JP3540208B2 - Piezoelectric material and its manufacturing method - Google Patents

Piezoelectric material and its manufacturing method Download PDF

Info

Publication number
JP3540208B2
JP3540208B2 JP23623099A JP23623099A JP3540208B2 JP 3540208 B2 JP3540208 B2 JP 3540208B2 JP 23623099 A JP23623099 A JP 23623099A JP 23623099 A JP23623099 A JP 23623099A JP 3540208 B2 JP3540208 B2 JP 3540208B2
Authority
JP
Japan
Prior art keywords
piezoelectric material
piezoelectric
molded product
fiber
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23623099A
Other languages
Japanese (ja)
Other versions
JP2000144545A (en
Inventor
直秀 富田
義人 筏
昌和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP23623099A priority Critical patent/JP3540208B2/en
Publication of JP2000144545A publication Critical patent/JP2000144545A/en
Application granted granted Critical
Publication of JP3540208B2 publication Critical patent/JP3540208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電性高分子より成る繊維状物、或いは成型であり、これの長軸方向に力(運動)が作用したときに圧電効果が生じることに特徴を有するもので、特に、外科用補綴材あるいは補強材、圧電素子等の電気材料分野等に用いて好適なものである。
【0002】
【従来の技術】
従来、圧電性高分子の研究は多くなされ、これに関連する特許も多く出願されている。
例えば、特公昭61−34278号公報には全芳香族ポリアミドフィルムを素材とした耐熱性に優れた高分子圧電性フィルムに関する技術が開示され、また、特公昭62−17801号公報においては、ポリフッ化ビニリデン系フィルムを素材とした圧電性、焦電性高分子フィルムの製造方法が、更に、特開平5−152638号公報にはポリ乳酸を原料とし、押し出し成形やプレス成形した後、さらに一軸延伸することにより、圧電性を付与する技術が開示される。
【0003】
一方、電気刺激による人体組織、とくに硬組織の成長促進効果は古くから知られている(I.Yasuda,J.Jpn.Orthop.Assoc.,29,351(1955))。また、ポリ乳酸の骨成長促進に関しても筏らが報告している(Y.Ikada et al. J. Biomed. Mater.Res.,30,553(1996))。さらに、ポリ乳酸の圧電性を利用して医用材料に応用した特許としては特開平6−142182および特開平6−142184がある。これらの研究から圧電性高分子は生体組織の運動により圧電効果が生じ、生体組織の成長促進を促すことが期待される。ポリ乳酸フィルムは一軸延伸することによりd14なる圧電率テンソルを有することが知られている。つまり、延伸軸に対してずり変形が加わると軸方向に分極が生じる。従って、繊維やロッドのような成形物にこれらの軸方向の運動に応力が加わると予測される形状の場合には圧電効果は小さいと考えられる。
【0004】
【発明が解決しようとする課題】
圧電性高分子を原料とした繊維およびロッド等の成形物、ならびにそれらを加工した織物、編物においては、付加される力は繊維軸方向、あるいは繊維軸と直角方向が多い。通常、圧電性高分子を用いてこのような繊維、あるいはロッド等を作製しても上述したように、例えば延伸は繊維軸方向に沿って行われるので、このような繊維軸方向にかかる力によっての圧電効果は小さく、また、繊維軸と直角方向の力に関して圧電効果は0と考えられる。
本発明は、圧電性高分子を原料とした繊維状物および成形物、ならびにそれらを加工した織物、編物に繊維軸と平行あるいは直角の力(運動)が働いた場合に圧電効果が大きく生じる繊維あるいは成形物を提供するものである。
【0005】
【課題を解決するための手段】
しかるに、本発明は、圧電性高分子からなる繊維状物、または成形物であり、これの軸方向に付加される張力によって圧電性を発生させるために、かかる張力の付加方向と異なる方向に捩りを加えて構成したことを特徴とする圧電材、張力の付加方向と異なる方向に結晶軸を構成した圧電材、捩り方向が同一方向にまたは、反対方向と交互に、もしくは方向がアトランダム加えられて成る圧電材、軸方向に対し、10〜60°の捩りを加えて構成した圧電材、圧電性高分子がポリ乳酸である圧電材、外科用補綴材あるいは補強材として使用される圧電材、繊維状物、または成形物が配向したものである圧電材、結晶軸方向が結晶あるいは軸方向と一致している繊維状物、または成形物を捩ることによって結晶軸方向が繊維あるいは成形物の長軸方向と異なるよう構成する圧電材の製造法、非結晶状態の繊維状物あるいは成形物をそのまま、若しくは延伸しながら捩ることを特徴とする圧電材の製造法、捩りを同一方向または、反対方向と交互に、もしくは方向がアトランダムなるよう加えることに特徴を有するものである。
【0006】
【発明の実施の形態】
本発明に用いる圧電性高分子は延伸可能なものであり、また、延伸時あるいは延伸後に熱あるいは液体で膨潤させる等の手段により捩り変形を与え、これをそのまま固定することが可能であればその素材は問わない。例えば、そのような素材としてポリフッ化ビニリデン系高分子、ポリ乳酸系高分子が例示できる。特に、体内埋入用の医用材料として用いる場合にはポリ乳酸系高分子が好適である。かかるポリ乳酸は光学活性を有するL体であっても、D体であっても構わない。また、重合体が結晶を有するのであればモノマーである乳酸がL体およびD体の共重合体であっても構わない。分子量に関しても特に限定されるものではなく、実際上、使用条件に合致しておれば低分子量でもよい。また、ねじることが可能であれば高分子量のものでも差し支えない。
繊維状物および成形物はある一定値以下の直径であれば繊維として、それを上回るサイズであれば成形物として定義することができるが、捩り変形を生じさせることが可能であればそのサイズに限定はない。実際上は織物で使用される5μmのものから数cmのものまで例示できる。また、その断面形状は円形であっても方形であっても構わない。
【0007】
かかる素材に圧電性を付与するための方法としては対象物に対し捩れ加える方法が例示できる。かかる条件については、使用する圧電性高分子によって異り、またその条件によっても結晶化度や結晶形態が変化することも考えられるが、特に、捩り加工後の結晶軸が繊維軸と異なっていれば目的を達する。その意味において、素材とする繊維、成形物は延伸され、分子配向したものであることが好ましく、また、その捩り角度については軸に対し5〜75°好ましくは10〜60°の範囲にあることが望ましい。
かかる加工は、例えば走行する対象物に対し連続的に行っても、また、定サイズに寸断された素材に対しバッチ式で行っても良い。その際の条件としては、加工素材に塑性変形を生じさせる足る温度を加え、捩った後これを固定するために冷却することが好ましい。
以下、具体的にその方法について例示した図面をもとに説明する。
【0008】
図1には本発明に係る圧電材を連続的に製造する装置を例示する。同図において、1は加撚のための回転を与える駆動装置、2は糸管、3は乾熱槽、4はローラー槽、5は巻取機であり、駆動装置1の回転を受けてこれに連結された糸管2より繰り出される糸に一定の回転を与えて捩り、これを乾熱槽3、ローラ槽4を経て巻取機5に巻き取られる過程において固定する。なお、かかる加工に供される糸は延伸されたものであっても、未延伸のものであっても良い。
一方、他の方法として、紡糸、延伸を連続的に行い、これを巻き取る過程で図1のような回転を与え、その後熱セットして固定する方法も例示できる。
また、成形物においては一端を固定し、他端よりトルクを加えたり、或いは押出し成形、延伸装置を用い、成形物を押出す際に回転を与えることによっても加工を行うことができる。
図3および図4には、本発明における捩り方法の他の例を示す。かかる方法は同一方向に回転する1対のローラ(A)、(B)を並設し、被加工物を該ローラでニップしてx方向に進行させるに際し、ローラ(B)をy方向に往復動させることによって図5で示すように異なる方向の捩りが交互に繰り返される例を示す。かかる構成によると、捩り方向が切り変わる境界部で電位差が生じ易い特徴がある。
なお、かかる交互の捩りのピッチ、周期は任意に設定すればよい。
以下に実施例を挙げて説明する。
【0009】
【実施例1】
分子量が30万のポリL乳酸を原料とし、235度の温度で紡糸機より押出し、水冷による冷却後、130℃の乾熱槽にて9倍に延伸し、直径0.3mmの繊維糸を得た。これを80℃のシリコーンオイル中で15cm当り20回転/minの回転速度で90回ねじった。(600t/m(長さ1m当たりのネジリ数に相当))。走査電子顕微鏡観察からねじり角度は約30度であった。
前記において得たねじり加工前とねじり加工後の繊維の圧電性を測定した。測定方法は図2に概略図を示す、アクチュエーター(ソレノイド)6、試料はさみ治具(可動側)9、試料はさみ治具(固定側)10、電極11、ロックインアンプ12より成る装置に白金コート部分8を設けた試料7を装着し、測定した。
測定繊維長は6cm、この試験繊維の両端2cmに通電のため白金コートを行ったものを用いた。
ロックインアンプ12から出力された正弦波に従ってアクチュエーター6が往復運動し、試験繊維に繰り返し張力がかかるようになっており、静止時の抵抗値は10MΩ以上で測定不可能であった。また、静止時の電圧は0.01〜0.02mVであった。測定結果を表1に示す。なお、対照区は捩り加工前のものである。
【0010】
【表1】

Figure 0003540208
【0011】
測定結果からも明らかに繊維をねじることによって白金コートした電極間で大きな起電力が生じていることがわかる。これに対し、対照区のものは起電力が生じているが微弱である。これは上述した特開平6−142184に記述されているように理想的に結晶相に平行な力が加わっていないためであると考えられる。
【0012】
【発明の効果】
本発明は、圧電性高分子を原料とした繊維およびロッド、ならびにそれらを加
工した織物、編物であり、繊維軸と平行あるいは直角の力が働いた場合に圧電効果が大きく生じる繊維あるいは成形物を提供するものであり、具体的には圧電性高分子を原料とした繊維あるいは成形物を軸方向と結晶軸方向を異なるようにして達成したものでものである。その効果の一例として、外科用補綴、補強材としてこの繊維からなる織物を使用すると繊維軸方向の張力によって圧電効果が生じ、骨や軟部組織の再生を促すこと可能とし、更に、2次元、3次元の繊維製品に加工することが可能であるから当該用途のみでなく、電気部品等、多くの産業分野への適用も可能なものである。
【図面の簡単な説明】
【図1】本発明圧電材の製造装置を例示した模式図。
【図2】圧電効果の測定試験機を示す概略図。
【図3】本発明圧電材の他の製造例を示す側面図。
【図4】図3の斜視図。
【図5】図3の方法によって得た本発明圧電材の模式図。
【符号の説明】
1 回転駆動装置
2 糸管
3 乾熱槽
4 ローラー
5 巻取機
6 アクチュエーター(ソレノイド)
7 圧電性測定試料
8 試料(7)の白金コート部分
9 試料はさみ治具(可動側)
10 試料はさみ治具(固定側)
11 電極
12 ロックインアンプ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a fibrous material or a molding made of a piezoelectric polymer, and is characterized in that a piezoelectric effect is generated when a force (movement) is applied in the longitudinal direction of the fibrous material. It is suitable for use in the field of electrical materials such as prosthetic or reinforcing materials and piezoelectric elements.
[0002]
[Prior art]
Conventionally, many studies have been made on piezoelectric polymers, and many related patents have been filed.
For example, Japanese Patent Publication No. 61-34278 discloses a technology relating to a polymer piezoelectric film having excellent heat resistance using a wholly aromatic polyamide film as a material, and Japanese Patent Publication No. 62-17801 discloses a polyfluorinated film. A method for producing a piezoelectric or pyroelectric polymer film using a vinylidene-based film as a raw material is disclosed in Japanese Patent Application Laid-Open No. 5-152538. Accordingly, a technique for imparting piezoelectricity is disclosed.
[0003]
On the other hand, the effect of promoting the growth of human tissues, particularly hard tissues, by electrical stimulation has been known for a long time (I. Yasuda, J. Jpn. Orthop. Assoc., 29, 351 (1955)). Raft et al. Also reported that polylactic acid promotes bone growth (Y. Ikada et al. J. Biomed. Mater. Res., 30, 553 (1996)). Further, there are Japanese Patent Application Laid-Open Nos. 6-142182 and 6-142184 as patents applied to medical materials utilizing the piezoelectricity of polylactic acid. From these studies, it is expected that the piezoelectric polymer will generate a piezoelectric effect due to the movement of the living tissue and promote the growth of the living tissue. Polylactic acid films are known to have piezoelectric tensor composed d 14 by uniaxial stretching. That is, when shear deformation is applied to the stretching axis, polarization occurs in the axial direction. Therefore, it is considered that the piezoelectric effect is small in the case where a shape such as a fiber or a rod is expected to be subjected to stress in the movement in the axial direction.
[0004]
[Problems to be solved by the invention]
In a molded product such as a fiber or a rod made of a piezoelectric polymer as a raw material, and a woven or knitted fabric obtained by processing the same, the applied force is mostly in the direction of the fiber axis or in the direction perpendicular to the fiber axis. Normally, even if such a fiber or a rod is manufactured using a piezoelectric polymer, as described above, for example, since the drawing is performed along the fiber axis direction, the force applied in the fiber axis direction is used. Is small, and the piezoelectric effect is considered to be zero with respect to the force perpendicular to the fiber axis.
The present invention relates to a fibrous material and a molded product made of a piezoelectric polymer as a raw material, and a fiber that produces a large piezoelectric effect when a force (movement) parallel or perpendicular to the fiber axis acts on a woven or knitted fabric obtained by processing them. Alternatively, a molded product is provided.
[0005]
[Means for Solving the Problems]
However, the present invention relates to a fibrous material or a molded product made of a piezoelectric polymer, and in order to generate piezoelectricity by a tension applied in the axial direction, twisting in a direction different from the direction in which the tension is applied. Piezoelectric material, characterized by a crystal axis formed in a direction different from the direction in which the tension is applied, a twist direction in the same direction, alternately with the opposite direction, or at random. A piezoelectric material, a piezoelectric material configured by applying a twist of 10 to 60 ° to the axial direction, a piezoelectric material in which the piezoelectric polymer is polylactic acid, a piezoelectric material used as a surgical prosthesis material or a reinforcing material, Piezoelectric material in which a fibrous material or a molded product is oriented, a fibrous material in which the crystal axis direction coincides with the crystal or axial direction, or the crystal axis direction is lengthened by twisting the molded product. The method of manufacturing a piezoelectric material that is configured to be different from the direction, the method of manufacturing a piezoelectric material characterized by twisting an amorphous fibrous material or molded product as it is or by stretching, twisting in the same direction or in the opposite direction It is characterized in that it is added alternately or in a direction that is at random.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The piezoelectric polymer used in the present invention is stretchable, and is subjected to torsional deformation by means such as swelling with heat or liquid at the time of stretching or after stretching, so long as it can be fixed as it is. The material does not matter. For example, examples of such a material include a polyvinylidene fluoride polymer and a polylactic acid polymer. In particular, when used as a medical material for implantation into a body, a polylactic acid-based polymer is suitable. Such polylactic acid may be an optically active L-form or a D-form. If the polymer has crystals, lactic acid as a monomer may be a copolymer of L-form and D-form. The molecular weight is not particularly limited, and may be a low molecular weight as long as it practically matches the conditions of use. Also, a high molecular weight material may be used as long as it can be twisted.
A fibrous material and a molded product can be defined as a fiber if the diameter is equal to or less than a certain value, and a molded product if the diameter is larger than the fiber. There is no limitation. Practically, it can be exemplified from those of 5 μm used in textiles to those of several cm. Further, the cross-sectional shape may be circular or rectangular.
[0007]
As a method for imparting piezoelectricity to such a material, a method of adding a twist to an object can be exemplified. Such conditions differ depending on the piezoelectric polymer used, and it is conceivable that the degree of crystallinity and crystal morphology also change depending on the conditions.In particular, the crystal axis after twisting is different from the fiber axis. If you reach your goal. In that sense, it is preferable that the fiber and the molded product are stretched and molecularly oriented, and that the torsion angle is in the range of 5 to 75 °, preferably 10 to 60 ° with respect to the axis. Is desirable.
Such processing may be performed continuously, for example, on a running object, or may be performed batch-wise on a material cut to a fixed size. As a condition at that time, it is preferable to apply a sufficient temperature to cause plastic deformation of the work material, to cool it after twisting, and to fix it.
Hereinafter, the method will be specifically described with reference to the drawings.
[0008]
FIG. 1 illustrates an apparatus for continuously producing a piezoelectric material according to the present invention. In the figure, 1 is a drive device for giving rotation for twisting, 2 is a yarn tube, 3 is a dry heat tank, 4 is a roller tank, and 5 is a winding machine. The yarn unwound from the yarn tube 2 connected to the torsion is given a constant rotation and twisted, and is fixed in the process of being wound up by the winder 5 through the dry heat tank 3 and the roller tank 4. The yarn to be subjected to such processing may be drawn or undrawn.
On the other hand, as another method, a method in which spinning and drawing are continuously performed, a rotation as shown in FIG. 1 is given in the process of winding up, and then heat setting and fixing can be exemplified.
Further, the molded product can be processed by fixing one end and applying a torque from the other end, or by using an extrusion molding or stretching device and applying rotation when extruding the molded product.
3 and 4 show another example of the twisting method according to the present invention. In this method, a pair of rollers (A) and (B) rotating in the same direction are arranged side by side, and when the workpiece is nipped by the rollers and advanced in the x direction, the roller (B) reciprocates in the y direction. 5 shows an example in which twisting in different directions is alternately repeated as shown in FIG. According to such a configuration, there is a characteristic that a potential difference is easily generated at a boundary portion where the twist direction changes.
The pitch and cycle of such alternate torsion may be set arbitrarily.
An example will be described below.
[0009]
Embodiment 1
Poly L-lactic acid having a molecular weight of 300,000 was used as a raw material, extruded from a spinning machine at a temperature of 235 ° C., cooled by water cooling, and then stretched 9 times in a dry heat tank at 130 ° C. to obtain a fiber yarn having a diameter of 0.3 mm. Was. This was twisted 90 times at a rotation speed of 20 rotations / min per 15 cm in silicone oil at 80 ° C. (600 t / m (corresponding to the number of twists per 1 m length)). From observation with a scanning electron microscope, the twist angle was about 30 degrees.
The piezoelectricity of the fibers obtained before and after the torsion processing was measured. The measuring method is shown schematically in FIG. 2. A platinum coating is applied to a device including an actuator (solenoid) 6, a sample scissor jig (movable side) 9, a sample scissor jig (fixed side) 10, an electrode 11, and a lock-in amplifier 12. The sample 7 provided with the portion 8 was mounted and measured.
The measurement fiber length was 6 cm, and the test fiber was coated with platinum on both ends at 2 cm for energization.
The actuator 6 reciprocated according to the sine wave output from the lock-in amplifier 12, and the tension was repeatedly applied to the test fiber. The resistance value at rest was 10 MΩ or more and could not be measured. The voltage at rest was 0.01 to 0.02 mV. Table 1 shows the measurement results. In addition, a control section is a thing before twist processing.
[0010]
[Table 1]
Figure 0003540208
[0011]
The measurement results also clearly show that a large electromotive force is generated between the platinum-coated electrodes by twisting the fibers. On the other hand, in the control group, the electromotive force is generated but is weak. This is considered to be because a force parallel to the crystal phase was not ideally applied as described in the above-mentioned JP-A-6-142184.
[0012]
【The invention's effect】
The present invention is a fiber or rod made of a piezoelectric polymer as a raw material, and a woven fabric or a knitted fabric obtained by processing the fiber or rod, and a fiber or a molded product having a large piezoelectric effect when a force parallel or perpendicular to the fiber axis is applied. Specifically, a fiber or a molded product using a piezoelectric polymer as a raw material is achieved by making the axial direction different from the crystal axis direction. As an example of the effect, when a fabric made of this fiber is used as a surgical prosthesis or reinforcing material, a piezoelectric effect is generated by the tension in the fiber axis direction, and it is possible to promote regeneration of bone and soft tissue. Since it is possible to process into a three-dimensional fiber product, it can be applied not only to the application but also to many industrial fields such as electric parts.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating a device for manufacturing a piezoelectric material of the present invention.
FIG. 2 is a schematic view showing a measuring machine for measuring the piezoelectric effect.
FIG. 3 is a side view showing another example of manufacturing the piezoelectric material of the present invention.
FIG. 4 is a perspective view of FIG. 3;
FIG. 5 is a schematic view of the piezoelectric material of the present invention obtained by the method of FIG. 3;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotation drive device 2 Thread tube 3 Dry heat tank 4 Roller 5 Winding machine 6 Actuator (solenoid)
7 Piezoelectric measurement sample 8 Platinum coated part of sample (7) 9 Sample scissor jig (movable side)
10 Sample scissor jig (fixed side)
11 Electrode 12 Lock-in amplifier

Claims (10)

圧電性高分子からなる繊維状物、または成形物であり、これの軸方向に付加される張力によって圧電性を発生させるために、かかる張力の付加方向と異なる方向に捩りを加えて構成したことを特徴とする圧電材。A fibrous or molded product made of a piezoelectric polymer, which is twisted in a direction different from the direction in which the tension is applied in order to generate piezoelectricity by the tension applied in the axial direction. A piezoelectric material characterized by the following. 張力の付加方向と異なる方向に結晶軸を構成した請求項1記載の圧電材。2. The piezoelectric material according to claim 1, wherein the crystal axis is formed in a direction different from the direction in which the tension is applied. 捩り方向が同一方向にまたは、反対方向と交互に、もしくは方向がアトランダム加えられて成る請求項1または2項記載の圧電材。3. The piezoelectric material according to claim 1, wherein the torsion direction is the same, alternate with the opposite direction, or at random. 軸方向に対し、10〜60°の捩りを加えて構成した請求項1〜3のいずれか1項記載の圧電材。The piezoelectric material according to any one of claims 1 to 3, wherein the piezoelectric material is configured by applying a twist of 10 to 60 to the axial direction. 圧電性高分子がポリ乳酸である請求項1〜4のいずれか1項記載の圧電材。The piezoelectric material according to any one of claims 1 to 4, wherein the piezoelectric polymer is polylactic acid. 外科用補綴材あるいは補強材として使用される請求項1~5のいずれか1項記載の圧電材。The piezoelectric material according to any one of claims 1 to 5, which is used as a surgical prosthetic material or a reinforcing material. 繊維状物、または成形物が配向したものである請求項1〜6のいずれか1項記載の圧電材。The piezoelectric material according to any one of claims 1 to 6, wherein the fibrous material or the molded product is oriented. 結晶軸方向が結晶あるいは軸方向と一致している繊維状物、または成形物を捩ることによって結晶軸方向が繊維あるいは成形物の長軸方向と異なるよう構成する圧電材の製造法。A method of manufacturing a piezoelectric material in which the crystal axis direction is different from the long axis direction of the fiber or the molded product by twisting the fibrous material or the molded product whose crystal axis direction coincides with the axial direction. 非結晶状態の繊維状物あるいは成形物をそのまま、若しくは延伸しながら捩ることを特徴とする圧電材の製造法。A method of manufacturing a piezoelectric material, comprising twisting a non-crystalline fibrous or molded product as it is or while stretching it. 捩りを同一方向または、反対方向と交互に、もしくは方向がアトランダムなるよう加えることを特徴とする圧電材の製造法。A method for manufacturing a piezoelectric material, characterized in that torsion is applied alternately in the same direction or in the opposite direction, or so that the direction is at random.
JP23623099A 1998-08-31 1999-08-24 Piezoelectric material and its manufacturing method Expired - Fee Related JP3540208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23623099A JP3540208B2 (en) 1998-08-31 1999-08-24 Piezoelectric material and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-285847 1998-08-31
JP28584798 1998-08-31
JP23623099A JP3540208B2 (en) 1998-08-31 1999-08-24 Piezoelectric material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2000144545A JP2000144545A (en) 2000-05-26
JP3540208B2 true JP3540208B2 (en) 2004-07-07

Family

ID=26532562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23623099A Expired - Fee Related JP3540208B2 (en) 1998-08-31 1999-08-24 Piezoelectric material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3540208B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058077A1 (en) 2012-10-12 2014-04-17 帝人株式会社 Piezoelectric element
CN106537623A (en) * 2014-04-16 2017-03-22 帝人株式会社 Transducer which uses fibers and uses electric signal as output or input
KR20190092523A (en) 2017-01-11 2019-08-07 데이진 프론티아 가부시키가이샤 Piezoelectric Structures and Devices Using the Same
US11101425B2 (en) 2015-12-28 2021-08-24 Teijin Limited Braided piezoelectric element, fabric-like piezoelectric element using braided piezoelectric element, and device using same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282089A (en) * 2004-03-31 2004-10-07 Univ Kyoto Functional element, device employing functional element, and method for manufacturing functional element
JP5318203B2 (en) 2009-06-15 2013-10-16 株式会社村田製作所 Piezoelectric sheet, and method and apparatus for manufacturing a piezoelectric sheet
JP6082511B2 (en) * 2010-05-14 2017-02-15 帝人株式会社 Laminated film
CN103380505B (en) 2011-10-13 2015-08-26 三井化学株式会社 High polymer piezoelectric material and manufacture method thereof
JP2015198154A (en) * 2014-04-01 2015-11-09 帝人株式会社 piezoelectric element
JP2015204430A (en) * 2014-04-16 2015-11-16 帝人株式会社 Transducer receiving electric signal using fiber
JP2015204429A (en) * 2014-04-16 2015-11-16 帝人株式会社 Transducer outputting electric signal using fiber
JP6076398B2 (en) * 2015-05-15 2017-02-08 帝人株式会社 Piezoelectric material
JP6771310B2 (en) * 2016-05-06 2020-10-21 帝人フロンティア株式会社 Devices using covering filamentous piezoelectric elements
CN109314179B (en) * 2016-06-06 2022-07-01 三井化学株式会社 Piezoelectric base material, piezoelectric woven fabric, piezoelectric knitted fabric, piezoelectric device, force sensor, and actuator
WO2017212523A1 (en) * 2016-06-06 2017-12-14 株式会社村田製作所 Antibacterial piezoelectric thread, antibacterial fabric, clothing, medical member, bioactive piezoelectric, and piezoelectric thread for substance adsorption
EP3534417B1 (en) 2016-10-28 2022-06-08 Teijin Limited Structure for use in piezoelectric element, braided piezoelectric element, fabric-like piezoelectric element using braided piezoelectric element, and device using these
CN108495961B (en) 2016-11-01 2021-03-26 株式会社村田制作所 Antibacterial nonwoven member, antibacterial nonwoven fabric, and antibacterial cushioning material
EP3626872A4 (en) * 2017-05-19 2021-04-07 Murata Manufacturing Co., Ltd. Antimicrobial fiber, seat, and seat cover
US11421350B2 (en) 2017-05-30 2022-08-23 Teijin Frontier Co., Ltd. Antibacterial electric charge generation yarn, method for manufacturing antibacterial electric charge generation yarn, and antibacterial cloth
WO2019021984A1 (en) * 2017-07-28 2019-01-31 株式会社村田製作所 Antibacterial fibers and antibacterial textile product
WO2019078143A1 (en) 2017-10-17 2019-04-25 株式会社村田製作所 Antibacterial yarn and antibacterial fabric
CN110382079B (en) * 2017-10-17 2021-09-10 株式会社村田制作所 Filter member and air conditioning apparatus
CN114010536B (en) * 2021-11-06 2024-03-15 周敏 Oral care composition and method of making same
CN113975196B (en) * 2021-11-06 2024-03-15 周敏 Oral cavity health care compound and preparation method thereof
JP2023175500A (en) * 2022-05-30 2023-12-12 帝人フロンティア株式会社 Thread, fabric and clothing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014058077A1 (en) 2012-10-12 2014-04-17 帝人株式会社 Piezoelectric element
CN106537623A (en) * 2014-04-16 2017-03-22 帝人株式会社 Transducer which uses fibers and uses electric signal as output or input
US11101425B2 (en) 2015-12-28 2021-08-24 Teijin Limited Braided piezoelectric element, fabric-like piezoelectric element using braided piezoelectric element, and device using same
KR20190092523A (en) 2017-01-11 2019-08-07 데이진 프론티아 가부시키가이샤 Piezoelectric Structures and Devices Using the Same
US11700772B2 (en) 2017-01-11 2023-07-11 Teijin Frontier Co., Ltd. Piezoelectric structure and device using same

Also Published As

Publication number Publication date
JP2000144545A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
JP3540208B2 (en) Piezoelectric material and its manufacturing method
Brennan et al. Mechanical considerations for electrospun nanofibers in tendon and ligament repair
WO2017212523A1 (en) Antibacterial piezoelectric thread, antibacterial fabric, clothing, medical member, bioactive piezoelectric, and piezoelectric thread for substance adsorption
JP4642232B2 (en) Method for forming dyed knitted suture
RU2528077C2 (en) Suture having attachment elements with coating for attaching to biological tissues, and method for preparing it
Mokhtari et al. Advances in electrospinning: The production and application of nanofibres and nanofibrous structures
DK164440B (en) ADHESIVE TISSUE PROTECTION AND PROCEDURES FOR PRODUCING THE SAME
Wei et al. Recent advances and perspectives of shape memory polymer fibers
JP3548873B2 (en) Surgical suture and method of manufacturing the same
WO2020241432A1 (en) Thread and fabric
Udovč et al. Towards hydrophilic piezoelectric poly-L-lactide films: Optimal processing, post-heat treatment and alkaline etching
WO2022215672A1 (en) Potential measurement device
JP7131715B2 (en) yarn and fabric
US20220410174A1 (en) Yarn and structure containing the same
WO2019239866A1 (en) Antibacterial fiber and garment
JP3023472B2 (en) Bone formation promoting film
US11746443B1 (en) Polycaprolactone-based fibers and implants including same
JP7211534B2 (en) cylindrical structure
JP6154622B2 (en) Porous tube with core material and method for producing the same
Mukhopadhyay et al. Spider silk–Providing new insights in the field of high performance materials
KR20180057328A (en) Natural silk non-woven fabric and its preparation method
WO2024070739A1 (en) Cloth, and textile product
CN113897787B (en) Spring-like protein fiber and application thereof
WO2023233881A1 (en) Thread, fabric, and garment
JP7431256B2 (en) thread and cloth

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees