JP3803851B2 - Dioxin oxidation catalyst - Google Patents

Dioxin oxidation catalyst Download PDF

Info

Publication number
JP3803851B2
JP3803851B2 JP20485599A JP20485599A JP3803851B2 JP 3803851 B2 JP3803851 B2 JP 3803851B2 JP 20485599 A JP20485599 A JP 20485599A JP 20485599 A JP20485599 A JP 20485599A JP 3803851 B2 JP3803851 B2 JP 3803851B2
Authority
JP
Japan
Prior art keywords
titania
carrier
oxidation catalyst
catalyst
dioxin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20485599A
Other languages
Japanese (ja)
Other versions
JP2001029786A (en
Inventor
正義 市来
通孝 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP20485599A priority Critical patent/JP3803851B2/en
Publication of JP2001029786A publication Critical patent/JP2001029786A/en
Application granted granted Critical
Publication of JP3803851B2 publication Critical patent/JP3803851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみおよび産業廃棄物のごみ焼却炉で発生する燃焼排ガス中に含まれるダイオキシン類を酸化分解するための触媒に関する。
【0002】
【従来の技術】
ゴミ焼却炉排ガス中のダイオキシン類の分解は、一般に、ダイオキシン類を共存する酸素で酸化し、無害な二酸化炭素、炭化水素、塩素ガスなどに変性することで行われている。ダイオキシン類の酸化には触媒が使用されるが、その触媒は200℃前後の低温で有効に機能し、微量共存する塩化水素、SOx、NOxなどに被毒されないことが必要条件である。
【0003】
アナターゼチタニアにバナジウム酸化物ならびにタングステン酸化物を必須成分として担持させた触媒が上記条件を満たすものとして知られている(特許第2633316号公報参照)。
【0004】
しかし、タングステン酸化物はチタニア、バナジウム酸化物と比較して高価な物質であり、触媒調製法、工程管理法なども複雑になることから、バナジウム酸化物/チタニアの2成分系の触媒開発が望まれているが、従来、タングステン酸化物の添加なしには十分な触媒性能を発揮できないとされていた。
【0005】
【発明が解決しようとする課題】
本発明は、上記実状に鑑み、タングステン酸化物の添加なしでも高い触媒活性を発揮させることができるダイオキシン類酸化触媒を提供することを目的とする。
【0007】
【課題を解決するための手段】
本明細書において、吸着担持とは金属溶液に担体を所要時間浸漬しておき、金属を担体に吸着させる手法をいう。浸漬時間は金属濃度、溶液温度などの条件にも依り、通常は1時間〜数10時間の範囲で選択される。
【0008】
タングステン酸化物の添加なしに高いダイオキシン類酸化活性を発揮させるには、チタニア結晶表面に担持されるバナジウム酸化物を高度に分散させる必要がある。同時に、バナジウム酸化物を担体上の固体酸性点との強い相互作用下に置き、結晶表面酸素としてO- を多量に保有させることが望まれる。
【0009】
即ち、チタニア結晶の表面に多数散在する酸性点にバナジウム化合物を吸着させ、これを400℃〜300℃の比較的低温で焼成することにより、バナジウム酸化物を高度に分散した状態で担体に担持させる。こうして得られたアナターゼチタニア触媒は高いダイオキシン類酸化活性を発揮する。
【0010】
高活性の発現は、バナジウムの高分散に依る接ガス面積の増大と、直下にある酸性点との強い相互作用に依ると考えられる。また、触媒細孔内で、バナジウム酸化物は数分子層以下の厚さで細孔壁に密着しており、担持されたバナジウム酸化物よる細孔の閉塞がなくダイオキシン類は細孔深部まで容易に拡散できるので、触媒全体が有効に機能しうることも、高活性発現の理由である。
【0011】
上記現象は、担体表面の固体酸酸性点の量および酸強度を増加させればより高いダイオキシン類の酸化活性が発現することを示唆する。発明者等はこの示唆に従って、アナターゼチタニア結晶の表面をマンガン酸化物または珪素酸化物との複合酸化物とすることにより得られる表面改質チタニア担体にバナジウム酸化物を吸着担持することにより、更に高いダイオキシン類の酸化活性を有する触媒を開発した。
【0012】
本発明による第のダイオキシン類酸化触媒は、アナターゼチタニアにマンガン化合物を含浸させ、該チタニアを焼成することによって得られた表面改質チタニア担体に、バナジウム酸化物を吸着担持させた触媒である。
【0013】
本発明による第のダイオキシン類酸化触媒は、アナターゼチタニアに珪素化合物を含浸させ、該チタニアを焼成することによって得られた表面改質チタニア担体に、バナジウム酸化物を吸着担持させた触媒である。
【0014】
のダイオキシン類酸化触媒において、表面改質チタニア担体は、好ましくは、アナターゼチタニアをマンガンの有機酸塩または無機酸塩の水溶液に浸漬し、ついで乾燥・焼成することにより得られたものである。マンガンの有機酸塩としては酢酸マンガンが例示され、無機酸塩としては塩化マンガン、硝酸マンガンが例示される。
【0015】
のダイオキシン類酸化触媒において、表面改質チタニア担体は、好ましくは、乾燥アナターゼチタニアを有機シリカ化合物の有機溶媒希釈液に浸漬して細孔内に含浸させ、ついで有機溶媒を蒸発させた後、チタニア含有担体を水に浸漬して細孔内の有機シリカ化合物を加水分解させてから同担体を乾燥・焼成することにより得られたものである。有機溶媒も乾燥したものを用いる。有機溶媒は特に限定されないがアルコール類がよく用いられる。
【0016】
担体にバナジウム酸化物を吸着担持させるには、担体をメタバナジン酸アンモンの水溶液に所要時間浸漬しておき、ついで乾燥・焼成する。
【0017】
アナターゼチタニアは、同チタニアの水性ゾル溶液にセラミクス繊維からなるシート状、ペーパー状などのプレフォーム体を浸漬し、繊維間マトリックスにゾルを保持させた状態でプレフォーム体を乾燥したものであってもよい。
【0018】
【発明の実施の形態】
参考製造例1
(1)固形分濃度35wt%のチタニアゾル(石原産業社製「CSNゾル」)にセラミックス繊維からなるシート状のプレフォーム体(日本無機社製「MCS025」、厚さ:0.3mm)を浸漬し、液から取り出した後120℃で乾燥し、平板状の担体(これをT担体と呼ぶ)を得た。
【0019】
T担体は、チタニアを146g/m2 (坪量)保持し、チタニアの比表面積365m2 /gを有するものであった。また、この状態ではチタニアはX線回折計測で明確なアナターゼ結晶型を示さなかった。窒素吸着法で計測したT担体の細孔分布は半径3nm以下にピークが認められるものであった。
【0020】
(2)T担体を空気中450℃で2時間焼成した。焼成後のチタニアは明確なアナターゼ結晶型を示し、比表面積は116m2 /gに低下した。細孔分布は半径8〜10nmにピークが認められるものに変化した。
【0021】
(3)焼成後のT担体100cm2 (坪量)を、バナジウムが1g/リットル含まれるように調製したメタバナジン酸アンモン水溶液0.4リットルに9時間浸漬しておき、その後120℃で乾燥し、空気気流中350℃で2時間焼成した。こうしてダイオキシン類酸化触媒Aを得た。
【0022】
触媒AのV25 /TiO2 重量比は0.028〜0.036であった。
【0023】
この触媒の比表面積はチタニア1g当たり106m2 であり、細孔分布も殆どバナジウム担持前から変化せず、バナジウム担持による細孔の閉塞などは殆どないと考えられる。
【0024】
また、メタバナジン酸アンモン水溶液として0.01mol/リットル、0.02mol/リットルおよび0.04mol/リットルの各濃度のものを用いた点を除いて、上記と同様の操作を行い、V吸着量を異にするダイオキシン類酸化触媒A−1、A−2およびA−3を得た。
【0025】
製造例
(1)参考製造例1の工程(1)で得られたT担体を1mol/リットルの硝酸マンガン水溶液に30分浸漬し、液から取り出した後120℃で2時間乾燥した。
【0026】
(2)このマンガン含有チタニア担体を空気気流中450℃で3時間焼成し、平板状の担体(これをMT担体と呼ぶ)を得た。
【0027】
MT担体は、比表面積が95m2 /gで、細孔分布はT担体とほぼ同様のものであった。また、この担体のMnO2 /TiO2 は0.04〜0.05であった。
【0028】
(3)焼成後のMT担体100cm2 (坪量)に参考製造例1の工程(3)と同様の方法でバナジウム酸化物を吸着担持させ、ダイオキシン類酸化触媒Bを得た。
【0029】
触媒BのV25 /TiO2 重量比は0.060〜0.095であった。
【0030】
この触媒の比表面積はチタニア1g当たり91m2 であり、細孔分布も殆どバナジウム担持前から変化せず、バナジウム担持による細孔の閉塞などは殆どないと考えられる。
【0031】
また、硝酸マンガン水溶液として0.5mol/リットル、0.1mol/リットルおよび2.0mol/リットルの各濃度のものを用いた点を除いて、上記と同様の操作を行い、Mn含量を異にするダイオキシン類酸化触媒B−1、B−2およびB−3を得た。
【0032】
製造例
(1)参考製造例1の工程(1)で得られたT担体を120℃で乾燥し、シリカゲルデシケーター中で冷却し、乾燥T担体を得た。
【0033】
(2)ゼオライト充填層を通過させ乾燥させたイソプロピルアルコールに、4−イソプロピルシリケートを加え、60vol%の希釈液を調製した。
【0034】
(3)この液に乾燥T担体を30分浸漬した。浸漬中に気相から湿分が液に溶解しないよう、浸漬容器を塩化ビニリデンフィルムで密閉しておいた。T担体を液から引き上げ、そのまま大気中に16時間放置した。
【0035】
(4)その後の担体を純水中に10分間浸漬した。担体を液から引き上げ、120℃で乾燥し空気気流中450℃で3時間焼成し、平板状の担体(これをST担体と呼ぶ)を得た。ST担体は126m2 /gの比表面積を有し、細孔分布には、SiO2 に由来する小径の細孔は認められず、焼成後のT担体とほぼ同様のものであった。
【0036】
この担体のSiO2 /TiO2 重量比は0.025〜0.038であった。
【0037】
(5)焼成後のST担体100cm2 (坪量)に参考製造例1の工程(3)と同様の方法でバナジウム酸化物を吸着担持させ、ダイオキシン類酸化触媒Cを得た。
【0038】
触媒CのV25 /TiO2 重量比は0.045〜0.070であった。
【0039】
この触媒の比表面積はチタニア1g当たり120m2 であり、細孔分布も殆どバナジウム担持前から変化せず、バナジウム担持による細孔の閉塞などは殆どないと考えられる。
【0040】
また、4−イソプロピルシリケート希釈液として30vol%、60vol%および100vol%の各濃度のものを用いた点を除いて、上記と同様の操作を行い、Si含量を異にするダイオキシン類酸化触媒B−1、B−2およびB−3を得た。
【0041】
比較製造例1
(1)T担体を空気中450℃で2時間焼成した。焼成後のチタニアは明確なアナターゼ結晶型を示し、比表面積は116m2 /gに低下した。
【0042】
細孔分布は半径8〜10nmにピークが認められるものに変化した。
【0043】
(2)1mol/リットルの蓚酸水溶液0.4リットルにメタバナジン酸アンモン9.4gを溶解し、バナジウムが10g/リットル含まれる浸漬液を調製した。
【0044】
この液に焼成後のT担体100cm2 (坪量)を6時間浸漬しておき、その後150℃乾燥し、空気気流中350℃で2時間焼成してダイオキシン類酸化触媒Dを得た。
【0045】
触媒DのV25 /TiO2 重量比は0.15〜0.18であった。
【0046】
この触媒の比表面積はチタニア1g当たり77m2 であり、細孔分布は焼成後T担体と比べ、細孔半径5nm前後が増加しており、バナジウム担持による細孔の閉塞、それによるインクボトルの形成が認められた。
【0047】
使用例1
(1) 参考製造例1および製造例1〜2および比較製造例1で得られた各ダイオキシン類分解触媒について、下記条件で分解率を計測した。
【0048】

Figure 0003803851
測定結果を表1にまとめて示す。
【0049】
【表1】
Figure 0003803851
【0052】
表1から判るように、触媒B−1、B−2、B−3、C−1、C−2およびC−3では、チタニア表面をマンガン酸化物または珪素酸化物との複合酸化物とし、表面酸性点の強度、点数を向上させると、バナジウム酸化物の吸着量が増加し、それに比例してダイオキシン類の酸化活性が上昇した。
【0053】
上記のような処理を行うと、バナジウム酸化物吸着量表面酸性点の上限は、V/Ti(原子比)で0.06前後であるらしく、Mn、Si等の担持量を増加させてもバナジウムの吸着担持量は増加せず、ダイオキシン類の酸化活性もそれ以上には向上しない。
【0054】
触媒C−1、C−2およびC−3の比表面積(SA)は、高い比表面積を有するSiO2 の影響で、Si分の増加に従って増加する傾向にある。ただし、比表面積の増加はダイオキシン類酸化活性には殆ど寄与しない。
【0055】
【発明の効果】
以上の次第で、本発明によれば、タングステン酸化物の添加なしでも高い触媒活性を発揮させることができるダイオキシン類酸化触媒を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for oxidatively decomposing dioxins contained in combustion exhaust gas generated in municipal waste and industrial waste incinerators.
[0002]
[Prior art]
The decomposition of dioxins in waste incinerator exhaust gas is generally performed by oxidizing the dioxins with oxygen in the presence of dioxins and modifying them into harmless carbon dioxide, hydrocarbons, chlorine gas, and the like. A catalyst is used for the oxidation of dioxins, but the catalyst is required to function effectively at a low temperature of around 200 ° C. and be not poisoned by trace amounts of hydrogen chloride, SOx, NOx, and the like.
[0003]
A catalyst in which vanadium oxide and tungsten oxide are supported as essential components on anatase titania is known to satisfy the above conditions (see Japanese Patent No. 2633316).
[0004]
However, tungsten oxide is an expensive material compared to titania and vanadium oxide, and the catalyst preparation method and process control method are complicated, so the development of a two-component catalyst of vanadium oxide / titania is desired. However, it has been conventionally considered that sufficient catalytic performance cannot be exhibited without addition of tungsten oxide.
[0005]
[Problems to be solved by the invention]
In view of the above circumstances, an object of the present invention is to provide a dioxin oxidation catalyst that can exhibit high catalytic activity without the addition of tungsten oxide.
[0007]
[Means for Solving the Problems]
In this specification, the adsorption carrying means a technique in which a carrier is immersed in a metal solution for a required time and the metal is adsorbed on the carrier. The immersion time depends on conditions such as the metal concentration and the solution temperature, and is usually selected in the range of 1 hour to several tens of hours.
[0008]
In order to exhibit high oxidation activity of dioxins without adding tungsten oxide, it is necessary to highly disperse vanadium oxide supported on the titania crystal surface. At the same time, the vanadium oxide was placed under strong interaction with the solid acid sites on the carrier, O as a crystal surface oxygen - be a large amount of holdings is desired.
[0009]
That is, a vanadium compound is adsorbed on acidic points scattered on the surface of a titania crystal and calcined at a relatively low temperature of 400 ° C. to 300 ° C., thereby supporting the vanadium oxide on the support in a highly dispersed state. . The anatase titania catalyst thus obtained exhibits a high dioxin oxidation activity.
[0010]
The expression of high activity is thought to be due to an increase in the gas contact area due to the high dispersion of vanadium and a strong interaction with the acidic point directly below. In addition, vanadium oxide adheres to the pore wall with a thickness of several molecular layers or less within the catalyst pores, and there is no blockage of pores by the supported vanadium oxide, and dioxins can be easily penetrated to the deep pores. It is also a reason for the high activity expression that the entire catalyst can function effectively.
[0011]
The above phenomenon suggests that if the amount of acid acid point on the surface of the support and the acid strength are increased, higher oxidation activity of dioxins is expressed. In accordance with this suggestion, the inventors of the present invention further increased the adsorption of vanadium oxide on a surface-modified titania support obtained by making the surface of anatase titania crystals a composite oxide with manganese oxide or silicon oxide. We have developed a catalyst with oxidation activity for dioxins.
[0012]
The first dioxin oxidation catalyst according to the present invention is a catalyst in which vanadium oxide is adsorbed and supported on a surface-modified titania support obtained by impregnating anatase titania with a manganese compound and calcining the titania.
[0013]
The second dioxin oxidation catalyst according to the present invention is a catalyst in which vanadium oxide is adsorbed and supported on a surface-modified titania support obtained by impregnating anatase titania with a silicon compound and firing the titania.
[0014]
In the first dioxin oxidation catalyst, the surface-modified titania carrier is preferably obtained by immersing anatase titania in an organic salt or inorganic acid salt aqueous solution of manganese, followed by drying and firing. . Examples of the organic acid salt of manganese include manganese acetate, and examples of the inorganic acid salt include manganese chloride and manganese nitrate.
[0015]
In the second dioxin oxidation catalyst, the surface-modified titania support is preferably obtained by immersing dry anatase titania in an organic solvent diluted solution of an organic silica compound to impregnate the pores, and then evaporating the organic solvent. The titania-containing carrier was obtained by immersing the titania-containing carrier in water to hydrolyze the organic silica compound in the pores and then drying and firing the carrier. A dried organic solvent is also used. The organic solvent is not particularly limited, but alcohols are often used.
[0016]
In order to adsorb and support the vanadium oxide on the support, the support is immersed in an aqueous solution of ammonium metavanadate for a required time, and then dried and fired.
[0017]
Anatase titania is obtained by immersing a preform body made of ceramic fibers in an aqueous sol solution of the same titania and drying the preform body in a state where the sol is held in a matrix between fibers. Also good.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Reference production example 1
(1) A sheet-like preform body (“MCS025” manufactured by Nippon Mining Co., Ltd., thickness: 0.3 mm) made of ceramic fibers is immersed in a titania sol (“CSN sol” manufactured by Ishihara Sangyo Co., Ltd. ) having a solid content of 35 wt%. After taking out from the liquid, it was dried at 120 ° C. to obtain a flat carrier (referred to as T carrier).
[0019]
The T carrier retained titania at 146 g / m 2 (basis weight) and had a titania specific surface area of 365 m 2 / g. In this state, titania did not show a clear anatase crystal form by X-ray diffraction measurement. The T carrier pore distribution measured by the nitrogen adsorption method had a peak with a radius of 3 nm or less.
[0020]
(2) The T carrier was calcined in air at 450 ° C. for 2 hours. The titania after calcination showed a clear anatase crystal form, and the specific surface area decreased to 116 m 2 / g. The pore distribution changed to one having a peak at a radius of 8 to 10 nm.
[0021]
(3) The T carrier 100 cm 2 (basis weight) after firing was immersed for 9 hours in 0.4 liter of ammonium metavanadate prepared so as to contain 1 g / liter of vanadium, and then dried at 120 ° C., Firing was performed at 350 ° C. for 2 hours in an air stream. A dioxin oxidation catalyst A was thus obtained.
[0022]
Catalyst A had a V 2 O 5 / TiO 2 weight ratio of 0.028 to 0.036.
[0023]
The specific surface area of this catalyst is 106 m 2 per gram of titania, and the pore distribution hardly changes from before vanadium loading, and it is considered that there is almost no blockage of pores due to vanadium loading.
[0024]
Further, except that the ammonium metavanadate aqueous solution having a concentration of 0.01 mol / liter, 0.02 mol / liter, and 0.04 mol / liter was used, the same operation as described above was performed, and the V adsorption amount was changed. Dioxins oxidation catalysts A-1, A-2 and A-3 were obtained.
[0025]
Production Example 1
(1) The T carrier obtained in step (1) of Reference Production Example 1 was immersed in a 1 mol / liter manganese nitrate aqueous solution for 30 minutes, taken out from the solution, and dried at 120 ° C. for 2 hours.
[0026]
(2) This manganese-containing titania support was calcined in an air stream at 450 ° C. for 3 hours to obtain a flat support (referred to as an MT support).
[0027]
The MT carrier had a specific surface area of 95 m 2 / g and the pore distribution was almost the same as that of the T carrier. In addition, MnO 2 / TiO 2 of this support was 0.04 to 0.05.
[0028]
(3) A vanadium oxide was adsorbed and supported on the MT carrier 100 cm 2 (basis weight) after firing in the same manner as in Step (3) of Reference Production Example 1 to obtain a dioxin oxidation catalyst B.
[0029]
Catalyst 2 had a V 2 O 5 / TiO 2 weight ratio of 0.060 to 0.095.
[0030]
The specific surface area of this catalyst is 91 m 2 per gram of titania, and the pore distribution hardly changes from before vanadium loading, and it is considered that there is almost no blockage of pores due to vanadium loading.
[0031]
Further, except that the manganese nitrate aqueous solution having a concentration of 0.5 mol / liter, 0.1 mol / liter or 2.0 mol / liter was used, the same operation as described above was performed, and the Mn content was changed. Dioxins oxidation catalysts B-1, B-2 and B-3 were obtained.
[0032]
Production Example 2
(1) The T carrier obtained in step (1) of Reference Production Example 1 was dried at 120 ° C. and cooled in a silica gel desiccator to obtain a dry T carrier.
[0033]
(2) 4-Isopropyl silicate was added to isopropyl alcohol that had been passed through the zeolite packed bed and dried to prepare a 60 vol% diluted solution.
[0034]
(3) A dry T carrier was immersed in this solution for 30 minutes. The immersion container was sealed with a vinylidene chloride film so that moisture did not dissolve in the liquid during the immersion. The T carrier was pulled up from the liquid and left in the atmosphere for 16 hours.
[0035]
(4) The subsequent carrier was immersed in pure water for 10 minutes. The carrier was pulled up from the liquid, dried at 120 ° C., and fired at 450 ° C. for 3 hours in an air stream to obtain a plate-like carrier (referred to as ST carrier). The ST carrier had a specific surface area of 126 m 2 / g, and small pores derived from SiO 2 were not observed in the pore distribution, and was almost the same as the T carrier after firing.
[0036]
SiO 2 / TiO 2 weight ratio of the carrier was 0.025 to 0.038.
[0037]
(5) A vanadium oxide was adsorbed and supported on the ST support 100 cm 2 (basis weight) after firing in the same manner as in Step (3) of Reference Production Example 1 to obtain a dioxin oxidation catalyst C.
[0038]
V 2 O 5 / TiO 2 weight ratio of catalyst C was 0.045 to 0.070.
[0039]
The specific surface area of this catalyst is 120 m 2 per gram of titania, and the pore distribution hardly changes from before vanadium loading, and it is considered that there is almost no blockage of pores due to vanadium loading.
[0040]
Further, the dioxins oxidation catalyst B- having the same Si content as the above except that 4-isopropyl silicate diluting solutions having concentrations of 30 vol%, 60 vol% and 100 vol% were used. 1, B-2 and B-3 were obtained.
[0041]
Comparative production example 1
(1 ) The T carrier was calcined in air at 450 ° C. for 2 hours. The titania after calcination showed a clear anatase crystal form, and the specific surface area decreased to 116 m 2 / g.
[0042]
The pore distribution changed to one having a peak at a radius of 8 to 10 nm.
[0043]
(2) 9.4 g of ammonium metavanadate was dissolved in 0.4 liter of a 1 mol / liter oxalic acid aqueous solution to prepare an immersion liquid containing 10 g / liter of vanadium.
[0044]
100 cm 2 (basis weight) of the baked T carrier was immersed in this liquid for 6 hours, then dried at 150 ° C., and baked at 350 ° C. for 2 hours in an air stream to obtain a dioxin oxidation catalyst D.
[0045]
V 2 O 5 / TiO 2 weight ratio of catalyst D was from 0.15 to 0.18.
[0046]
The specific surface area of this catalyst is 77 m 2 per gram of titania, and the pore distribution is increased by a pore radius of around 5 nm as compared with the T carrier after calcination. The pores are blocked by vanadium loading, thereby forming an ink bottle. Was recognized.
[0047]
Example 1
(1) About each dioxin decomposition catalyst obtained by reference manufacture example 1, manufacture example 1-2, and comparative manufacture example 1, the decomposition rate was measured on condition of the following.
[0048]
Figure 0003803851
The measurement results are summarized in Table 1.
[0049]
[Table 1]
Figure 0003803851
[0052]
As can be seen from Table 1 , in the catalysts B-1, B-2, B-3, C-1, C-2 and C-3, the titania surface is a complex oxide with manganese oxide or silicon oxide, When the strength and score of the surface acidic point were improved, the amount of vanadium oxide adsorbed increased, and the oxidation activity of dioxins increased proportionally.
[0053]
The treatment described above line UTO, the upper limit of the vanadium oxide adsorption surface acidic sites are seems is 0.06 and forth V / Ti (atomic ratio), Mn, also to increase the supported amount of Si or the like vanadium The amount of adsorbed and supported oxygen does not increase, and the oxidation activity of dioxins is not further improved.
[0054]
The specific surface areas (SA) of the catalysts C-1, C-2 and C-3 tend to increase as the Si content increases due to the influence of SiO 2 having a high specific surface area. However, an increase in specific surface area hardly contributes to dioxin oxidation activity.
[0055]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a dioxin oxidation catalyst capable of exhibiting high catalytic activity without addition of tungsten oxide.

Claims (6)

アナターゼチタニアにマンガン化合物を含浸させ、該チタニアを焼成することによって得られた表面改質チタニア担体に、バナジウム酸化物を吸着担持させたことを特徴とするダイオキシン類酸化触媒。  A dioxin oxidation catalyst characterized in that vanadium oxide is adsorbed and supported on a surface-modified titania support obtained by impregnating a manganese compound in anatase titania and firing the titania. アナターゼチタニアに珪素化合物を含浸させ、該チタニアを焼成することによって得られた表面改質チタニア担体に、バナジウム酸化物を吸着担持させたことを特徴とするダイオキシン類酸化触媒。  A dioxin oxidation catalyst characterized in that a vanadium oxide is adsorbed and supported on a surface-modified titania support obtained by impregnating anatase titania with a silicon compound and calcining the titania. 表面改質チタニア担体が、アナターゼチタニアをマンガンの有機酸塩または無機酸塩の水溶液に所要時間浸漬しておき、ついで乾燥・焼成することにより得られたものである請求項記載のダイオキシン類酸化触媒。The dioxin oxidation according to claim 1 , wherein the surface-modified titania carrier is obtained by immersing anatase titania in an aqueous solution of an organic acid salt or inorganic acid salt of manganese for a required time, followed by drying and firing. catalyst. 表面改質チタニア担体が、乾燥アナターゼチタニアを有機シリカ化合物の有機溶媒希釈液に浸漬して細孔内に含浸させ、ついで有機溶媒を蒸発させた後、チタニア含有担体を水に浸漬して細孔内の有機シリカ化合物を加水分解させてから同担体を乾燥・焼成することにより得られたものである請求項記載のダイオキシン類酸化触媒。The surface-modified titania carrier is impregnated with dried anatase titania in an organic solvent diluted solution of an organic silica compound to impregnate the pores, and after the organic solvent has evaporated, the titania-containing carrier is immersed in water to obtain pores. The dioxin oxidation catalyst according to claim 2 , wherein the catalyst is obtained by hydrolyzing the organic silica compound and drying and calcining the carrier. 担体をメタバナジン酸アンモンの水溶液に浸漬し、乾燥・焼成してバナジウム酸化物を吸着担持させた請求項1〜のいずれかに記載のダイオキシン類酸化触媒。The dioxin oxidation catalyst according to any one of claims 1 to 4 , wherein the carrier is immersed in an aqueous solution of ammonium metavanadate, dried and fired to adsorb and carry vanadium oxide. アナターゼチタニアが、同チタニアの水性ゾル溶液にセラミクス繊維からなるプレフォーム体を浸漬し、繊維間マトリックスにゾルを保持させた状態でプレフォーム体を乾燥したものである請求項1〜のいずれかに記載のダイオキシン類酸化触媒。Anatase titania, immersing the preform body consisting of ceramic fibers in an aqueous sol solution of the titania, claim 1-5 is obtained by drying the preforms in a state of being held sol inter-fiber matrix Dioxin oxidation catalyst as described in 1.
JP20485599A 1999-07-19 1999-07-19 Dioxin oxidation catalyst Expired - Fee Related JP3803851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20485599A JP3803851B2 (en) 1999-07-19 1999-07-19 Dioxin oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20485599A JP3803851B2 (en) 1999-07-19 1999-07-19 Dioxin oxidation catalyst

Publications (2)

Publication Number Publication Date
JP2001029786A JP2001029786A (en) 2001-02-06
JP3803851B2 true JP3803851B2 (en) 2006-08-02

Family

ID=16497524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20485599A Expired - Fee Related JP3803851B2 (en) 1999-07-19 1999-07-19 Dioxin oxidation catalyst

Country Status (1)

Country Link
JP (1) JP3803851B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110302800A (en) * 2019-04-30 2019-10-08 杭州星宇炭素环保科技有限公司 For decomposing the synthesis technology of the catalyst activity carbon composite of dioxin
US10624564B1 (en) 2008-07-03 2020-04-21 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502349B2 (en) * 2001-02-23 2010-07-14 三井造船株式会社 Exhaust gas treatment apparatus and exhaust gas treatment method
KR100686381B1 (en) * 2005-09-27 2007-02-22 한국전력기술 주식회사 Vanadium/titania-based catalysts comprising of nmo(natural manganese ore) for removing nitrogen oxides and dioxine at wide operation temperature region, and using thereof
FR3124406A1 (en) * 2021-06-24 2022-12-30 Luma/Arles Crystallization support, crystallization assembly comprising a frame and such a support, salt panel comprising such a support and method of manufacturing such a salt panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10624564B1 (en) 2008-07-03 2020-04-21 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
CN110302800A (en) * 2019-04-30 2019-10-08 杭州星宇炭素环保科技有限公司 For decomposing the synthesis technology of the catalyst activity carbon composite of dioxin
CN110302800B (en) * 2019-04-30 2022-03-11 杭州星宇炭素环保科技有限公司 Synthesis process of catalyst activated carbon composite material for decomposing dioxin

Also Published As

Publication number Publication date
JP2001029786A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
Tomatis et al. Recent development of catalysts for removal of volatile organic compounds in flue gas by combustion: a review
JP3741303B2 (en) Exhaust gas purification catalyst
JP2004512162A (en) Catalyst for eliminating CO, VOC and halogenated organic emissions
JP3511314B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
KR100194483B1 (en) NOx Adsorbent
KR101483079B1 (en) Catalyst For Hydrocarbon Oxidation, Odor Removal And Its Preparation Method
WO2018123786A1 (en) Low-temperature oxidation catalyst
KR20200114460A (en) Low temperature DeNOx catalyst containing hierarchically structured porous TiO2 catalyst support and method for preparing the same
US4921830A (en) Catalyst for the oxidation of carbon monoxide
JP3803851B2 (en) Dioxin oxidation catalyst
WO2004022229A1 (en) Novel catalyst for selective nox reduction using hydrocarbons
KR20010108495A (en) Compositions Used as NOx Trap, Based on Manganese and an Alkaline or Alkaline-Earth and Use for Treating Exhaust Gases
US4940686A (en) Catalyst for oxidation of carbon monoxide
CN114146705A (en) High water resistance nano-carrier low-temperature ammonia catalytic oxidation catalyst
KR100722429B1 (en) Preparation method of nano size copper-manganese complex oxide catalyst and the catalyst prepared by the method
JP4982721B2 (en) Nitrogen oxide removing catalyst and method for producing the same
Shikada et al. Reduction of nitric oxide with ammonia on silica‐supported vanadium oxide catalysts
JP3765942B2 (en) Exhaust gas purification catalyst compound, catalyst containing the compound, and process for producing the same
KR100938716B1 (en) MANUFACTURING METHOD OF MESOPOROUS TiO2 AGGERATE SUPPORTED METAL OXIDE FOR CATALYSTIC COMBUSTION CONTAINING A PLATINUM GROUP ELEMENT
US4623637A (en) Process for producing a catalyst for oxidizing carbon monoxide and air filter produced by the process
WO2018123787A1 (en) Method for manufacturing low-temperature oxidation catalyst
JP6071110B2 (en) VOC decomposition removal catalyst and VOC decomposition removal method using the same
US6475952B2 (en) Process for producing a catalytically active material, catalytic converter having a catalytically active material produced in this manner, and use of the catalytic converter to break down dioxins and/or furans
JP3310926B2 (en) DeNOx catalyst and method for producing the same
KR100377886B1 (en) Catalyst for removing organic chlorine compounds and preparing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees