JP3559770B2 - Method for producing aliphatic polyester and method for recycling cellulose - Google Patents

Method for producing aliphatic polyester and method for recycling cellulose Download PDF

Info

Publication number
JP3559770B2
JP3559770B2 JP2001122695A JP2001122695A JP3559770B2 JP 3559770 B2 JP3559770 B2 JP 3559770B2 JP 2001122695 A JP2001122695 A JP 2001122695A JP 2001122695 A JP2001122695 A JP 2001122695A JP 3559770 B2 JP3559770 B2 JP 3559770B2
Authority
JP
Japan
Prior art keywords
acid
aliphatic polyester
producing
mass
caprolactone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001122695A
Other languages
Japanese (ja)
Other versions
JP2002317040A (en
Inventor
昌人 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001122695A priority Critical patent/JP3559770B2/en
Priority to US09/990,543 priority patent/US20020111458A1/en
Priority to EP01128072A priority patent/EP1211274A1/en
Priority to US10/231,301 priority patent/US6559275B2/en
Publication of JP2002317040A publication Critical patent/JP2002317040A/en
Application granted granted Critical
Publication of JP3559770B2 publication Critical patent/JP3559770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、脂肪族ポリエステルの製造方法およびセルロースの再資源化方法に関するものである。
【0002】
【従来の技術】
セルロースは、年間に10〜1011トンが生産され、構造材料、充填剤、食品添加物、更には、接着剤等の広範囲の用途で大量に利用されている。それに伴い、廃セルロースの量もまた、年々増加している。
【0003】
廃セルロースを分解して再利用する技術として、例えば、セルロースからメタン、エタン等の炭化水素を取出す方法(特開平5−213778号公報)、微生物によってセルロースからアルコールを生産する方法(特開平11−299479号公報)等が知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、廃セルロース量の今後の更なる増加に対処するためには、より効率的にセルロースを再資源化し得る新規な技術開発が必要である。そこで、本発明者は、廃セルロースを出発原料として、脂肪族ポリエステルを製造することを検討した。
【0005】
ところで、脂肪族ポリエステルの有用な製造方法の1つに、カプロラクトン類をモノマーとして、これを開環重合する方法がある。
【0006】
カプロラクトン類の例として、δ−カプロラクトンは、容易に開環重合して脂肪族ポリエステルを与える。このような脂肪族ポリエステルは、プラスチック成形品、フィルム、ホットメルト接着剤等として、産業上の多くの分野で利用できる。
【0007】
カプロラクトン類はカプロン酸類を環化することによって得られる。よって、廃セルロースを出発原料として脂肪族ポリエステルを製造する場合、廃セルロースを効率的にカプロン酸類に誘導する必要がある。
【0008】
しかしながら、脂肪族ポリエステルのモノマーとして使用可能な程度に高純度で効率的にカプロン酸類を廃セルロースから誘導することは、あまり知られていない。
【0009】
以上の様な状況に鑑み、本発明の目的は、セルロースからグルコースを経て得られるところのカプロン酸を用いて、脂肪族ポリエステルを製造すること、即ち、セルロースを出発物質として高品質なプラスチックを得ることである。本発明により、セルロースを原料として得られる脂肪族ポリエステルを製造することが可能となり、セルロースを再資源化することができる。
【0010】
【課題を解決するための手段】
上記目的を達成するための本発明によれば、下記式(I)で示される脂肪族ポリエステルの製造方法であって、
【0011】
【化3】

Figure 0003559770
【0012】
(式中、nは10〜6000の整数を示す。)
セルロースを加水分解してグルコースを得る工程と、
該グルコースを酸化してグルコノラクトンを得る工程と、
該グルコノラクトンを還元してカプロン酸を得る工程と、
該カプロン酸を塩素化して5−クロロカプロン酸を得る工程と、
該5−クロロカプロン酸を環化してδ−カプロラクトンを得る工程と、
該δ−カプロラクトンを開環重合せしめる工程と、
を含むことを特徴とする脂肪族ポリエステルの製造方法が提供される。
【0013】
また、下記式(I)で示される脂肪族ポリエステルの製造方法であって、
【0014】
【化4】
Figure 0003559770
【0015】
(式中、nは10〜6000の整数を示す。)
セルロースを加水分解してグルコースを得る工程と、
該グルコースを酸化してグルコン酸を得る工程と、
該グルコン酸を還元してカプロン酸を得る工程と、
該カプロン酸を塩素化して5−クロロカプロン酸を得る工程と、
該5−クロロカプロン酸を環化してδ−カプロラクトンを得る工程と、
該δ−カプロラクトンを開環重合せしめる工程と、
を有することを特徴とする脂肪族ポリエステルの製造方法が提供される。
【0016】
【発明の実施の形態】
本発明においては、グルコノラクトンが脂肪族ポリエステルのモノマーとして使用可能な程度に高純度で効率的にカプロン酸に誘導される。また、グルコン酸が脂肪族ポリエステルのモノマーとして使用可能な程度に高純度で効率的にカプロン酸に誘導される。この結果、セルロースからグルコースを経て得られるところのカプロン酸を用いて、脂肪族ポリエステルを製造すること、即ち、セルロースを出発物質として高品質なプラスチックを得ることが可能となる。よって、廃セルロースを原料として得られる脂肪族ポリエステルを製造することが可能となり、セルロースを再資源化することができる。
【0017】
なお、セルロースからグルコースを得る際の、原料としてのセルロースとしては、市販のセルロースを使用できることは勿論のこと、古紙類、廃材等の木材類を適宜処理して得られた廃セルロースも使用することができる。従って、本発明によれば、廃セルロース等の再資源化への新たな道筋を開くことができる。
【0018】
以下に各工程を説明する。
【0019】
(セルロースからグルコース)
セルロースからグルコースへの変換は、例えば、セルラーゼなどの酵素による分解方法、硫酸や塩酸などの酸による分解方法、あるいは、超臨界水による分解方法等が挙げられる。
【0020】
(グルコースからグルコノラクトン又はグルコン酸)
グルコースからグルコノラクトンへの変換は、グルコースを臭素酸化する方法やグルコース酸化酵素であるノタチンを用いる方法等が挙げられる。
【0021】
また、グルコースからグルコン酸への変換は、臭素を飽和させた硫酸中でグルコースを酸化、加水分解して得る方法、グルコース溶液の電解酸化による方法、あるいはペニシリウム属の細菌を用いたグルコン酸発酵による方法等が挙げられる。
【0022】
(グルコノラクトン又はグルコン酸からカプロン酸)
グルコノラクトン又はグルコン酸をカプロン酸へ変換する工程は、本発明において重要であり、この工程をヨウ化水素酸および赤リンによる還元で行うことが、収率および選択率などの観点から好ましい。この際、実質的に、グルコノラクトン又はグルコン酸の水酸基のみが還元される。
【0023】
この工程の反応条件は、得られるカプロン酸の収量および純度などを考慮して注意深く選択される。
【0024】
具体的には、還元に用いる赤リンの量は、十分な収率を確保する観点から、グルコノラクトン又はグルコン酸に対して1.5モル倍以上が好ましく、1.7モル倍以上がより好ましく、1.8モル倍以上が更に好ましい。一方、副反応物を抑制する観点から、3.0モル倍以下が好ましく、2.7モル倍以下がより好ましく、2.4モル倍以下が更に好ましい。
【0025】
また、還元に用いるヨウ化水素酸は、十分な収率を確保する観点から、濃度が50質量%以上60質量%以下のものをグルコノラクトン又はグルコン酸に対して好ましくは30質量倍以上、より好ましくは35質量倍以上、更に好ましくは40質量倍以上を使用する。一方、副反応物を抑制する観点から、70質量倍以下が好ましく、65質量倍以下がより好ましく、60質量倍以下が更に好ましい。
【0026】
グルコノラクトン又はグルコン酸と、赤リンと、ヨウ化水素酸とを含有する混合物は還流するまで加熱され、還元反応が完了するまで還流状態を維持する。還流時間は、十分な収率を確保する観点から、10時間以上が好ましく、13時間以上がより好ましく、15時間以上が更に好ましい。一方、副反応物を抑制する観点から、30時間以下が好ましく、27時間以下が好ましく、25時間以下が更に好ましい。
【0027】
(カプロン酸から5−クロロカプロン酸)
カプロン酸から5−クロロカプロン酸への変換は、カプロン酸を濃硫酸中でN−クロロジイソプロピルアミンと反応させて塩素化する方法が挙げられる。この反応については、N.C.Denoら、J.Am.Chem.Soc.誌、第93号、第438〜440頁、1971年刊に記載されている。
【0028】
(5−クロロカプロン酸からδ−カプロラクトン)
5−クロロカプロン酸から、下記式(II)で表されるδ−カプロラクトンへの変換は、5−クロロカプロン酸を水酸化ナトリウム水溶液中で煮沸する方法が挙げられる。
【0029】
【化5】
Figure 0003559770
【0030】
(δ−カプロラクトンから脂肪族ポリエステル;開環重合)
本発明では、δ−カプロラクトンの開環重合に際し、重合触媒としては、公知の開環重合触媒を用いることができる。例えば、二塩化スズ、四塩化スズ、テトラ−n−ブトキシゲルマニウム、テトラメトキシゲルマニウム、テトラエトキシゲルマニウム、トリエトキシアルミニウム、トリ−n−プロポキシアルミニウム、トリ−iso−プロポキシアルミニウム、トリ−n−ブトキシアルミニウム、トリ−iso−ブトキシアルミニウム、塩化アルミニウム、トリエチルアルミニウム、トリメチルアルミニウム、ジ−iso−プロピル亜鉛、ジメチル亜鉛、ジエチル亜鉛、塩化亜鉛、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−t−ブトキシチタン、テトラエトキシジルコニウム、テトラメトキシジルコニウム、テトラ−iso−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−iso−ブトキシジルコニウム、テトラ−t−ブトキシジルコニウム、La、Nd、Sm、Er、Tm、Yb、Lu等の有機希土類化合物等を用いることができる。
【0031】
重合触媒の使用量は、δ−カプロラクトンと重合開始剤の合計量に対し、0.01〜10質量%、好ましくは、0.05〜5質量%である。
【0032】
本発明では、δ−カプロラクトンの開環重合に際し、重合開始剤としては、公知の重合開始剤を用いることができる。例えば、メタノール、エタノール、1−プロパノール、2−プロパンール、各種ブタノール、フェノール等のモノオール、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、ジエチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,10−デカンジオール等のジオール、グリセリン、トリメチロールプロパン等のトリオール、ネオペンチルグリコール、ペンタエリスリトール等のポリオールを用いることができる。また、これらは、単独でも2種類以上を併用してもよい。
【0033】
本発明で使用する重合開始剤とδ−カプロラクトンとのモル比は、目的とする脂肪族ポリエステルの重合率に応じて適宜選択することができる。重合開始剤とδ−カプロラクトンとのモル比は、1:1〜1:5000モル比、好ましくは、1:1〜1:2000モル比である。
【0034】
δ−カプロラクトンの開環重合は、δ−カプロラクトンに重合触媒と重合開始剤を添加して不活性ガスの存在下、あるいは、減圧下で重合反応させる。好ましくは、簡便さから窒素雰囲気下の常圧で行うのがよい。
【0035】
δ−カプロラクトンの開環重合の反応温度及び時間は、任意に選択できる。反応温度は、好ましくは、50〜200℃、より好ましくは、100〜180℃の範囲である。50℃以上であれば、反応速度は十分速い。また、200℃以下であれば、酸化反応による脂肪族ポリエステルの着色や生成する脂肪族ポリエステルの分解反応等が抑制される。反応時間も任意に選択できるが、生成する脂肪族ポリエステルの品質に影響を与えない範囲で行うことができる。
【0036】
δ−カプロラクトンの開環重合は、溶媒中で行うことができる。溶媒は、δ−カプロラクトン、重合触媒、重合開始剤と反応しない不活性溶媒であり、好ましくは、トルエン、キシレン等の芳香族炭化水素、ヘキサン、シクロヘキサン等の脂肪族又は脂環式炭化水素を用いることができる。これらの溶媒は、実質的には、無水のものが望ましい。
【0037】
δ−カプロラクトンの開環重合によって得られる脂肪族ポリエステルの重量平均分子量は、ポリスチレン換算で1000〜1000000、好ましくは、30000〜500000である。
【0038】
この様にして得られる脂肪族ポリエステルは、これまで種々の分野で用いられているプラスチック材料を代替するプラスチック材料として用いることができる。そして重量平均分子量や含まれる官能基等を変化させることによって、産業上の多くの分野に適用することができる。例えば、グリコールを重合開始剤とした重量平均分子量1000〜5000の脂肪族ポリエステルは、水酸基を有することを活かして、例えば、ポリウレタンの原料や、塗料等の材料として非常に有用である。更に、重量平均分子量が50000を超える脂肪族ポリエステルは、実用的な機械的強度を持ち、プラスチック成形品、フィルム、ホットメルト接着剤等に用いることができる。
【0039】
【実施例】
以下、実施例により本発明を更に具体的に説明する。但し、本発明は、これらの実施例に限定されるものではない。また、特に明記しない限り、試薬等は市販の高純度品を使用した。
【0040】
(実施例1)
セルロース(日本製紙製、KCフロックW−100)500質量部を酵素溶液15050質量部に投入し、45℃で8時間攪拌した。酵素溶液は、セルラーゼ(明治製菓製、メイセラーゼTP60)50質量部を酢酸/酢酸ナトリウム水溶液(pH4.5)15000質量部に溶解したものを用いた。反応後、メタノール1000質量部を加え、水溶性残さを濾別し、更にイオン交換樹脂カラム(オルガノ社製、アンバライトIR−120B)を通過させ、溶媒留去した。そして、反応混合物を分離精製し、グルコース300質量部を得た。
【0041】
得られたグルコースを、FT−NMR DPX400(Bruker製)を用い、13C―NMR(100MHz、DMSO−d)を測定した。その結果、α型グルコースに由来するピークのδ値として92.12ppm、73.04ppm、72.29ppm、71.80ppm、70.58ppm、61.20ppmを確認した。また、β型グルコースに由来するピークのδ値として96.79ppm、76.70ppm、76.59ppm、74.78ppm、70.30ppm、61.00ppmを確認した。
【0042】
次に、12質量%の炭酸バリウム水溶液8000質量部に二酸化炭素を飽和した後、これに臭素330質量部と、上で得られたグルコース300質量部とを加え、25℃で30分間攪拌して、下記化学式(III)で表わされるグルコノラクトン250質量部を得た。
【0043】
【化6】
Figure 0003559770
【0044】
得られたグルコノラクトンの13C―NMR(100MHz、DMSO−d)を測定したところ、δ値として171.88ppm、81.23ppm、73.79ppm、71.43ppm、67.82ppm、60.14ppmを確認した。
【0045】
このグルコノラクトン250質量部と赤リン87質量部をヨウ化水素酸(55質量%)12000質量部に加え、20時間加熱還流を行った。そして、反応混合物を濾過し、濾液をエーテル抽出した後、5%亜硫酸水素ナトリウム水溶液で洗浄した。その後、エーテルを留去し、減圧蒸留してカプロン酸147質量部を得た。このカプロン酸の13C−NMR(100MHz、CDCl)を測定したところ、δ値として13.90ppm、22.42ppm、24.51ppm、31.36ppm、34.22ppm、180.79ppmを確認した。
【0046】
得られたカプロン酸147質量部と当量のN−クロロジイソプロピルアミンを84%硫酸1000質量部に加え、25℃、5時間反応させて、5−クロロカプロン酸177質量部を得た。その後、この5−クロロカプロン酸177質量部を当量の水酸化ナトリウム水溶液と煮沸して、δ−カプロラクトン129質量部を得た。得られたδ−カプロラクトンの13C−NMR(100MHz、CDCl)を測定したところ、δ値として19.90ppm、20.88ppm、34.27ppm、35.31ppm、70.44ppm、172.84ppmを確認した。
【0047】
このδ−カプロラクトン129質量部を窒素雰囲気下、155℃まで加熱し、これにトリ−iso−プロポキシアルミニウム0.39質量部、ジエチレングリコール0.77質量部を添加し、開環重合して脂肪族ポリエステルを得た。重合時間は10時間であり、得られた脂肪族ポリエステルの重量平均分子量は29万であった。
【0048】
得られた脂肪族ポリエステルの13C―NMR(100MHz、CDCl)を測定したところ、δ値として19.95ppm、20.82ppm、34.46ppm、35.26ppm、70.31ppm、173.37ppmを観測し、目的の脂肪族ポリエステルが合成されたことを確認した。
【0049】
(実施例2)
実施例1と同様にして得たグルコース300質量部を臭素で飽和させた13.5モル/lの硫酸2500質量部中で酸化、加水分解して下記化学式(IV)で表わされるグルコン酸290質量部を得た。
【0050】
【化7】
Figure 0003559770
【0051】
次に、得られたグルコン酸290質量部と赤リン100質量部をヨウ化水素酸(55質量%)14000質量部に加え、20時間加熱還流を行た。その後、実施例1と同様の処理を行い、カプロン酸155質量部を得た。
【0052】
その後、84%硫酸1000質量部にカプロン酸155質量部と当量のN−クロロジイソプロピルアミンを加え、25℃、5時間反応させて、5−クロロカプロン酸187質量部を得た。この5−クロロカプロン酸187質量部を当量の水酸化ナトリウム水溶液と煮沸して、δ−カプロラクトン136質量部を得た。
【0053】
得られたδ−カプロラクトン136質量部を窒素雰囲気下、160℃まで加熱し、これに、ジ−iso−プロピル亜鉛0.41質量部、1,4−ブタンジオール0.82質量部を添加し、開環重合して脂肪族ポリエステルを得た。重合時間は10時間であり、得られた脂肪族ポリエステルの重量平均分子量は22万であった。また、13C―NMRを測定したところ、実施例1と同様のスペクトルが得られ、目的の脂肪族ポリエステルが合成されたことを確認した。
【0054】
(実施例3)
PPC用再生紙(キヤノン販売会社、EN−500、A4)の使用済みのもの(片面に複写機でコピー)を5mm角に裁断し、この500質量部を酵素溶液15050質量部に投入し、45℃で10時間攪拌した。酵素溶液は、セルラーゼ(明治製菓製、メイセラーゼTP60)50質量部を酢酸/酢酸ナトリウム水溶液(pH4.5)15000質量部に溶解したものを用いた。反応後、メタノール1000質量部を加え、水溶性残さを濾別し、更にイオン交換樹脂カラム(オルガノ社製、アンバライトIR−120B)を通過させ、溶媒留去した。そして、反応混合物を分離精製し、グルコース280質量部を得た。
【0055】
次に、12質量%炭酸バリウム水溶液7500質量部に二酸化炭素を飽和した後、上で得られたグルコース280質量部と、臭素300質量部とを加え、25℃で30分間攪拌して、グルコノラクトン230質量部を得た。
【0056】
得られたグルコノラクトン230質量部を赤リン80質量部とヨウ化水素酸(55質量%)11000質量部に加え、実施例1と同様の後処理を行い、カプロン酸135質量部を得た。
【0057】
このカプロン酸135質量部と84%硫酸1000質量部に当量のN−クロロジイソプロピルアミンを加え、25℃、5時間反応させて、5−クロロカプロン酸163質量部を得た。
【0058】
次に、得られた5−クロロカプロン酸163質量部を当量の水酸化ナトリウム水溶液と煮沸して、δ−カプロラクトン118質量部を得た。
【0059】
その後、得られたδ−カプロラクトン118質量部を窒素雰囲気下、150℃まで加熱し、これにテトラ−n−ブトキシチタン0.36質量部、1,8−オクタンジオール0.71質量部を添加し、開環重合して脂肪族ポリエステルを得た。重合時間は10時間であり、得られた脂肪族ポリエステルの重量平均分子量は26万であった。また、13C―NMRを測定したところ、実施例1と同様のスペクトルが得られ、目的の脂肪族ポリエステルが合成されたことを確認した。
【0060】
(実施例4)
実施例3と同様にして得たグルコース280質量部を臭素で飽和させた13.5モル/lの硫酸2300質量部中で酸化、加水分解してグルコン酸270質量部を得た。
【0061】
このグルコン酸270質量部を赤リン95質量部とヨウ化水素酸(55質量%)13000質量部に加え、20時間加熱還流を行った。その後、実施例1と同様の後処理を行い、カプロン酸144質量部を得た。
【0062】
得られたカプロン酸144質量部と84質量%硫酸1000質量部に当量のN−クロロジイソプロピルアミンを加え、25℃、5時間反応させて、5−クロロカプロン酸173質量部を得た。
【0063】
この5−クロロカプロン酸173質量部を当量の水酸化ナトリウム水溶液と煮沸して、δ−カプロラクトン126質量部を得た。
【0064】
その後、得られたδ−カプロラクトン126質量部を窒素雰囲気下、155℃まで加熱し、これにテトラ−t−ブトキシジルコニウム0.37質量部、メタノール0.74質量部を添加し、開環重合して脂肪族ポリエステルを得た。重合時間は9時間であり、得られた脂肪族ポリエステルの重量平均分子量は18万であった。また、13C―NMRを測定したところ、実施例1と同様のスペクトルが得られ、目的の脂肪族ポリエステルが合成されたことを確認した。
【0065】
(物性評価)
実施例1〜4で合成した脂肪族ポリエステルを用い、表1に示す物性評価を行った。また、比較例1として、セルグリーン(ダイセル化学工業社製、ポリカプロラクトン系プラスチック、P−H7)の物性も評価した。
【0066】
【表1】
Figure 0003559770
【0067】
以上の結果から、実施例1〜4で合成した各々の脂肪族ポリエステルは、比較例1に用いた、強度および伸度に優れたダイセル化学製の脂肪族ポリエステル(P−H7)と同等もしくはそれ以上の物性を有しており、従来のプラスチック成形品の代替品として十分に利用が可能であることが分かった。
【0068】
【発明の効果】
以上説明したように、本発明は、セルロースからグルコースを経て得られるδ−カプロラクトンを開環重合する事によって脂肪族ポリエステルを製造することができ、その機械的強度等の物性も充分であり、プラスチック成形品として利用が可能である。更に、このことは、セルロースを出発原料として高品質なプラスチックを得るという、セルロースの効率的な資源化の確立に道を開くものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an aliphatic polyester and a method for recycling cellulose.
[0002]
[Prior art]
Cellulose is produced in an amount of 10 9 to 10 11 tons per year, and is used in a large amount in a wide range of applications such as structural materials, fillers, food additives, and adhesives. Accordingly, the amount of waste cellulose has been increasing year by year.
[0003]
Techniques for decomposing and reusing waste cellulose include, for example, a method of extracting hydrocarbons such as methane and ethane from cellulose (JP-A-5-213778), and a method of producing alcohol from cellulose using microorganisms (JP-A-11-1999). 299479) and the like are known.
[0004]
[Problems to be solved by the invention]
However, in order to cope with a further increase in the amount of waste cellulose in the future, it is necessary to develop a new technology capable of recycling cellulose more efficiently. Therefore, the present inventors have studied production of an aliphatic polyester using waste cellulose as a starting material.
[0005]
By the way, one of useful methods for producing an aliphatic polyester is a method in which a caprolactone is used as a monomer and is subjected to ring-opening polymerization.
[0006]
As an example of caprolactones, δ-caprolactone readily undergoes ring opening polymerization to give aliphatic polyesters. Such aliphatic polyesters can be used in many industrial fields as plastic molded articles, films, hot melt adhesives and the like.
[0007]
Caprolactones are obtained by cyclizing caproic acids. Therefore, when producing an aliphatic polyester using waste cellulose as a starting material, it is necessary to efficiently guide waste cellulose to caproic acids.
[0008]
However, it is not well known that caproic acids are efficiently derived from waste cellulose with such a high purity as to be usable as a monomer of an aliphatic polyester.
[0009]
In view of the above situation, an object of the present invention is to produce an aliphatic polyester using caproic acid obtained from cellulose via glucose, that is, to obtain a high-quality plastic using cellulose as a starting material. That is. According to the present invention, it is possible to produce an aliphatic polyester obtained using cellulose as a raw material, and it is possible to recycle cellulose.
[0010]
[Means for Solving the Problems]
According to the present invention for achieving the above object, there is provided a method for producing an aliphatic polyester represented by the following formula (I),
[0011]
Embedded image
Figure 0003559770
[0012]
(In the formula, n represents an integer of 10 to 6000.)
Hydrolyzing cellulose to obtain glucose,
Oxidizing the glucose to obtain gluconolactone;
Reducing the gluconolactone to obtain caproic acid;
Chlorinating the caproic acid to obtain 5-chlorocaproic acid;
Cyclizing the 5-chlorocaproic acid to obtain δ-caprolactone;
A step of subjecting the δ-caprolactone to ring-opening polymerization,
And a process for producing an aliphatic polyester.
[0013]
A method for producing an aliphatic polyester represented by the following formula (I),
[0014]
Embedded image
Figure 0003559770
[0015]
(In the formula, n represents an integer of 10 to 6000.)
Hydrolyzing cellulose to obtain glucose,
Oxidizing the glucose to obtain gluconic acid;
Reducing the gluconic acid to obtain caproic acid;
Chlorinating the caproic acid to obtain 5-chlorocaproic acid;
Cyclizing the 5-chlorocaproic acid to obtain δ-caprolactone;
A step of subjecting the δ-caprolactone to ring-opening polymerization,
The production method of the aliphatic polyester characterized by having is provided.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, gluconolactone is efficiently derived into caproic acid with such a high purity that it can be used as a monomer of the aliphatic polyester. In addition, gluconic acid is efficiently derived to caproic acid with such a high purity that it can be used as a monomer of the aliphatic polyester. As a result, it is possible to produce an aliphatic polyester using caproic acid obtained from cellulose via glucose, that is, to obtain a high-quality plastic using cellulose as a starting material. Therefore, it is possible to produce an aliphatic polyester obtained from waste cellulose as a raw material, and it is possible to recycle cellulose.
[0017]
In addition, when obtaining glucose from cellulose, as the cellulose as a raw material, it is needless to say that commercially available cellulose can be used, and waste cellulose obtained by appropriately treating wood such as waste paper and waste material is also used. Can be. Therefore, according to the present invention, a new route to the recycling of waste cellulose and the like can be opened.
[0018]
Hereinafter, each step will be described.
[0019]
(From cellulose to glucose)
Conversion of cellulose to glucose includes, for example, a decomposition method using an enzyme such as cellulase, a decomposition method using an acid such as sulfuric acid or hydrochloric acid, or a decomposition method using supercritical water.
[0020]
(From glucose to gluconolactone or gluconic acid)
Conversion of glucose to gluconolactone includes a method of bromine oxidation of glucose and a method of using notatin, which is a glucose oxidase.
[0021]
The conversion of glucose to gluconic acid is achieved by oxidizing and hydrolyzing glucose in sulfuric acid saturated with bromine, by a method of electrolytic oxidation of a glucose solution, or by gluconic acid fermentation using bacteria of the genus Penicillium. Method and the like.
[0022]
(Gluconolactone or gluconic acid to caproic acid)
The step of converting gluconolactone or gluconic acid to caproic acid is important in the present invention, and it is preferable to perform this step by reduction with hydroiodic acid and red phosphorus from the viewpoint of yield and selectivity. At this time, substantially only the hydroxyl group of gluconolactone or gluconic acid is reduced.
[0023]
The reaction conditions in this step are carefully selected in consideration of the yield and purity of the obtained caproic acid.
[0024]
Specifically, the amount of red phosphorus used for the reduction is preferably 1.5 mol times or more, more preferably 1.7 mol times or more with respect to gluconolactone or gluconic acid, from the viewpoint of ensuring a sufficient yield. It is more preferably 1.8 mole times or more. On the other hand, from the viewpoint of suppressing by-products, the molar ratio is preferably 3.0 mol times or less, more preferably 2.7 mol times or less, and even more preferably 2.4 mol times or less.
[0025]
From the viewpoint of securing a sufficient yield, the hydroiodic acid used for the reduction is preferably one having a concentration of 50% by mass or more and 60% by mass or less, preferably 30% by mass or more of gluconolactone or gluconic acid, More preferably, it is 35 times by mass or more, and further preferably, 40 times by mass or more. On the other hand, from the viewpoint of suppressing by-products, the amount is preferably 70 times by mass or less, more preferably 65 times by mass or less, and even more preferably 60 times by mass or less.
[0026]
A mixture containing gluconolactone or gluconic acid, red phosphorus, and hydroiodic acid is heated to reflux and maintained at reflux until the reduction reaction is completed. The reflux time is preferably at least 10 hours, more preferably at least 13 hours, even more preferably at least 15 hours, from the viewpoint of ensuring a sufficient yield. On the other hand, from the viewpoint of suppressing by-products, the time is preferably 30 hours or less, preferably 27 hours or less, and more preferably 25 hours or less.
[0027]
(From caproic acid to 5-chlorocaproic acid)
Conversion of caproic acid to 5-chlorocaproic acid includes a method of reacting caproic acid with N-chlorodiisopropylamine in concentrated sulfuric acid to chlorinate. For this reaction, see N.M. C. Deno et al. Am. Chem. Soc. Journal, No. 93, pp. 438-440, published in 1971.
[0028]
(From 5-chlorocaproic acid to δ-caprolactone)
Conversion of 5-chlorocaproic acid to δ-caprolactone represented by the following formula (II) includes a method of boiling 5-chlorocaproic acid in an aqueous sodium hydroxide solution.
[0029]
Embedded image
Figure 0003559770
[0030]
(From δ-caprolactone to aliphatic polyester; ring-opening polymerization)
In the present invention, a known ring-opening polymerization catalyst can be used as a polymerization catalyst in the ring-opening polymerization of δ-caprolactone. For example, tin dichloride, tin tetrachloride, tetra-n-butoxygermanium, tetramethoxygermanium, tetraethoxygermanium, triethoxyaluminum, tri-n-propoxyaluminum, tri-iso-propoxyaluminum, tri-n-butoxyaluminum, Tri-iso-butoxy aluminum, aluminum chloride, triethyl aluminum, trimethyl aluminum, di-iso-propyl zinc, dimethyl zinc, diethyl zinc, zinc chloride, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetra-t- Butoxy titanium, tetraethoxy zirconium, tetramethoxy zirconium, tetra-iso-propoxy zirconium, tetra-n-butoxy zirconium, tetra-iso-butoxy zirconium Beam can be used tetra -t- butoxy zirconium, La, Nd, Sm, Er, Tm, Yb, the organic rare earth compounds such Lu like.
[0031]
The amount of the polymerization catalyst used is 0.01 to 10% by mass, and preferably 0.05 to 5% by mass, based on the total amount of δ-caprolactone and the polymerization initiator.
[0032]
In the present invention, in the ring-opening polymerization of δ-caprolactone, a known polymerization initiator can be used as the polymerization initiator. For example, methanol, ethanol, 1-propanol, 2-propaneol, various butanols, monools such as phenol, ethylene glycol, 1,3-propanediol, 1,4-butanediol, diethylene glycol, 1,5-pentanediol, Diols such as 2,6-hexanediol, 1,7-heptanediol, 1,8-octanediol and 1,10-decanediol, triols such as glycerin and trimethylolpropane, and polyols such as neopentyl glycol and pentaerythritol. be able to. These may be used alone or in combination of two or more.
[0033]
The molar ratio between the polymerization initiator and δ-caprolactone used in the present invention can be appropriately selected according to the desired degree of polymerization of the aliphatic polyester. The molar ratio of the polymerization initiator to δ-caprolactone is from 1: 1 to 1: 5000, preferably from 1: 1 to 1: 2000.
[0034]
In the ring-opening polymerization of δ-caprolactone, a polymerization catalyst and a polymerization initiator are added to δ-caprolactone to carry out a polymerization reaction in the presence of an inert gas or under reduced pressure. Preferably, it is carried out at normal pressure under a nitrogen atmosphere for simplicity.
[0035]
The reaction temperature and time of the ring-opening polymerization of δ-caprolactone can be arbitrarily selected. The reaction temperature is preferably in the range of 50 to 200C, more preferably 100 to 180C. If it is 50 ° C. or higher, the reaction rate is sufficiently fast. When the temperature is 200 ° C. or lower, coloring of the aliphatic polyester due to the oxidation reaction, decomposition reaction of the aliphatic polyester to be formed, and the like are suppressed. Although the reaction time can be arbitrarily selected, the reaction can be performed within a range that does not affect the quality of the aliphatic polyester to be produced.
[0036]
The ring-opening polymerization of δ-caprolactone can be performed in a solvent. The solvent is an inert solvent that does not react with δ-caprolactone, a polymerization catalyst, and a polymerization initiator, preferably, an aromatic hydrocarbon such as toluene and xylene, hexane, an aliphatic or alicyclic hydrocarbon such as cyclohexane is used. be able to. Desirably, these solvents are substantially anhydrous.
[0037]
The weight average molecular weight of the aliphatic polyester obtained by ring-opening polymerization of δ-caprolactone is 1000 to 1,000,000, preferably 30,000 to 500,000 in terms of polystyrene.
[0038]
The aliphatic polyester thus obtained can be used as a plastic material that replaces plastic materials used in various fields. By changing the weight average molecular weight, the contained functional groups, and the like, the present invention can be applied to many industrial fields. For example, an aliphatic polyester having a weight-average molecular weight of 1,000 to 5,000 using glycol as a polymerization initiator is very useful as a raw material of polyurethane or a material of a paint, for example, by utilizing the fact that it has a hydroxyl group. Further, an aliphatic polyester having a weight average molecular weight of more than 50,000 has practical mechanical strength and can be used for plastic molded articles, films, hot melt adhesives and the like.
[0039]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. Unless otherwise specified, commercially available high-purity reagents were used.
[0040]
(Example 1)
500 parts by mass of cellulose (manufactured by Nippon Paper, KC Floc W-100) was added to 15050 parts by mass of the enzyme solution, and the mixture was stirred at 45 ° C. for 8 hours. The enzyme solution used was prepared by dissolving 50 parts by mass of cellulase (manufactured by Meiji Seika, Meiselase TP60) in 15000 parts by mass of an aqueous acetic acid / sodium acetate solution (pH 4.5). After the reaction, 1000 parts by mass of methanol was added, the water-soluble residue was separated by filtration, and further passed through an ion-exchange resin column (Amberite IR-120B, manufactured by Organo Corporation) to distill off the solvent. Then, the reaction mixture was separated and purified to obtain 300 parts by mass of glucose.
[0041]
13 C-NMR (100 MHz, DMSO-d 6 ) of the obtained glucose was measured using FT-NMR DPX400 (manufactured by Bruker). As a result, 92.12 ppm, 73.04 ppm, 72.29 ppm, 71.80 ppm, 70.58 ppm, and 61.20 ppm were confirmed as the δ value of the peak derived from α-type glucose. In addition, 96.79 ppm, 76.70 ppm, 76.59 ppm, 74.78 ppm, 70.30 ppm, and 61.00 ppm were confirmed as δ values of the peak derived from β-type glucose.
[0042]
Next, after saturating carbon dioxide to 8000 parts by mass of a 12% by mass aqueous barium carbonate solution, 330 parts by mass of bromine and 300 parts by mass of glucose obtained above were added thereto, followed by stirring at 25 ° C. for 30 minutes. Thus, 250 parts by mass of gluconolactone represented by the following chemical formula (III) was obtained.
[0043]
Embedded image
Figure 0003559770
[0044]
When 13 C-NMR (100 MHz, DMSO-d 6 ) of the obtained gluconolactone was measured, the δ value was 171.88 ppm, 81.23 ppm, 73.79 ppm, 71.43 ppm, 67.82 ppm, 60.14 ppm. It was confirmed.
[0045]
250 parts by mass of this gluconolactone and 87 parts by mass of red phosphorus were added to 12,000 parts by mass of hydroiodic acid (55% by mass), and the mixture was heated under reflux for 20 hours. Then, the reaction mixture was filtered, and the filtrate was extracted with ether, and then washed with a 5% aqueous sodium bisulfite solution. Thereafter, ether was distilled off, and the residue was distilled under reduced pressure to obtain 147 parts by mass of caproic acid. When 13 C-NMR (100 MHz, CDCl 3 ) of this caproic acid was measured, it was confirmed that the δ value was 13.90 ppm, 22.42 ppm, 24.51 ppm, 31.36 ppm, 34.22 ppm, 180.79 ppm.
[0046]
N-chlorodiisopropylamine equivalent to 147 parts by mass of the obtained caproic acid was added to 1000 parts by mass of 84% sulfuric acid, and reacted at 25 ° C. for 5 hours to obtain 177 parts by mass of 5-chlorocaproic acid. Thereafter, 177 parts by mass of 5-chlorocaproic acid was boiled with an equivalent amount of an aqueous sodium hydroxide solution to obtain 129 parts by mass of δ-caprolactone. When 13 C-NMR (100 MHz, CDCl 3 ) of the obtained δ-caprolactone was measured, 19.90 ppm, 20.88 ppm, 34.27 ppm, 35.31 ppm, 70.44 ppm and 172.84 ppm were confirmed as δ values. did.
[0047]
129 parts by mass of this δ-caprolactone was heated to 155 ° C. under a nitrogen atmosphere, and 0.39 parts by mass of tri-iso-propoxyaluminum and 0.77 parts by mass of diethylene glycol were added thereto, followed by ring-opening polymerization to obtain an aliphatic polyester. Got. The polymerization time was 10 hours, and the weight average molecular weight of the obtained aliphatic polyester was 290,000.
[0048]
When 13 C-NMR (100 MHz, CDCl 3 ) of the obtained aliphatic polyester was measured, 19.95 ppm, 20.82 ppm, 34.46 ppm, 35.26 ppm, 70.31 ppm, and 173.37 ppm were observed as δ values. Then, it was confirmed that the desired aliphatic polyester was synthesized.
[0049]
(Example 2)
300 parts by mass of glucose obtained in the same manner as in Example 1 were oxidized and hydrolyzed in 2500 parts by mass of 13.5 mol / l sulfuric acid saturated with bromine, and 290 parts by mass of gluconic acid represented by the following chemical formula (IV) Got a part.
[0050]
Embedded image
Figure 0003559770
[0051]
Next, 290 parts by mass of the obtained gluconic acid and 100 parts by mass of red phosphorus were added to 14000 parts by mass of hydroiodic acid (55% by mass), and the mixture was heated under reflux for 20 hours. Thereafter, the same treatment as in Example 1 was performed to obtain 155 parts by mass of caproic acid.
[0052]
Thereafter, 155 parts by mass of caproic acid and an equivalent amount of N-chlorodiisopropylamine were added to 1000 parts by mass of 84% sulfuric acid, and reacted at 25 ° C. for 5 hours to obtain 187 parts by mass of 5-chlorocaproic acid. 187 parts by mass of this 5-chlorocaproic acid was boiled with an equivalent aqueous sodium hydroxide solution to obtain 136 parts by mass of δ-caprolactone.
[0053]
136 parts by mass of the obtained δ-caprolactone was heated to 160 ° C. under a nitrogen atmosphere, and 0.41 part by mass of di-iso-propyl zinc and 0.82 parts by mass of 1,4-butanediol were added thereto. Ring opening polymerization was performed to obtain an aliphatic polyester. The polymerization time was 10 hours, and the weight average molecular weight of the obtained aliphatic polyester was 220,000. Also, when 13 C-NMR was measured, the same spectrum as in Example 1 was obtained, and it was confirmed that the desired aliphatic polyester was synthesized.
[0054]
(Example 3)
Used PPC recycled paper (Canon sales company, EN-500, A4) (copied on one side with a copier) is cut into 5 mm squares, and 500 parts by mass of this is put into 15050 parts by mass of the enzyme solution, and Stirred at C for 10 hours. The enzyme solution used was prepared by dissolving 50 parts by mass of cellulase (manufactured by Meiji Seika, Meiselase TP60) in 15000 parts by mass of an aqueous acetic acid / sodium acetate solution (pH 4.5). After the reaction, 1000 parts by mass of methanol was added, the water-soluble residue was separated by filtration, and further passed through an ion-exchange resin column (Amberite IR-120B, manufactured by Organo Corporation) to distill off the solvent. Then, the reaction mixture was separated and purified to obtain 280 parts by mass of glucose.
[0055]
Next, after saturating carbon dioxide to 7500 parts by mass of a 12% by mass aqueous barium carbonate solution, 280 parts by mass of glucose obtained above and 300 parts by mass of bromine were added, and the mixture was stirred for 30 minutes at 25 ° C. 230 parts by weight of lactone were obtained.
[0056]
230 parts by mass of the obtained gluconolactone were added to 80 parts by mass of red phosphorus and 11,000 parts by mass of hydroiodic acid (55% by mass), and the same post-treatment as in Example 1 was performed to obtain 135 parts by mass of caproic acid. .
[0057]
To 135 parts by mass of this caproic acid and 1000 parts by mass of 84% sulfuric acid, an equivalent amount of N-chlorodiisopropylamine was added and reacted at 25 ° C. for 5 hours to obtain 163 parts by mass of 5-chlorocaproic acid.
[0058]
Next, 163 parts by mass of the obtained 5-chlorocaproic acid was boiled with an equivalent amount of an aqueous sodium hydroxide solution to obtain 118 parts by mass of δ-caprolactone.
[0059]
Thereafter, 118 parts by mass of the obtained δ-caprolactone was heated to 150 ° C. under a nitrogen atmosphere, and 0.36 parts by mass of tetra-n-butoxytitanium and 0.71 parts by mass of 1,8-octanediol were added thereto. , Ring-opening polymerization to obtain an aliphatic polyester. The polymerization time was 10 hours, and the weight average molecular weight of the obtained aliphatic polyester was 260,000. Also, when 13 C-NMR was measured, the same spectrum as in Example 1 was obtained, and it was confirmed that the desired aliphatic polyester was synthesized.
[0060]
(Example 4)
280 parts by weight of gluconic acid was obtained by oxidizing and hydrolyzing 280 parts by weight of glucose obtained in the same manner as in Example 3 in 2300 parts by weight of 13.5 mol / l sulfuric acid saturated with bromine.
[0061]
270 parts by mass of this gluconic acid were added to 95 parts by mass of red phosphorus and 13000 parts by mass of hydroiodic acid (55% by mass), and the mixture was heated under reflux for 20 hours. Thereafter, the same post-treatment as in Example 1 was performed to obtain 144 parts by mass of caproic acid.
[0062]
An equivalent amount of N-chlorodiisopropylamine was added to 144 parts by mass of the obtained caproic acid and 1000 parts by mass of 84% by mass sulfuric acid, and reacted at 25 ° C. for 5 hours to obtain 173 parts by mass of 5-chlorocaproic acid.
[0063]
173 parts by mass of 5-chlorocaproic acid was boiled with an equivalent aqueous sodium hydroxide solution to obtain 126 parts by mass of δ-caprolactone.
[0064]
After that, 126 parts by mass of the obtained δ-caprolactone was heated to 155 ° C. in a nitrogen atmosphere, and 0.37 parts by mass of tetra-t-butoxyzirconium and 0.74 parts by mass of methanol were added thereto to carry out ring-opening polymerization. To obtain an aliphatic polyester. The polymerization time was 9 hours, and the weight average molecular weight of the obtained aliphatic polyester was 180,000. Also, when 13 C-NMR was measured, the same spectrum as in Example 1 was obtained, and it was confirmed that the desired aliphatic polyester was synthesized.
[0065]
(Evaluation of the physical properties)
Using the aliphatic polyesters synthesized in Examples 1 to 4, the physical properties shown in Table 1 were evaluated. In addition, as Comparative Example 1, physical properties of Cell Green (manufactured by Daicel Chemical Industries, Ltd., polycaprolactone plastic, P-H7) were also evaluated.
[0066]
[Table 1]
Figure 0003559770
[0067]
From the above results, each of the aliphatic polyesters synthesized in Examples 1 to 4 was equal to or higher than the aliphatic polyester (P-H7) manufactured by Daicel Chemical and used for Comparative Example 1 and having excellent strength and elongation. It has the above physical properties, and it has been found that it can be sufficiently used as a substitute for a conventional plastic molded product.
[0068]
【The invention's effect】
As described above, the present invention can produce an aliphatic polyester by ring-opening polymerization of δ-caprolactone obtained from cellulose via glucose, and has sufficient physical properties such as mechanical strength and plasticity. It can be used as a molded product. Furthermore, this opens the way to the establishment of an efficient resource recycling of cellulose by obtaining high-quality plastics using cellulose as a starting material.

Claims (16)

下記式(I)で示される脂肪族ポリエステルの製造方法であって、
Figure 0003559770
(式中、nは10〜6000の整数を示す。)
セルロースを加水分解してグルコースを得る工程と、
該グルコースを酸化してグルコノラクトンを得る工程と、
該グルコノラクトンを還元してカプロン酸を得る工程と、
該カプロン酸を塩素化して5−クロロカプロン酸を得る工程と、
該5−クロロカプロン酸を環化してδ−カプロラクトンを得る工程と、
該δ−カプロラクトンを開環重合せしめる工程と、
を含むことを特徴とする脂肪族ポリエステルの製造方法。
A method for producing an aliphatic polyester represented by the following formula (I),
Figure 0003559770
(In the formula, n represents an integer of 10 to 6000.)
Hydrolyzing cellulose to obtain glucose,
Oxidizing the glucose to obtain gluconolactone;
Reducing the gluconolactone to obtain caproic acid;
Chlorinating the caproic acid to obtain 5-chlorocaproic acid;
Cyclizing the 5-chlorocaproic acid to obtain δ-caprolactone;
A step of subjecting the δ-caprolactone to ring-opening polymerization,
A method for producing an aliphatic polyester, comprising:
セルロースからグルコースを得る工程が、酵素による加水分解であることを特徴とする請求項1記載の脂肪族ポリエステルの製造方法。The method for producing an aliphatic polyester according to claim 1, wherein the step of obtaining glucose from cellulose is enzymatic hydrolysis. グルコースからグルコノラクトンを得る工程が、臭素酸化であることを特徴とする請求項1又は2記載の脂肪族ポリエステルの製造方法。3. The method for producing an aliphatic polyester according to claim 1, wherein the step of obtaining gluconolactone from glucose is bromine oxidation. グルコノラクトンからカプロン酸を得る工程が、少なくともヨウ化水素酸および赤リンを用いた還元反応であることを特徴とする請求項1乃至3何れかに記載の脂肪族ポリエステルの製造方法。The method for producing an aliphatic polyester according to any one of claims 1 to 3, wherein the step of obtaining caproic acid from gluconolactone is a reduction reaction using at least hydroiodic acid and red phosphorus. カプロン酸から5−クロロカプロン酸を得る工程が、少なくともN−クロロジイソプロピルアミン及び濃硫酸を用いた塩素化反応であることを特徴とする請求項1乃至4何れかに記載の脂肪族ポリエステルの製造方法。5. The process for producing an aliphatic polyester according to claim 1, wherein the step of obtaining 5-chlorocaproic acid from caproic acid is a chlorination reaction using at least N-chlorodiisopropylamine and concentrated sulfuric acid. Method. 5−クロロカプロン酸からδ−カプロラクトンを得る工程が、少なくとも水酸化ナトリウム水溶液を用いた環化反応であることを特徴とする請求項1乃至5何れかに記載の脂肪族ポリエステルの製造方法。The method for producing an aliphatic polyester according to any one of claims 1 to 5, wherein the step of obtaining δ-caprolactone from 5-chlorocaproic acid is a cyclization reaction using at least an aqueous sodium hydroxide solution. δ−カプロラクトンから脂肪族ポリエステルを得る工程が、少なくとも重合触媒および重合開始剤を用いた開環重合であることを特徴とする請求項1乃至6何れかに記載の脂肪族ポリエステルの製造方法。The method for producing an aliphatic polyester according to any one of claims 1 to 6, wherein the step of obtaining the aliphatic polyester from δ-caprolactone is ring-opening polymerization using at least a polymerization catalyst and a polymerization initiator. 請求項1乃至7何れかに記載の方法によるセルロースの再資源化方法。A method for recycling cellulose by the method according to claim 1. 下記式(I)で示される脂肪族ポリエステルの製造方法であって、
Figure 0003559770
(式中、nは10〜6000の整数を示す。)
セルロースを加水分解してグルコースを得る工程と、
該グルコースを酸化してグルコン酸を得る工程と、
該グルコン酸を還元してカプロン酸を得る工程と、
該カプロン酸を塩素化して5−クロロカプロン酸を得る工程と、
該5−クロロカプロン酸を環化してδ−カプロラクトンを得る工程と、
該δ−カプロラクトンを開環重合せしめる工程と、
を有することを特徴とする脂肪族ポリエステルの製造方法。
A method for producing an aliphatic polyester represented by the following formula (I),
Figure 0003559770
(In the formula, n represents an integer of 10 to 6000.)
Hydrolyzing cellulose to obtain glucose,
Oxidizing the glucose to obtain gluconic acid;
Reducing the gluconic acid to obtain caproic acid;
Chlorinating the caproic acid to obtain 5-chlorocaproic acid;
Cyclizing the 5-chlorocaproic acid to obtain δ-caprolactone;
A step of subjecting the δ-caprolactone to ring-opening polymerization,
A method for producing an aliphatic polyester, comprising:
セルロースからグルコースを得る工程が、酵素による加水分解であることを特徴とする請求項9記載の脂肪族ポリエステルの製造方法。The method for producing an aliphatic polyester according to claim 9, wherein the step of obtaining glucose from cellulose is enzymatic hydrolysis. グルコースからグルコン酸を得る工程が、少なくとも臭素および濃硫酸を用いた酸化反応であることを特徴とする請求項9又は10記載の脂肪族ポリエステルの製造方法。The method for producing an aliphatic polyester according to claim 9 or 10, wherein the step of obtaining gluconic acid from glucose is an oxidation reaction using at least bromine and concentrated sulfuric acid. グルコン酸からカプロン酸を得る工程が、少なくともヨウ化水素酸および赤リンを用いた還元反応であることを特徴とする請求項9乃至11何れかに記載の脂肪族ポリエステルの製造方法。The method for producing an aliphatic polyester according to any one of claims 9 to 11, wherein the step of obtaining caproic acid from gluconic acid is a reduction reaction using at least hydroiodic acid and red phosphorus. カプロン酸から5−クロロカプロン酸を得る工程が、少なくともN−クロロジイソプロピルアミン及び濃硫酸を用いた塩素化反応であることを特徴とする請求項9乃至12何れかに記載の脂肪族ポリエステルの製造方法。13. The method for producing an aliphatic polyester according to claim 9, wherein the step of obtaining 5-chlorocaproic acid from caproic acid is a chlorination reaction using at least N-chlorodiisopropylamine and concentrated sulfuric acid. Method. 5−クロロカプロン酸からδ−カプロラクトンを得る工程が、少なくとも水酸化ナトリウム水溶液を用いた環化反応であることを特徴とする請求項9乃至13何れかに記載の脂肪族ポリエステルの製造方法。The method for producing an aliphatic polyester according to any one of claims 9 to 13, wherein the step of obtaining δ-caprolactone from 5-chlorocaproic acid is a cyclization reaction using at least an aqueous sodium hydroxide solution. δ−カプロラクトンから脂肪族ポリエステルを得る工程が、少なくとも重合触媒および重合開始剤を用いた開環重合であることを特徴とする請求項9乃至14何れかに記載の脂肪族ポリエステルの製造方法。The method for producing an aliphatic polyester according to any one of claims 9 to 14, wherein the step of obtaining the aliphatic polyester from δ-caprolactone is ring-opening polymerization using at least a polymerization catalyst and a polymerization initiator. 請求項9乃至15何れかに記載の方法によるセルロースの再資源化方法。A method for recycling cellulose according to any one of claims 9 to 15.
JP2001122695A 2000-12-01 2001-04-20 Method for producing aliphatic polyester and method for recycling cellulose Expired - Fee Related JP3559770B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001122695A JP3559770B2 (en) 2001-04-20 2001-04-20 Method for producing aliphatic polyester and method for recycling cellulose
US09/990,543 US20020111458A1 (en) 2000-12-01 2001-11-23 Method for producing aliphatic polyester
EP01128072A EP1211274A1 (en) 2000-12-01 2001-11-26 Method for producing aliphatic polyester
US10/231,301 US6559275B2 (en) 2000-12-01 2002-08-30 Method for producing aliphatic polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001122695A JP3559770B2 (en) 2001-04-20 2001-04-20 Method for producing aliphatic polyester and method for recycling cellulose

Publications (2)

Publication Number Publication Date
JP2002317040A JP2002317040A (en) 2002-10-31
JP3559770B2 true JP3559770B2 (en) 2004-09-02

Family

ID=18972367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001122695A Expired - Fee Related JP3559770B2 (en) 2000-12-01 2001-04-20 Method for producing aliphatic polyester and method for recycling cellulose

Country Status (1)

Country Link
JP (1) JP3559770B2 (en)

Also Published As

Publication number Publication date
JP2002317040A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
CN113582965B (en) Method for preparing lactide based on catalytic cracking of organic guanidine complex
CN104797627B (en) Aliphatic Polycarbonate Copolymers with HMW and preparation method thereof
JP3450810B2 (en) Aliphatic polyester, method for producing aliphatic polyester and method for recycling cellulose
EP1147142B1 (en) Purification of recycled 1,3-propanediol during polyester preparation
US20130331542A1 (en) Process for preparing hyperbranched polyesters
JP4399108B2 (en) Process for producing partially crystalline polyether polyol
US20020111458A1 (en) Method for producing aliphatic polyester
US6559275B2 (en) Method for producing aliphatic polyester
US9045783B2 (en) Process for the production of optically-active esters of lactic acid and lactyllactic acid
JP3559770B2 (en) Method for producing aliphatic polyester and method for recycling cellulose
JP4405662B2 (en) Method for producing aliphatic polyester and method for recycling cellulose
JP3559769B2 (en) Method for producing aliphatic polyester and method for recycling starch
CN112742418B (en) Catalyst for catalyzing meso-lactide to prepare D, L-lactide and preparation method thereof
JP4387579B2 (en) Method for producing aliphatic polyester and method for recycling starch
JP2002167430A (en) Aliphatic polyester, method for producing the same, and method for making starch as resource
JP2004231855A (en) Method for producing polyethylene terephthalate
JP3902921B2 (en) Method for producing aliphatic polyester, method for producing caproic acid, Propionibacterium acnes CAP103 strain
US20090137749A1 (en) Processes for reducing acid content of a polyalkylene terephthalate and using such in the production of macrocyclic polyester oligomer
TWI842016B (en) Monomer composition for synthesising recycled plastic, prepration method thereof, and recycled plastic, molded product, plasticizer composition using the same
CN113416134B (en) Lactic acid oligomer and preparation method and application thereof
KR101346516B1 (en) High molecular-weight aliphatic polycarbonates prepared using base catalysts
EP3909947A2 (en) Method of producing high-purity 2-pyrone-4,6-dicarboxylic acid and method of producing intermediate for same
CN118159514A (en) Process for recovering dialkyl terephthalate from polyester composition
TW202432694A (en) Recycled bis(4-hydroxybutyl) terephthalate, preparation method thereof and polyester resin using same
CN118184623A (en) Method for synthesizing L-lactide by L-lactic acid one-step method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees