amount in the scheduling period .
JP2000208987A 2000-07-10 2000-07-10 Wind power generation control method Expired - Fee Related JP3905692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000208987A JP3905692B2 (en) 2000-07-10 2000-07-10 Wind power generation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000208987A JP3905692B2 (en) 2000-07-10 2000-07-10 Wind power generation control method

Publications (2)

Publication Number Publication Date
JP2002027679A JP2002027679A (en) 2002-01-25
JP3905692B2 true JP3905692B2 (en) 2007-04-18

Family

ID=18705472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000208987A Expired - Fee Related JP3905692B2 (en) 2000-07-10 2000-07-10 Wind power generation control method

Country Status (1)

Country Link
JP (1) JP3905692B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073310A1 (en) 2008-12-22 2010-07-01 日本風力開発株式会社 Power management control system for natural energy power generation system provided with storage battery
CN101994651A (en) * 2009-08-18 2011-03-30 株式会社日立制作所 Windfarm control system, windfarm control device and control method

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1562281T3 (en) * 2002-11-15 2018-02-05 Zephyr Corp Wind Generator
CA2527597A1 (en) * 2003-06-13 2004-12-29 Ben M. Enis A method of coordinating and stabilizing the delivery of wind generated energy
JP2005205970A (en) * 2004-01-21 2005-08-04 Fuji Electric Systems Co Ltd Voltage compensation method
US20070035135A1 (en) * 2004-05-07 2007-02-15 Mitsubishi Denki Kabushiki Kaisha Wind power generation evaluation system and predictive control service system for use with wind power generator
JP2006204081A (en) * 2004-12-24 2006-08-03 Hitachi Ltd Supply and demand adjusting method, system and service by distributed power source
WO2006075742A1 (en) * 2005-01-17 2006-07-20 Matsushita Electric Industrial Co., Ltd. Heat pump application device and power recovering device using expander
JP4609156B2 (en) * 2005-03-31 2011-01-12 株式会社明電舎 Power storage device control device
JP4575272B2 (en) * 2005-10-27 2010-11-04 株式会社日立製作所 Distributed power system and system stabilization method
JP2007124780A (en) * 2005-10-27 2007-05-17 Hitachi Industrial Equipment Systems Co Ltd Power storage system and wind power station
JP5354840B2 (en) * 2006-02-24 2013-11-27 沖縄電力株式会社 New energy generation system output fluctuation mitigation device
JP4527092B2 (en) * 2006-08-23 2010-08-18 三菱電機株式会社 System stabilization device
JP4551921B2 (en) 2007-09-27 2010-09-29 株式会社日立エンジニアリング・アンド・サービス Wind power generation system with storage system
JP4698718B2 (en) 2008-09-30 2011-06-08 株式会社日立製作所 Wind turbine generator group control device and control method
AU2008365735B2 (en) * 2008-12-26 2014-08-14 Japan Wind Development Co., Ltd. Wind-driven electricity generation system of type having storage battery, and device for controlling charge and discharge of storage battery
JP5310003B2 (en) * 2009-01-07 2013-10-09 新神戸電機株式会社 Lead storage battery control system for wind power generation
JP5507582B2 (en) * 2010-01-27 2014-05-28 三洋電機株式会社 Power supply method, computer-readable recording medium, and power generation system
JP5507669B2 (en) * 2010-03-30 2014-05-28 三洋電機株式会社 Power supply system, power supply method, and control program for power supply system
WO2011122672A1 (en) * 2010-03-30 2011-10-06 三洋電機株式会社 Power supply system, power supply method, and control program for power supply system
JP5477243B2 (en) * 2010-09-28 2014-04-23 三洋電機株式会社 Storage battery management server, storage battery management apparatus, storage battery management system, storage battery management method, storage battery management program, and computer-readable recording medium
JP5492054B2 (en) * 2010-11-12 2014-05-14 株式会社日立製作所 Wind turbine generator group control device and control method
JP5576826B2 (en) * 2011-05-18 2014-08-20 株式会社日立製作所 Wind power generator group control system and control method
JP5526079B2 (en) * 2011-05-30 2014-06-18 株式会社日立パワーソリューションズ Wind power generation system and method for adding wind power generator in wind power generation system
KR101333995B1 (en) * 2011-11-09 2013-11-27 주식회사 포스코아이씨티 System and method for managementing electric power
KR20130098189A (en) * 2011-12-06 2013-09-04 미츠비시 쥬고교 가부시키가이샤 Generation system
JP2013219941A (en) * 2012-04-10 2013-10-24 Hitachi Power Solutions Co Ltd Control method and control device of power generation system using renewable energy
JP5797599B2 (en) * 2012-04-19 2015-10-21 株式会社日立パワーソリューションズ Power generation amount prediction method and system
DE102012013896A1 (en) 2012-07-13 2014-01-16 E.N.O. Energy Systems Gmbh Wind turbine
JP6091817B2 (en) * 2012-09-11 2017-03-08 株式会社東芝 Output fluctuation suppression device for natural energy generator
JP5619858B2 (en) * 2012-12-10 2014-11-05 中国電力株式会社 Water power generation system
KR101390104B1 (en) 2012-12-31 2014-04-28 주식회사 포스코아이씨티 System for managementing electric power
JP6090792B2 (en) * 2013-11-07 2017-03-08 株式会社日本製鋼所 Wind power generator, wind power generator fluctuation suppressing method, and wind power generator fluctuation suppressing program
JP6397688B2 (en) * 2014-08-07 2018-09-26 株式会社東芝 Storage battery control device and storage battery control method
JP6621704B2 (en) * 2016-04-22 2019-12-18 株式会社日立製作所 Power generation system
JP6614010B2 (en) * 2016-04-22 2019-12-04 日立化成株式会社 Battery system
JP7111461B2 (en) * 2017-11-29 2022-08-02 株式会社日立製作所 Renewable energy power generation system
KR102317813B1 (en) * 2020-04-16 2021-10-27 (주) 티아이에스 Wind farm control system
CN113864133B (en) * 2020-06-30 2022-11-15 北京金风科创风电设备有限公司 Capacitance characteristic detection method and device of super capacitor and variable pitch system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073310A1 (en) 2008-12-22 2010-07-01 日本風力開発株式会社 Power management control system for natural energy power generation system provided with storage battery
CN101994651A (en) * 2009-08-18 2011-03-30 株式会社日立制作所 Windfarm control system, windfarm control device and control method
CN101994651B (en) * 2009-08-18 2013-03-27 株式会社日立制作所 Windfarm control system, windfarm control device and control method

Also Published As

Publication number Publication date
JP2002027679A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
JP3905692B2 (en) Wind power generation control method
JP4796974B2 (en) Hybrid system of wind power generator and power storage device, wind power generation system, power control device
JP4848478B1 (en) Output leveling method for wind power generation equipment and output leveling apparatus for wind power generation equipment
KR101797632B1 (en) Peak-cut control device
CN102265477B (en) Wind-driven electricity generation system of type having storage battery, and device for controlling charge and discharge of storage battery
KR101566296B1 (en) Frequency Control System in Power System
CN107872065B (en) Method and device for controlling output of power grid energy storage system
CN106026151B (en) Scheduling method and device for electric vehicle battery storage and replacement station
JP5709910B2 (en) Control apparatus and method, program, and natural energy power generation apparatus including the same
CN102931662A (en) Distributive load dynamic regulation-based microgrid monitoring system and control method
CN109494771A (en) New energy power slide control based on the prediction of supercapacitor state-of-charge
JP2012139035A (en) Power controller, power calculation method and program
JP6674849B2 (en) Power fluctuation control apparatus and method
CN110601234A (en) Energy storage power station power coordination control method and system
TWI784776B (en) power conversion device
JP6573546B2 (en) Electric power fluctuation control device for renewable energy power generator
JP2019187022A (en) Power generation system and control method therefor
JP6390259B2 (en) Charge / discharge control device and charge / discharge control method
KR101299269B1 (en) Battery Energy Storage System
CN116111616B (en) Multi-time space scale power system frequency full-track coordination optimization control method
CN116018740A (en) Distributed power management device
KR102623434B1 (en) Method of controlling charging and discharging of energy storage device in response to peak power detection and apparatus therefor
TWI781870B (en) Power conversion device
JP7425267B1 (en) Distributed power supply integrated management system, distributed power supply integrated management device, distributed power supply integrated management method, and program
CN118539458A (en) Frequency modulation control method, energy storage device and computer readable storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees