JP3757118B2 - Non-contact rotational position sensor and throttle valve assembly having non-contact rotational position sensor - Google Patents

Non-contact rotational position sensor and throttle valve assembly having non-contact rotational position sensor Download PDF

Info

Publication number
JP3757118B2
JP3757118B2 JP2001002045A JP2001002045A JP3757118B2 JP 3757118 B2 JP3757118 B2 JP 3757118B2 JP 2001002045 A JP2001002045 A JP 2001002045A JP 2001002045 A JP2001002045 A JP 2001002045A JP 3757118 B2 JP3757118 B2 JP 3757118B2
Authority
JP
Japan
Prior art keywords
magnetic
permanent magnet
rotational position
position sensor
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001002045A
Other languages
Japanese (ja)
Other versions
JP2002206913A (en
Inventor
健治 宮田
智 嶋田
文男 田島
俊文 臼井
正則 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2001002045A priority Critical patent/JP3757118B2/en
Priority to US09/820,327 priority patent/US6559637B2/en
Priority to DE60131245T priority patent/DE60131245T2/en
Priority to KR10-2001-0016741A priority patent/KR100424375B1/en
Priority to EP01107716A priority patent/EP1223409B1/en
Publication of JP2002206913A publication Critical patent/JP2002206913A/en
Priority to US10/797,702 priority patent/USRE40523E1/en
Application granted granted Critical
Publication of JP3757118B2 publication Critical patent/JP3757118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は例えば内燃機関のスロットルバルブ(絞弁)の回転軸の回転角度を検出する回転位置センサに関し、特に非接触式回転位置センサに関する。
また、本発明はそのような非接触式回転位置センサを備えた絞弁組立体に関する。
【0002】
【従来の技術】
従来のこの種の回転位置センサとしては日本特許第2842482号,日本特許第2920179号,米国特許第5528139号,米国特許第5789917号および米国特許第6137288号に記載されたものが知られている。
【0003】
これら従来技術では、永久磁石側を回転子とすると、固定子内の円周方向の磁束密度が、回転子の回転方向に対して線形的に分布していることに着目したものであり、固定子内の磁場分布が、磁石が取付けられた回転子の回転位置になるべく影響されないようにするために、回転子と固定子との対向面の形状に関しては、回転方向に対して垂直な方向の長さが均一になるように構成している。
【0004】
【発明が解決しようとする課題】
このように回転子と固定子との対向面の形状が制約を受けるために、センサを設置する対象機器に適した設計をする上で、設計自由度が低いという問題があった。
【0005】
本発明の目的は、固定子側と回転子側における磁路の対向面の形状において、回転子の回転方向に対して垂直な方向の長さが均一でなくとも十分な性能が得られる非接触式回転位置センサを得ることにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明では、回転子を形成する環状または半環状永久磁石を挟んで例えば一対の磁性板によって固定子側磁路の一部を形成し、この固定子側磁路を通って形成される閉磁路の途中に磁束を集中させる絞り部としての磁束収束部を設け、当該磁束絞り部(収束部)に磁気感応素子を配置する。
【0007】
また別の発明では環状または半環状永久磁石を絞弁の回転軸の端部に装着し、本体に装着される樹脂カバーにこの磁石を挟んで磁気通路を形成する磁性体組立体を装着し、この磁性体組立体には磁束収束部を設けてその磁束収束部に磁気感応素子を設置する。
【0008】
具体的には環状または半環状永久磁石は回転軸に脱着自在に取り付けられ、磁性体組立体の一方には回転軸の径より大きく磁石の内径より小さい孔が中央に設けられている。
【0009】
【発明の実施の形態】
図1から図4を用いて本発明の第一の実施例を説明する。
【0010】
図1は本実施例の外観を示し、図2はその内部構造がわかるように示した図である。図1,図2に示すように、本実施例では、リング状(環状)の永久磁石10およびリング状の永久磁石10を支持するシャフト(回転軸)15により回転子を形成し、リング状の永久磁石10を磁性板(磁性体組立体)11,12,13,14で上下に挟み込む。
【0011】
上側の磁性板11,12は、お互いに水平方向に離れて配置される。その結果両磁性板11,12の間にエアギャップ(a1,a2,b1,b2)が形成される。これは下側の磁性板13,14についても同様である。
【0012】
磁性板11,12,13,14には、それぞれ磁束絞り部(磁束収束部)を形成する突起状磁性体16,17,18,19が配置され、突起状磁性体16,17の間にホール素子(磁気感応素子)21を、また、突起状磁性体18,19の間にホール素子(磁気感応素子)22を配置する。
【0013】
磁束絞り部(磁束収束部)を形成する突起状磁性体16,17,18,19はエアーギャップa1,a2,b1,b2を挟んで互いに対象な位置で、且つ磁石10の外周部位に形成される。この磁束絞り部(磁束収束部)を形成する突起状磁性体16,17,18,19は磁性板11,12,13,14と一体に形成したが、別体に形成しておいて後から接着あるいは溶接によって取り付けすることができる。
【0014】
この実施例の正面図が図5(b)に示されている。
【0015】
磁性板11,13および12,14は均一なギャップG1を以って対面配置されている。
【0016】
磁性板11,12と磁石10の上面との間には均一な小ギャップg1が設けてあり、また磁性板13,14と磁石10の下面との間には均一な小ギャップg2が設けられている。
【0017】
その結果ギャップG1は磁石の厚みt1に、小ギャップg1,g2を加えた大きさとなる。
【0018】
また、突起状磁性体部16,17及び18,19の間のギャップは磁石10の厚みt1より小さい。
【0019】
磁性板13,14の中心に設けられたシャフト15の挿通孔51の径dは磁石10の内径Dと同じか小さく設定されている。
【0020】
この挿通孔51の径dは磁石の外径D0より小さいことが最低限要求されるがどの程度小さくするかは磁路の条件で決定する。
【0021】
また、磁性板11,12の中央の孔52、及び小ギャップa1,a2,b1,b2はなくても良い。この実施例は後述する。
【0022】
この磁性板(11,12及び13,14)の中央の孔の径d、d0は回転シャフト15を磁路の一部として利用するか否かによって決定する。この回転シャフト15が非磁性体の場合には磁性板の中央の孔51,52の径d,d0を磁石10の内径Dより小さくすることに特別な性能の変化は見られないが、回転シャフト15が磁性体の場合には磁気感応素子21,22の取り付け部の磁束が回転シャフト15を通って漏洩する磁束の影響を受けるので、これを考慮して磁性板(11,12及び13,14)の中央の孔51,52の径d,d0が決定される。
【0023】
回転シャフト15を通る磁束を積極的に利用する場合は磁性板(11,12及び13,14)の中央の孔51、52の径d,d0は小さく設定される。逆に回転シャフト15を通る磁束の影響を避ける場合は磁性板(11,12及び13,14)の中央の孔51,52の径d,d0は大きく設定される。しかし磁石10の外径D0より孔の径d,d0を大きくすると磁石10と磁性板(11,12及び13,14)との間のエアーギャップが大きくなって基本的磁束量が減少するので磁性板(11,12及び13,14)の中央の孔の径d,d0の上限は磁石10の外径D0とするのが好ましい。
【0024】
磁性部材(11乃至14,16乃至19、回転軸)のこのような形状や配置関係、各ギャップ(g1,g2,G1,G2)の寸法関係によって磁石の発生する磁束は磁気感応素子21,22が取り付けられた2個所のエアーギャップG2部に絞り込まれ、収束する。
【0025】
回転シャフト15を通る漏洩磁路は突起状磁性体部16,17及び18,19で極端な磁束の飽和が生じないよう調整するのに利用される。
【0026】
ここで、ホール素子21、あるいはホール素子22は片方だけでも機能するが、故障時の相互のバックアップあるいは故障診断のチェック用に2個配置する。
【0027】
ここで、リング状の永久磁石10は、図3の矢印で示すように、概ね回転軸方向に着磁されている。リング状の永久磁石10の磁化の向きは、回転方向180°の領域で上向きにその他の領域は下向きである。
【0028】
このときの磁束密度ベクトルは、概略図4のような分布をなす。すなわち、リング状の永久磁石10による磁場は、上下の磁性板11,12,13,14に分流され、突起状磁性体16,17,18,19並びにホール素子21,22を通過する。ホール素子21,22を通過する磁場の向きと強さは、リング状の永久磁石10の回転位置によって変化する。
【0029】
ここで、リング状の永久磁石10の回転位置と、ホール素子21を通過する磁束量との関係について、図5を用いて説明する。図5には、リング状の永久磁石10における磁場の向きを示す。
【0030】
この回転位置において、領域aと領域bは、丁度同じ開き角度にあり、それぞれの領域の磁場の向きは、互いに反対の向きであり、領域aと領域bからの磁束は互いに打ち消し合う。実際は、磁化分布の向きが反転する領域aと領域cの境界付近は、磁化が弱まっているので、厳密には相殺しないが、概ね打ち消し合うと見て良い。
【0031】
このため、残りの領域cにおける磁束の大部分が、突起状磁性体16,17を通過する。この量は、領域cの占める面積に比例している。
【0032】
また、領域cの占める面積は、リング状の永久磁石10の回転角度に比例する。従って、ホール素子21で検出される磁束密度は、リング状の永久磁石10の回転角度に概ね比例している。これにより、ホール素子21で検出される磁束密度をセンシングすることにより、リング状の永久磁石10の回転角度、すなわちシャフト15の回転角度が検出できることになる。
【0033】
なお、本実施例では、図1における磁性板11,12の間の間隔a1,a2,b1,b2は、a1=a2=b1=b2になっているが、本発明はこれに限定されるものではなく、a1>b1,a2>b2にしても良い。さらに、望ましくは、a1=a2,b1=b2にした方が良い。a1>b1,a2>b2にすることにより、磁性体11,12間の磁気的カップリングが弱くなり、ホール素子21で検出される磁束密度と、リング状の永久磁石10の回転角度との間の直線関係が向上する。
【0034】
上下の磁性板11と13,12と14は均一なギャップG1を保って対面している。上下の磁性板11と13,12と14は永久磁石10との間に均一なギャップg1(上側ギャップ),g2(下側ギャップ)を保って永久磁石10と対面している。ギャップG1は永久磁石10の厚さt1よりギャップg1+g2分だけ大きい。しかし、突起状磁性体16,17及び18,19間のギャップg3,g4は永久磁石10の厚さより小さい。この構成によって永久磁石10の磁束を突起状磁性体16,17及び18,19において収束させることができる。この意味において、突起状磁性体16,17及び18,19は磁気絞り部を形成する。つまり、磁性体板11,13及び12,14間に磁束の通り易い部分として突起状磁性体16,17及び18,19を設け、この部分に磁束を集中させることが本発明の原理である。
【0035】
なお、本センサを低コストで生産する場合、各部位の取り付け精度は±0.2mm程度であることを考えると、本実施例において、リング状の永久磁石10と上下の磁性板11,12,13,14の間のエアギャップの幅を、それぞれ0.5mm以上、望ましくは1mm前後にした方が、取り付け誤差によるセンサの特性への影響を小さくできる。このことは、以下に示す他の実施例においても共通事項である。
【0036】
磁性材は多かれ少なかれ、磁気ヒステリシス特性を有しており、一般的に0.5Tあるいは1Tを超えると、磁気ヒステリシス効果が次第に顕著になってくる。回転位置センサの回転位置精度を高精度にするためには、磁気ヒステリシスは極力小さい範囲で使うのが望ましい。従って、磁性材内部、代表的には磁性板11,12,13,14の内部の磁束密度が0.5T以下であることが望ましい。このことは、以下に示す他の実施例においても共通事項である。
【0037】
なお、本実施例では、永久磁石はリング状であるが、円盤状のものでも、同様の機能を持たせることができる。
【0038】
図6から図9の図を用いて本発明の第二の実施例を示す。図6は本実施例の外観を示し、図7はその内部構造がわかるように示した図である。図6,図7に示すように、本実施例は、先の第一の実施例と殆ど構造は変わらないが、唯一、上部の磁性板30が1枚ものになっている点が異なる。リング状の永久磁石10からの磁束を分岐して、突起状磁性体16,17と突起状磁性体18,19に分流するためには、上下の磁性板のうち、どちらかに水平方向エアギャップがあれば良い。この例では、下の磁性板13,14で水平方向エアギャップを形成している。図8はリング状の永久磁石10の磁化分布を示しており、図9は磁束密度ベクトル分布の様子を示している。
【0039】
本実施例では、リング状の永久磁石10の上部で磁路が形成されるため、突起状磁性体16,17と突起状磁性体18,19に分流する磁束の量が減少するものの、上部の磁性板30は1枚もので良いため、部品数が減り、製作し易いという効果がある。また、回転位置センサを下部の面で固定する場合、上部は外側になるが、外側からの磁性体の侵入によるセンサ出力への影響が軽減できるという効果もある。
【0040】
本発明の第三の実施例を図10に示す。本実施例は、先の第一の実施例の構造において、磁性板11,12に、穴31,32を設けたものである。穴の形状やサイズにより、磁性板11,12の磁路における磁気抵抗分布を調整できる。これにより、第一の実施例の回転位置センサよりも、ホール素子で検出される磁束密度と回転角度の間の直線性が改善されるという効果をもつ。また、磁性板13,14にも同様な穴をあけて、この直線性をさらに改善することもできる。なお、ここでは、各磁性板に1個の穴を設けた場合を示したが、本発明はこれに限定するものではなく、2個あるいは複数個の穴を用いても良い。以下も同様である。
【0041】
本発明の第四の実施例を図11に示す。本実施例は、第二の実施例の構造において、磁性板30に、穴31,32を設けたものである。本実施例では、第二の実施例に対して、ホール素子で検出される磁束密度と回転角度の間の直線性が改善される効果をもつ。
【0042】
本発明の第五の実施例を図12に示す。本実施例は、本発明の第一の実施例において、図2の2極に磁化されたリング状の永久磁石10を、1極の半割の永久磁石10aに置き換えたものである。永久磁石10aは、回転軸方向上向きあるいは下向きに着磁されている。この場合、磁性板11に進入する磁束は、概ね永久磁石10aの磁性板11への垂直投射面積に比例、この垂直投射面積は永久磁石10aの回転角度に比例している。このため、ホール素子21で検出される磁束密度は、永久磁石10aの回転角度に比例する。これにより、ホール素子21で検出される磁束密度をセンシングすることにより、リング状の永久磁石10aの回転角度、すなわちシャフト15の回転角度が検出できる。
【0043】
本発明の第六の実施例を図13に示す。本実施例は、本発明の第二の実施例において、図7の2極に磁化されたリング状の永久磁石10を、1極の半割の永久磁石10aに置き換えたものである。永久磁石10aから発生した磁束は、磁性板30に進入し、突起状磁性体17,19の方に分流し、それぞれ、ホール素子21,22並びに、突起状磁性体16,18を通過して、磁性板13,14に進入し、永久磁石10aにもどる磁路を形成する。突起状磁性体17,19への磁束の分流比は、永久磁石10aの磁性板13への垂直投射面の面積と永久磁石10aの磁性板14への垂直投射面の比率でほぼ決まる。このため、ホール素子21で検出される磁束密度は、永久磁石10aの回転角度に比例する。これにより、ホール素子21で検出される磁束密度をセンシングすることにより、リング状の永久磁石10aの回転角度、すなわちシャフト15の回転角度が検出できる。
【0044】
本発明の第七の実施例を図14に示す。本実施例では、リング状の永久磁石10,磁性ヨーク35、およびリング状の永久磁石10を支持するシャフト15により回転子を形成し、リング状の永久磁石10を外側から包囲する磁性板31および磁性板31のエアギャップに挿入されたホール素子21,22により固定子を形成する。リング状の永久磁石10は、半径方向に着磁されており、外周面上を一周にわたって見た場合、2極に磁化されている。すなわち、周方向180°の範囲において、半径方向外向きに、その他の領域は半径方向内向きに磁化されている。磁性板31の回転子に最も近い磁極を形成する磁性板部位31aには、リング状の永久磁石10からの磁束を集める役割をしており、磁性板部位31aにおける磁場分布が直接ホール素子21,22の信号出力に影響を与えるものではないため、磁性板部位31aがリング状の永久磁石10に直接対向する面31bの形状は、リング状の永久磁石10の回転方向に均一である必要性はない。磁性板部位31aで集められた磁束は、磁性板部位31cを通過した後、ホール素子21を通過して、もう一方の磁性板部位31cおよび磁性板部位31aを通過して、リング状の永久磁石10にもどる。本実施例では、磁性板部位31aと磁性板部位31cが同一平面上にある場合であるが、本発明はこれに限定されない。図14において、磁性板部位31cをリング状の永久磁石10の手前あるいは、背後を通るように三次元的に構成しても良い。
【0045】
本発明の第八の実施例を図16に示す。本実施例は、本発明の第一の実施例において、突起状磁性体16,17,18,19の代わりに、図15に示した磁性板50,51に、突起部位50a,51aを設け、突起部位50a,51aを磁性板50の面に対して概ね垂直に曲げたものを用いて、図16に示すように、リング状の永久磁石10を上下から挟み込む。このとき、間にホール素子21,22を挟み込むことにより、第一の実施例と実質的に等価な磁路を形成でき、非接触式回転位置センサの機能を有することができる。本実施例によれば、第一の実施例における磁性板11,12,13,14に突起状磁性体16,17,18,19を配置する形状に比べ、磁性板50、51の打ち抜きと、突起部位50a,51aの曲げ加工のみで済むため、生産性が上がるという効果がある。
【0046】
本発明の第一の実施例を実機に適用した第九の実施例について説明する。図17において、回転角を検出すべき対象装置の収納カバー41には回転軸を外に出すための回転軸貫通用穴42が設けられており、収納カバー41の外表面上に、突起状磁性体16,18が取り付けられた磁性板13,14、ホール素子21,22を装着する。対象装置の回転軸には、リング状の永久磁石10とシャフト15が一体となったものを取り付ける。さらに、その外側に磁性板11,12と回転位置センサ収納カバー40が一体となったものを取り付ける。一体にする方法としては、例えば、回転位置センサ収納カバー40を樹脂製にして、インサートモールドによる磁性板と樹脂との一体成形加工が生産性に優れている。
【0047】
なお、これまでの実施例では、磁性板11,12,13,14,30は矩形状の板で例示したが、本発明はこれに限定されるものではなく、その他の形状、例えば、円盤型や、半円盤型,扇型,台形型等いずれの形状でも良い。
【0048】
本発明も含めて、永久磁石を使った各種の非接触式回転位置センサが存在するが、対象装置に組み込んだ場合、非接触式回転位置センサの近傍に磁性体が配置される可能性があり、ホール素子等の磁気感応素子の出力信号に影響を与えてしまう。そこで、第十の実施例として、図18に示すように、非接触式回転位置センサ1000の収納カバー40に、磁性体をとりつけたシールドカバー45を取り付けることにより、外部磁性体によるホール素子等の磁気感応素子の出力信号への影響を小さくすることができるという効果がある。
【0049】
図19,図20に基づき本発明になる非接触式回転位置センサを取り付けた絞弁組立体の一例を説明する。
【0050】
本体201に回転シャフト(回転軸)203(シャフト15に相当)が回転可能に支承されている。200は本体の空気流路の開口面積を制御する絞り弁で、ねじにより回転シャフト203に固定されている。202は樹脂カバーで、本体201にねじ(210a−210c)により固定されている。
【0051】
樹脂カバー202には貫通孔204が形成されている。回転シャフト203の先端はこの孔204を通って樹脂カバー202の外に延びる。
【0052】
樹脂カバー202の孔204の周りには四角形の凹所が形成されており、この凹所を形成する樹脂カバーの外壁面には中央に孔51を有する磁性板13,14が接着により貼り付けられている。磁性板13,14は水平方向に分割されており図1に示すエアーギャップ(a1,a2,b1,b2)と同様のギャップが両者間に設けられている。
【0053】
樹脂カバー202が本体201に装着された状態で回転シャフト203の先端はこの磁性板13,14も越えて外に延びている。
【0054】
中心に取付け孔を備えた樹脂材製の取り付けピース110に環状もしくは半環状磁石10が固定されており、この取り付けピース110の中心孔に回転シャフト203の先端を圧入し両者を固定する。
【0055】
このように構成することにより、回転シャフト203の先端に磁性板13,14の中央の孔孔51の直径より大きい外径を有する磁石10を磁性板13,14の外側に取付けることができる。
【0056】
40は樹脂カバー204の凹所に対応する部分を覆う樹脂性の補助カバーである。
【0057】
この補助カバー40の内側には磁性板13,14に対面する位置に磁性板11,12が接着剤で貼り付けられて、固定される。磁性板13,14に形成された突起状磁性部材16,18と、磁性板11,12に形成された突起状磁性部材17,19は補助カバー40を樹脂カバー202に取り付けた状態で一対のギャップG2を形成する。
【0058】
このギャップG2には磁気感応素子としてのホール素子21,22が装着されている。
【0059】
かくして、先の図1乃至図5(a),(b)に示した非接触センサを絞り弁の回転シャフトの端部に形成することができる。
【0060】
実施例では本体201にはモータ207が装着されており、中間ギア205,回転シャフト203に固定された最終段ギア206を介して絞弁軸203にモータ207のトルクが伝達されるよう構成されている。
【0061】
208は中間ギア205を支承する固定軸である。本実施例では中間ギア205は樹脂材製とし、最終段ギア206を焼結合金製としている。これはモータ207の発生する電磁ノイズが磁性体性の最終段ギア206で吸収され、センサの磁気回路に影響を及ぼすのを抑制することができる。
【0062】
この効果は、中間ギア205や中間ギア205の回転を支承する固定軸208を磁性材で形成することによっても得られる。
【0063】
なお、最終段ギア206が磁性材で構成された場合、回転シャフトを通る漏洩磁束の磁気通路の一部として作用することを考慮する必要がある。
【0064】
また、最終段ギアが樹脂材製であっても、回転シャフトに固定する固定力を得るために中心部に金属部分が必要であり、この金属部分が磁性材で構成される場合は同様に磁石10の回転シャフトを通って漏洩する漏洩磁束の磁気通路となるのでその磁気的作用を考慮する必要がある。
【0065】
これらの点を考慮して磁性体13,14の中央穴51の直径あるいは、最終段ギア側磁性材部と磁性板13,14との間のギャップが設定される必要がある。
【0066】
本実施例では、磁石10と磁性板13,14との間のエアギャップG2が磁性板13,14と回転シャフト203間のエアギャップ、磁性板と最終段ギア206側の磁性部材との間のエアーギャップのいずれよりも小さく成るよう構成し、回転シャフト203を通る漏洩磁束ができるだけ少なくなるよう設定した。
【0067】
【発明の効果】
本発明によれば、固定子側と回転子側における磁路の対向面の形状において、回転方向に対して直角な方向の長さが均一でなくとも、高い設計自由度を確保した上で、十分な性能が得られるという効果がある。また、磁束を効果的に磁気感応素子の装着部に集めることができるため、感度の高い高精度の非接触式回転位置センサが得られる。さらに、用いる永久磁石が回転軸方向に磁化されている場合、回転子側には、永久磁石以外の磁性材はなくとも、十分な検出感度が得られる。従って、回転子の慣性モーメントを減らすことができ、このため、回転駆動用のアクチュエータの負荷が軽減でき、回転子の応答性が向上するという効果もある。
【図面の簡単な説明】
【図1】本発明の第一の実施例の外観を示す図である。
【図2】本発明の第一の実施例の内部構造を示す図である。
【図3】本発明の第一の実施例の構成部品であるリング状の永久磁石の磁化分布を示す図である。
【図4】本発明の第一の実施例における磁束密度ベクトル分布を示す図である。
【図5】(a)は本発明の第一の実施例における非接触回転位置センサの動作原理を説明する図である。(b)は(a)のY−Yを断面した概念図である。
【図6】本発明の第二の実施例の外観を示す図である。
【図7】本発明の第二の実施例の内部構造を示す図である。
【図8】本発明の第二の実施例の構成部品であるリング状の永久磁石の磁化分布を示す図である。
【図9】本発明の第二の実施例における磁束密度ベクトル分布を示す図である。
【図10】本発明の第三の実施例の外観を示す図である。
【図11】本発明の第四の実施例の外観を示す図である。
【図12】本発明の第五の実施例の内部構造を示す図である。
【図13】本発明の第六の実施例の内部構造を示す図である。
【図14】本発明の第七の実施例の内部構造を示す図である。
【図15】本発明の第八の実施例に用いる磁性板の加工前の形状を示す図である。
【図16】本発明の第八の実施例の内部構造を示す図である。
【図17】本発明の第九の実施例の内部構造を示す図である。
【図18】本発明の第十の実施例の内部構造を示す図である。
【図19】図20のX−X線に沿った断面の概念図(寸法形状,位置関係は必ずしも一致しないが機能的には同一部材を備えている)。
【図20】本発明の非接触式回転位置センサを取り付けた絞弁組立体の一実施例を示す分解斜視図。
【符号の説明】
10,10a…永久磁石、11,12,13,14,30,31,50,51…磁性板、15…シャフト、16,17,18,19…突起状磁性体、21,22…ホール素子、31a,31c…磁性板部位、31b…磁性板部位31aがリング状の永久磁石10に直接対向する面、35…磁性ヨーク、40…収納カバー、41…対象装置の収納カバー、42…回転軸貫通用穴、45…シールドカバー、50a,51a…突起部位、100,200,300,400,500,600,700,800,900,1000…非接触式回転位置センサ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to, for example, a rotational position sensor that detects a rotational angle of a rotational shaft of a throttle valve (throttle valve) of an internal combustion engine, and more particularly to a non-contact rotational position sensor.
The present invention also relates to a throttle valve assembly provided with such a non-contact rotational position sensor.
[0002]
[Prior art]
As this type of conventional rotational position sensor, those described in Japanese Patent No. 2842482, Japanese Patent No. 2920179, US Pat. No. 5,528,139, US Pat. No. 5,789,117 and US Pat. No. 6,137,288 are known.
[0003]
In these conventional techniques, when the permanent magnet side is a rotor, the magnetic flux density in the circumferential direction in the stator is linearly distributed with respect to the rotation direction of the rotor. In order to prevent the magnetic field distribution in the rotor from being influenced as much as possible by the rotational position of the rotor to which the magnet is attached, the shape of the opposing surface of the rotor and the stator is in a direction perpendicular to the rotational direction. The length is configured to be uniform.
[0004]
[Problems to be solved by the invention]
Thus, since the shape of the opposing surface of a rotor and a stator receives restrictions, when designing suitable for the object apparatus which installs a sensor, there existed a problem that a design freedom was low.
[0005]
The object of the present invention is a non-contact method in which sufficient performance can be obtained even if the length in the direction perpendicular to the rotation direction of the rotor is not uniform in the shape of the opposing surfaces of the magnetic path on the stator side and the rotor side It is to obtain a rotary position sensor.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a part of a stator side magnetic path is formed by, for example, a pair of magnetic plates with an annular or semi-annular permanent magnet forming a rotor interposed therebetween. A magnetic flux converging part as a constricting part for concentrating the magnetic flux is provided in the middle of a closed magnetic path formed therethrough, and a magnetically sensitive element is arranged in the magnetic flux confining part (converging part).
[0007]
In another invention, an annular or semi-annular permanent magnet is attached to the end of the rotary shaft of the throttle valve, and a magnetic material assembly that forms a magnetic passage is attached to a resin cover attached to the main body, The magnetic body assembly is provided with a magnetic flux converging portion, and a magnetic sensitive element is installed in the magnetic flux converging portion.
[0008]
Specifically, the annular or semi-annular permanent magnet is detachably attached to the rotating shaft, and one of the magnetic body assemblies is provided with a hole in the center that is larger than the diameter of the rotating shaft and smaller than the inner diameter of the magnet.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS.
[0010]
FIG. 1 shows the appearance of the present embodiment, and FIG. 2 is a view showing its internal structure. As shown in FIGS. 1 and 2, in this embodiment, a rotor is formed by a ring-shaped (annular) permanent magnet 10 and a shaft (rotary shaft) 15 that supports the ring-shaped permanent magnet 10. The permanent magnet 10 is sandwiched up and down by magnetic plates (magnetic body assemblies) 11, 12, 13, and 14.
[0011]
The upper magnetic plates 11 and 12 are spaced apart from each other in the horizontal direction. As a result, an air gap (a1, a2, b1, b2) is formed between the magnetic plates 11, 12. The same applies to the lower magnetic plates 13 and 14.
[0012]
On the magnetic plates 11, 12, 13, and 14, projecting magnetic bodies 16, 17, 18, and 19 that form magnetic flux restricting portions (magnetic flux converging portions) are disposed, and holes are formed between the projecting magnetic bodies 16 and 17. An element (magnetic sensitive element) 21 is disposed, and a hall element (magnetic sensitive element) 22 is disposed between the protruding magnetic bodies 18 and 19.
[0013]
The protruding magnetic bodies 16, 17, 18, and 19 that form the magnetic flux restricting portion (magnetic flux converging portion) are formed at target positions with respect to the air gaps a 1, a 2, b 1, and b 2 and at the outer peripheral portion of the magnet 10. The The protruding magnetic bodies 16, 17, 18, and 19 that form the magnetic flux restricting portion (magnetic flux converging portion) are formed integrally with the magnetic plates 11, 12, 13, and 14. It can be attached by gluing or welding.
[0014]
A front view of this embodiment is shown in FIG.
[0015]
The magnetic plates 11, 13 and 12, 14 are arranged facing each other with a uniform gap G1.
[0016]
A uniform small gap g1 is provided between the magnetic plates 11 and 12 and the upper surface of the magnet 10, and a uniform small gap g2 is provided between the magnetic plates 13 and 14 and the lower surface of the magnet 10. Yes.
[0017]
As a result, the gap G1 has a size obtained by adding the small gaps g1 and g2 to the magnet thickness t1.
[0018]
Further, the gap between the projecting magnetic parts 16, 17 and 18, 19 is smaller than the thickness t 1 of the magnet 10.
[0019]
The diameter d of the insertion hole 51 of the shaft 15 provided at the center of the magnetic plates 13 and 14 is set to be equal to or smaller than the inner diameter D of the magnet 10.
[0020]
The diameter d of the insertion hole 51 is at least required to be smaller than the outer diameter D0 of the magnet, but how much it is reduced is determined by the condition of the magnetic path.
[0021]
Further, the central hole 52 and the small gaps a1, a2, b1, and b2 of the magnetic plates 11 and 12 may be omitted. This embodiment will be described later.
[0022]
The diameters d and d0 of the central hole of the magnetic plates (11, 12 and 13, 14) are determined by whether or not the rotary shaft 15 is used as a part of the magnetic path. In the case where the rotating shaft 15 is a non-magnetic material, there is no particular change in performance when the diameters d and d0 of the central holes 51 and 52 of the magnetic plate are made smaller than the inner diameter D of the magnet 10. When 15 is a magnetic body, the magnetic flux at the mounting portion of the magnetic sensitive elements 21 and 22 is affected by the magnetic flux leaking through the rotary shaft 15, so that the magnetic plates (11, 12 and 13, 14 are considered in consideration of this. ), The diameters d and d0 of the central holes 51 and 52 are determined.
[0023]
When the magnetic flux passing through the rotating shaft 15 is positively used, the diameters d and d0 of the central holes 51 and 52 of the magnetic plates (11, 12 and 13, 14) are set small. Conversely, in order to avoid the influence of the magnetic flux passing through the rotating shaft 15, the diameters d and d0 of the central holes 51 and 52 of the magnetic plates (11, 12 and 13, 14) are set large. However, if the hole diameters d and d0 are made larger than the outer diameter D0 of the magnet 10, the air gap between the magnet 10 and the magnetic plates (11, 12 and 13, 14) is increased, and the basic magnetic flux is reduced. The upper limit of the diameters d and d0 of the holes in the center of the plates (11, 12 and 13, 14) is preferably the outer diameter D0 of the magnet 10.
[0024]
The magnetic flux generated by the magnet due to the shape and arrangement of the magnetic members (11 to 14, 16 to 19, and the rotating shaft) and the dimensional relationship of the gaps (g1, g2, G1, G2) is the magnetic sensitive elements 21, 22. Is narrowed down to the two air gaps G2 to which is attached and converges.
[0025]
The leakage magnetic path passing through the rotating shaft 15 is used to adjust the protruding magnetic body portions 16, 17 and 18, 19 so as not to cause extreme magnetic flux saturation.
[0026]
Here, although only one of the Hall elements 21 or the Hall elements 22 functions, two elements are arranged for mutual backup at the time of failure or for check of failure diagnosis.
[0027]
Here, the ring-shaped permanent magnet 10 is generally magnetized in the direction of the rotation axis, as indicated by the arrows in FIG. The direction of magnetization of the ring-shaped permanent magnet 10 is upward in the region of the rotation direction 180 °, and the other regions are downward.
[0028]
The magnetic flux density vector at this time has a distribution as shown in FIG. That is, the magnetic field generated by the ring-shaped permanent magnet 10 is divided into the upper and lower magnetic plates 11, 12, 13, and 14 and passes through the protruding magnetic bodies 16, 17, 18, and 19 and the Hall elements 21 and 22. The direction and strength of the magnetic field passing through the Hall elements 21 and 22 vary depending on the rotational position of the ring-shaped permanent magnet 10.
[0029]
Here, the relationship between the rotational position of the ring-shaped permanent magnet 10 and the amount of magnetic flux passing through the Hall element 21 will be described with reference to FIG. FIG. 5 shows the direction of the magnetic field in the ring-shaped permanent magnet 10.
[0030]
In this rotational position, the region a and the region b are exactly at the same opening angle, the directions of the magnetic fields in the respective regions are opposite to each other, and the magnetic fluxes from the regions a and b cancel each other. Actually, in the vicinity of the boundary between the region a and the region c where the direction of the magnetization distribution is reversed, the magnetization is weakened.
[0031]
For this reason, most of the magnetic flux in the remaining region c passes through the protruding magnetic bodies 16 and 17. This amount is proportional to the area occupied by the region c.
[0032]
Further, the area occupied by the region c is proportional to the rotation angle of the ring-shaped permanent magnet 10. Therefore, the magnetic flux density detected by the Hall element 21 is approximately proportional to the rotation angle of the ring-shaped permanent magnet 10. Thus, by sensing the magnetic flux density detected by the Hall element 21, the rotation angle of the ring-shaped permanent magnet 10, that is, the rotation angle of the shaft 15 can be detected.
[0033]
In this embodiment, the distances a1, a2, b1, and b2 between the magnetic plates 11 and 12 in FIG. 1 are a1 = a2 = b1 = b2, but the present invention is not limited to this. Instead, a1> b1, a2> b2 may be used. Furthermore, it is desirable to set a1 = a2 and b1 = b2. By setting a1> b1, a2> b2, the magnetic coupling between the magnetic bodies 11 and 12 is weakened, and the magnetic flux density detected by the Hall element 21 and the rotation angle of the ring-shaped permanent magnet 10 are reduced. The linear relationship is improved.
[0034]
The upper and lower magnetic plates 11 and 13, and 12 and 14 face each other with a uniform gap G1. The upper and lower magnetic plates 11, 13, 12 and 14 face the permanent magnet 10 while maintaining uniform gaps g 1 (upper gap) and g 2 (lower gap) between them. The gap G1 is larger than the thickness t1 of the permanent magnet 10 by the gap g1 + g2. However, the gaps g3 and g4 between the protruding magnetic bodies 16, 17 and 18, 19 are smaller than the thickness of the permanent magnet 10. With this configuration, the magnetic flux of the permanent magnet 10 can be converged in the protruding magnetic bodies 16, 17 and 18, 19. In this sense, the projecting magnetic bodies 16, 17 and 18, 19 form a magnetic diaphragm portion. That is, the principle of the present invention is to provide the protruding magnetic bodies 16, 17, 18, and 19 as portions where the magnetic flux easily passes between the magnetic plates 11, 13, 12, and 14 and to concentrate the magnetic flux in these portions.
[0035]
In addition, when this sensor is produced at low cost, considering that the mounting accuracy of each part is about ± 0.2 mm, in this embodiment, the ring-shaped permanent magnet 10 and the upper and lower magnetic plates 11, 12, If the width of the air gap between 13 and 14 is 0.5 mm or more, preferably around 1 mm, the influence of the mounting error on the sensor characteristics can be reduced. This is common to the other embodiments described below.
[0036]
The magnetic material has more or less magnetic hysteresis characteristics. Generally, when the magnetic material exceeds 0.5T or 1T, the magnetic hysteresis effect becomes more prominent. In order to increase the rotational position accuracy of the rotational position sensor, it is desirable to use the magnetic hysteresis in a range as small as possible. Therefore, it is desirable that the magnetic flux density inside the magnetic material, typically inside the magnetic plates 11, 12, 13, and 14, is 0.5T or less. This is common to the other embodiments described below.
[0037]
In the present embodiment, the permanent magnet is ring-shaped, but a disk-shaped magnet can have the same function.
[0038]
A second embodiment of the present invention will be described with reference to FIGS. FIG. 6 shows the external appearance of the present embodiment, and FIG. 7 is a view showing the internal structure. As shown in FIGS. 6 and 7, the present embodiment has almost the same structure as the first embodiment, except that the upper magnetic plate 30 is only one. In order to branch the magnetic flux from the ring-shaped permanent magnet 10 and divert the magnetic flux to the projecting magnetic bodies 16 and 17 and the projecting magnetic bodies 18 and 19, a horizontal air gap is provided between one of the upper and lower magnetic plates. If there is. In this example, the lower magnetic plates 13 and 14 form a horizontal air gap. FIG. 8 shows the magnetization distribution of the ring-shaped permanent magnet 10, and FIG. 9 shows the state of the magnetic flux density vector distribution.
[0039]
In the present embodiment, since the magnetic path is formed on the upper part of the ring-shaped permanent magnet 10, the amount of magnetic flux diverted to the projecting magnetic bodies 16 and 17 and the projecting magnetic bodies 18 and 19 is reduced, but the upper Since only one magnetic plate 30 is required, the number of parts is reduced, and it is easy to manufacture. Further, when the rotational position sensor is fixed on the lower surface, the upper portion is on the outside, but there is also an effect that the influence on the sensor output due to the intrusion of the magnetic material from the outside can be reduced.
[0040]
A third embodiment of the present invention is shown in FIG. In this embodiment, holes 31 and 32 are provided in the magnetic plates 11 and 12 in the structure of the first embodiment. The magnetic resistance distribution in the magnetic path of the magnetic plates 11 and 12 can be adjusted by the shape and size of the holes. Thus, the linearity between the magnetic flux density detected by the Hall element and the rotation angle is improved as compared with the rotational position sensor of the first embodiment. Further, the linearity can be further improved by making similar holes in the magnetic plates 13 and 14. Although the case where one hole is provided in each magnetic plate is shown here, the present invention is not limited to this, and two or a plurality of holes may be used. The same applies to the following.
[0041]
A fourth embodiment of the present invention is shown in FIG. In this embodiment, holes 31 and 32 are provided in the magnetic plate 30 in the structure of the second embodiment. In this embodiment, the linearity between the magnetic flux density detected by the Hall element and the rotation angle is improved compared to the second embodiment.
[0042]
A fifth embodiment of the present invention is shown in FIG. In this embodiment, in the first embodiment of the present invention, the ring-shaped permanent magnet 10 magnetized into two poles in FIG. 2 is replaced with a one-pole halved permanent magnet 10a. The permanent magnet 10a is magnetized upward or downward in the rotation axis direction. In this case, the magnetic flux entering the magnetic plate 11 is approximately proportional to the vertical projection area of the permanent magnet 10a onto the magnetic plate 11, and this vertical projection area is proportional to the rotation angle of the permanent magnet 10a. For this reason, the magnetic flux density detected by the Hall element 21 is proportional to the rotation angle of the permanent magnet 10a. Thereby, by sensing the magnetic flux density detected by the Hall element 21, the rotation angle of the ring-shaped permanent magnet 10a, that is, the rotation angle of the shaft 15 can be detected.
[0043]
A sixth embodiment of the present invention is shown in FIG. In this embodiment, in the second embodiment of the present invention, the ring-shaped permanent magnet 10 magnetized to the two poles in FIG. 7 is replaced with a one-pole halved permanent magnet 10a. The magnetic flux generated from the permanent magnet 10a enters the magnetic plate 30 and is shunted toward the protruding magnetic bodies 17 and 19, passing through the Hall elements 21 and 22 and the protruding magnetic bodies 16 and 18, respectively. The magnetic plates 13 and 14 are entered to form a magnetic path that returns to the permanent magnet 10a. The diversion ratio of the magnetic flux to the protruding magnetic bodies 17 and 19 is substantially determined by the ratio of the area of the vertical projection surface of the permanent magnet 10a to the magnetic plate 13 and the ratio of the vertical projection surface of the permanent magnet 10a to the magnetic plate 14. For this reason, the magnetic flux density detected by the Hall element 21 is proportional to the rotation angle of the permanent magnet 10a. Thereby, by sensing the magnetic flux density detected by the Hall element 21, the rotation angle of the ring-shaped permanent magnet 10a, that is, the rotation angle of the shaft 15 can be detected.
[0044]
A seventh embodiment of the present invention is shown in FIG. In the present embodiment, a rotor is formed by the ring-shaped permanent magnet 10, the magnetic yoke 35, and the shaft 15 that supports the ring-shaped permanent magnet 10, and the magnetic plate 31 surrounding the ring-shaped permanent magnet 10 from the outside; A stator is formed by the Hall elements 21 and 22 inserted in the air gap of the magnetic plate 31. The ring-shaped permanent magnet 10 is magnetized in the radial direction, and is magnetized in two poles when viewed on the outer circumferential surface over the entire circumference. That is, in the range of 180 ° in the circumferential direction, the other regions are magnetized outward in the radial direction and the other regions are magnetized inward in the radial direction. The magnetic plate portion 31a that forms the magnetic pole closest to the rotor of the magnetic plate 31 serves to collect magnetic flux from the ring-shaped permanent magnet 10, and the magnetic field distribution in the magnetic plate portion 31a is directly related to the Hall element 21, Therefore, the shape of the surface 31b in which the magnetic plate portion 31a directly faces the ring-shaped permanent magnet 10 needs to be uniform in the rotation direction of the ring-shaped permanent magnet 10. Absent. The magnetic flux collected at the magnetic plate portion 31a passes through the magnetic plate portion 31c, then passes through the Hall element 21, passes through the other magnetic plate portion 31c and the magnetic plate portion 31a, and is a ring-shaped permanent magnet. Return to 10. In the present embodiment, the magnetic plate portion 31a and the magnetic plate portion 31c are on the same plane, but the present invention is not limited to this. In FIG. 14, the magnetic plate portion 31 c may be three-dimensionally configured so as to pass before or behind the ring-shaped permanent magnet 10.
[0045]
An eighth embodiment of the present invention is shown in FIG. In this embodiment, in place of the protruding magnetic bodies 16, 17, 18, 19 in the first embodiment of the present invention, protruding portions 50a, 51a are provided on the magnetic plates 50, 51 shown in FIG. As shown in FIG. 16, the ring-shaped permanent magnet 10 is sandwiched from above and below, using protrusions 50 a and 51 a bent substantially perpendicular to the surface of the magnetic plate 50. At this time, by sandwiching the Hall elements 21 and 22 between them, a magnetic path substantially equivalent to the first embodiment can be formed, and the function of a non-contact rotational position sensor can be provided. According to the present embodiment, the magnetic plates 50, 51 are punched out compared to the shape in which the protruding magnetic bodies 16, 17, 18, 19 are arranged on the magnetic plates 11, 12, 13, 14 in the first embodiment. Since only the bending process of the projection parts 50a and 51a is sufficient, there is an effect that productivity is increased.
[0046]
A ninth embodiment in which the first embodiment of the present invention is applied to an actual machine will be described. In FIG. 17, the storage cover 41 of the target device whose rotation angle is to be detected is provided with a rotation shaft through hole 42 for projecting the rotation shaft, and a protruding magnetic film is formed on the outer surface of the storage cover 41. The magnetic plates 13 and 14 to which the bodies 16 and 18 are attached and the Hall elements 21 and 22 are mounted. A ring-shaped permanent magnet 10 and a shaft 15 are integrated on the rotating shaft of the target device. Further, the magnetic plates 11 and 12 and the rotational position sensor storage cover 40 are attached to the outside thereof. As an integral method, for example, the rotational position sensor storage cover 40 is made of resin, and the integral molding process of the magnetic plate and the resin by insert molding is excellent in productivity.
[0047]
In the above embodiments, the magnetic plates 11, 12, 13, 14, and 30 are illustrated as rectangular plates. However, the present invention is not limited to this, and other shapes, for example, a disk type. Alternatively, any shape such as a semi-disc shape, a fan shape, or a trapezoid shape may be used.
[0048]
Various non-contact rotational position sensors using permanent magnets exist, including the present invention. However, when incorporated in a target device, there is a possibility that a magnetic material may be placed near the non-contact rotational position sensor. This affects the output signal of a magnetically sensitive element such as a Hall element. Therefore, as a tenth embodiment, as shown in FIG. 18, a shield cover 45 attached with a magnetic material is attached to the storage cover 40 of the non-contact rotational position sensor 1000, so that a Hall element or the like made of an external magnetic material can be used. There is an effect that the influence on the output signal of the magnetically sensitive element can be reduced.
[0049]
An example of a throttle valve assembly to which a non-contact type rotational position sensor according to the present invention is attached will be described with reference to FIGS.
[0050]
A rotating shaft (rotating shaft) 203 (corresponding to the shaft 15) is rotatably supported on the main body 201. A throttle valve 200 controls the opening area of the air flow path of the main body, and is fixed to the rotary shaft 203 by screws. A resin cover 202 is fixed to the main body 201 with screws (210a-210c).
[0051]
A through hole 204 is formed in the resin cover 202. The tip of the rotating shaft 203 extends out of the resin cover 202 through the hole 204.
[0052]
A rectangular recess is formed around the hole 204 of the resin cover 202, and magnetic plates 13 and 14 having a hole 51 in the center are attached to the outer wall surface of the resin cover forming the recess by adhesion. ing. The magnetic plates 13 and 14 are divided in the horizontal direction, and gaps similar to the air gaps (a1, a2, b1, b2) shown in FIG.
[0053]
With the resin cover 202 attached to the main body 201, the tip of the rotating shaft 203 extends beyond the magnetic plates 13 and 14.
[0054]
An annular or semi-annular magnet 10 is fixed to an attachment piece 110 made of a resin material provided with an attachment hole at the center, and the tip of the rotary shaft 203 is press-fitted into the center hole of the attachment piece 110 to fix them.
[0055]
With this configuration, the magnet 10 having an outer diameter larger than the diameter of the hole 51 at the center of the magnetic plates 13 and 14 can be attached to the outer end of the magnetic plates 13 and 14 at the tip of the rotating shaft 203.
[0056]
Reference numeral 40 denotes a resinous auxiliary cover that covers a portion corresponding to the recess of the resin cover 204.
[0057]
Inside the auxiliary cover 40, the magnetic plates 11, 12 are fixed with adhesives at positions facing the magnetic plates 13, 14. The protruding magnetic members 16, 18 formed on the magnetic plates 13, 14 and the protruding magnetic members 17, 19 formed on the magnetic plates 11, 12 are a pair of gaps with the auxiliary cover 40 attached to the resin cover 202. G2 is formed.
[0058]
Hall elements 21 and 22 as magnetically sensitive elements are attached to the gap G2.
[0059]
Thus, the non-contact sensor shown in FIGS. 1 to 5A and 5B can be formed at the end of the rotary shaft of the throttle valve.
[0060]
In the embodiment, a motor 207 is mounted on the main body 201, and the torque of the motor 207 is transmitted to the throttle shaft 203 via the intermediate gear 205 and the final gear 206 fixed to the rotary shaft 203. Yes.
[0061]
Reference numeral 208 denotes a fixed shaft that supports the intermediate gear 205. In this embodiment, the intermediate gear 205 is made of a resin material, and the final gear 206 is made of a sintered alloy. This can suppress the electromagnetic noise generated by the motor 207 from being absorbed by the magnetic final gear 206 and affecting the magnetic circuit of the sensor.
[0062]
This effect can also be obtained by forming the intermediate gear 205 and the fixed shaft 208 that supports the rotation of the intermediate gear 205 from a magnetic material.
[0063]
In addition, when the last stage gear 206 is comprised with the magnetic material, it needs to consider acting as a part of magnetic path of the leakage magnetic flux which passes along a rotating shaft.
[0064]
Even if the final gear is made of a resin material, a metal part is required at the center to obtain a fixing force to be fixed to the rotating shaft. Since it becomes the magnetic path of the leakage magnetic flux which leaks through 10 rotating shafts, it is necessary to consider the magnetic action.
[0065]
Considering these points, it is necessary to set the diameter of the central hole 51 of the magnetic bodies 13 and 14 or the gap between the last gear side magnetic material portion and the magnetic plates 13 and 14.
[0066]
In this embodiment, the air gap G2 between the magnet 10 and the magnetic plates 13 and 14 is an air gap between the magnetic plates 13 and 14 and the rotating shaft 203, and between the magnetic plate and the magnetic member on the final stage gear 206 side. The air gap is configured to be smaller than any of the air gaps, and the leakage magnetic flux passing through the rotating shaft 203 is set to be as small as possible.
[0067]
【The invention's effect】
According to the present invention, in the shape of the opposing surface of the magnetic path on the stator side and the rotor side, even if the length in the direction perpendicular to the rotation direction is not uniform, ensuring a high degree of design freedom, There is an effect that sufficient performance can be obtained. Further, since the magnetic flux can be effectively collected on the mounting portion of the magnetic sensitive element, a highly sensitive non-contact rotational position sensor with high sensitivity can be obtained. Furthermore, when the permanent magnet to be used is magnetized in the direction of the rotation axis, sufficient detection sensitivity can be obtained even if there is no magnetic material other than the permanent magnet on the rotor side. Therefore, the moment of inertia of the rotor can be reduced, and therefore, the load of the actuator for driving the rotation can be reduced, and the response of the rotor can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing the appearance of a first embodiment of the present invention.
FIG. 2 is a diagram showing an internal structure of a first embodiment of the present invention.
FIG. 3 is a diagram showing a magnetization distribution of a ring-shaped permanent magnet which is a component of the first embodiment of the present invention.
FIG. 4 is a diagram showing a magnetic flux density vector distribution in the first embodiment of the present invention.
FIG. 5A is a view for explaining the operating principle of the non-contact rotational position sensor in the first embodiment of the present invention. (B) is the conceptual diagram which crossed YY of (a).
FIG. 6 is a diagram showing an external appearance of a second embodiment of the present invention.
FIG. 7 is a diagram showing an internal structure of a second embodiment of the present invention.
FIG. 8 is a diagram showing a magnetization distribution of a ring-shaped permanent magnet which is a component of the second embodiment of the present invention.
FIG. 9 is a diagram showing a magnetic flux density vector distribution in the second embodiment of the present invention.
FIG. 10 is a diagram showing the appearance of a third embodiment of the present invention.
FIG. 11 is a diagram showing the appearance of a fourth embodiment of the present invention.
FIG. 12 is a diagram showing the internal structure of a fifth embodiment of the present invention.
FIG. 13 is a diagram showing the internal structure of a sixth embodiment of the present invention.
FIG. 14 is a diagram showing the internal structure of a seventh embodiment of the present invention.
FIG. 15 is a diagram showing a shape before processing of a magnetic plate used in an eighth embodiment of the present invention.
FIG. 16 is a diagram showing the internal structure of an eighth embodiment of the present invention.
FIG. 17 is a diagram showing the internal structure of a ninth embodiment of the present invention.
FIG. 18 is a diagram showing the internal structure of a tenth embodiment of the present invention.
FIG. 19 is a conceptual diagram of a cross section taken along line XX in FIG. 20 (dimensional shapes and positional relationships are not necessarily the same, but functionally include the same members).
FIG. 20 is an exploded perspective view showing an embodiment of a throttle valve assembly to which the non-contact rotational position sensor of the present invention is attached.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10, 10a ... Permanent magnet, 11, 12, 13, 14, 30, 31, 50, 51 ... Magnetic plate, 15 ... Shaft, 16, 17, 18, 19 ... Protruding magnetic body, 21, 22 ... Hall element, 31a, 31c: Magnetic plate portion, 31b: Surface where the magnetic plate portion 31a directly faces the ring-shaped permanent magnet 10, 35 ... Magnetic yoke, 40 ... Storage cover, 41 ... Storage cover of target device, 42 ... Rotating shaft penetration 45, shield cover, 50a, 51a, projection, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, non-contact rotational position sensor.

Claims (10)

断面が半円弧状に回転方向の領域で一対、互いに逆極性に磁化されたリング状、もしくは、円盤状の永久磁石、
当該永久磁石を保持するシャフト、
前記永久磁石を前記シャフトの軸方向に沿った方向から挟みこむ上側磁性板及び下側磁性板、
当該上側磁性板及び下側磁性板の少なくとも一方の磁性板が前記シャフトの回転中心をはさんで形成されるエアギャップによって前記永久磁石の磁場の向きが互いに反対向きとなる位置が対向するように前記シャフトの軸方向に沿った方向に対して水平方向に分離されており、
前記分離された一対の磁性板の各々と、残る前記上側磁性板及び下側磁性板いずれかの磁性板の間にあって、
前記磁気感応素子が配置される磁気空隙を備える一対の突起状磁性体部、
前記一対の突起状磁性体部の前記磁気空隙に配置された磁気感応素子を有し、
前記永久磁石並びに前記シャフトから構成される回転子が、前記上側磁性板及び下側磁性板に対して相対的に回転可能であり、
前記永久磁石は前記シャフトの軸線に沿った方向に磁化されており、
前記永久磁石が回転することにより、前記磁気感応素子を通過する磁束量が変動すると共に、
前記磁性板は、前記永久磁石の回転位置に関係なく前記永久磁石と前記突起状磁性体部との間に直線磁路を形成している
ことを特徴とする非接触式回転位置センサ。
Ring-shaped or disk-shaped permanent magnets whose cross-sections are semicircular arcs in the region of the rotation direction and magnetized in opposite polarities,
A shaft holding the permanent magnet ,
An upper magnetic plate and a lower magnetic plate that sandwich the permanent magnet from a direction along the axial direction of the shaft ;
At least one of the upper magnetic plate and the lower magnetic plate is opposed to a position where the directions of the magnetic fields of the permanent magnets are opposite to each other by an air gap formed across the rotation center of the shaft. Separated in a horizontal direction with respect to a direction along the axial direction of the shaft ;
Between each of the separated pair of magnetic plates and the remaining one of the upper magnetic plate and the lower magnetic plate ,
A pair of projecting magnetic parts having a magnetic gap in which the magnetically sensitive element is disposed;
A magnetically sensitive element disposed in the magnetic gap of the pair of protruding magnetic body portions;
The rotor composed of the permanent magnet and the shaft is rotatable relative to the upper magnetic plate and the lower magnetic plate ,
The permanent magnet is magnetized in a direction along the axis of the shaft;
As the permanent magnet rotates, the amount of magnetic flux passing through the magnetic sensing element varies,
The magnetic plate is non-contact rotational position sensor, characterized in that to form a straight line path between the permanent magnet and the protruding magnetic body irrespective of the rotational position of the permanent magnet.
前記請求項1記載の非接触式回転位置センサにおいて、前記磁性板に前記突起状磁性体部が一体に成形されていることを特徴とする非接触式回転位置センサ。2. The non-contact rotational position sensor according to claim 1 , wherein the protruding magnetic body is formed integrally with the magnetic plate. 3. 前記請求項1記載の非接触式回転位置センサにおいて、永久磁石と前記シャフトの軸方向に沿った方向の磁性板の間のエアギャップの幅を、それぞれ0.5mm 以上、望ましくは1mm前後にしたことを特徴とする非接触式回転位置センサ。2. The non-contact rotational position sensor according to claim 1 , wherein the width of the air gap between the permanent magnet and the magnetic plate in the direction along the axial direction of the shaft is 0.5 mm or more, preferably about 1 mm. A non-contact rotational position sensor. 前記請求項1記載の非接触式回転位置センサにおいて、前記磁性材内部の磁束密度が0.5T 以下であることを特徴とする非接触式回転位置センサ。2. The non-contact rotational position sensor according to claim 1, wherein the magnetic material has a magnetic flux density of 0.5 T or less. 3. 前記請求項1記載の非接触式回転位置センサにおいて、前記一対の磁気感応素子がホール素子あるいはホールICであることを特徴とする非接触式回転位置センサ。2. The non-contact rotational position sensor according to claim 1, wherein the pair of magnetically sensitive elements are Hall elements or Hall ICs. 前記請求項1記載の非接触式回転位置センサにおいて、前記磁性板を固定する部材を樹脂成形による一体加工で製作したことを特徴とする非接触式回転位置センサ。2. The non-contact rotational position sensor according to claim 1, wherein the member for fixing the magnetic plate is manufactured by integral processing by resin molding. 前記請求項1記載の非接触式回転位置センサにおいて、前記磁性板の突起状磁性体あるいは磁束を絞り込む部位の近くに、少なくとも一つの孔を設けたことを特徴とする非接触式回転位置センサ。2. The non-contact rotational position sensor according to claim 1, wherein at least one hole is provided near a projecting magnetic body of the magnetic plate or a portion for narrowing a magnetic flux. . 前記請求項1に記載のものにおいて、
前記永久磁石を挟んで前記シャフトの軸方向に沿った方向に配置された前記磁性板の組体は前記シャフトの軸線に沿った方向で前記永久磁石の厚みより大きな間隔を持って対面し、その間に配置された前記永久磁石との対向面においては均一な空隙を備えている
非接触式回転位置センサ。
The one of claim 1,
The assembly of the magnetic plates arranged in the direction along the axial direction of the shaft across the permanent magnet faces in a direction along the axis of the shaft with a larger interval than the thickness of the permanent magnet, A non-contact rotational position sensor provided with a uniform air gap on a surface facing the permanent magnet disposed on the surface.
請求項1に記載のものにおいて、
前記各磁性板は互いに四角形である
非接触式回転位置センサ。
In claim 1,
Each of the magnetic plates is a non-contact rotational position sensor having a quadrangular shape.
請求項に記載のものにおいて、
前記一対の突起状磁性体部は前記回転軸を挟んで対象位置に形成されている非接触式回転位置センサ。
Claim 9
The pair of protruding magnetic bodies are non-contact rotational position sensors formed at target positions with the rotational shaft interposed therebetween.
JP2001002045A 2001-01-10 2001-01-10 Non-contact rotational position sensor and throttle valve assembly having non-contact rotational position sensor Expired - Fee Related JP3757118B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001002045A JP3757118B2 (en) 2001-01-10 2001-01-10 Non-contact rotational position sensor and throttle valve assembly having non-contact rotational position sensor
US09/820,327 US6559637B2 (en) 2001-01-10 2001-03-29 Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor
DE60131245T DE60131245T2 (en) 2001-01-10 2001-03-30 Throttle valve unit with a magnetically shielded device for contactless position measurement
KR10-2001-0016741A KR100424375B1 (en) 2001-01-10 2001-03-30 Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor
EP01107716A EP1223409B1 (en) 2001-01-10 2001-03-30 Throttle valve assembly including magnetically shielded non-contact position sensor
US10/797,702 USRE40523E1 (en) 2001-01-10 2004-03-10 Non-contact rotational position sensor and throttle valve assembly including non-contact rotational position sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001002045A JP3757118B2 (en) 2001-01-10 2001-01-10 Non-contact rotational position sensor and throttle valve assembly having non-contact rotational position sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005236212A Division JP2006038872A (en) 2005-08-17 2005-08-17 Throttle valve assembly having noncontact type rotation position sensor

Publications (2)

Publication Number Publication Date
JP2002206913A JP2002206913A (en) 2002-07-26
JP3757118B2 true JP3757118B2 (en) 2006-03-22

Family

ID=18870607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001002045A Expired - Fee Related JP3757118B2 (en) 2001-01-10 2001-01-10 Non-contact rotational position sensor and throttle valve assembly having non-contact rotational position sensor

Country Status (5)

Country Link
US (2) US6559637B2 (en)
EP (1) EP1223409B1 (en)
JP (1) JP3757118B2 (en)
KR (1) KR100424375B1 (en)
DE (1) DE60131245T2 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1163729C (en) * 1999-12-14 2004-08-25 松下电器产业株式会社 Noncontact position sensor
US6693424B2 (en) * 2001-06-08 2004-02-17 Denso Corporation Magnetic rotation angle sensor
DE10204199A1 (en) * 2002-02-01 2003-08-07 Pierburg Gmbh Control device for a motor for adjusting an actuator
US7301328B2 (en) * 2002-05-15 2007-11-27 Siemens Vdo Automotive Corporation Through the hole rotary position sensor with a pair of pole pieces disposed around the periphery of the circular magnet
JP2004020527A (en) * 2002-06-20 2004-01-22 Nippon Soken Inc Torque sensor
JP4169536B2 (en) * 2002-06-26 2008-10-22 株式会社日本自動車部品総合研究所 Actuator
JP2004150905A (en) * 2002-10-30 2004-05-27 Hitachi Ltd Non-contact type rotational position sensor, and electronically controlled throttle valve system having non-contact type rotational position sensor
JP2004332603A (en) * 2003-05-07 2004-11-25 Hitachi Ltd Rotation angle detection device, electronic control throttle valve device, manufacturing method for sensor detecting rotation angle of throttle valve stem, and internal combustion engine
JP4233920B2 (en) * 2003-05-15 2009-03-04 株式会社デンソー Rotation angle detector
KR101036902B1 (en) * 2003-06-20 2011-05-25 가부시키가이샤 미쿠니 Non-contact position sensor
JP4233958B2 (en) * 2003-08-29 2009-03-04 株式会社日本自動車部品総合研究所 Rotation angle detector
JP4545406B2 (en) * 2003-09-03 2010-09-15 三菱電機株式会社 Position detection device
US6957801B2 (en) * 2003-09-30 2005-10-25 Honeywell International, Inc. Valve having an integrated actuator assembly
JP4224382B2 (en) 2003-11-18 2009-02-12 株式会社日立製作所 Rotational position sensor and electronically controlled throttle device for internal combustion engine
FR2872896B1 (en) * 2004-07-09 2008-01-11 Moving Magnet Tech POSITION SENSOR, PARTICULARLY FOR MEASURING THE TORSION OF A STEERING COLUMN
JP4720233B2 (en) * 2005-03-18 2011-07-13 株式会社デンソー Rotation angle detector
US8427139B2 (en) * 2005-05-25 2013-04-23 Continental Tire Canada, Inc. Dual pole magnet structure having two magnets 90 degrees out of phase for position sensing in an actuator
JP2007040722A (en) * 2005-07-29 2007-02-15 Tsuda Industries Co Ltd Position sensor and shift lever unit using the position sensor
JP4494368B2 (en) * 2006-05-23 2010-06-30 愛三工業株式会社 Electronically controlled throttle device
US7609056B2 (en) * 2006-09-11 2009-10-27 Fisher Controls International Llc Apparatus to determine the position of an actuator
DE102006048771A1 (en) * 2006-10-12 2008-04-17 Sensitec Gmbh Encoders on a magnetic basis
US7521922B2 (en) * 2006-11-07 2009-04-21 Key Safety Systems, Inc. Linear position sensor
JP5128120B2 (en) * 2006-12-18 2013-01-23 古河電気工業株式会社 Rotation sensor
JP5041401B2 (en) * 2006-12-18 2012-10-03 古河電気工業株式会社 Rotation sensor
KR100866904B1 (en) * 2007-01-19 2008-11-04 인지컨트롤스 주식회사 Position Sensor Which Uses The Change Of The Magnetic Field's Angle
US20080252285A1 (en) * 2007-02-28 2008-10-16 Caterpillar Inc. Machine with a rotary position-sensing system
KR101047479B1 (en) * 2007-03-29 2011-07-07 (주)캠시스 Rotation axis displacement measuring device
US8823294B2 (en) * 2007-06-27 2014-09-02 Brooks Automation, Inc. Commutation of an electromagnetic propulsion and guidance system
US8283813B2 (en) 2007-06-27 2012-10-09 Brooks Automation, Inc. Robot drive with magnetic spindle bearings
US7834618B2 (en) * 2007-06-27 2010-11-16 Brooks Automation, Inc. Position sensor system
US8659205B2 (en) 2007-06-27 2014-02-25 Brooks Automation, Inc. Motor stator with lift capability and reduced cogging characteristics
JP5663304B2 (en) 2007-06-27 2015-02-04 ブルックス オートメーション インコーポレイテッド Multi-dimensional position sensor
US9752615B2 (en) 2007-06-27 2017-09-05 Brooks Automation, Inc. Reduced-complexity self-bearing brushless DC motor
KR20100056468A (en) 2007-07-17 2010-05-27 브룩스 오토메이션 인코퍼레이티드 Substrate processing apparatus with motors integral to chamber walls
DE102008042912A1 (en) * 2008-10-16 2010-04-22 Robert Bosch Gmbh Sensor device for detecting the rotational position of a rotating component
US8212566B2 (en) * 2009-07-24 2012-07-03 Agilent Technologies, Inc. Angular position sensing based on magnetically induced beam deformation
FR2961284B1 (en) * 2010-06-09 2013-04-19 Ksb Sas POSITION SENSOR VALVE
WO2013010292A1 (en) * 2011-07-21 2013-01-24 Honeywell International Inc. Non-contact rotational position sensor system
KR20130032505A (en) * 2011-09-23 2013-04-02 에스케이하이닉스 주식회사 Semiconductor system
CN103575305A (en) * 2012-07-24 2014-02-12 联创汽车电子有限公司 Special non-contact throttle position sensor for motorcycles
KR101987169B1 (en) * 2012-12-17 2019-06-10 엘지이노텍 주식회사 Motor
CN105366547B (en) * 2014-08-06 2017-11-24 宜昌市凯诺电气有限公司 A kind of non-contact measurement apparatus and method of crane rotation position
DE212015000272U1 (en) * 2014-12-26 2017-07-17 Nanjing Huamin Electronics Co., Ltd. Magnetic circuit structure of a magnetically sensitive torque sensor
US10312908B2 (en) * 2015-09-28 2019-06-04 Eaton Intelligent Power Limited Nested magnetic controls for industrial enclosures
US11239015B2 (en) 2015-09-28 2022-02-01 Eaton Intelligent Power Limited Magnetic controls for industrial enclosures
DE102016118376B4 (en) 2016-09-28 2023-10-26 Infineon Technologies Ag Magnetic angle sensor device and method of operation
CN110100220B (en) * 2016-12-27 2021-03-16 株式会社东海理化电机制作所 Position sensor and shift lever device
GB2572284B (en) 2017-02-10 2021-11-24 Halliburton Energy Services Inc Magnetic index positioner
US10935249B2 (en) * 2017-02-17 2021-03-02 Lg Electronics Inc. Knob assembly for cook top
US11231180B2 (en) 2017-02-17 2022-01-25 Lg Electronics Inc. Knob assembly for cook top
DE102017106479A1 (en) * 2017-03-27 2018-09-27 Fritz Kübler GmbH Shielding system for magnetic encoder sensor system
JP7366848B2 (en) * 2020-07-03 2023-10-23 Tdk株式会社 Angle detection device, angle detection device system, park lock system, and pedal system
US12084985B2 (en) * 2020-11-16 2024-09-10 Kenneth Knecht Digital shaft positioning for a turbine rotor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789826A (en) * 1987-03-19 1988-12-06 Ampex Corporation System for sensing the angular position of a rotatable member using a hall effect transducer
FR2715726B1 (en) 1994-02-01 1996-10-18 Moving Magnet Tech Magnetic Hall sensor position sensor.
FR2670286B1 (en) 1990-12-05 1993-03-26 Moving Magnet Tech MAGNETIC POSITION AND SPEED SENSOR WITH HALL PROBE.
US5789917A (en) 1990-12-05 1998-08-04 Moving Magnet Technologie Sa Magnetic position sensor with hall probe formed in an air gap of a stator
US5164668A (en) * 1991-12-06 1992-11-17 Honeywell, Inc. Angular position sensor with decreased sensitivity to shaft position variability
JP3206204B2 (en) * 1992-05-22 2001-09-10 株式会社デンソー Throttle position sensor
US5444369A (en) * 1993-02-18 1995-08-22 Kearney-National, Inc. Magnetic rotational position sensor with improved output linearity
JP3266736B2 (en) * 1994-05-17 2002-03-18 三菱電機株式会社 Magnetic sensor
JP3490783B2 (en) 1994-10-19 2004-01-26 日本電産シバウラ株式会社 Magnetic sensor and motor using the same
FR2746912B1 (en) * 1996-03-29 1998-06-05 Sagem MAGNETIC POSITION SENSOR
EP1009972B1 (en) * 1996-05-11 2004-05-06 Valeo Schalter und Sensoren GmbH Device for detecting rotary movements
US6201388B1 (en) * 1997-11-10 2001-03-13 Invensys Building Systems, Inc. Device for determining the angular position of a rotating member utilizing a magnetic hall effect transducer
US6137288A (en) 1998-05-08 2000-10-24 Luetzow; Robert Herman Magnetic rotational position sensor
JP3632038B2 (en) * 1998-09-19 2005-03-23 株式会社日立製作所 Rotation angle detector
JP3491596B2 (en) * 1999-06-28 2004-01-26 株式会社デンソー Rotation angle detector

Also Published As

Publication number Publication date
DE60131245T2 (en) 2008-08-21
JP2002206913A (en) 2002-07-26
KR100424375B1 (en) 2004-03-24
USRE40523E1 (en) 2008-09-30
KR20020060551A (en) 2002-07-18
US6559637B2 (en) 2003-05-06
EP1223409B1 (en) 2007-11-07
EP1223409A3 (en) 2003-11-19
US20020089324A1 (en) 2002-07-11
DE60131245D1 (en) 2007-12-20
EP1223409A2 (en) 2002-07-17

Similar Documents

Publication Publication Date Title
JP3757118B2 (en) Non-contact rotational position sensor and throttle valve assembly having non-contact rotational position sensor
JP3596667B2 (en) Rotation angle detector
JP3491596B2 (en) Rotation angle detector
JP4046746B2 (en) Rotation angle detector
JP2000028312A (en) Low profile non-contacting position sensor
EP1420227A2 (en) Noncontact rotary position sensor
US6275027B1 (en) Rotation angle sensor
JP2004028809A (en) Actuator
US7071683B2 (en) Rotation angle sensing device having enlarged detectable angle range
JP4294036B2 (en) Rotation angle detector
JP3853371B2 (en) Magnetic position sensor
JP2005233768A (en) Rotation angle detector
US20070108968A1 (en) Rotation angle detection device
JP4960174B2 (en) Non-contact rotation angle detection sensor
JP3496581B2 (en) Rotation angle detector
JPH11211410A (en) Non-contact position sensor
JP2006038872A (en) Throttle valve assembly having noncontact type rotation position sensor
JP3438692B2 (en) Rotation angle detector
JP2004245703A (en) Rotational angle detection device
JP2001133210A (en) Mon-contact type position sensor
JP3666669B2 (en) Temperature sensitive actuator
JP4249758B2 (en) Rotation angle detector
JP4539968B2 (en) Rotation angle sensor
JP2004092590A (en) Opening detecting device for throttle valve
JP2000097605A (en) Rotation angle detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3757118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees