JP3616694B2 - LiMn2O4 thin film electrode and manufacturing method thereof - Google Patents

LiMn2O4 thin film electrode and manufacturing method thereof Download PDF

Info

Publication number
JP3616694B2
JP3616694B2 JP22467896A JP22467896A JP3616694B2 JP 3616694 B2 JP3616694 B2 JP 3616694B2 JP 22467896 A JP22467896 A JP 22467896A JP 22467896 A JP22467896 A JP 22467896A JP 3616694 B2 JP3616694 B2 JP 3616694B2
Authority
JP
Japan
Prior art keywords
thin film
limn
positive electrode
baking
diethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22467896A
Other languages
Japanese (ja)
Other versions
JPH1055797A (en
Inventor
恒 高橋
恵二 佐藤
毅 外村
孝志 遠藤
Original Assignee
日本電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電工株式会社 filed Critical 日本電工株式会社
Priority to JP22467896A priority Critical patent/JP3616694B2/en
Publication of JPH1055797A publication Critical patent/JPH1055797A/en
Application granted granted Critical
Publication of JP3616694B2 publication Critical patent/JP3616694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、 LiMn薄膜電極およびその製造方法に関し、特に、リチウムイオン二次電池用正極に有利に用いることのできる LiMn薄膜電極についての提案である。
【0002】
【従来の技術】
リチウムイオン二次電池は、二次電池のなかでも特に高電圧・高エネルギー密度を有する電池であることから、電子機器の小型化、軽量化、ポータブル化の傾向にある電子機器の電源として、最近注目を浴びている。
【0003】
このリチウムイオン二次電池の正極材料としては、LiCoOやLiNiO、LiMn などのセラミックスが知られており、このなかでも特に、LiCoOは、サイクル安定性や合成の容易さなどの点で従来から実用化されている。しかしながら、原料であるCoが高価なために、将来的には、資源量が豊富で価格面からも有利なマンガン化合物を原料とするLiMnを正極材料とすることが望まれている。
【0004】
一方、これらのセラミックスからなる正極材料は、一般に電子伝導度が小さく他の材料との密着性に乏しいために、リチウムイオン二次電池の正極として用いる場合には、導電剤としてのカーボン粉と結着剤としての有機バインダーを所定の割合で合計10wt%程度(20 vol%)混ぜ合わせた後、Al板や SUS板などの正極基板に加圧密着させてから焼成する必要があった。
そのため、このようにして得られる正極は、正極材料以外の添加剤を用いていることから、体積エネルギー密度の低下を招いたり、正極基板と正極材料との密着性が不十分となるといった問題があった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、従来技術が抱える上記問題を解消することにあり、特に、正極基板と正極材料であるLiMnとの界面での密着性に優れた電極の製造技術を確立し、これによって、電池特性のさらなる向上を図ることにある。
【0006】
【課題を解決するための手段】
さて、特開平5−82137 号公報では、酸化物固体電解質の表面にランタン遷移金属ペロブスカイト型酸化物を強固に接合させる方法が提案されている。発明者らは、先に提案されたこの公報に記載の手法に着目し、上記目的実現に向け鋭意研究を行った。
【0007】
その結果、発明者らは、Li源とMn源からなる混合水溶液に所定の溶媒を添加してなる原料溶液を正極基板上に作用させることにより、その表面に結晶性スピネル型 LiMnの薄膜を密着性良く形成させることできることを見出し、本発明に想到したのである。
【0008】
すなわち、本発明にかかるLiMn2O4薄膜電極は、正極基板上結晶性スピネル型LiMn2O4の薄膜を形成してなる薄膜電極であって、特に、この結晶性スピネル型LiMn2O4の薄膜が、水溶性リチウム塩と硝酸マンガン(Mn(NO3)2)の水溶液にジエチレングリコール、グリセロールおよびホルムアルデヒドから選ばれるいずれか単独のまたは2以上からなる混合溶液を添加して得られる溶液の正極基板上への塗布、乾燥、焼き付け、焼成によって得られたものである点に特徴がある。
【0009】
そして、本発明にかかる LiMn薄膜電極の製造方法は、水溶性リチウム塩と硝酸マンガン(Mn(NO)の水溶液にジエチレングリコール、グリセロールおよびホルムアルデヒドから選ばれるいずれか単独の溶媒または2以上からなる混合溶媒を添加して得られる溶液を、正極基板上に作用させることにより、その表面に結晶性スピネル型 LiMnの薄膜を形成させることを特徴とする。
【0010】
また、本発明にかかるLiMn204薄膜電極の製造方法は、正極基板上に、水溶性リチウム塩と硝酸マンガン(Mn(NO3)2)の水溶液にジエチレングリコール、グリセロールおよびホルムアルデヒドから選ばれるいずれか単独の溶媒または2以上からなる混合溶媒を添加混合して得られる溶液を塗布し、次いで、乾燥したのち200〜400の温度範囲にて焼き付けし、その後、600〜800の温度範囲にて焼成する工程を繰り返すことを特徴とするLiMn204薄膜電極の製造方法。
【0011】
【発明の実施の形態】
本発明は、 LiMnの結晶粉を有機バインダー等を用いて正極に結着させた従来技術とは異なり、Li源とMn源からなる混合水溶液に所定の溶媒を添加してなる原料溶液を正極基板上に作用させることにより、その基板上に直接 LiMnの薄膜結晶を生成させて薄膜電極とした点に特徴がある。特に本発明は、上記所定の溶媒として、ジエチレングリコール、グリセロールおよびホルムアルデヒドから選ばれるいずれか単独の溶媒または2以上からなる混合溶媒を用いることにより、 300℃程度の低温の焼き付けで LiMn薄膜の結晶層が合成し得る点に特徴がある。
【0012】
このような本発明によれば、正極基板上に、粒界のない均一な膜構造を有する LiMn薄膜を密着性良く形成させることでき、得られる LiMn薄膜電極は、電池特性において優れた性能を示す。即ち、本発明では、正極材料を、導電剤や結着剤などの正極材料以外の添加剤を用いることなく、基板との密着性に優れた薄膜として正極基板上に形成したので、体積エネルギー密度が向上し、高負荷での電池特性が向上するものと考えられる。即ち、高負荷(ハイレート充放電)での容量低下が小さくなる。
【0013】
ここで、本発明における LiMn薄膜電極は、正極基板として、Pt板やAl板、SUS板などを用いるが、これらに限らず、焼成時に LiMnと反応しにくい金属でもよい。また、 LaMnO等の導電性酸化物を用いることができる。
【0014】
本発明では、この正極基板の表面に LiMn薄膜を生成させて電極を得る。そのためには、Li源とMn源からなる混合水溶液に、ジエチレングリコール、グリセロールおよびホルムアルデヒドから選ばれるいずれか単独の溶媒または2以上からなる混合溶媒を添加した原料溶液を用いる。この理由は、有機溶媒を添加することで原料溶液の粘度を上げ、原料溶液の基板への塗れ性を改善するためである。なお、Li源である水溶性リチウム塩としては、硝酸リチウムや硫酸リチウム、塩化リチウムなどを用いることができるが、好ましくは、硝酸リチウム(LiNO)を用いる。また、Mn源としては、特に限定しないが、好適には硝酸マンガン(Mn(NO)を用いる。
【0015】
本発明では、まず、上記原料溶液を正極基板の表面に塗布する。この場合、正極基板をこの原料溶液に浸したり、筆を用いてこの原料溶液を正極基板に塗布したりまたは吹き付けたり、あるいはその他の方法により、要するに、上記溶液が正極基板の表面に残るような状態にする。
【0016】
次に、上記原料溶液を塗布した正極基板を乾燥したのち、好ましくは200〜400の温度範囲で一定時間の焼付けを行う。これによって、比較的低い温度での焼き付けにより正極電極の表面に均一なLiMn2O4薄膜を密着性よく生成させることができる。即ち、前記温度範囲を逸脱すると強固なLiMn2O4薄膜の接合はえられにくい。なお、加熱時間は300℃にて1分間が目安となる。
【0017】
そして、上述した塗布,乾燥,焼き付けの一連の操作を繰り返し行うことによって、ある程度の厚みを持つ LiMn薄膜の層が得られる。
【0018】
そしてさらに、これをより好ましくは600〜800の温度範囲にて焼成することにより、LiMn2O4の結晶成長とともに焼成が進み、正極電極とLiMn2O4薄膜との界面での密着性に優れた電極を得ることが得られる。この場合、前記温度範囲逸脱すると、低温では焼成が十分でなく、一方高温ではLiMn2O4の分解が起こるため、良好な特性を有する薄膜電極が得られない。
【0019】
このようにして作製した LiMn薄膜電極に関し、その LiMn薄膜の性状はX線回折により、基板との密着性は折り曲げ破断面の観察により、また構造については走査型電子顕微鏡(SEM)を用いた観察により確認できる。
【0020】
【実施例】
LiMn薄膜電極を図1に示す工程に従って作製した。
(1) 0.1molのLiNO:7.04g と0.2molのMn(NO・6HO:57.80gを純水 100mlに溶かした混合水溶液に、ジエチレングリコールを500ml 添加して、原料溶液を作成した。ここで、純水量を 600mlとした前記混合水溶液にジエチレングリコールを添加しない原料溶液を、比較例として作成した。なお、ジエチレングリコールの代わりにグリセロールやホルムアルデヒドを用いることができる。
(2) 上記(1) で作成した原料溶液を、20mm×20mm×0.2mmtのPt板(正極基板)に筆塗りにて塗布し、次いで 110℃で30分間の乾燥後、 300℃で1分間の焼き付けを行った。そして、この塗布,乾燥,焼き付けの一連の操作を5回繰り返した後、大気中 650℃で5時間の焼成を行うことにより、正極基板上に結晶性スピネル型 LiMnの薄膜を形成し、 LiMn薄膜電極を作製した。なお、正極基板としては、Pt板の代わりにAl板やSUS板を用いることができる。
【0021】
▲1▼ LiMn薄膜の結晶相の同定
作製した LiMn薄膜電極について、 LiMn薄膜の結晶相の同定を理学電気株式会社製RINT−2000を用いたX線回折(XRD)により行った。その結果、 300℃で焼き付けした後のXRDパターンを図2に、 650℃で焼成した後のXRDパターンを図3に示す。
【0022】
図2に示す焼き付け後のXRDパターンから明らかなように、ジエチレングリコールを添加した本発明例では、正極基板のPtのピーク以外に LiMnのブロードなピークが認められた。これに対し、ジエチレングリコールを添加していない比較例では、Ptのピークのみしか観察されなかった。即ち、本発明例では 300℃という低温の焼き付けで LiMn薄膜の結晶相が合成されるが、比較例では LiMnが合成されないことが確認できた。このことは、ジエチレングリコールには、カチオン(Li、Mn2+)の分離、析出を抑制する能力があるためと考えられる。
【0023】
図3に示す焼成後のXRDパターンから明らかなように、焼成後においては、本発明例および比較例のいずれのXRDパターンについても LiMnのピークが観察され、異相として若干ではあるがMnのピークも認められた。
【0024】
▲2▼ LiMn薄膜の微構造観察
650℃で焼成して作製した LiMn薄膜電極について、 LiMn薄膜の微構造観察を日本電子製 JSM−6400を用いた走査型電子顕微鏡(SEM)観察により行った。その結果、ジエチレングリコールを添加した本発明例で得た電極の破断面をSEM観察した写真を図4に、ジエチレングリコールを添加していない比較例で得た電極の破断面をSEM観察した写真を図5に示す。なお、観察した破断面は、基板を折り曲げて破断させることにより形成した。それ故に、このSEM観察では、膜厚1.0 μm程度の LiMn薄膜と基板との密着性を確認することができる。
【0025】
図4に示すSEM写真から明らかなように、ジエチレングリコールを添加した本発明例で得た LiMn薄膜電極は、 LiMn薄膜とPt基板との密着性が良好であり、その薄膜は、表層には 0.2μm程度の粒子が緻密に覆っており、内部にはほとんど粒界は認められず均一な膜を形成していた。これに対し、図5に示すSEM写真から明らかなように、ジエチレングリコールを添加していない比較例で得た LiMn薄膜電極は、 LiMn薄膜とPt基板との密着性が悪く剥離が観察され、その薄膜は、膜全体が 0.1μm程度の微粒子で形成されていて粒界がはっきりと認められた。このことは、ジエチレングリコールを添加した本発明例では、低温焼き付けの工程で既に LiMn薄膜の結晶相が合成されるので、焼成時には、粒成長とともに焼結が進むためと考えられる。
【0026】
▲3▼ LiMn薄膜電極の電池特性評価
650℃で焼成して作製した LiMn薄膜電極について、乾燥アルゴンを満たしたグローブボックス内で電池特性評価を行った。この評価は、作製した LiMn薄膜電極を正極とし、Li箔を負極および参照極とし、エチレンカーボネートとジエチルカーボネートの混合溶媒中にLiClOを1 mol/lの濃度で溶解した液を電解液とした、図6に示すような3極式ガラスセルを用いた試験により行った。この試験条件は、充放電速度を 0.5C、5Cとし、電圧範囲を 3.0〜4.4 Vとした。その結果、充放電速度を5Cとした時の電池の放電容量サイクル特性を図7に示す。また、本発明にかかる電池に関し、充放電速度を変化させたときの電池の放電容量サイクル特性を図8に、10サイクル時における充放電曲線を図9にそれぞれ示す。
【0027】
図7に示すグラフから明らかなように、ジエチレングリコールを添加して作製した本発明にかかる LiMn薄膜電極を用いた電池では 700サイクル程度まで特性劣化が認められないのに対し、ジエチレングリコールを添加しないで作製した従来技術にかかる LiMn薄膜電極を用いた電池では、直線的な特性劣化が認められた。このことは、 LiMn自体の結晶安定性(完全性)、膜組織および基板との密着性に関連しているものと考えられる。
なお、いずれの場合も、初期容量は、 LiMnの理論容量:148mAh/gの約75%に相当する110mAh/gであったが、前述の図3に示すXRDパターンから明らかなように、これらのサンプルでは異相としてMnが認められることから、薄膜内に存在する LiMnとしては 100%近くが電池反応に寄与しているものと考えられる。
【0028】
図8に示すグラフから明らかなように、本発明にかかる LiMn薄膜電極を用いた電池について、充放電速度を5Cから 0.5Cにすると、初期容量は117mAh/gと6%程度大きくなるが、その放電容量サイクル特性はほとんど変化がなく、この電極においては充放電速度依存性は小さいことがわかった。このことは、正極材料である LiMnが、薄膜かつ緻密であり、基板との密着性が良いことに起因していると考えられる。
【0029】
図9に示すグラフから明らかなように、本発明にかかる LiMn薄膜電極を用いた電池については、4Vプラトー領域で LiMn特有の二段のプラトー(平坦部)がはっきりと確認できる。 LiMn正極を用いた電池は、このような二段のプラトー(平坦部)がはっきり現れると、一般に電池サイクル特性が悪くなると言われている。しかしながら、ジエチレングリコールを添加して作製した本発明にかかる LiMn薄膜電極を用いた電池は、前述したように電池サイクル特性が良好であった。このことは、本発明にかかる LiMn薄膜は、 LiMn結晶中に結晶欠陥がなく、結晶構造が非常に安定しているためと考えられる。
【0030】
【発明の効果】
以上説明したように本発明によれば、Li源とMn源を混合したジエチレングリコール等の特定溶媒を含む水溶液を正極基板上に塗布し、乾燥してから焼成するという極めて簡易な方法により、その基板表面に、粒界のない均一な膜構造を有する LiMn薄膜を密着性良く形成させることできる。
それ故に、本発明にかかる LiMn薄膜電極は、電池特性において、初期容量が大きく、電池サイクル特性が良好であり、充放電速度依存性が小さく、優れた性能を示す。
【図面の簡単な説明】
【図1】LiMn薄膜電極の作製工程を示すフロー図である。
【図2】300℃で焼き付けした後のX線回折パターンを示す図である。
【図3】650℃で焼成した後のX線回折パターンを示す図である。
【図4】本発明にかかる電極の破断面における LiMnの結晶構造を示すSEM写真である。
【図5】従来技術にかかる電極の破断面における LiMnの結晶構造を示すSEM写真である。
【図6】実施例において電池特性評価用テストセルとして用いた3極式ガラスセルを示す図である。
【図7】充放電速度を5Cとした時の電池の放電容量サイクル特性を示すグラフである。
【図8】本発明にかかる電池に関し、充放電速度を変化させたときの電池の放電容量サイクル特性を示すグラフである。
【図9】本発明にかかる電池に関し、10サイクル時の充放電曲線を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a LiMn 2 O 4 thin film electrode and a method for producing the same, and particularly to a LiMn 2 O 4 thin film electrode that can be advantageously used for a positive electrode for a lithium ion secondary battery.
[0002]
[Prior art]
The lithium ion secondary battery is a battery having a particularly high voltage and high energy density among secondary batteries. As a power source for electronic devices that tend to be smaller, lighter, and portable electronic devices, Has attracted attention.
[0003]
Ceramics such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are known as positive electrode materials for this lithium ion secondary battery. Among these, LiCoO 2 is particularly suitable for cycle stability and ease of synthesis. In this respect, it has been practically used. However, since Co, which is a raw material, is expensive, in the future, it is desired to use LiMn 2 O 4 made of a manganese compound, which has abundant resources and is advantageous in terms of price, as a positive electrode material.
[0004]
On the other hand, positive electrode materials made of these ceramics generally have a low electronic conductivity and poor adhesion to other materials. Therefore, when used as a positive electrode for a lithium ion secondary battery, the positive electrode material is bonded to carbon powder as a conductive agent. It was necessary to sinter after adhering the organic binder as the adhering agent at a predetermined ratio in a total ratio of about 10 wt% (20 vol%) and then pressing and adhering to a positive electrode substrate such as an Al plate or a SUS plate.
Therefore, since the positive electrode obtained in this way uses additives other than the positive electrode material, there is a problem in that the volume energy density is lowered or the adhesion between the positive electrode substrate and the positive electrode material becomes insufficient. there were.
[0005]
[Problems to be solved by the invention]
The purpose of the present invention is to eliminate the above-mentioned problems of the prior art, in particular, to establish a manufacturing technique of an electrode excellent in adhesion at the interface between the positive electrode substrate and the positive electrode material LiMn 2 O 4 , This is to further improve battery characteristics.
[0006]
[Means for Solving the Problems]
Japanese Patent Laid-Open No. 5-82137 proposes a method of strongly bonding a lanthanum transition metal perovskite oxide to the surface of an oxide solid electrolyte. The inventors paid attention to the technique described in this publication, which has been proposed earlier, and conducted earnest research to achieve the above object.
[0007]
As a result, the inventors applied a raw material solution obtained by adding a predetermined solvent to a mixed aqueous solution composed of a Li source and a Mn source on the positive electrode substrate, so that crystalline spinel type LiMn 2 O 4 was formed on the surface. The present inventors have found that a thin film can be formed with good adhesion and have arrived at the present invention.
[0008]
That is, the LiMn 2 O 4 thin film electrode according to the present invention is a thin film electrode formed by forming a thin film of crystalline spinel type LiMn 2 O 4 on the positive electrode substrate, and in particular, this crystalline spinel type LiMn 2 O 4 The positive electrode substrate of a solution obtained by adding a single or a mixed solution of two or more selected from diethylene glycol, glycerol and formaldehyde to an aqueous solution of a water-soluble lithium salt and manganese nitrate (Mn (NO 3 ) 2 ) It is characterized in that it is obtained by coating on top , drying, baking and baking.
[0009]
The manufacturing method of LiMn 2 O 4 thin film electrode according to the present invention, the water-soluble lithium salt and manganese nitrate (Mn (NO 3) 2) aqueous solution of diethylene glycol, a solvent for either alone selected from glycerol and formaldehyde or 2 A solution obtained by adding the above mixed solvent is allowed to act on the positive electrode substrate to form a crystalline spinel type LiMn 2 O 4 thin film on the surface thereof.
[0010]
In addition, the method for producing a LiMn 2 0 4 thin film electrode according to the present invention includes a water-soluble lithium salt and an aqueous solution of manganese nitrate (Mn (NO 3 ) 2 ) on a positive electrode substrate, any one selected from diethylene glycol, glycerol, and formaldehyde. A single solvent or a solution obtained by adding and mixing two or more mixed solvents is applied, then dried and baked in a temperature range of 200 to 400 ° C , and then in a temperature range of 600 to 800 ° C. A method for producing a LiMn 2 0 4 thin film electrode, characterized by repeating the firing step.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Unlike the prior art in which LiMn 2 O 4 crystal powder is bound to a positive electrode using an organic binder or the like, the present invention is a raw material solution obtained by adding a predetermined solvent to a mixed aqueous solution composed of a Li source and a Mn source It is characterized in that a thin film crystal of LiMn 2 O 4 is produced directly on the substrate by causing the film to act on the positive electrode substrate to form a thin film electrode. In particular, the present invention uses a single solvent selected from diethylene glycol, glycerol and formaldehyde or a mixed solvent composed of two or more as the predetermined solvent, so that the LiMn 2 O 4 thin film can be formed by baking at a low temperature of about 300 ° C. It is characterized in that the crystal layer can be synthesized.
[0012]
According to the present invention, a LiMn 2 O 4 thin film having a uniform film structure having no grain boundary can be formed on the positive electrode substrate with good adhesion, and the obtained LiMn 2 O 4 thin film electrode has battery characteristics. Excellent performance at. That is, in the present invention, since the positive electrode material is formed on the positive electrode substrate as a thin film having excellent adhesion to the substrate without using additives other than the positive electrode material such as a conductive agent and a binder, the volume energy density It is considered that the battery characteristics at high load are improved. That is, the capacity drop at a high load (high rate charge / discharge) is reduced.
[0013]
Here, the LiMn 2 O 4 thin film electrode in the present invention uses a Pt plate, an Al plate, a SUS plate or the like as a positive electrode substrate, but is not limited thereto, and may be a metal that hardly reacts with LiMn 2 O 4 during firing. In addition, a conductive oxide such as LaMnO 3 can be used.
[0014]
In the present invention, an electrode is obtained by forming a LiMn 2 O 4 thin film on the surface of the positive electrode substrate. For this purpose, a raw material solution obtained by adding any one solvent selected from diethylene glycol, glycerol and formaldehyde or a mixed solvent composed of two or more to a mixed aqueous solution composed of a Li source and a Mn source is used. The reason for this is to increase the viscosity of the raw material solution by adding an organic solvent and to improve the coatability of the raw material solution to the substrate. In addition, as a water-soluble lithium salt which is a Li source, lithium nitrate, lithium sulfate, lithium chloride, or the like can be used, but lithium nitrate (LiNO 3 ) is preferably used. Further, the Mn source is not particularly limited, but manganese nitrate (Mn (NO 3 ) 2 ) is preferably used.
[0015]
In the present invention, first, the raw material solution is applied to the surface of the positive electrode substrate. In this case, the positive electrode substrate is immersed in this raw material solution, or this raw material solution is applied or sprayed onto the positive electrode substrate using a brush, or in other ways, the solution remains on the surface of the positive electrode substrate. Put it in a state.
[0016]
Next, after drying the positive electrode substrate coated with the raw material solution, baking is preferably performed in a temperature range of 200 to 400 ° C. for a predetermined time. As a result, a uniform LiMn 2 O 4 thin film can be formed with good adhesion on the surface of the positive electrode by baking at a relatively low temperature. That is, when the temperature is deviated from, the strong LiMn 2 O 4 thin film cannot be easily bonded. The heating time is 1 minute at 300 ° C.
[0017]
A LiMn 2 O 4 thin film layer having a certain thickness can be obtained by repeatedly performing the above-described series of operations of coating, drying, and baking.
[0018]
And further, by firing at this more preferably a temperature range of 600 to 800 ° C., the flow advances firing with crystal growth of the LiMn 2 O 4, the adhesion at the interface between the positive electrode and the LiMn 2 O 4 thin film An excellent electrode can be obtained. In this case, when deviating from the above temperature range, firing is not sufficient at low temperatures, whereas LiMn 2 O 4 is decomposed at high temperatures, so that a thin film electrode having good characteristics cannot be obtained.
[0019]
Regarding the LiMn 2 O 4 thin film electrode thus produced, the properties of the LiMn 2 O 4 thin film are determined by X-ray diffraction, the adhesion to the substrate is observed by observing a bent fracture surface, and the structure is a scanning electron microscope ( This can be confirmed by observation using SEM.
[0020]
【Example】
A LiMn 2 O 4 thin film electrode was produced according to the process shown in FIG.
(1) 0.1 mol of LiNO 3: 7.04 g and 0.2mol of Mn (NO 3) 2 · 6H 2 O: 57.80g of a mixed aqueous solution prepared by dissolving in pure water 100 ml, diethylene glycol was added 500 ml, A raw material solution was prepared. Here, a raw material solution in which diethylene glycol was not added to the mixed aqueous solution with a pure water amount of 600 ml was prepared as a comparative example. Glycerol or formaldehyde can be used in place of diethylene glycol.
(2) The raw material solution prepared in (1) above was applied to a 20 mm × 20 mm × 0.2 mmt Pt plate (positive electrode substrate) by brush coating, then dried at 110 ° C. for 30 minutes, and then at 1 ° C. at 300 ° C. Baking for a minute. Then, after repeating a series of operations of coating, drying and baking five times, a thin film of crystalline spinel type LiMn 2 O 4 is formed on the positive electrode substrate by baking at 650 ° C. in the atmosphere for 5 hours. LiMn 2 O 4 thin film electrodes were prepared. As the positive electrode substrate, an Al plate or a SUS plate can be used instead of the Pt plate.
[0021]
▲ 1 ▼ for LiMn 2 O 4 thin film electrodes identified Preparation of LiMn 2 O 4 thin film of crystalline phase, X-rays diffraction using a Rigaku Denki Co., Ltd. RINT-2000 Identification of LiMn 2 O 4 thin film crystal phase (XRD ). As a result, the XRD pattern after baking at 300 ° C. is shown in FIG. 2, and the XRD pattern after baking at 650 ° C. is shown in FIG.
[0022]
As is clear from the XRD pattern after baking shown in FIG. 2, in the example of the present invention to which diethylene glycol was added, a broad peak of LiMn 2 O 4 was recognized in addition to the Pt peak of the positive electrode substrate. On the other hand, only the peak of Pt was observed in the comparative example in which diethylene glycol was not added. That is, in the example of the present invention, the crystal phase of the LiMn 2 O 4 thin film was synthesized by baking at a low temperature of 300 ° C., but it was confirmed that LiMn 2 O 4 was not synthesized in the comparative example. This is presumably because diethylene glycol has the ability to suppress separation and precipitation of cations (Li + , Mn 2+ ).
[0023]
As apparent from the XRD pattern after firing shown in FIG. 3, after firing, the peak of LiMn 2 O 4 was observed for both XRD patterns of the present invention example and the comparative example, and although it was slightly as a different phase, Mn A 2 O 3 peak was also observed.
[0024]
▲ 2 ▼ for LiMn 2 O 4 thin film electrode prepared by sintering in LiMn 2 O 4 micro structure observation 650 ° C. of the thin film, scanning electron a LiMn 2 O 4 micro structure observation of a thin film using a JEOL JSM-6400 This was performed by observation with a microscope (SEM). As a result, a photograph obtained by SEM observation of the fracture surface of the electrode obtained in the inventive example to which diethylene glycol was added is shown in FIG. 4, and a photograph obtained by SEM observation of the fracture surface of the electrode obtained in the comparative example to which diethylene glycol is not added is shown in FIG. Shown in The observed fracture surface was formed by bending and breaking the substrate. Therefore, in this SEM observation, the adhesion between the LiMn 2 O 4 thin film having a thickness of about 1.0 μm and the substrate can be confirmed.
[0025]
As is apparent from the SEM photograph shown in FIG. 4, the LiMn 2 O 4 thin film electrode obtained in the present invention example to which diethylene glycol was added had good adhesion between the LiMn 2 O 4 thin film and the Pt substrate, and the thin film was In the surface layer, particles of about 0.2 μm were densely covered, and there was almost no grain boundary inside, forming a uniform film. On the other hand, as is clear from the SEM photograph shown in FIG. 5, the LiMn 2 O 4 thin film electrode obtained in the comparative example to which no diethylene glycol was added had poor adhesion between the LiMn 2 O 4 thin film and the Pt substrate. In the thin film, the entire film was formed of fine particles of about 0.1 μm, and the grain boundaries were clearly recognized. This is considered to be because, in the example of the present invention to which diethylene glycol was added, the crystal phase of the LiMn 2 O 4 thin film was already synthesized in the low-temperature baking process, so that sintering progressed with grain growth during firing.
[0026]
▲ 3 ▼ for LiMn 2 O 4 thin film electrode prepared by sintering the battery characterization 650 ° C. of LiMn 2 O 4 thin film electrodes, and the battery was characterization in a glove box filled with dry argon. In this evaluation, the prepared LiMn 2 O 4 thin film electrode was used as the positive electrode, the Li foil was used as the negative electrode and the reference electrode, and a solution obtained by dissolving LiClO 4 at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate was electrolyzed. The test was carried out using a tripolar glass cell as shown in FIG. The test conditions were a charge / discharge rate of 0.5C and 5C, and a voltage range of 3.0 to 4.4V. As a result, FIG. 7 shows the discharge capacity cycle characteristics of the battery when the charge / discharge rate was 5C. Moreover, regarding the battery according to the present invention, FIG. 8 shows the discharge capacity cycle characteristics of the battery when the charge / discharge rate is changed, and FIG. 9 shows the charge / discharge curve at 10 cycles.
[0027]
As is clear from the graph shown in FIG. 7, the battery using the LiMn 2 O 4 thin film electrode according to the present invention prepared by adding diethylene glycol shows no deterioration in characteristics until about 700 cycles, whereas diethylene glycol is added. In the battery using the LiMn 2 O 4 thin film electrode according to the prior art produced without the linearity, linear characteristic deterioration was observed. This is considered to be related to the crystal stability (integrity) of LiMn 2 O 4 itself, the film structure and the adhesion to the substrate.
In either case, the initial capacity was 110 mAh / g corresponding to about 75% of the theoretical capacity of LiMn 2 O 4 : 148 mAh / g, but as apparent from the XRD pattern shown in FIG. In these samples, since Mn 2 O 3 is recognized as a different phase, it is considered that nearly 100% of LiMn 2 O 4 present in the thin film contributes to the battery reaction.
[0028]
As apparent from the graph shown in FIG. 8, when the charge / discharge rate is changed from 5C to 0.5C for the battery using the LiMn 2 O 4 thin film electrode according to the present invention, the initial capacity is 117 mAh / g, which is about 6% larger. However, there was almost no change in the discharge capacity cycle characteristics, and it was found that the charge / discharge rate dependence was small in this electrode. This is considered to be due to the fact that LiMn 2 O 4 , which is a positive electrode material, is thin and dense and has good adhesion to the substrate.
[0029]
As is clear from the graph shown in FIG. 9, regarding the battery using the LiMn 2 O 4 thin film electrode according to the present invention, a two-stage plateau (flat portion) peculiar to LiMn 2 O 4 is clearly confirmed in the 4V plateau region. it can. A battery using a LiMn 2 O 4 positive electrode is generally said to have poor battery cycle characteristics when such a two-stage plateau (flat part) appears clearly. However, the battery using the LiMn 2 O 4 thin film electrode according to the present invention prepared by adding diethylene glycol has good battery cycle characteristics as described above. This is presumably because the LiMn 2 O 4 thin film according to the present invention has no crystal defects in the LiMn 2 O 4 crystal and the crystal structure is very stable.
[0030]
【The invention's effect】
As described above, according to the present invention, an aqueous solution containing a specific solvent such as diethylene glycol in which a Li source and a Mn source are mixed is applied onto the positive electrode substrate, dried, and then fired. A LiMn 2 O 4 thin film having a uniform film structure without grain boundaries can be formed on the surface with good adhesion.
Therefore, the LiMn 2 O 4 thin film electrode according to the present invention has a large initial capacity, good battery cycle characteristics, small charge / discharge rate dependency, and excellent performance in battery characteristics.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a manufacturing process of a LiMn 2 O 4 thin film electrode.
FIG. 2 is a diagram showing an X-ray diffraction pattern after baking at 300 ° C.
FIG. 3 is a diagram showing an X-ray diffraction pattern after firing at 650 ° C. FIG.
FIG. 4 is an SEM photograph showing the crystal structure of LiMn 2 O 4 at the fracture surface of the electrode according to the present invention.
FIG. 5 is an SEM photograph showing the crystal structure of LiMn 2 O 4 at the fracture surface of the electrode according to the prior art.
FIG. 6 is a diagram showing a triode glass cell used as a test cell for evaluating battery characteristics in Examples.
FIG. 7 is a graph showing the discharge capacity cycle characteristics of the battery when the charge / discharge rate is 5C.
FIG. 8 is a graph showing the discharge capacity cycle characteristics of the battery according to the present invention when the charge / discharge rate is changed.
FIG. 9 is a graph showing a charge / discharge curve in 10 cycles for the battery according to the present invention.

Claims (2)

正極基板上に結晶性スピネル型LiMn204の薄膜を形成してなる薄膜電極であって、前記結晶性スピネル型LiMn204の薄膜が、水溶性リチウム塩と硝酸マンガン(Mn(NO3)2)の水溶液にジエチレングリコール、グリセローンおよびホルムアルデヒドから選ばれるいずれか単独の溶媒または2以上からなる混合溶媒を添加して得られる溶液の正極基板上への塗布、乾燥、焼き付け、焼成によって得られたものであることを特徴とするLiMn204薄膜電極。A thin film electrode on the positive electrode substrate obtained by forming a thin film of crystalline spinel LiMn 2 0 4, the thin film of crystalline spinel LiMn 2 0 4 has a water-soluble lithium salt and manganese nitrate (Mn (NO 3 ) The solution obtained by adding any one solvent selected from diethylene glycol, glycerone, and formaldehyde to the aqueous solution of 2 ) or a mixed solvent composed of two or more was obtained by coating on a positive electrode substrate , drying, baking, and baking. LiMn 2 0 4 thin film electrode characterized by being a thing. 正極基板上に、水溶性リチウム塩と硝酸マンガン(Mn(NO3)2)の水溶液にジエチレングリコール、グリセロールおよびホルムアルデヒドかとら選ばれるいずれか単独の溶媒または2以上からなる混合溶媒を添加混合して得られる溶液を塗布し、次いで、乾燥したのち200〜400の温度範囲にて焼き付けし、その後、600〜800の温度範囲にて焼成することを特徴とするLiMn204薄膜電極の製造方法。Obtained by adding and mixing an aqueous solution of water-soluble lithium salt and manganese nitrate (Mn (NO 3 ) 2 ) with a single solvent selected from diethylene glycol, glycerol and formaldehyde or a mixed solvent of two or more on a positive electrode substrate. A method for producing a LiMn 2 0 4 thin film electrode, comprising: applying a solution obtained, followed by drying, baking in a temperature range of 200 to 400 ° C. , and then baking in a temperature range of 600 to 800 ° C. .
JP22467896A 1996-08-08 1996-08-08 LiMn2O4 thin film electrode and manufacturing method thereof Expired - Fee Related JP3616694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22467896A JP3616694B2 (en) 1996-08-08 1996-08-08 LiMn2O4 thin film electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22467896A JP3616694B2 (en) 1996-08-08 1996-08-08 LiMn2O4 thin film electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1055797A JPH1055797A (en) 1998-02-24
JP3616694B2 true JP3616694B2 (en) 2005-02-02

Family

ID=16817516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22467896A Expired - Fee Related JP3616694B2 (en) 1996-08-08 1996-08-08 LiMn2O4 thin film electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3616694B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398744B1 (en) * 2000-02-16 2003-09-19 주식회사 엘지화학 Method for preparing lithium manganese spinel oxide with improved electrochemical performance
JP6378108B2 (en) * 2015-02-18 2018-08-22 新光電気工業株式会社 Electrode body and method for producing electrode body
CN114085069B (en) * 2021-11-17 2023-03-31 柳州紫荆循环能源科技有限公司 Lithium manganate cathode target material for preparing thin film lithium battery and preparation method thereof

Also Published As

Publication number Publication date
JPH1055797A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
KR102165779B1 (en) Cathode mixture for all solid-state battery, cathode for all solid-state battery, all solid-state battery, and method for producing the same
JP2010102929A (en) Lithium content garnet type oxide, lithium secondary cell, and method for manufacturing solid electrolyte
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JP7283657B2 (en) Sulfur positive electrode mixture and manufacturing method thereof, sulfur positive electrode, lithium sulfur solid state battery
JP3858699B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
KR101909727B1 (en) Solid electrolyte, method for manufacturing the same, and all solid state rechargeable lithium battery including the same
JPH09219215A (en) Lithium ion battery
JP4729774B2 (en) Method for producing negative electrode material for lithium secondary battery
KR101528333B1 (en) Sodium Vanadium Oxide Anode Material for Sodium Ion Secondary Battery, Preparation Method Thereof and Sodium Ion Secondary Battery Having the same
CN111180634B (en) Composite structure, lithium battery, and method for manufacturing composite structure
JPWO2019194150A1 (en) Positive electrode active material for lithium ion secondary batteries and its manufacturing method
JP2000231919A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
CN115692650A (en) Ternary cathode material, preparation method and application thereof
JP5086910B2 (en) Lithium secondary battery provided with Li-Sn-Mn compound positive electrode thin film, method for producing Li-Sn-Mn compound target, and method for forming positive electrode thin film using the same
JP3616694B2 (en) LiMn2O4 thin film electrode and manufacturing method thereof
Suresh et al. Synthesis of LiCo1− xNixO2 from a low temperature solution combustion route and characterization
JP7280815B2 (en) Sintered compact, power storage device, and method for producing sintered compact
US20040115534A1 (en) Method for preparing Li-Mn-Ni oxide for lithium secondary battery
JP2021147244A (en) Manufacturing method of lithium ion conductive solid electrolyte powder
KR20170011859A (en) Solid electrolyte, method for manufacturing the same, and all solid state rechargeable lithium battery including the same
KR20070059829A (en) Novel anode active material, producing method thereof, and lithium secondary battery comprising the same
JP6340955B2 (en) Method for producing composite laminate, composite laminate and lithium battery
CN110783565B (en) Positive electrode active material for lithium ion battery and lithium ion battery
JP2011065787A (en) Positive electrode and method of manufacturing the same
JPH1173960A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaquoues electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees