JP3866082B2 - Method and apparatus for measuring characteristics of optical modulator - Google Patents

Method and apparatus for measuring characteristics of optical modulator Download PDF

Info

Publication number
JP3866082B2
JP3866082B2 JP2001337450A JP2001337450A JP3866082B2 JP 3866082 B2 JP3866082 B2 JP 3866082B2 JP 2001337450 A JP2001337450 A JP 2001337450A JP 2001337450 A JP2001337450 A JP 2001337450A JP 3866082 B2 JP3866082 B2 JP 3866082B2
Authority
JP
Japan
Prior art keywords
optical modulator
light
value
modulation
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001337450A
Other languages
Japanese (ja)
Other versions
JP2003139653A (en
Inventor
哲 及川
雅之 井筒
薫 日隈
哲也 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
National Institute of Information and Communications Technology
Original Assignee
Sumitomo Osaka Cement Co Ltd
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, National Institute of Information and Communications Technology filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2001337450A priority Critical patent/JP3866082B2/en
Publication of JP2003139653A publication Critical patent/JP2003139653A/en
Application granted granted Critical
Publication of JP3866082B2 publication Critical patent/JP3866082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信や光計測に用いられるマッハ・ツェンダー干渉型光変調器(以下、MZ型光変調器をいう)のような、入射光を2つ以上に分岐し、分岐された光の少なくとも一方に電気信号を印加することにより位相変調を行い、その後、該分岐された光を合成することにより強度変調された光信号を発生する光変調器の特性を測定する方法及び装置に関し、特に、高周波変調時における該光変調器の半波長電圧値やチャープパラメータ値などの特性を測定する方法及び装置に関する。
【0002】
【従来の技術】
近年の音声、データ等の通信需要の増大により、大容量データを高速に通信することを可能とする光通信システムへの要請が高くなっている。
このような大容量・高速な通信システムには、データ生成のための高速変調動作が可能なMZ型光変調器が用いられている。
【0003】
MZ型光変調器の基本的な動作を説明する。
MZ型光変調器は、図1に示すように、LiNbOなどのような電気光学効果を有する基板10上に、光波を導波するための光導波路20と、前記光波にマイクロ波帯域の高速変調信号を印加するための電極(不図示)などによって構成される。MZ型光変調器の動作原理は、光導波路20の一端から入力された光が、途中で分岐されると共に信号源30から印加された電気信号の電圧の大きさに依存して屈折率が変化した基板中を通過するため相互の光に速度差を生じ、分岐した光が合流した際には、相互に位相のずれが発生し、合成された光出力は、該電気信号に応じた強度変化を示す。
【0004】
図2は、MZ型光変調器に印加される信号源30の入力電圧に対する光出力強度の変化を示すグラフである。図2中のa点は、MZ型光変調器を通過する光が最大限となる「On動作」状態であり、b点は通過光が最小限となる「Off動作」状態を示し、「On動作」と「Off動作」との間のスイッチング動作に要する電圧(a点とb点との間の入力電圧値の大きさ)を半波長電圧(Vπ)と呼び、光変調器の特性を評価する重要なパラメータの1つである。
【0005】
半波長電圧を測定する方法としては、図3のように「電気入力波形」として示した波形の電圧を、図1の信号源30よりMZ型光変調器に印加し、MZ型光変調器からの出力光の光強度波形を、サンプリングオシロスコープなどで直接観察する。サンプリングオシロスコープで観察される出力光の光強度波形は、図3の「光変調器出力の観察波形」として示されている。
そして、図3のような観察波形の振幅値が最大となる状態における、光変調器への印加電圧、つまり、図3の「電気入力波形」の入力振幅値を測定することにより、MZ型光変調器の半波長電圧を測定していた。
【0006】
【発明が解決しようとする課題】
半波長電圧値などの光変調器の特性は、同じ光変調器であっても光変調器に印加される電気信号の周波数に応じて変化する。しかも、近年の光通信の高速・大容量化に伴い、光変調器の駆動周波数も高周波化し、10GHzやそれ以上の周波数においても正確な半波長電圧値などの特性を測定することが要求されている。
しかしながら、サンプリングオシロスコープなどのような波形を直接観察する測定器具を用いた場合、印加電圧の周波数が高くなると、受光系の周波数特性の問題により正確な波形を観察するのが困難となる。しかも、光変調器を駆動する信号発生器やアンプの出力不足、高調波による波形の歪みなどの影響により、正確な半波長電圧値などの光変調器の特性を測定することが、一層困難になっていた。
【0007】
本発明の課題は、上記の問題を解決し、高周波変調時における光変調器の半波長電圧値やチャープパラメータ値などの特性を、正確に測定するための方法及び装置を提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る光変調器の特性測定方法では、入射光を2つ以上に分岐し、分岐した光の少なくとも一方に電気信号を印加することにより位相変調を行い、その後、該分岐した光を合成することにより強度変調された光信号を発生する光変調器に対し、該光信号のスペクトル分布を測定し、該測定されたスペクトル分布に係る測定値から該光変調器の強度変調に係る特性値を算出することを特徴とする。
請求項1に係る光変調器の特性測定方法では、該光変調器の強度変調に係る特性値は、該光変調器の半波長電圧値であり、請求項2に係る光変調器の特性測定方法では、該光変調器の強度変調に係る特性値は、該光変調器のチャープパラメータ値であることを各々特徴とする。
【0009】
請求項3に係る光変調器の特性測定方法では、請求項1又は2に記載の光変調器の特性測定方法において、該電気信号がバイアス電圧と変調信号とからなり、該測定値は、該バイアス電圧の可変調整により、入射光と同じスペクトル成分における出射光の光強度が最大となる場合の該スペクトル成分の出射光の光強度値P0b、入射光と同じスペクトル成分における出射光の光強度が最小となる場合の変調周波数に係る成分の出射光の光強度値P1c、及び該変調信号を印加しない場合の出射光の光強度値P0aであり、該光変調器の強度変調に係る特性値の算出に際し、該光強度値P0aにより該光強度値P0bと該光強度値P1cとを規格化した値を用いることを特徴とする。
【0012】
請求項に係る光変調器の特性測定装置では、請求項1乃至のいずれかに記載の光変調器の特性測定方法を用いたことを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明を好適例を用いて詳細に説明するが、本発明の範囲は、当該好適例に限定されるものではない。
本発明の測定の原理について説明する。
図4は、本発明に用いられる測定系の概略図である。レーザから出た光波は、偏波コントローラにより光変調器による変調に適した偏波に調整され、測定対象の光変調器に入射される。
この光変調器には、DC電源によるバイアス電圧と発振器による電気信号とが重畳されて印加される。
光変調器は、この重畳された印加電圧に対応して入射光を変調する。光変調器によって変調された出射光は、光スペクトラムアナライザに入射され、出射光の周波数成分に応じた光強度分布が測定される。
【0014】
この測定対象となるMZ型光変調器の光導波路の構成を、図5に示す。
入射光は導波路1に導入されると、Y分岐1において2つに分岐され、分岐された光は各々の導波路2,3を伝搬し、Y分岐2により合波され、最後に導波路4を経て出射される。
【0015】
今、入射光として電界Eexp(jωt)を有する光を入射させた場合を考える。
MZ型光変調器において変調をかけていない場合には、出射光は入射光と同じと仮定できるため、出射光の光強度値P0aは、次の式1で表せる。
【式1】

Figure 0003866082
【0016】
次に、導波路2,3で変調を行った場合を考える。変調をかけていない場合と同様に、電界Eexp(jωt)を有する光を入射させ、導波路2,3で変調を加え、更にY分岐2で合波した光の電界成分E(t)は、次の式2で表せる。
【式2】
Figure 0003866082
【0017】
ここで、A,Aは、変調の深さを表すパラメータ(変調指数)、ωは変調信号の角周波数、φ,φは各導波路により異なる変調信号の位相、φB1,φB2は導波路の初期状態による位相を表す。
式2は、合波した光波が様々な周波数成分を有すること示している。ここでは、このような周波数成分の内、入射光と同じ周波数成分(式2中でn=0の場合)と、+1次の高次項(式2中でn=1の場合)に着目する。
入射光と同じ周波数成分(ω)と+1次の高次項(ω+ω)の光強度を測定する。図6に光スペクトラムアナライザの測定波形を示す。
これらの各成分の光強度は、次の式3(入射光と同じ周波数成分の光強度P)及び式4(+1次の高次項の光強度P)で表せる。
【式3】
Figure 0003866082
【式4】
Figure 0003866082
【0018】
また、DC電源により光変調器に印加するバイアス電圧を調整し、入射光と同じ周波数成分(ω)の出射光の光強度が最大となるように設定した時(図2のa点にバイアス電圧が設定された状態)、入射光と同じ周波数成分(ω)の出射光の光強度値P0bは、上記式3により、次の式5で表せる。
【式5】
Figure 0003866082
【0019】
また、バイアス電圧を調整し、入射光と同じ周波数成分(ω)の出射光の光強度が最小となるように設定した時(図2のb点にバイアス電圧が設定された状態)、+1次の高次項(ω+ω。変調周波数に係る成分)の出射光の光強度値P1cは、上記式4より、次の式6で表せる。
【式6】
Figure 0003866082
【0020】
ここで、変調をかけていない出射光の光強度値P0aで、上述したP0b,P1cを規格化すると、次の式7及び8が得られる。
【式7】
Figure 0003866082
【式8】
Figure 0003866082
【0021】
式7及び式8を用いて、変調の深さを表すパラメータA,Aを算出する。なお、式7及び式8は超越方程式になるが、A,Aが小さい値を占めることから解の特定が可能となる。
そして、A,Aを算出した後、光変調器の半波長電圧Vπは、次の式9により算出することが可能である。ただし、Vは変調信号として印加した発振器からの電圧振幅を示す。
【式9】
Figure 0003866082
【0022】
上述したように、本発明の光変調器の特性測定方法によれば、光スペクトラムアナライザを用いて得られる光変調器の出射光のスペクトル分布から、上記の光強度値P0a、P0b、P1cを測定し、該光強度値に基づき光変調器の半波長電圧値が算出される。このため、従来のように出射光の光強度の波形を直接観察する必要が無く、高周波においても光変調器の特性を測定することが可能となる。
また、光変調器の半波長電圧を測定する際に、従来は光変調器に印加する変調信号の電圧振幅は半波長電圧値以上の範囲まで可変調整されていたが、式9により任意の値である変調信号の電圧振幅値Vmを用いて半波長電圧を算出することが可能となるため、従来のような半波長電圧値まで変調信号を調整する必要がなく、しかも、変調信号の電圧振幅値を可変することも不要となる。
さらに、光スペクトラムアナライザにより高次の1次項のみを測定するため、アンプなどの高周波成分による測定への影響を受けないため、より正確な半波長電圧の測定が可能となる。
【0023】
MZ型光変調器では、図5に示す導波路2及び3に印加する変調電圧の違いによる変調の差異により、合波時には光の強度だけでなく位相も変調される。この現象をチャーピングと呼び、チャーピングの大きさは、次の式10に表すαパラメータにより与えられる。
【式10】
Figure 0003866082
【0024】
式10の中で、dIは光の強度変化量、dφは光の位相変化量を表し、また、A1,A2は、上述したように出射光のスペクトル分布より測定された特定の光強度値により算出されているため、αパラメータは算出可能である。
【0025】
本発明は、上述した光変調器の特性測定方法に限るものではなく、例えば、上記特性測定方法で用いた、+1次の高次項(周波数ω+ωのスペクトル成分)を、−1次の高次項(周波数ω−ωのスペクトル成分)に置き換えて用い、同様な効果を得ることができるものなども包含する。
【0026】
次に、本発明の光変調器の特性測定方法を用いた測定装置について説明する。
図7は、本発明の光変調器の特性を自動的に測定するための装置のブロック図である。
周波数ωを有するレーザ光は、偏波コントローラを通過して一定方向に偏波され、MZ型光変調器に入射する。光変調器には、DC電源及び周波数ωの発振器とで形成される、特定のバイアス電圧を中心に周波数ωで振動する変調信号が印加される。
【0027】
変調信号は光変調器に入力されると同時に、分岐回路を経てRFパワーメータにより変調信号の電圧振幅値Vm、バイアス電圧値などが検出・監視される。
RFパワーメータにより測定された数値は、制御用コンピュータに入力され、後述する光変調器の特性測定を自動化するための検出信号の一つとして利用される。
【0028】
光変調器に印加された変調信号に対応して、入射光は変調され、光変調器から出射光として出射される。
出射光は、光スペクトラムアナライザにより周波数に対する光強度分布であるスペクトル分布が測定される。
光スペクトラムアナライザの測定値、特に、レーザ光の周波数ω、+1次の高次項(周波数ω+ω。または、−1次高次項であってもよい。)に係る光強度の測定値が、制御用コンピュータに入力される。
【0029】
光変調器の特性測定を自動的に測定するプロセスについて説明する。
レーザ、偏波コントローラ、光スペクトラムアナライザなど測定に必要な各種機材を動作させた状態において、まず、制御用コンピュータからの指示により、DC電源及び発振器による光変調器への変調信号の印加を停止させ、無変調状態における周波数ωにおける光強度P0aを測定し、制御用コンピュータに該測定値を取り込む。
次に、制御用コンピュータからの指示により、光変調器に変調信号を印加させ、光スペクトラムアナライザからの周波数ωにおける光強度を測定し、制御用コンピュータに入力する。制御用コンピュータでは、周波数ωにおける光強度のモニタに合わせて、変調信号のバイアス電圧を規定するDC電源の出力電圧を変化させ、該変化に応じてモニタする該光強度が最大となる光強度P0bを決定する。
また、制御用コンピュータでは、周波数ωにおける光強度のモニタに合わせて、変調信号のバイアス電圧を規定するDC電源の出力電圧を変化させ、該変化に応じてモニタする該光強度が最小となる状態を決定し、該状態時の+1次の高次項(周波数ω+ω)の光強度P1cを光スペクトラムアナライザにより測定し、その測定値を取り込む。
【0030】
次に、制御用コンピュータに取り込まれた、各光強度値P0a、P0b、P1cに基づき、上記式7,8の方程式を解くことにより、A1,A2を決定し、さらに上記式9,10を用いて、半波長電圧Vπ、チャープパラメータ(αパラメータ)を演算し、決定する。
なお、周波数ωや、周波数ω及び電圧振幅値Vmなどの各値については、光変調器の特性測定に際し使用するレーザや発振器などにより、予め設定されている値を制御用コンピュータに入力して用いても良いし、光スペクトラムアナライザやRFパワーメータにより測定された値を用いても良い。
また、上述した測定装置では、制御用コンピュータ上で、測定値の取り込みや各種演算も実行しているが、これらの情報処理については、制御用コンピュータとは別に設けられた記憶装置や演算装置を用いて実行しても良い。
【0031】
図4の測定装置を用いて測定した結果を、図8,9に示す。
図8は、測定周波数10GHzの変調信号を印加した場合の光変調器の特性測定結果である。ここでは、変調信号の電圧振幅値Vmを2〜9Vの範囲で可変して、各電圧振幅値Vmにおける半波長電圧値及びチャープパラメータを算出した。
図8を見ると、半波長電圧値及びチャープパラメータは、共に、電圧振幅によらずほぼ一定の値を示しており、本発明の測定方法及び装置が、光変調器の特性を適正に測定していることが理解できる。
なお、チャープパラメータについては、変調信号の電圧振幅値が半波長電圧値より大きい場合や、変調信号の電圧振幅値が小さい場合は、光変調器に係る特性の測定結果が若干変動している。これは、変調信号の電圧振幅値を、半波長電圧以上のように大きくすると、変調信号の波形に歪が発生し、光変調器からの出射光の光強度が、理論値から外れたりノイズを多く含むこととなり、正確な測定が困難となるためと考えられる。
また、変調信号の電圧振幅値が小さ過ぎると、+1次の高次項など、変調を反映した光スペクトル分布が明確に形成されず、ノイズの影響を強く受けて正確な測定が困難となることが考えられる。
【0032】
図9は、測定周波数10〜40GHzの変調信号を印加した場合の光変調器の特性測定結果を示す。
図9が示すように、本発明の測定方法及び装置を利用すれば、従来のように光変調器からの出射光の変動を直接観測すること無しに、高周波数の特性まで有効に測定できることが可能となる。
【0033】
【発明の効果】
以上説明したように、本発明によれば、光変調器から出射する光信号のスペクトル分布を測定することにより、光変調器の特性を測定することが可能となるため、従来のような高周波数に対応した高精度な発振器やサンプリングオシロスコープなどを必要とせず、安価でかつ精度の高い測定が可能となる。
しかも、入射光と同じスペクトル成分における出射光の光強度が最大となる場合の該スペクトル成分の出射光の光強度値P0bと、入射光と同じスペクトル成分における出射光の光強度が最小となる場合の変調周波数に係る成分の出射光の光強度値P1cとを、変調電圧を印加しない場合の出射光の光強度値P0aにより規格化した値を用いることにより、光変調器に係る半波長電圧値やチャープパラメータを容易に算出することができる。
【図面の簡単な説明】
【図1】 MZ型光変調器の概略図。
【図2】 MZ型光変調器の印加電圧に対する出力光強の特性を示すグラフ。
【図3】 MZ型光変調器の電気入力波形に対する光出力波形との関係を示すグラフ。
【図4】 本発明の光変調器の特性測定方法の一例を示すブロック図。
【図5】 MZ型光変調器の光導波路の構成図。
【図6】 光変調器から出射する光信号のスペクトル分布を示すグラフ。
【図7】 本発明の光変調器の特性測定装置の一例を示す概略図。
【図8】 本発明を利用して測定した光変調器の各種特性値に対する、変調信号の入力電圧振幅の変化の影響を示すグラフ。
【図9】 本発明を利用して測定された、光変調器の各種特性と変調信号の周波数との関係を示すグラフ。
【符号の説明】
10 MZ型光変調器
20 光導波路
30 信号源[0001]
BACKGROUND OF THE INVENTION
The present invention divides incident light into two or more, such as a Mach-Zehnder interferometric optical modulator (hereinafter referred to as an MZ optical modulator) used for optical communication and optical measurement, and The present invention relates to a method and apparatus for measuring characteristics of an optical modulator that performs phase modulation by applying an electric signal to at least one and then generates an intensity-modulated optical signal by synthesizing the branched light. The present invention relates to a method and apparatus for measuring characteristics such as a half-wave voltage value and a chirp parameter value of the optical modulator during high frequency modulation.
[0002]
[Prior art]
With the recent increase in demand for communication of voice, data, etc., there is an increasing demand for an optical communication system that enables high-capacity data to be communicated at high speed.
In such a large-capacity and high-speed communication system, an MZ type optical modulator capable of high-speed modulation operation for data generation is used.
[0003]
The basic operation of the MZ type optical modulator will be described.
As shown in FIG. 1, the MZ type optical modulator includes an optical waveguide 20 for guiding a light wave on a substrate 10 having an electro-optic effect such as LiNbO 3, and a high-speed microwave band in the light wave. It is comprised by the electrode (not shown) etc. for applying a modulation signal. The operation principle of the MZ type optical modulator is that the light input from one end of the optical waveguide 20 is branched halfway and the refractive index changes depending on the magnitude of the voltage of the electric signal applied from the signal source 30. As the light passes through the substrate, a difference in speed occurs between the lights, and when the branched lights merge, a phase shift occurs, and the combined light output changes in intensity according to the electrical signal. Indicates.
[0004]
FIG. 2 is a graph showing the change in the optical output intensity with respect to the input voltage of the signal source 30 applied to the MZ type optical modulator. The point a in FIG. 2 represents an “On operation” state in which the light passing through the MZ type optical modulator is maximized, and the point b represents an “Off operation” state in which the light passing through is minimized. The voltage required for the switching operation between “operation” and “off operation” (the magnitude of the input voltage value between points a and b) is called a half-wave voltage (V π ), and the characteristics of the optical modulator are It is one of the important parameters to evaluate.
[0005]
As a method for measuring the half-wave voltage, a voltage having a waveform shown as an “electrical input waveform” as shown in FIG. 3 is applied to the MZ type optical modulator from the signal source 30 of FIG. Observe the intensity waveform of the output light directly with a sampling oscilloscope. The light intensity waveform of the output light observed with the sampling oscilloscope is shown as “observation waveform of the optical modulator output” in FIG.
Then, by measuring the voltage applied to the optical modulator, that is, the input amplitude value of the “electrical input waveform” in FIG. 3 in a state where the amplitude value of the observation waveform is maximum as shown in FIG. The half-wave voltage of the modulator was measured.
[0006]
[Problems to be solved by the invention]
The characteristics of the optical modulator such as the half-wave voltage value change according to the frequency of the electrical signal applied to the optical modulator even in the same optical modulator. In addition, with the recent increase in the speed and capacity of optical communications, the driving frequency of the optical modulator is also increased, and it is required to accurately measure characteristics such as a half-wave voltage value even at a frequency of 10 GHz or higher. Yes.
However, when a measuring instrument for directly observing a waveform such as a sampling oscilloscope is used, if the frequency of the applied voltage increases, it becomes difficult to observe an accurate waveform due to the problem of the frequency characteristics of the light receiving system. In addition, it is more difficult to measure the characteristics of optical modulators such as accurate half-wave voltage values due to insufficient output from signal generators and amplifiers that drive optical modulators, and waveform distortion caused by harmonics. It was.
[0007]
An object of the present invention is to solve the above problems and provide a method and apparatus for accurately measuring characteristics such as a half-wave voltage value and a chirp parameter value of an optical modulator during high frequency modulation.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, in the method for measuring characteristics of an optical modulator according to the present invention , phase modulation is performed by branching incident light into two or more and applying an electrical signal to at least one of the branched lights. Thereafter, a spectral distribution of the optical signal is measured for an optical modulator that generates an optical signal whose intensity is modulated by synthesizing the branched light, and the optical modulation is calculated from a measurement value related to the measured spectral distribution. A characteristic value related to intensity modulation of the vessel is calculated.
In the characteristic measuring method of the optical modulator according to claim 1, the characteristic value related to intensity modulation of the optical modulator is a half-wave voltage value of the optical modulator, and the characteristic measuring of the optical modulator according to claim 2 is performed. The method is characterized in that the characteristic value related to the intensity modulation of the optical modulator is a chirp parameter value of the optical modulator.
[0009]
In the optical modulator characteristic measuring method according to claim 3, in the optical modulator characteristic measuring method according to claim 1 or 2 , the electrical signal includes a bias voltage and a modulated signal, and the measured value is When the light intensity of the emitted light at the same spectral component as the incident light is maximized by variably adjusting the bias voltage, the light intensity value P 0b of the emitted light of the spectral component and the light intensity of the emitted light at the same spectral component as the incident light Is the light intensity value P 1c of the emitted light of the component related to the modulation frequency when the modulation signal is minimum, and the light intensity value P 0a of the emitted light when the modulation signal is not applied, and relates to the intensity modulation of the optical modulator In calculating the characteristic value, a value obtained by standardizing the light intensity value P 0b and the light intensity value P 1c with the light intensity value P 0a is used.
[0012]
According to a fourth aspect of the present invention, there is provided an optical modulator characteristic measuring apparatus using the optical modulator characteristic measuring method according to any one of the first to third aspects.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although this invention is demonstrated in detail using a suitable example, the scope of the present invention is not limited to the said suitable example.
The measurement principle of the present invention will be described.
FIG. 4 is a schematic diagram of a measurement system used in the present invention. The light wave emitted from the laser is adjusted to a polarization suitable for modulation by the optical modulator by the polarization controller, and is incident on the optical modulator to be measured.
A bias voltage from a DC power source and an electrical signal from an oscillator are superimposed and applied to this optical modulator.
The optical modulator modulates incident light in response to the superimposed applied voltage. The outgoing light modulated by the optical modulator enters the optical spectrum analyzer, and the light intensity distribution according to the frequency component of the outgoing light is measured.
[0014]
FIG. 5 shows the configuration of the optical waveguide of the MZ type optical modulator to be measured.
When incident light is introduced into the waveguide 1, it is branched into two at the Y branch 1. The branched light propagates through the respective waveguides 2 and 3, and is combined by the Y branch 2, and finally the waveguide. 4 is emitted.
[0015]
Consider a case where light having an electric field E i exp (jω 0 t) is incident as incident light.
When the MZ optical modulator is not modulated, the emitted light can be assumed to be the same as the incident light, and thus the light intensity value P 0a of the emitted light can be expressed by the following equation (1).
[Formula 1]
Figure 0003866082
[0016]
Next, a case where modulation is performed by the waveguides 2 and 3 will be considered. Similarly to the case where no modulation is applied, light having an electric field E i exp (jω 0 t) is incident, modulated by the waveguides 2 and 3, and further, the electric field component E ( t) can be expressed by Equation 2 below.
[Formula 2]
Figure 0003866082
[0017]
Here, A 1 and A 2 are parameters (modulation index) representing the depth of modulation, ω m is the angular frequency of the modulation signal, φ 1 and φ 2 are the phases of the modulation signal that differ depending on each waveguide, φ B1 , φ B2 represents the phase according to the initial state of the waveguide.
Equation 2 shows that the combined light wave has various frequency components. Here, attention is paid to the same frequency component as that of the incident light (when n = 0 in Equation 2) and the + 1st order higher-order term (when n = 1 in Equation 2) among such frequency components.
The light intensity of the same frequency component (ω 0 ) as that of the incident light and the + 1st order higher order term (ω 0 + ω m ) are measured. FIG. 6 shows the measurement waveform of the optical spectrum analyzer.
The light intensity of each of these components can be expressed by the following Expression 3 (the light intensity P 0 having the same frequency component as the incident light) and Expression 4 (the light intensity P 1 of the + 1st order higher order term).
[Formula 3]
Figure 0003866082
[Formula 4]
Figure 0003866082
[0018]
Further, when the bias voltage applied to the optical modulator is adjusted by the DC power source and set so that the light intensity of the emitted light having the same frequency component (ω 0 ) as that of the incident light is maximized (the bias is at point a in FIG. 2). In the state where the voltage is set), the light intensity value P 0b of the emitted light having the same frequency component (ω 0 ) as the incident light can be expressed by the following Expression 5 using Expression 3 above.
[Formula 5]
Figure 0003866082
[0019]
Further, when the bias voltage is adjusted and set so that the light intensity of the emitted light having the same frequency component (ω 0 ) as that of the incident light is minimized (in the state where the bias voltage is set at the point b in FIG. 2), +1 The light intensity value P 1c of the emitted light of the next higher order term (ω 0 + ω m, the component related to the modulation frequency) can be expressed by the following expression 6 from the above expression 4.
[Formula 6]
Figure 0003866082
[0020]
Here, when the above-described P 0b and P 1c are normalized with the light intensity value P 0a of the outgoing light that is not modulated, the following equations 7 and 8 are obtained.
[Formula 7]
Figure 0003866082
[Formula 8]
Figure 0003866082
[0021]
Using Equations 7 and 8, parameters A 1 and A 2 representing the modulation depth are calculated. In addition, although Formula 7 and Formula 8 become a transcendental equation, since A 1 and A 2 occupy small values, it is possible to specify a solution.
Then, after calculating A 1 and A 2 , the half-wave voltage V π of the optical modulator can be calculated by the following Equation 9. However, V m represents the voltage amplitude from the oscillator is applied as a modulation signal.
[Formula 9]
Figure 0003866082
[0022]
As described above, according to the method for measuring the characteristics of the optical modulator of the present invention, the light intensity values P 0a , P 0b , P are calculated from the spectral distribution of the light emitted from the optical modulator obtained by using the optical spectrum analyzer. 1c is measured, and the half-wave voltage value of the optical modulator is calculated based on the light intensity value. For this reason, it is not necessary to directly observe the waveform of the light intensity of the emitted light as in the prior art, and the characteristics of the optical modulator can be measured even at high frequencies.
Further, when measuring the half-wave voltage of the optical modulator, conventionally, the voltage amplitude of the modulation signal applied to the optical modulator has been variably adjusted to a range equal to or greater than the half-wave voltage value. Since the half-wave voltage can be calculated using the voltage amplitude value Vm of the modulation signal, it is not necessary to adjust the modulation signal to the half-wave voltage value as in the prior art, and the voltage amplitude of the modulation signal It is not necessary to change the value.
Furthermore, since only the high-order first order term is measured by the optical spectrum analyzer, the measurement is not affected by high-frequency components such as an amplifier, so that more accurate half-wave voltage measurement is possible.
[0023]
In the MZ type optical modulator, not only the light intensity but also the phase is modulated at the time of multiplexing due to the difference in modulation due to the difference in modulation voltage applied to the waveguides 2 and 3 shown in FIG. This phenomenon is called chirping, and the size of chirping is given by the α parameter expressed by the following equation (10).
[Formula 10]
Figure 0003866082
[0024]
In Expression 10, dI represents the light intensity change amount, dφ represents the light phase change amount, and A1 and A2 are determined by the specific light intensity values measured from the spectrum distribution of the emitted light as described above. Since it is calculated, the α parameter can be calculated.
[0025]
The present invention is not limited to the above-described characteristic measuring method of the optical modulator. For example, the + 1st order higher order term (spectral component of frequency ω 0 + ω m ) used in the above characteristic measuring method is changed to the −1st order. It also includes those that can be used in place of higher-order terms (spectral components of frequency ω 0m ) and that can obtain similar effects.
[0026]
Next, a measuring apparatus using the optical modulator characteristic measuring method of the present invention will be described.
FIG. 7 is a block diagram of an apparatus for automatically measuring the characteristics of the optical modulator of the present invention.
The laser light having the frequency ω 0 passes through the polarization controller, is polarized in a certain direction, and enters the MZ type optical modulator. The optical modulator is formed by an oscillator of DC power and the frequency omega m, the modulation signal oscillating at the frequency omega m is applied around the specific bias voltage.
[0027]
The modulation signal is input to the optical modulator, and at the same time, the voltage amplitude value Vm and the bias voltage value of the modulation signal are detected and monitored by the RF power meter via the branch circuit.
The numerical value measured by the RF power meter is input to the control computer and used as one of detection signals for automating the optical modulator characteristic measurement described later.
[0028]
In response to the modulation signal applied to the optical modulator, the incident light is modulated and emitted from the optical modulator as outgoing light.
The emitted light is measured for a spectral distribution which is a light intensity distribution with respect to frequency by an optical spectrum analyzer.
The measured value of the optical spectrum analyzer, in particular, the measured value of the light intensity related to the frequency ω 0 of the laser beam, the + 1st order higher order term (frequency ω 0 + ω m, or may be the −1st order higher order term). To the control computer.
[0029]
A process for automatically measuring the optical modulator characteristic measurement will be described.
In the state that various equipment necessary for the measurement such as laser, polarization controller, optical spectrum analyzer, etc. is operated, first, the application of the modulation signal to the optical modulator by the DC power source and the oscillator is stopped by the instruction from the control computer. Then, the light intensity P 0a at the frequency ω 0 in the non-modulation state is measured, and the measured value is taken into the control computer.
Next, in response to an instruction from the control computer, a modulation signal is applied to the optical modulator, and the light intensity at the frequency ω 0 from the optical spectrum analyzer is measured and input to the control computer. In the control computer, the output voltage of the DC power source that defines the bias voltage of the modulation signal is changed in accordance with the monitoring of the light intensity at the frequency ω 0, and the light intensity at which the light intensity monitored is maximized according to the change. Determine P 0b .
Further, the control computer changes the output voltage of the DC power supply that defines the bias voltage of the modulation signal in accordance with the monitoring of the light intensity at the frequency ω 0, and the light intensity monitored according to the change is minimized. The state is determined, the light intensity P 1c of the + 1st order higher-order term (frequency ω 0 + ω m ) in the state is measured by the optical spectrum analyzer, and the measured value is captured.
[0030]
Next, A1 and A2 are determined by solving the equations 7 and 8 based on the light intensity values P 0a , P 0b and P 1c captured in the control computer. 10 is used to calculate and determine the half-wave voltage Vπ and the chirp parameter (α parameter).
For each value such as the frequency ω 0 , the frequency ω m, and the voltage amplitude value Vm, preset values are input to the control computer by a laser or an oscillator used for measuring the characteristics of the optical modulator. Alternatively, a value measured by an optical spectrum analyzer or an RF power meter may be used.
In the above-described measurement apparatus, measurement values are captured and various calculations are also executed on the control computer. For these information processing, a storage device and a calculation device provided separately from the control computer are used. May be used.
[0031]
The results of measurement using the measurement apparatus of FIG. 4 are shown in FIGS.
FIG. 8 shows the measurement results of the characteristics of the optical modulator when a modulation signal having a measurement frequency of 10 GHz is applied. Here, the voltage amplitude value Vm of the modulation signal was varied in the range of 2 to 9 V, and the half-wave voltage value and the chirp parameter at each voltage amplitude value Vm were calculated.
Referring to FIG. 8, both the half-wave voltage value and the chirp parameter show almost constant values regardless of the voltage amplitude, and the measurement method and apparatus of the present invention appropriately measures the characteristics of the optical modulator. I can understand that.
As for the chirp parameter, when the voltage amplitude value of the modulation signal is larger than the half-wave voltage value or when the voltage amplitude value of the modulation signal is small, the measurement result of the characteristics related to the optical modulator slightly varies. This is because when the voltage amplitude value of the modulation signal is increased to a half-wave voltage or more, the waveform of the modulation signal is distorted, and the light intensity of the light emitted from the optical modulator deviates from the theoretical value or causes noise. It is considered that accurate measurement is difficult due to the inclusion of a large amount.
Also, if the voltage amplitude value of the modulation signal is too small, the optical spectrum distribution reflecting the modulation, such as the + 1st order higher order term, is not clearly formed, and it is difficult to perform accurate measurement due to the strong influence of noise. Conceivable.
[0032]
FIG. 9 shows the result of measuring the characteristics of the optical modulator when a modulation signal having a measurement frequency of 10 to 40 GHz is applied.
As shown in FIG. 9, by using the measurement method and apparatus of the present invention, it is possible to effectively measure even high frequency characteristics without directly observing the fluctuation of the emitted light from the optical modulator as in the prior art. It becomes possible.
[0033]
【The invention's effect】
As described above, according to the present invention, the characteristics of the optical modulator can be measured by measuring the spectral distribution of the optical signal emitted from the optical modulator. This eliminates the need for high-accuracy oscillators and sampling oscilloscopes that support low-cost, and enables inexpensive and highly accurate measurement.
Moreover, the light intensity value P 0b of the outgoing light of the spectral component when the light intensity of the outgoing light at the same spectral component as the incident light is maximum, and the light intensity of the outgoing light at the same spectral component as the incident light are minimized. The light intensity value P 1c of the emitted light of the component related to the modulation frequency in this case is used as a value normalized by the light intensity value P 0a of the emitted light when no modulation voltage is applied. Wavelength voltage values and chirp parameters can be easily calculated.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an MZ type optical modulator.
FIG. 2 is a graph showing a characteristic of output light intensity with respect to an applied voltage of an MZ type optical modulator.
FIG. 3 is a graph showing a relationship between an optical input waveform and an electric output waveform of an MZ type optical modulator.
FIG. 4 is a block diagram showing an example of a method for measuring characteristics of an optical modulator according to the present invention.
FIG. 5 is a configuration diagram of an optical waveguide of an MZ type optical modulator.
FIG. 6 is a graph showing a spectral distribution of an optical signal emitted from an optical modulator.
FIG. 7 is a schematic diagram showing an example of a characteristic measuring apparatus for an optical modulator according to the present invention.
FIG. 8 is a graph showing the influence of a change in the input voltage amplitude of the modulation signal on various characteristic values of the optical modulator measured using the present invention.
FIG. 9 is a graph showing the relationship between various characteristics of an optical modulator and the frequency of a modulation signal, measured using the present invention.
[Explanation of symbols]
10 MZ type optical modulator 20 Optical waveguide 30 Signal source

Claims (4)

入射光を2つ以上に分岐し、分岐した光の少なくとも一方に電気信号を印加することにより位相変調を行い、その後、該分岐した光を合成することにより強度変調された光信号を発生する光変調器に対し、
該光信号のスペクトル分布を測定し、該測定されたスペクトル分布に係る測定値から該光変調器の強度変調に係る特性値である光変調器の半波長電圧値を算出することを特徴とする光変調器の特性測定方法。
Light that splits incident light into two or more, performs phase modulation by applying an electrical signal to at least one of the branched lights, and then generates an intensity-modulated optical signal by synthesizing the branched lights For the modulator,
Measuring a spectral distribution of the optical signal, and calculating a half-wave voltage value of the optical modulator, which is a characteristic value related to intensity modulation of the optical modulator, from a measured value related to the measured spectral distribution A method for measuring characteristics of an optical modulator.
入射光を2つ以上に分岐し、分岐した光の少なくとも一方に電気信号を印加することにより位相変調を行い、その後、該分岐した光を合成することにより強度変調された光信号を発生する光変調器に対し、  Light that splits incident light into two or more, performs phase modulation by applying an electrical signal to at least one of the branched lights, and then generates an intensity-modulated optical signal by synthesizing the branched lights For the modulator,
該光信号のスペクトル分布を測定し、該測定されたスペクトル分布に係る測定値から該光変調器の強度変調に係る特性値である光変調器のチャープパラメータ値を算出することを特徴とする光変調器の特性測定方法。  An optical modulator comprising: measuring a spectral distribution of the optical signal; and calculating a chirp parameter value of the optical modulator, which is a characteristic value related to intensity modulation of the optical modulator, from a measured value related to the measured spectral distribution Modulator characteristic measurement method.
請求項1又は2に記載の光変調器の特性測定方法において、
該電気信号がバイアス電圧と変調信号とからなり、
該測定値は、該バイアス電圧の可変調整により、入射光と同じスペクトル成分における出射光の光強度が最大となる場合の該スペクトル成分の出射光の光強度値P0b、入射光と同じスペクトル成分における出射光の光強度が最小となる場合の変調周波数に係る成分の出射光の光強度値P1c、及び該変調信号を印加しない場合の出射光の光強度値P0aであり、
該光変調器の強度変調に係る特性値の算出に際し、該光強度値P0aにより該光強度値P0bと該光強度値P1cとを規格化した値を用いることを特徴とする光変調器の特性測定方法。
In the characteristic measuring method of the optical modulator according to claim 1 or 2 ,
The electrical signal consists of a bias voltage and a modulation signal,
The measured value is the light intensity value P 0b of the outgoing light of the spectral component when the light intensity of the outgoing light at the same spectral component as the incident light is maximized by the variable adjustment of the bias voltage, and the same spectral component as the incident light. The light intensity value P 1c of the emitted light of the component related to the modulation frequency when the light intensity of the emitted light at the minimum is, and the light intensity value P 0a of the emitted light when the modulation signal is not applied,
In calculating the characteristic value related to the intensity modulation of the optical modulator, a value obtained by standardizing the light intensity value P 0b and the light intensity value P 1c with the light intensity value P 0a is used. Measuring method of vessel characteristics.
請求項1乃至のいずれかに記載の光変調器の特性測定方法を用いたことを特徴とする光変調器の特性測定装置。Characteristic measurement apparatus for an optical modulator, characterized in that using the characteristic measuring method for an optical modulator according to any one of claims 1 to 3.
JP2001337450A 2001-11-02 2001-11-02 Method and apparatus for measuring characteristics of optical modulator Expired - Fee Related JP3866082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001337450A JP3866082B2 (en) 2001-11-02 2001-11-02 Method and apparatus for measuring characteristics of optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001337450A JP3866082B2 (en) 2001-11-02 2001-11-02 Method and apparatus for measuring characteristics of optical modulator

Publications (2)

Publication Number Publication Date
JP2003139653A JP2003139653A (en) 2003-05-14
JP3866082B2 true JP3866082B2 (en) 2007-01-10

Family

ID=19152082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001337450A Expired - Fee Related JP3866082B2 (en) 2001-11-02 2001-11-02 Method and apparatus for measuring characteristics of optical modulator

Country Status (1)

Country Link
JP (1) JP3866082B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110039A1 (en) 2008-03-07 2009-09-11 独立行政法人情報通信研究機構 Method for evaluating characteristics of optical modulator having high-precision mach-zehnder interferometer
WO2009113128A1 (en) 2008-03-13 2009-09-17 独立行政法人情報通信研究機構 Method for evaluating characteristic of optical modulator having mach-zehnder interferometers
WO2011027409A1 (en) 2009-09-07 2011-03-10 独立行政法人情報通信研究機構 Method for evaluating characteristic of optical modulator having mach-zehnder interferometer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983186B2 (en) * 2006-09-29 2012-07-25 凸版印刷株式会社 Takeover server, system, method, program, and campaign server
JP5540300B2 (en) * 2007-07-03 2014-07-02 独立行政法人日本原子力研究開発機構 Optical shutter performance evaluation analyzer
JP4991610B2 (en) * 2008-03-24 2012-08-01 住友大阪セメント株式会社 Method for measuring half-wave voltage of optical modulator
JP5086310B2 (en) * 2009-06-30 2012-11-28 アンリツ株式会社 Operating condition estimation method and optical spectrum analyzer in optical modulator
JP5640195B2 (en) * 2012-04-04 2014-12-17 独立行政法人情報通信研究機構 Evaluation method of optical modulator with multiple Mach-Zehnder interferometers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110039A1 (en) 2008-03-07 2009-09-11 独立行政法人情報通信研究機構 Method for evaluating characteristics of optical modulator having high-precision mach-zehnder interferometer
WO2009113128A1 (en) 2008-03-13 2009-09-17 独立行政法人情報通信研究機構 Method for evaluating characteristic of optical modulator having mach-zehnder interferometers
EP2309323A2 (en) 2008-03-13 2011-04-13 National Institute of Information and Communications Technology Method of evaluating the optical characteristic of a Mach-Zehnder optical modulator
WO2011027409A1 (en) 2009-09-07 2011-03-10 独立行政法人情報通信研究機構 Method for evaluating characteristic of optical modulator having mach-zehnder interferometer
US8867042B2 (en) 2009-09-07 2014-10-21 National Institute Of Information And Communications Technology Method for evaluating characteristic of optical modulator having mach-zehnder interferometer
CN102575971B (en) * 2009-09-07 2015-05-27 独立行政法人情报通信研究机构 Method for evaluating characteristic of optical modulator having mach-zehnder interferometer

Also Published As

Publication number Publication date
JP2003139653A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP2866186B2 (en) Electromagnetic field strength measuring device
US8682177B2 (en) Super high speed optical frequency sweeping technology
US6144450A (en) Apparatus and method for improving the accuracy of polarization mode dispersion measurements
CN110017967B (en) Phase comparison-based chirp parameter testing method for electro-optic intensity modulator
EP2778771B1 (en) Carrier-suppressed light-generating device
EP2309323B1 (en) Method for evaluating characteristics of an optical modulator including plural mach-zehnder interferometers
JP2619981B2 (en) Electromagnetic field strength measuring device
JP3866082B2 (en) Method and apparatus for measuring characteristics of optical modulator
JPWO2011027409A1 (en) Evaluation method of optical modulator with multiple Mach-Zehnder interferometers
JP4608149B2 (en) Method and apparatus for measuring half-wave voltage of Mach-Zehnder type optical modulator
JP4991610B2 (en) Method for measuring half-wave voltage of optical modulator
JP4643126B2 (en) Optical spectrum measuring method and apparatus
JP2002244091A (en) Method for characterization of optical modulator, and method for controlling high frequency oscillator using the same
JP2018087846A (en) Optical modulation device and method for controlling optical modulator
CN110411715A (en) Device and method for determining AMZI half-wave voltage of phase modulator
JP2757816B2 (en) Method for measuring characteristics of light intensity modulator and control method
JP2939482B2 (en) Apparatus and method for measuring characteristics of optical phase modulator
Jung Integrated-optic electric-field sensor utilizing a Ti: LiNbO 3 Y-fed balanced-bridge Mach-Zehnder interferometric modulator with a segmented dipole antenna
JP2012078413A (en) Optical frequency comb generation device, optical pulse generation device and method for controlling optical pulse generation device
JP5640195B2 (en) Evaluation method of optical modulator with multiple Mach-Zehnder interferometers
JP4251724B2 (en) Sampling apparatus and sample method
JP2014196912A (en) Device and method for measuring optical frequency characteristic
JP3435583B2 (en) Electric field sensor
Ye et al. A simple, robust two-tone method to measure the dynamic nonlinear characteristics of phase shifter in silicon Mach-Zehnder Modulator
JPH0271160A (en) Electro-optic sampler and electric signal waveform measurement device using said sampler

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3866082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees