JP3519185B2 - Blood flow analyzer - Google Patents

Blood flow analyzer

Info

Publication number
JP3519185B2
JP3519185B2 JP24472395A JP24472395A JP3519185B2 JP 3519185 B2 JP3519185 B2 JP 3519185B2 JP 24472395 A JP24472395 A JP 24472395A JP 24472395 A JP24472395 A JP 24472395A JP 3519185 B2 JP3519185 B2 JP 3519185B2
Authority
JP
Japan
Prior art keywords
signal
frequency
heartbeat signal
frequency components
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24472395A
Other languages
Japanese (ja)
Other versions
JPH0984776A (en
Inventor
公江 三宮
敦 山岸
隆信 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP24472395A priority Critical patent/JP3519185B2/en
Publication of JPH0984776A publication Critical patent/JPH0984776A/en
Application granted granted Critical
Publication of JP3519185B2 publication Critical patent/JP3519185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、人体や動物の血流
を解析するための装置に利用する。本発明は、人や動物
の皮膚や粘膜、歯肉等の表面の毛細血管の血流を計測評
価するのに利用する。本発明は、例えば歯肉炎がどの程
度進行しているかとか、皮膚の老化程度の評価、薬に対
する皮膚の反応の評価等を行う装置として利用する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a device for analyzing blood flow in a human body or an animal. INDUSTRIAL APPLICABILITY The present invention is used to measure and evaluate blood flow in capillaries on the surface of human or animal skin, mucous membranes, gingiva and the like. INDUSTRIAL APPLICABILITY The present invention is used as an apparatus for evaluating, for example, how much gingivitis is progressing, the degree of skin aging, and the reaction of skin to drugs.

【0002】[0002]

【従来の技術】歯周病の予防に人々の関心が集まってい
る。これは、人々が虫歯からではなく歯周病から歯を失
うことに注意が向いてきたことによる。このため、歯周
病を予防するための歯磨きや歯ブラシが販売されてお
り、そのための歯磨きの方法についても盛んに指導され
ている。
2. Description of the Related Art People are interested in the prevention of periodontal disease. This is because people have been paying attention to losing their teeth from periodontal disease rather than from caries. For this reason, toothpastes and toothbrushes for preventing periodontal disease are on the market, and instructions on how to brush them are also actively given.

【0003】[0003]

【発明が解決しようとする課題】ところで、歯周病の代
表的なものとして歯肉炎がある。歯肉炎は、口内の細菌
繁殖や栄養障害等により歯肉が赤くはれ出血し易くなっ
たことをいう。この歯肉炎が進展して重度になると、虫
歯でなくとも歯が抜ける。このような歯肉炎は初期の状
態であると歯ブラシによるマッサージにより治癒するこ
とが可能であるが、歯肉の状態の判断は、歯科医師ある
いは歯科衛生士が目視によって診断してきた。
Gingivitis is a typical periodontal disease. Gingivitis means that the gingiva becomes red and bleeds easily due to bacterial growth in the mouth and nutritional disorders. When this gingivitis progresses and becomes severe, the tooth comes off even if it is not a caries. It is possible to cure such gingivitis by massaging with a toothbrush in the initial state, but the dentist or dental hygienist has visually diagnosed the determination of the gingival state.

【0004】また、患者は症状を自覚してから来院する
のでは遅いため、予防活動が重要であるが、従来の歯肉
炎の診断は、専門家の目視によっているので、定期検診
の機会のある者は別として、来院しない限り歯肉の状態
の診断ができないので予防には十分ではなかった。
[0004] In addition, since it is late for a patient to come to the hospital after becoming aware of the symptoms, preventive activities are important, but conventional gingivitis diagnosis has a chance of regular medical examination because it is visually observed by an expert. Apart from those, it was not enough for prevention because the gingival condition could not be diagnosed unless they visited the hospital.

【0005】さらに、生化学的に歯肉炎を診断すること
は可能であるが、時間および費用がかかり現実的ではな
かった。
Furthermore, it is possible to biochemically diagnose gingivitis, but it has been time consuming, expensive and impractical.

【0006】本発明は、このような従来の問題を解決す
るもので、歯科の専門家が目視することもなく歯肉炎の
診断ができるようにすることを目的とする。また本発明
は、生化学分析等を行うことなく、簡単な測定方法で歯
肉炎がどの程度進行しているかをその場で判断できるよ
うにする。本発明は、歯肉炎の予防活動に使用できる簡
易な歯肉炎計測装置および方法を提供することを目的と
する。さらに、本発明は、歯肉の評価を含めて人や動物
等の皮膚や粘膜の表面の血流の状態を解析する装置およ
び方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object thereof is to enable a dentist to diagnose gingivitis without visual inspection. Further, the present invention enables to determine on the spot how much gingivitis progresses by a simple measuring method without performing biochemical analysis or the like. It is an object of the present invention to provide a simple gingivitis measuring device and method that can be used for gingivitis preventive activity. A further object of the present invention is to provide an apparatus and method for analyzing the state of blood flow on the surface of skin and mucous membranes of humans and animals including evaluation of gingiva.

【0007】[0007]

【課題を解決するための手段】出願人は、先にレーザ光
源からのレーザ光を皮膚に当ててその反射光(散乱光)
を計測し、反射光の強度変動を周波数成分に分解し、分
解した周波数成分の時間変化を計測して、皮膚の毛細血
管の状態を計測する装置および方法の発明を出願した
(特開平7−31595号公報)。
The applicant first applied the laser light from the laser light source to the skin and reflected the light (scattered light).
Has been applied, and an invention of a device and method for measuring the state of capillary blood vessels of skin by measuring the change in intensity of reflected light into frequency components and measuring the time change of the decomposed frequency components (JP-A-7- 31595 publication).

【0008】発明者は、この先願に係る皮膚の毛細血管
の状態を計測する発明を、人や動物の皮膚や粘膜、歯肉
等の毛細血管の状態を計測するのに応用できることを見
いだし、血流解析を行う本発明を実現するに至った。
The inventor has found that the invention for measuring the condition of the capillaries of the skin according to this prior application can be applied to measure the condition of the capillaries of the skin, mucous membranes, gingiva and the like of humans and animals. The present invention for performing analysis has been realized.

【0009】すなわち、本発明は、人または動物等の血
管を有する生物の表面にレーザ光を照射し、このレーザ
光の反射光の強度変動を任意で複数の周波数成分に分解
しその時間変化を演算し、この周波数成分の時間変化と
心拍信号との相互相関を算出して、周波数と心拍信号
の相互相関を表示することを特徴とする。この生物の表
面には、人や動物の皮膚、粘膜等を含み、人の歯肉炎の
程度を計測することができる。
That is, according to the present invention, the surface of a living organism having blood vessels such as humans or animals is irradiated with laser light, the intensity fluctuation of the reflected light of the laser light is arbitrarily decomposed into a plurality of frequency components, and the time change thereof is calculated. It is characterized in that the cross-correlation between the time change of the frequency component and the heartbeat signal is calculated and the cross-correlation between the frequency and the heartbeat signal is displayed. The surface of this organism includes the skin and mucous membranes of humans and animals, and the degree of gingivitis in humans can be measured.

【0010】また、本発明は、歯肉炎の計測装置とし
て、レーザ光源と、この光源から出射した光が歯肉で反
射した反射光を検出して電気信号に変換する光電気変換
手段と、この電気信号に変換された信号の複数の周波数
成分の時間変化を演算し、この周波数成分の時間変化と
採取した被検者の心拍信号との相互相関係数を演算する
演算手段と、この周波数成分と心拍信号との相互相関係
数を表示する表示手段とを備えることを特徴とする。
The present invention also provides, as a gingivitis measuring apparatus, a laser light source, a photoelectric conversion means for detecting the reflected light reflected from the gingiva of the light emitted from the light source, and converting the reflected light into an electric signal, and the electric signal. A calculation means for calculating a time change of a plurality of frequency components of the signal converted into a signal and calculating a cross-correlation coefficient between the time change of the frequency component and the sampled heartbeat signal of the subject, and the frequency component Display means for displaying the cross-correlation coefficient with the heartbeat signal.

【0011】なお、心拍信号を検出することなく、電気
信号に変換された信号の複数の周波数成分の時間変化を
演算し、この周波数成分ごとに人の心拍信号に相当する
帯域内のピーク値を演算して表示することもできる。
It should be noted that the time change of a plurality of frequency components of the signal converted into the electric signal is calculated without detecting the heartbeat signal, and the peak value within the band corresponding to the human heartbeat signal is calculated for each frequency component. It can also be calculated and displayed.

【0012】健康状態にある歯肉組織の毛細血管は、形
の揃ったループ状であり、スムーズな血流となっている
と考えられる。これに対して初期状態の歯肉炎の組織の
毛細血管は、柵状の不規則な形状になっており、血流が
滞る場所があると考えられる。このような組織状態につ
いて血流と心拍との相関についてみてみると、健康状態
にある毛細血管の血流は、心拍と強い相関関係があると
考えられるのに対して、歯肉炎の状態にある毛細血管の
血流は、心拍との相関が弱くなっていると考えられる。
It is considered that the capillaries of the gingival tissue in a healthy state have a uniform loop shape and have a smooth blood flow. On the other hand, the capillaries of the tissue of gingivitis in the initial state have a palisade-like irregular shape, and it is considered that there are places where blood flow is stagnant. Looking at the correlation between blood flow and heartbeat in such a tissue state, blood flow in capillaries in a healthy state is considered to have a strong correlation with heartbeat, while in gingivitis state. The blood flow in the capillaries is considered to have a weak correlation with the heartbeat.

【0013】したがって、歯肉からの反射光について周
波数成分の時間変化に着目し、この周波数成分の時間変
化と心拍との相関を算出し、周波数を軸として周波数ご
とに各周波数について相互相関係数を表示することによ
り、歯肉の毛細血管の状態が判断できる。歯肉が健常で
あれば、心拍との相互相関関係が高く、かつある特定の
周波数帯域で相互相関係数が高いグラフが現れる。歯肉
炎が進むにつれて心拍との相互相関係数が低くなり、ま
た相互相関係数の高い周波数帯域にばらつきがあるグラ
フとなり、このように歯肉からの反射光を周波数成分に
分解し、その周波数成分についての強度の時間変動と心
拍信号との相互相関係数を表示することで、歯肉炎の状
態を判断することができる。
Therefore, paying attention to the time change of the frequency component of the light reflected from the gingiva, the correlation between the time change of this frequency component and the heartbeat is calculated, and the cross-correlation coefficient is calculated for each frequency with the frequency as the axis. By displaying, the state of the capillaries of the gingiva can be determined. If the gingiva is healthy, a graph having a high cross-correlation with the heartbeat and a high cross-correlation coefficient in a specific frequency band appears. As gingivitis progresses, the cross-correlation coefficient with the heartbeat becomes lower, and the graph shows that the frequency band with a high cross-correlation coefficient varies, and the reflected light from gingiva is decomposed into frequency components in The gingivitis state can be determined by displaying the cross-correlation coefficient between the temporal variation of intensity and the heartbeat signal.

【0014】また、皮膚等の血流の解析を行う場合も同
様であり、反射光の周波数成分と心拍との相互相関を求
めて、これを表示することにより、例えば、育毛養毛剤
を与えた前と後の頭皮の毛細血管の血流の変化の様子を
計測してその評価を行うことができる。また、外からの
刺激として、温熱負荷や寒冷負荷をかけたときの皮膚の
毛細血管の応答を測定して、皮膚の老化の程度を評価す
ることができる。
The same applies to the case of analyzing the blood flow in the skin, for example, by obtaining the cross-correlation between the frequency component of the reflected light and the heartbeat and displaying this, for example, before applying the hair-growth nourishing agent. It is possible to measure and evaluate the change in blood flow in the capillaries of the scalp after that. Further, the degree of skin aging can be evaluated by measuring the response of skin capillaries when a heat load or a cold load is applied as an external stimulus.

【0015】[0015]

【発明の実施の形態】以下図面を参照して、本発明の実
施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は、本発明の一実施の形態の歯肉炎計
測装置の構成の一例を示すブロック図である。この実施
の形態の装置は、一例として本発明を歯肉の状態を解析
する装置に適用した例であって、計測する歯肉表面1に
向けて出力光を照射するレーザ光源3と、歯肉表面1か
らの散乱光4(反射光)を受光し電気信号に変換する光
電気変換素子5と、この電気信号を増幅する増幅器(A
MP)6と、この増幅器6の出力が通過する帯域通過濾
波器(BPF)7と、この帯域通過濾波器7を通過した
アナログ信号をディジタル信号に変換するAD変換器
(A/D)8と、被検者の心拍信号を検出する心拍信号
検出部9と、検出した心拍信号をディジタル信号に変換
するAD変換器(A/D)10と、散乱光信号および心
拍信号を処理する処理手段11と、この処理手段11か
らの出力を表示する表示装置12と、記録紙に記録して
出力する出力装置13とを備える。
FIG. 1 is a block diagram showing an example of the configuration of a gingivitis measuring apparatus according to an embodiment of the present invention. The device of this embodiment is an example in which the present invention is applied to a device for analyzing the condition of the gingiva, and a laser light source 3 for irradiating the gingival surface 1 to be measured with output light and a gingival surface 1 are used. The photoelectric conversion element 5 that receives the scattered light 4 (reflected light) and converts it into an electric signal, and an amplifier (A
MP) 6, a band pass filter (BPF) 7 through which the output of the amplifier 6 passes, and an AD converter (A / D) 8 for converting an analog signal passed through the band pass filter 7 into a digital signal. , A heartbeat signal detector 9 for detecting the heartbeat signal of the subject, an AD converter (A / D) 10 for converting the detected heartbeat signal into a digital signal, and a processing means 11 for processing the scattered light signal and the heartbeat signal. And a display device 12 for displaying the output from the processing means 11, and an output device 13 for recording and outputting the recording paper.

【0017】処理手段11には、AD変換器8および1
0からのディジタル信号を取り込み、演算を行う演算部
14と、この演算部14の演算の解析パラメータの入力
あるいは設定または後処理部16での処理等の設定を行
う解析パラメータ入力/設定部15と、演算部14から
の演算結果および解析パラメータ入力/設定部15から
設定された処理内容により後処理を行い表示装置12お
よびまたは出力装置に処理結果を出力する後処理部16
とを含む。
The processing means 11 includes AD converters 8 and 1
A calculation unit 14 that takes in a digital signal from 0 and performs calculation; and an analysis parameter input / setting unit 15 that inputs or sets analysis parameters for the calculation of the calculation unit 14 or sets processing such as processing in the post-processing unit 16. A post-processing unit 16 that performs post-processing based on the calculation result from the calculation unit 14 and the processing content set by the analysis parameter input / setting unit 15 and outputs the processing result to the display device 12 and / or the output device.
Including and

【0018】なお、レーザ光源3の出力光の強度を調節
して歯肉表面1に照射するレーザ光のスペクトル分布を
変えずに強度だけを制御する光アッテネータ17を設け
ることができる。
It is possible to provide an optical attenuator 17 which controls the intensity of the output light of the laser light source 3 and controls only the intensity without changing the spectral distribution of the laser light with which the gingival surface 1 is irradiated.

【0019】ここにおいて、処理手段11は、電気信号
に変換された信号の複数の周波数成分の時間変化を演算
し、この周波数成分の時間変化と採取した被検者の心拍
信号との相互相関係数を演算する手段を含み、表示装置
12あるいは出力装置13は、この周波数成分と心拍信
号との相互相関係数を表示出力する手段を備える。
Here, the processing means 11 calculates the time change of a plurality of frequency components of the signal converted into the electric signal, and the mutual correlation between the time change of the frequency components and the sampled heartbeat signal of the subject. The display device 12 or the output device 13 includes means for calculating the number, and means for displaying and outputting the cross-correlation coefficient between the frequency component and the heartbeat signal.

【0020】次に、このように構成された本発明の実施
形態の動作を図2ないし図4に基づいて説明する。図2
は、この実施形態における演算部の動作を説明する図、
図3は、測定データの例を示す図、図4は、解析結果の
例を示す図である。
Next, the operation of the embodiment of the present invention thus constructed will be described with reference to FIGS. Figure 2
Is a diagram for explaining the operation of the arithmetic unit in this embodiment,
FIG. 3 is a diagram showing an example of measurement data, and FIG. 4 is a diagram showing an example of analysis results.

【0021】レーザ光源3からの出力光(例えば780
nm)2を被検者の歯肉表面1に向けて照射すると、そ
の出力光2は歯肉表面1で散乱光4となって反射する。
この散乱光4を光電気変換素子5が受光して電気信号に
変換する。この電気信号を増幅した後、帯域通過濾波器
7を通過させて(例えば30Hz〜24kHz等で)濾
波しAD変換器8でディジタル信号に変換した後、処理
手段11の演算部14に送出する。また、被検者の心拍
信号を心拍信号検出部9で検出してAD変換器10でデ
ィジタル信号に変換した後、演算部14に送出する。
Output light from the laser light source 3 (for example, 780
(nm) 2 is irradiated toward the gingival surface 1 of the subject, the output light 2 thereof is reflected by the gingival surface 1 as scattered light 4.
The photoelectric conversion element 5 receives the scattered light 4 and converts it into an electric signal. After this electric signal is amplified, it is passed through the band pass filter 7 (for example, at 30 Hz to 24 kHz), filtered, converted into a digital signal by the AD converter 8, and then sent to the arithmetic unit 14 of the processing means 11. Further, the heartbeat signal of the subject is detected by the heartbeat signal detection unit 9, converted into a digital signal by the AD converter 10, and then sent to the calculation unit 14.

【0022】レーザ光は歯肉の表面だけで反射されるの
ではなく、歯肉内部にも浸透している。そのため、光ア
ッテネータ17によりレーザ光の強度を変化することに
より測定深さを変えることによって歯肉の任意深さの測
定も可能となる。なお、レーザ光の強度の調節は他の方
法、例えばレーザ光源3での強度制御でも可能である。
The laser light is not only reflected on the surface of the gingiva but also penetrates inside the gingiva. Therefore, by changing the intensity of the laser beam by the optical attenuator 17, the measurement depth can be changed to measure the arbitrary depth of the gingiva. The intensity of the laser light can be adjusted by another method, for example, intensity control by the laser light source 3.

【0023】本実施の態様では、心拍信号検出部9での
心拍信号の検出は、パルスオキシメータを用い被検者の
親指の透過光により心拍信号を検出したが、これ以外の
方法でもよい。例えば、心電計と同じように、体の任意
の場所から検出した心電波形を用いてもよい。被検者の
心拍信号を取りだすのは、心拍信号の周期、波形は、被
検者によってそれぞれ相違しているため、検出した散乱
光の周波数成分の時間変動と心拍信号との相互相関をと
るには、被検者ごとの心拍信号を用いると精度が高くな
るからである。
In the present embodiment, the heartbeat signal detecting section 9 detects the heartbeat signal by using the pulse oximeter to detect the heartbeat signal by the light transmitted through the thumb of the subject, but other methods may be used. For example, like the electrocardiograph, an electrocardiographic waveform detected from an arbitrary position on the body may be used. The heartbeat signal of the subject is extracted because the period and the waveform of the heartbeat signal are different depending on the subject, and thus the time variation of the frequency component of the detected scattered light and the crosscorrelation with the heartbeat signal are taken. The reason is that the accuracy is improved by using the heartbeat signal for each subject.

【0024】図3(a)は、健常者の散乱光のスペック
ルデータを示す。図3(b)は、この健常者の心拍信号
である。図3(c)は歯肉炎が軽〜中程度に進行した者
の散乱光のスペックルデータの例であり、図3(d)
は、この者の心拍信号である。また図3(e)は歯肉炎
が重度の者の散乱光のスペックルデータの例であり、図
3(f)はこの者の心拍信号を示す。
FIG. 3A shows speckle data of scattered light of a healthy person. FIG. 3B is a heartbeat signal of this healthy person. FIG. 3C is an example of speckle data of scattered light of a person whose gingivitis has progressed to a moderate to moderate degree, and FIG.
Is the heartbeat signal of this person. 3 (e) is an example of speckle data of scattered light of a person with severe gingivitis, and FIG. 3 (f) shows the heartbeat signal of this person.

【0025】図2に示すように、処理手段11では、入
力された散乱光信号について複数かつ任意の周波数成分
についてその強度の時間変動を演算する。この信号の時
間−周波数解析方法としては、ウェーブレット解析(Wa
velet)を用いた。
As shown in FIG. 2, the processing means 11 calculates the time variation of the intensity of a plurality of and arbitrary frequency components of the input scattered light signal. As a time-frequency analysis method for this signal, wavelet analysis (Wa
velet) was used.

【0026】このウェーブレット解析とは、フーリエ解
析で用いられる三角関数のように一様に広がった関数で
はなく、ある時刻の周りに局在化した関数を基底関数と
して選び、その平行移動と相似変換によって信号を分解
する信号処理方法のことをいう。
The wavelet analysis is not a function spread uniformly like a trigonometric function used in Fourier analysis, but a function localized around a certain time is selected as a basis function, and its translation and similarity transformation are selected. It refers to a signal processing method that decomposes a signal.

【0027】基底関数をg(t)としたときに、入力信
号S(t)のウェーブレット変換Tg ( a,b)は次の
ように定義される。
When the basis function is g (t), the wavelet transform T g (a, b) of the input signal S (t) is defined as follows.

【0028】[0028]

【数1】 ここで、*は共役複素数、aはスケール(周波数に相
当)、bはシフト(基底関数の時間的位置)を表す。ま
た基底関数g(t)としては、例えばガウス関数に複素
正弦波を乗じた関数、いわゆるガボール関数を利用す
る。
[Equation 1] Here, * is a conjugate complex number, a is a scale (corresponding to frequency), and b is a shift (temporal position of the basis function). As the basis function g (t), for example, a Gaussian function multiplied by a complex sine wave, that is, a so-called Gabor function is used.

【0029】このガボール関数は、次のように定義され
る。
This Gabor function is defined as follows.

【0030】[0030]

【数2】 このウェーブレット解析については、例えば、山田道夫
“ウェーブレット解析とその応用”電子情報通信学会誌
Vol.76 No.5 pp.518-528 1993年5月等に解説がある。
[Equation 2] For this wavelet analysis, see, for example, Michio Yamada, "Wavelet Analysis and Its Applications," IEICE.
Vol.76 No.5 pp.518-528 There is a commentary in May 1993.

【0031】また、時間−周波数解析の別の方法とし
て、Short-Fourier 変換があり、このShort-Fourier 変
換は、データウィンドウをD(t)としたとき、次のよ
うに定義される。
Another method of time-frequency analysis is the Short-Fourier transform, and this Short-Fourier transform is defined as follows when the data window is D (t).

【0032】[0032]

【数3】 このように、演算部14では、適当な周波数−時間解析
方法を用いて、複数で任意の周波数成分についてその時
間変動を演算する。
[Equation 3] In this way, the calculation unit 14 calculates the time variation of a plurality of arbitrary frequency components by using an appropriate frequency-time analysis method.

【0033】解析パラメータ入力/設定部15では、演
算部14における解析パラメータの設定、表示装置12
の表示装置の設定、あるいは後処理部16で処理する内
容や条件の設定を行う。
The analysis parameter input / setting unit 15 sets the analysis parameters in the calculation unit 14 and displays the data in the display unit 12.
The display device is set, or the contents and conditions to be processed by the post-processing unit 16 are set.

【0034】例えば、ウェーブレット解析におけるガボ
ール関数に関するパラメータα、ωP の設定、あるいは
Short-Fourier変換をおこなう場合のデータウィンドウ
に関するパラメータの設定、さらに採取する周波数成分
の範囲fmin ≦f≦fmax 等の設定を行う。
For example, setting the parameters α and ω P related to the Gabor function in the wavelet analysis, or
The parameters related to the data window when performing the Short-Fourier conversion are set, and the range of the frequency components to be sampled, f min ≤f≤f max, etc., are set.

【0035】また、時間−周波数解析における周波数の
分割点数の設定を行う。例えば、演算する周波数成分の
範囲を60Hz〜15.0KHzの範囲で、対数間隔で
24点を設定するように、解析パラメータ等の設定を行
う。
Further, the number of frequency division points in the time-frequency analysis is set. For example, analysis parameters and the like are set such that the range of frequency components to be calculated is in the range of 60 Hz to 15.0 KHz and 24 points are set at logarithmic intervals.

【0036】表示方法の設定としては、画面に表示させ
る内容の設定、例えば、相互相関係数の周波数依存性、
任意周波数の時間変動等を画面に表示させることができ
る。
As the setting of the display method, the setting of the contents to be displayed on the screen, for example, the frequency dependence of the cross-correlation coefficient,
It is possible to display a time variation of an arbitrary frequency on the screen.

【0037】さらに、後処理部16は、解析結果が画面
に表示された後に必要となった値、例えば、相互相関係
数の周波数依存性からピーク周波数を取り出すとか、平
均値、分散等の統計量を演算する。この統計演算の範囲
は解析パラメータ入力/設定部15で設定する。
Further, the post-processing unit 16 extracts a value required after the analysis result is displayed on the screen, for example, the peak frequency from the frequency dependence of the cross-correlation coefficient, and the statistics such as average value and variance. Calculate the quantity. The range of this statistical calculation is set by the analysis parameter input / setting unit 15.

【0038】また、心拍信号についても、演算部14
は、トレンド除去等の処理を行う。これは背景雑音の除
去等の処理でこの背景雑音の除去処理は、例えば低域通
過濾波器(LPF)の処理と同等の演算であり、心拍信
号の周波数域(例えば0.5Hz〜2.0Hz)のみの
信号を通過させて、他の信号による影響を除く。なお、
このトレンド除去等の処理は、演算部14へ入力させる
心拍信号を低域通過濾波器(LPF)を通過させて行う
こともできる。
The heartbeat signal is also calculated by the calculation unit 14
Performs processing such as trend removal. This is processing such as background noise removal. This background noise removal processing is, for example, an operation equivalent to the processing of a low-pass filter (LPF), and the frequency range of the heartbeat signal (for example, 0.5 Hz to 2.0 Hz). ) Only the signal is passed to remove the influence of other signals. In addition,
The processing such as the trend removal may be performed by passing the heartbeat signal input to the calculation unit 14 through a low pass filter (LPF).

【0039】このように、演算部14は、f1 、f2
3 ・・・の任意の周波数成分について時間−周波数解
析を行いその強度時間変動を演算する。そして、演算部
14は、取りだした時間変動を伴う任意の周波数につい
て心拍信号との相互相関係数を演算し、処理手段11
は、周波数相互相関係数をグラフとして表示装置12に
表示し、出力装置13に出力する。歯肉の健常者、軽度
から中度の歯肉炎、重度の歯肉炎についての解析結果を
図4に示す。
As described above, the calculation unit 14 calculates f 1 , f 2 ,
Time-frequency analysis is performed on arbitrary frequency components of f 3 ... Then, the calculating unit 14 calculates the cross-correlation coefficient with the heartbeat signal for the arbitrary frequency with the extracted time variation, and the processing unit 11
Displays the frequency cross-correlation coefficient as a graph on the display device 12 and outputs it to the output device 13. FIG. 4 shows the results of analysis of healthy gingiva, mild to moderate gingivitis, and severe gingivitis.

【0040】健常者の場合、2KHz〜6KHz近辺で
高い相関係数を示している。これに対して、歯肉炎が進
展するにしたがって、抽出した周波数の全域にわたって
心拍信号との相互相関が低くなっていくことが分かる。
したがって、計測した歯肉の散乱光について複数かつ任
意の周波数成分の強度の時間変動と心拍信号との相互相
関を算出して表示することで、歯肉炎がどの程度進んで
いるかが分かる。
In the case of a healthy person, a high correlation coefficient is shown in the vicinity of 2 KHz to 6 KHz. On the other hand, as gingivitis progresses, it can be seen that the cross-correlation with the heartbeat signal becomes lower over the entire extracted frequency range.
Therefore, by calculating and displaying the cross-correlation between the time variation of the intensity of a plurality of arbitrary frequency components and the heartbeat signal for the measured scattered light of the gingiva, the extent to which gingivitis progresses can be known.

【0041】本発明による診断原理について説明する。
歯肉表面からの散乱光は、毛細血管を流れる血流による
反射光、すなわちドップラー反射光成分を含むものと考
えられる。散乱光から取り出された周波数成分は、種々
の流速の血流を表すものである。例えば一つの周波数に
ついて言えば、それはある血流速度を表しているものと
考えられる。したがって、それぞれの周波数成分につい
てその時間変動は、血流を生み出すもの、すなわち心拍
信号と高い相互相関関係を有しているはずである。
The diagnostic principle according to the present invention will be described.
It is considered that the scattered light from the gingival surface contains the reflected light due to the blood flow in the capillaries, that is, the Doppler reflected light component. The frequency components extracted from the scattered light represent blood flow with various flow velocities. For example, for one frequency, it is considered to represent a certain blood flow velocity. Therefore, the time variation of each frequency component should have a high cross-correlation with the one that produces blood flow, ie the heartbeat signal.

【0042】図5(a)に示すように、健常な者の毛細
血管は形が揃ったものであり、スムースな血流である。
したがって、このような健常者の毛細血管の散乱光と血
流を生み出す心拍信号との相互相関をとれば、心拍信号
との相関関係が高いものであることが理解できる。ま
た、毛細血管の形状は整っているため、毛細血管中の血
流速度も、まとまった血流速度をもち、ばらつきが少な
いものと考えられる。したがって、心拍信号との相互相
関をとると、心拍信号との相関関係が高いある周波数領
域(ある血流速度の領域)が現れる。ところが、血液が
滞留すれば、心拍信号との相関関係は小さくなってい
く。歯肉炎が進行していくと、図5(b)に示すように
毛細血管が柵状となって、歯肉の毛細血管内での血流は
滞ることになり、またその血流の速度も健常な場合に比
べてばらつき、血流速度が遅い部分が多くなると考えら
れる。このため、歯肉炎が進展すればするほど、散乱光
信号と心拍信号との相関関係は小さくなり、また血流速
度にもばらつきが現れるものと判断できる。
As shown in FIG. 5 (a), the capillaries of a healthy person are of uniform shape and have a smooth blood flow.
Therefore, if the cross-correlation between the scattered light of the capillaries of a healthy person and the heartbeat signal that produces blood flow is obtained, it can be understood that the correlation with the heartbeat signal is high. Further, since the capillaries have a regular shape, it is considered that the blood flow velocity in the capillaries also has a uniform blood flow velocity and little variation. Therefore, when the cross-correlation with the heartbeat signal is obtained, a certain frequency region (a region of a certain blood flow velocity) having a high correlation with the heartbeat signal appears. However, if the blood stays, the correlation with the heartbeat signal becomes smaller. As the gingivitis progresses, as shown in FIG. 5 (b), the capillaries become palisades, the blood flow in the capillaries of the gingiva is stalled, and the speed of the blood flow is also normal. It is considered that there are more areas where the blood flow velocity is slower than in the above case. Therefore, it can be determined that the more the gingivitis progresses, the smaller the correlation between the scattered light signal and the heartbeat signal, and the more the blood flow velocity varies.

【0043】次に、本発明の第二の実施形態の動作の説
明図を図6に示す。この図6は、心拍信号の抽出を散乱
光の信号から行うもので、心拍信号検出部をもうけない
構成の例を示すものであって、図1から、心拍信号検出
部9およびAD変換器10を除いた構成である。
Next, FIG. 6 shows an explanatory diagram of the operation of the second embodiment of the present invention. 6 shows an example of a configuration in which the heartbeat signal is extracted from the scattered light signal, and the heartbeat signal detection unit is not provided. From FIG. 1, the heartbeat signal detection unit 9 and the AD converter 10 are shown. It is the configuration excluding.

【0044】この動作を説明する。散乱光4は電気信号
に変換され増幅された後、帯域通過濾波器7で所定帯域
の信号が通過されAD変換器8でディジタル信号に変換
される。このディジタル信号に変換された散乱光信号は
演算部14に入力される。演算部14は、第一の実施の
形態と同じく、時間−周波数解析を行い、複数の任意の
周波数f1 、f2 、f3 、・・・についてその強度の時
間変動を演算する。この複数の任意の周波数f1 ・・・
について、その強度の時間変動を一つの波形とみて、そ
れぞれフーリエ変換を行う。フーリエ変換後のそれぞれ
の周波数の信号についてフーリエ変換後のスペクトラム
について、例えば0.5Hz≦ω≦2.0Hz帯域内
で、そのピーク値p1 (ω)、p2 (ω)、・・・を取
りだす。これは人間が取りうる正常な心拍の範囲内で、
最大のピーク値pi を探すことで、心拍信号との相互相
関係数を演算することと等価なことである。したがっ
て、このピーク値を周波数を軸とするグラフに表示すれ
ば、図4に示す解析結果と同じ結果が得られる。
This operation will be described. The scattered light 4 is converted into an electric signal and amplified, and then a signal in a predetermined band is passed through a band pass filter 7 and converted into a digital signal by an AD converter 8. The scattered light signal converted into the digital signal is input to the calculation unit 14. Calculation unit 14, like the first embodiment, the time - performs frequency analysis, multiple arbitrary frequency f 1, f 2, f 3 , and calculates the time variation of the intensity of .... These plural arbitrary frequencies f 1 ...
For each of the above, the time variation of the intensity is regarded as one waveform, and the Fourier transform is performed for each. For the spectrum after the Fourier transform for the signals of the respective frequencies after the Fourier transform, for example, the peak values p 1 (ω), p 2 (ω), ... Within the band of 0.5 Hz ≦ ω ≦ 2.0 Hz. Get out. This is within the range of normal heartbeats that humans can take,
This is equivalent to calculating the cross-correlation coefficient with the heartbeat signal by searching for the maximum peak value p i . Therefore, if this peak value is displayed in the graph with the frequency as the axis, the same result as the analysis result shown in FIG. 4 is obtained.

【0045】この第二の実施形態では、被検者の心拍信
号を測定することなく、後方散乱光の測定のみで解析を
行うことができる利点がある。
The second embodiment has an advantage that the analysis can be performed only by measuring the backscattered light without measuring the heartbeat signal of the subject.

【0046】歯肉炎の計測を行う以外の場合の適用例を
説明する。例えば、皮膚の老化を評価する場合には、外
からの刺激に対する毛細血管の反応を解析する。温熱負
荷や寒冷負荷をかけたときの毛細血管の反応を測定す
る。このとき、刺激に対する応答の時間変化も測定する
ことで、皮膚の老化を評価することができる。また、育
毛養毛剤や他の外用薬等を与えたときの皮膚の毛細血管
の血流の様子を計測できるため、与える前と与えた後と
の血流の周波数成分と心拍との相互相関の比較、あるい
は他の薬の血流の周波数成分と心拍との相互相関との比
較を行うことで、これらの薬等の作用を評価できる。こ
の外用薬の作用の評価は、動物実験の場合の作用の評価
を実験者の目視によらずに評価できる点でも有用であ
る。
An example of application other than when measuring gingivitis will be described. For example, when assessing skin aging, the response of capillaries to external stimuli is analyzed. To measure the reaction of capillaries under heat or cold load. At this time, the aging of the skin can be evaluated by measuring the time change of the response to the stimulus. In addition, since it is possible to measure the state of blood flow in the capillaries of the skin when giving a hair-growth nourishing agent and other external medicines, the cross-correlation between the frequency component of blood flow and the heartbeat before and after giving Alternatively, the effects of these drugs or the like can be evaluated by comparing the cross-correlation between the frequency component of blood flow of other drugs and the heartbeat. The evaluation of the effect of this external preparation is also useful in that the effect in the case of animal experiments can be evaluated without the visual inspection of the experimenter.

【0047】[0047]

【発明の効果】以上説明したように、本発明の装置を用
いれば、非接触で、人や動物、例えば実験動物や被検者
の皮膚や粘膜等の毛細血管の状態を解析することができ
る。このため、例えば、温熱負荷や寒冷負荷をかけたと
きの皮膚の反応を測定でき、皮膚の老化の程度を解析す
ることができる。また外用薬に対する皮膚の反応を解析
できるため、例えば育毛養毛剤等に対する皮膚(毛細血
管)の反応を解析することで、育毛養毛剤の評価を行う
ことができる。
As described above, by using the apparatus of the present invention, the condition of capillaries such as skin and mucous membranes of humans and animals, for example, experimental animals and subjects can be analyzed without contact. . Therefore, for example, the reaction of the skin when a heat load or a cold load is applied can be measured, and the degree of skin aging can be analyzed. Further, since the reaction of the skin to the topical drug can be analyzed, the hair restorer can be evaluated by, for example, analyzing the reaction of the skin (capillaries) to the hair restorer or the like.

【0048】さらにまた、歯肉の解析に本発明の装置を
用いれば、歯科医師や歯科衛生士等の専門家の目視によ
らず、被検者が歯肉炎か否か、その程度がどの程度かを
判定することができる。また、レーザ光を当てて測定す
ることができるため、生化学的な検査を行うことなく、
簡単に短時間で診断を行うことができる。また、本発明
は簡便な歯肉炎の計測診断装置を提供できるため、検診
等の歯肉炎の予防活動に利用することができる。また、
散乱光信号から心拍信号を抽出する場合は、心拍信号を
別途測定することなく、測定できる利点がある。
Furthermore, if the apparatus of the present invention is used for the analysis of gingiva, whether or not the subject has gingivitis and the degree thereof is irrespective of the visual inspection by a specialist such as a dentist or a dental hygienist. Can be determined. In addition, since it is possible to measure by applying laser light, it is possible to carry out measurement without biochemical examination.
Diagnosis can be performed easily in a short time. Moreover, since the present invention can provide a simple measuring and diagnosing device for gingivitis, it can be used for gingivitis preventive activities such as medical examination. Also,
When the heartbeat signal is extracted from the scattered light signal, there is an advantage that the heartbeat signal can be measured without separately measuring it.

【0049】なお、照射するレーザ光の強度を調節する
ことにより、測定深度も変更でき、測定の対象によって
その測定深度を調節することが可能である。
It should be noted that the measurement depth can be changed by adjusting the intensity of the emitted laser light, and the measurement depth can be adjusted depending on the object of measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態の歯肉炎計測装置の構成
の一例を示すブロック図。
FIG. 1 is a block diagram showing an example of the configuration of a gingivitis measurement apparatus according to an embodiment of the present invention.

【図2】本発明の演算部の動作を説明する図。FIG. 2 is a diagram for explaining the operation of the arithmetic unit of the present invention.

【図3】測定データの一例を示す図。FIG. 3 is a diagram showing an example of measurement data.

【図4】解析結果を示す図。FIG. 4 is a diagram showing an analysis result.

【図5】健常な組織の毛細血管と、歯肉炎組織の毛細血
管とをモデル化した図。
FIG. 5 is a diagram in which capillaries of healthy tissue and capillaries of gingivitis tissue are modeled.

【図6】本発明の第二の実施の態様の動作を説明する
図。
FIG. 6 is a diagram for explaining the operation of the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 歯肉表面 2 出力光 3 レーザ光源 4 散乱光 5 光電気変換素子 6 増幅器(AMP) 7 帯域通過濾波器(BPF) 8、10 アナログディジタル変換器(A/D) 9 心拍信号検出部 11 処理手段 12 表示装置 13 出力装置 14 演算部 15 解析パラメータ入力/設定部 16 後処理部 17 光アッテネータ 1 Gingival surface 2 output light 3 laser light source 4 scattered light 5 Photoelectric conversion element 6 Amplifier (AMP) 7 Bandpass Filter (BPF) 8, 10 Analog-to-digital converter (A / D) 9 Heartbeat signal detector 11 Processing means 12 Display 13 Output device 14 Operation part 15 Analysis parameter input / setting section 16 Post-processing section 17 Optical Attenuator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−31595(JP,A) 特開 平1−204644(JP,A) 特開 平1−204656(JP,A) 特開 平3−73129(JP,A) 特開 平4−215742(JP,A) 佐藤雅人,「Laser Doppl er Flowmeterを用いた歯肉 血流量に関する研究」,歯学,日本, 1993年,Vol.81,NO.4,p1082 −p1105 (58)調査した分野(Int.Cl.7,DB名) A61B 5/026 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-31595 (JP, A) JP-A-1-204644 (JP, A) JP-A-1-204656 (JP, A) JP-A-3- 73129 (JP, A) JP-A-4-215742 (JP, A) Masato Sato, "Study on Gingival Blood Flow Using Laser Doppler Flowmeter", Dental Science, Japan, 1993, Vol. 81, NO. 4, p1082-p1105 (58) Fields investigated (Int.Cl. 7 , DB name) A61B 5/026 JISST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 レーザ光源と、この光源から出射した光
が血管を有する生物の表面近傍で反射した反射光を検出
して電気信号に変換する光電気変換手段と、この電気信
号に変換された信号の複数の周波数成分の時間変化を演
算し、この周波数成分の時間変化と心信号との相互相
関を演算する演算手段と、周波数成分の心拍信号との相
互相関を表示する表示手段とを備える血流解析装置。
1. A laser light source, photoelectric conversion means for detecting reflected light, which is emitted from the light source and reflected in the vicinity of the surface of an organism having blood vessels, and converts the reflected light into an electric signal, and the photoelectric conversion means. It calculates the time variation of the plurality of frequency components of the signal, a calculating means for calculating a cross-correlation between the temporal change heart rate signal of the frequency components, and display means for displaying the cross-correlation between the heartbeat signal of a frequency component A blood flow analyzer provided.
【請求項2】 レーザ光源と、この光源から出射した光
が歯肉で反射した反射光を検出して電気信号に変換する
光電気変換手段と、この電気信号に変換された信号の複
数の周波数成分の時間変化を演算し、この周波数成分の
時間変化と採取した被検者の心拍信号との相互相関係数
を演算する演算手段と、この周波数成分と心拍信号との
相互相関係数を表示する表示手段とを備える歯肉炎計測
装置。
2. A laser light source, an opto-electric conversion means for detecting reflected light reflected from the gingiva of light emitted from the light source and converting the light into an electric signal, and a plurality of frequency components of the signal converted into the electric signal. And a calculation means for calculating the cross-correlation coefficient between the time change of this frequency component and the sampled heartbeat signal of the subject, and the cross-correlation coefficient between this frequency component and the heartbeat signal. A gingival inflammation measuring device comprising a display means.
【請求項3】 レーザ光源と、この光源から出射した光
が歯肉で反射した反射光を検出して電気信号に変換する
光電気変換手段と、この電気信号に変換された信号の複
数の周波数成分の時間変化を演算しそれぞれの周波数成
分の時間変化の信号をさらに周波数成分に分解して、人
の心拍信号に相当する帯域内のピーク値を演算する演算
手段と、演算された周波数成分ごとに心拍信号に対応す
る帯域内のピーク値を周波数を軸として表示する表示手
段とを備える歯肉炎計測装置。
3. A laser light source, opto-electric conversion means for detecting reflected light reflected from the gingiva of light emitted from this light source and converting it into an electric signal, and a plurality of frequency components of the signal converted into this electric signal. Calculating the time change of each of the frequency components and further decomposing the time change signal of each frequency component into frequency components, and calculating means for calculating the peak value in the band corresponding to the human heartbeat signal, and for each calculated frequency component A gingivitis measuring apparatus comprising: a display unit that displays a peak value in a band corresponding to a heartbeat signal with a frequency as an axis.
JP24472395A 1995-09-22 1995-09-22 Blood flow analyzer Expired - Fee Related JP3519185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24472395A JP3519185B2 (en) 1995-09-22 1995-09-22 Blood flow analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24472395A JP3519185B2 (en) 1995-09-22 1995-09-22 Blood flow analyzer

Publications (2)

Publication Number Publication Date
JPH0984776A JPH0984776A (en) 1997-03-31
JP3519185B2 true JP3519185B2 (en) 2004-04-12

Family

ID=17122950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24472395A Expired - Fee Related JP3519185B2 (en) 1995-09-22 1995-09-22 Blood flow analyzer

Country Status (1)

Country Link
JP (1) JP3519185B2 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
JP3787829B2 (en) * 1998-07-23 2006-06-21 株式会社島津製作所 Emission spectroscopic analyzer and emission spectroscopic correction method
ATE520341T1 (en) * 2001-06-22 2011-09-15 Nellcor Puritan Bennett Ie WAVELET-BASED ANALYSIS OF PULSE OXIMETRY SIGNALS
JP2003290894A (en) * 2002-04-01 2003-10-14 Thermo Techno:Kk Method for detecting fluidized state in nozzle for transporting molten metal and this instrument
WO2004075746A2 (en) 2003-02-27 2004-09-10 Cardiodigital Limited Method and system for analysing and processing ph0t0plethysmogram signals using wavelet transform
JP2005204869A (en) * 2004-01-22 2005-08-04 Matsushita Electric Ind Co Ltd Gums observing apparatus
US7925056B2 (en) 2005-02-08 2011-04-12 Koninklijke Philips Electronics N.V. Optical speckle pattern investigation
WO2008013181A1 (en) * 2006-07-24 2008-01-31 Satoru Shinpo Periodontal disease inspection device
US7944551B2 (en) 2008-06-30 2011-05-17 Nellcor Puritan Bennett Ireland Systems and methods for a wavelet transform viewer
US8660799B2 (en) 2008-06-30 2014-02-25 Nellcor Puritan Bennett Ireland Processing and detecting baseline changes in signals
US8226568B2 (en) 2008-07-15 2012-07-24 Nellcor Puritan Bennett Llc Signal processing systems and methods using basis functions and wavelet transforms
US20100016676A1 (en) 2008-07-15 2010-01-21 Nellcor Puritan Bennett Ireland Systems And Methods For Adaptively Filtering Signals
US8660625B2 (en) 2008-07-15 2014-02-25 Covidien Lp Signal processing systems and methods for analyzing multiparameter spaces to determine physiological states
US8385675B2 (en) 2008-07-15 2013-02-26 Nellcor Puritan Bennett Ireland Systems and methods for filtering a signal using a continuous wavelet transform
US8761855B2 (en) 2008-07-15 2014-06-24 Nellcor Puritan Bennett Ireland Systems and methods for determining oxygen saturation
US8285352B2 (en) 2008-07-15 2012-10-09 Nellcor Puritan Bennett Llc Systems and methods for identifying pulse rates
US8358213B2 (en) 2008-07-15 2013-01-22 Covidien Lp Systems and methods for evaluating a physiological condition using a wavelet transform and identifying a band within a generated scalogram
US8679027B2 (en) 2008-07-15 2014-03-25 Nellcor Puritan Bennett Ireland Systems and methods for pulse processing
US8082110B2 (en) 2008-07-15 2011-12-20 Nellcor Puritan Bennett Ireland Low perfusion signal processing systems and methods
US8696585B2 (en) 2008-09-30 2014-04-15 Nellcor Puritan Bennett Ireland Detecting a probe-off event in a measurement system
US9011347B2 (en) 2008-10-03 2015-04-21 Nellcor Puritan Bennett Ireland Methods and apparatus for determining breathing effort characteristics measures
US9155493B2 (en) 2008-10-03 2015-10-13 Nellcor Puritan Bennett Ireland Methods and apparatus for calibrating respiratory effort from photoplethysmograph signals
US8364225B2 (en) 2009-05-20 2013-01-29 Nellcor Puritan Bennett Ireland Estimating transform values using signal estimates
US8478376B2 (en) 2009-07-30 2013-07-02 Nellcor Puritan Bennett Ireland Systems and methods for determining physiological information using selective transform data
US8594759B2 (en) 2009-07-30 2013-11-26 Nellcor Puritan Bennett Ireland Systems and methods for resolving the continuous wavelet transform of a signal
US8346333B2 (en) 2009-07-30 2013-01-01 Nellcor Puritan Bennett Ireland Systems and methods for estimating values of a continuous wavelet transform
US8755854B2 (en) * 2009-07-31 2014-06-17 Nellcor Puritan Bennett Ireland Methods and apparatus for producing and using lightly filtered photoplethysmograph signals
US8400149B2 (en) 2009-09-25 2013-03-19 Nellcor Puritan Bennett Ireland Systems and methods for gating an imaging device
US9050043B2 (en) 2010-05-04 2015-06-09 Nellcor Puritan Bennett Ireland Systems and methods for wavelet transform scale-dependent multiple-archetyping
US8834378B2 (en) 2010-07-30 2014-09-16 Nellcor Puritan Bennett Ireland Systems and methods for determining respiratory effort
US9113830B2 (en) 2011-05-31 2015-08-25 Nellcor Puritan Bennett Ireland Systems and methods for detecting and monitoring arrhythmias using the PPG
US9597022B2 (en) 2011-09-09 2017-03-21 Nellcor Puritan Bennett Ireland Venous oxygen saturation systems and methods
JP6098257B2 (en) * 2013-03-15 2017-03-22 富士通株式会社 Signal processing apparatus, signal processing method, and signal processing program
US10022068B2 (en) 2013-10-28 2018-07-17 Covidien Lp Systems and methods for detecting held breath events
US9955894B2 (en) 2014-01-28 2018-05-01 Covidien Lp Non-stationary feature relationship parameters for awareness monitoring
CN104248421B (en) * 2014-09-24 2016-06-01 中国科学院电子学研究所 A kind of reflective photoelectric sensor for gingival blood flow monitoring and its preparation method
JP6688164B2 (en) * 2016-06-09 2020-04-28 花王株式会社 How to observe skin capillaries
JP2018015172A (en) * 2016-07-27 2018-02-01 花王株式会社 Hemodynamics evaluation method
RU2659130C1 (en) * 2016-12-29 2018-06-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный медико-стоматологический университет имени А.И. Евдокимова" Министерства здравоохранения Российской Федерации Device for evaluating intraosseous blood flow in periodontal tissues
JP7073883B2 (en) * 2018-04-23 2022-05-24 花王株式会社 How to calculate skin age

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐藤雅人,「Laser Doppler Flowmeterを用いた歯肉血流量に関する研究」,歯学,日本,1993年,Vol.81,NO.4,p1082−p1105

Also Published As

Publication number Publication date
JPH0984776A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP3519185B2 (en) Blood flow analyzer
KR100519758B1 (en) Method and apparatus for evaluating human stress using PPG
US7547284B2 (en) Bilateral differential pulse method for measuring brain activity
Homs-Corbera et al. Time-frequency detection and analysis of wheezes during forced exhalation
Goho Pulse oximetry evaluation of vitality in primary and immature permanent teeth
US20030167019A1 (en) Method and apparatus for determining the cerebral state of a patient with fast response
JP2006514570A (en) Anesthesia and sedation monitoring system and method
JP2004248819A (en) Blood analyzer
JP2002000577A (en) Method of analyzing brain wave
US8352020B2 (en) Method for processing a series of cardiac rhythm signals (RR) and the use thereof for analysing a cardiac rhythm variability, in particular for assessing a patient's pain or stress
EP3662826A1 (en) Application of real signal time variation wavelet analysis
Humeau et al. Spectral components of laser Doppler flowmetry signals recorded in healthy and type 1 diabetic subjects at rest and during a local and progressive cutaneous pressure application: scalogram analyses
WO2003002004A1 (en) Biological optical measuring instrument
JP3783491B2 (en) Skin condition evaluation method and apparatus
JP2002010986A (en) Noninvasive measurement device for intracerebral blood amount
Ahmad et al. Multiparameter physiological analysis in obstructive sleep apnea simulated with Mueller maneuver
JP4651186B2 (en) Biological light measurement device
Kong et al. Differentiating between stress-and EPT-induced electrodermal activity during dental examination
Qu et al. Improvement of the detection of human pulpal blood flow using a laser Doppler flowmeter modified for low flow velocity
Barschdorff et al. Respiratory rhythm detection with photoplethysmographic methods
JP4355386B2 (en) Biological homeostasis maintenance evaluation device
He et al. Continuous tracking of changes in systolic blood pressure using BCG and ECG
Humeau et al. Multifractal analysis of central (electrocardiography) and peripheral (laser Doppler flowmetry) cardiovascular time series from healthy human subjects
Elter et al. Noninvasive real-time laser Doppler flowmetry in perfusion regions and larger vessels
JP5450029B2 (en) Biological light measurement device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040128

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees