JP3491185B2 - Vortex flow meter - Google Patents
Vortex flow meterInfo
- Publication number
- JP3491185B2 JP3491185B2 JP25018195A JP25018195A JP3491185B2 JP 3491185 B2 JP3491185 B2 JP 3491185B2 JP 25018195 A JP25018195 A JP 25018195A JP 25018195 A JP25018195 A JP 25018195A JP 3491185 B2 JP3491185 B2 JP 3491185B2
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- vortex
- measurement passage
- passage
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Volume Flow (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超音波を用いてカ
ルマン渦の発生を検出することにより、管路内の流体の
流量を計測する渦流量計に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vortex flowmeter for measuring the flow rate of a fluid in a pipe by detecting the generation of Karman vortex using ultrasonic waves.
【0002】[0002]
【従来の技術】管路内に流路を横切るように渦発生体を
設け、流体の流れによって渦発生体の下流側に生じるカ
ルマン渦の発生周期を超音波送受信器(超音波センサ)
を用いて検出することにより、流体の流量を計測するよ
うにした渦流量計が種々提案されている。2. Description of the Related Art A vortex generator is provided in a pipe so as to cross the flow path, and the generation cycle of a Karman vortex generated on the downstream side of the vortex generator by the flow of a fluid is determined by an ultrasonic transmitter / receiver (ultrasonic sensor).
Various vortex flowmeters have been proposed in which the flow rate of a fluid is measured by detecting the flow rate of the fluid.
【0003】この種の渦発流量計としては、例えば、渦
発生体の側壁の両端部付近に一対の圧力導入口を開口さ
せ、これらを管路の外部に設けた直線区間を有するバイ
パス通路をよって互いに連通させ、直線区間の両端部に
超音波送受信器を互いに対向させて配置し、管路内の流
体の流れによる渦発生体の下流側へのカルマン渦の発生
によって生じるバイパス通路内の流体の流れを検出する
ことにより、管路内の流体の流量を計測するようにした
ものがある(実開昭60−109021号公報参照)。An example of this type of vortex flowmeter is, for example, a bypass passage having a straight section in which a pair of pressure introduction ports are opened near both ends of the side wall of the vortex generator and which are provided outside the pipeline. Therefore, the ultrasonic transceivers are placed in communication with each other at opposite ends of the straight section, and the fluid in the bypass passage generated by the Karman vortex generation on the downstream side of the vortex generator due to the fluid flow in the pipe There is a device in which the flow rate of the fluid in the pipe is measured by detecting the flow of the fluid (see Japanese Utility Model Laid-Open No. 60-109021).
【0004】このような渦流量計では、小流量域の計測
を対象とする場合には、バイパス通路の直線区間を長く
とることにより、超音波信号の変調区間を長くして感度
を高めることができる。In such a vortex flowmeter, when the measurement is performed in a small flow rate range, the straight section of the bypass passage is lengthened to lengthen the modulation section of the ultrasonic signal and enhance the sensitivity. it can.
【0005】また、渦発生体に、その長手方向に沿って
管路を貫通する計測通路を形成し、、計測通路を管路内
に連通させる一対の圧力導入口を渦発生体の側壁に長手
方向に間隔をもって配置し、計測通路の両端部に超音波
送受信器を互いに対向させて配置し、管路内の流体の流
れによる渦発生体の下流側へのカルマン渦の発生によっ
て生じる計測通路内の一対の圧力導入口間の流体の流れ
を検出することにより、管路内の流体の流量を計測する
ようにしたものがある。Further, a measurement passage is formed in the vortex generator along the longitudinal direction of the vortex generator, and a pair of pressure inlets for communicating the measurement passage with the inside of the pipe are provided on the side wall of the vortex generator. In the measurement passage, which is generated by the generation of Karman vortices downstream of the vortex generator due to the flow of the fluid in the pipe, the ultrasonic transmitters and receivers are arranged facing each other at both ends of the measurement passage. There is a device in which the flow rate of the fluid in the pipeline is measured by detecting the fluid flow between the pair of pressure introducing ports.
【0006】このような渦流量計では、小流量域の計測
を対象とする場合には、圧力導入口の間隔を大きく設定
することにより、超音波信号の変調区間を長くして感度
を高めることができる。また、大流量域の計測を対象と
する場合には、圧力導入口の間隔を小さく設定すること
により、乱流の発生を抑制してS/N比を向上させるこ
とができる。そして、圧力導入口の間隔を適当に設定す
ることによって、広い流量範囲にわたって良好な感度お
よびS/N比を得ることができる。In such a vortex flowmeter, when the measurement is performed in a small flow rate range, the interval between the pressure introducing ports is set to be large so as to lengthen the modulation section of the ultrasonic signal and enhance the sensitivity. You can Further, when the measurement is performed in a large flow rate range, the interval between the pressure introduction ports is set to be small, whereby the occurrence of turbulence can be suppressed and the S / N ratio can be improved. Then, by appropriately setting the interval between the pressure introduction ports, good sensitivity and S / N ratio can be obtained over a wide flow rate range.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記従
来の管路の外部にバイパス通路を設けた渦流量計では、
バイパス通路の全長が長くなるため、次のような問題が
ある。すなわち、大流量(高流速)域の計測では、カル
マン渦の発生周期が早いため、バイパス通路内の流体の
動揺周期も早くなるが、流体の動揺速度には限界があ
り、バイパス通路の全長が長いと、流体の円滑な流れが
困難になり乱流が生じやすくなるので、乱流により超音
波信号が受ける変調信号のS/N比が低下して安定した
流量測定が困難になる。However, in the vortex flowmeter in which a bypass passage is provided outside the above-mentioned conventional pipe,
Since the entire length of the bypass passage becomes long, there are the following problems. That is, in the measurement of a large flow rate (high flow velocity) region, the sway cycle of the fluid in the bypass passage becomes faster because the generation cycle of the Karman vortex is faster, but there is a limit to the sway speed of the fluid, and the entire length of the bypass passage is limited. If the length is long, the smooth flow of the fluid becomes difficult and turbulence is likely to occur. Therefore, the S / N ratio of the modulation signal received by the ultrasonic signal due to the turbulence decreases, and stable flow rate measurement becomes difficult.
【0008】一方、渦発生体に計測通路を設けた渦流量
計では、超音波送受信器の故障時、メンテナンス時等に
超音波送受信器を取りはずす場合、流体の流れを停止し
て管路内の流体を排出する必要があり、非常に手間がか
かるという問題がある。On the other hand, in the vortex flowmeter in which a measurement passage is provided in the vortex generator, when the ultrasonic transmitter / receiver is removed at the time of failure of the ultrasonic transmitter / receiver, maintenance, etc., the flow of fluid is stopped and It is necessary to discharge the fluid, which is very troublesome.
【0009】本発明は、上記の点に鑑みてなされたもの
であり、広い流量域において安定した流量計測を行うこ
とができ、しかも、超音波送受信器を容易に脱着するこ
とができる渦流量計を提供することを目的とする。The present invention has been made in view of the above points, and it is possible to perform stable flow rate measurement in a wide flow rate range, and at the same time, it is possible to easily attach and detach the ultrasonic transceiver. The purpose is to provide.
【0010】[0010]
【課題を解決するための手段】上記の課題を解決するた
めに、請求項1に係る発明は、管路内に該管路を横切る
渦発生体を配置し、該渦発生体内に前記管路を貫通する
計測通路を形成し、該計測通路と前記管路内とを連通さ
せる一対の圧力導入口を前記渦発生体の側壁に長手方向
に間隔をもって配置し、前記計測通路の両端部に超音波
送信器および超音波受信器を取付け、前記渦発生体の下
流側へのカルマン渦の発生によって生じる前記計測通路
内の流れによる超音波信号の変調に基づいて前記管路内
の流体の流量を計測するようにした渦流量計において、
前記計測通路の両端部に開閉弁を設け、該開閉弁を介し
て前記計測通路に前記超音波送信器および超音波受信器
を取付け、前記計測通路と前記開閉弁と前記超音波送受
信器とを一直線上に配置したことを特徴とする。In order to solve the above-mentioned problems, the invention according to claim 1 arranges a vortex generator traversing the pipeline in the pipeline, and the pipeline in the vortex generator. And a pair of pressure introducing ports that connect the measurement passage and the inside of the pipe passage are arranged in the side wall of the vortex generator at intervals in the longitudinal direction, and the measurement passage is formed at both ends of the measurement passage. An ultrasonic wave transmitter and an ultrasonic wave receiver are attached, and the flow rate of the fluid in the pipeline is changed based on the modulation of the ultrasonic signal by the flow in the measurement passage caused by the generation of the Karman vortex on the downstream side of the vortex generator. In the vortex flowmeter that was designed to measure,
Open / close valves are provided at both ends of the measurement passage, and the ultrasonic transmitter and the ultrasonic receiver are attached to the measurement passage through the open / close valve, and the measurement passage, the open / close valve, and the ultrasonic transmitter / receiver are connected.
It is characterized in that it is placed in line with the receiver .
【0011】この構成により、開閉弁を閉じると超音波
送信器および超音波受信器が管路内から遮断される。With this configuration, when the on-off valve is closed, the ultrasonic transmitter and the ultrasonic receiver are shut off from the inside of the conduit.
【0012】 また、請求項2に係る発明は、上記の構
成において、前記開閉弁は、前記計測通路と略同径の流
路を有するボール弁であることを特徴とする。[0012] The invention according to claim 2, in the above configuration, the on-off valve, the measurement passage and flow of substantially the same diameter
It is a ball valve having a passage .
【0013】この構成により、ボール弁を開弁させる
と、計測通路とボール弁とで超音波送受信器間に一体的
に流路が形成される。With this configuration, when the ball valve is opened, a flow path is integrally formed between the ultrasonic wave transmitter / receiver by the measurement passage and the ball valve.
【0014】[0014]
【発明の実施の形態】以下、本発明の一実施形態につい
て、図面に基づいて詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below with reference to the drawings.
【0015】本実施形態に係る渦流量計の概略構成を図
1ないし図3に示す。図1ないし図3に示すように、渦
流量計1は、ガス等の計測流体を流通させる管路2内に
筒状の渦発生体3が設けられている。渦発生体3は、管
路2の直径方向すなわち計測流体の流路に対して直交方
向に柱状に延ばされており、図2に示すように断面形状
が五角形で、内部に管路2を貫通する計測通路4が形成
されている。なお、図中の矢印Fは計測流体の流れの方
向を示している。The schematic structure of the vortex flowmeter according to this embodiment is shown in FIGS. As shown in FIGS. 1 to 3, a vortex flowmeter 1 is provided with a cylindrical vortex generator 3 in a pipe line 2 through which a measurement fluid such as gas flows. The vortex generator 3 extends in a columnar shape in the diameter direction of the conduit 2, that is, in the direction orthogonal to the flow path of the measurement fluid, and has a pentagonal cross section as shown in FIG. A measuring passage 4 is formed therethrough. The arrow F in the figure indicates the direction of flow of the measurement fluid.
【0016】渦発生体3の側壁には、管路2内の流路と
計測通路4とを連通させる一対の圧力導入口5,6が設
けられている。圧力導入口5,6は、それぞぞれ渦発生
体3の左右の管壁に対向させて流路の下流側に向かって
開口されていおり、また、管路2の中心から対称位置
に、渦発生体3の長手方向に間隔をもって配置されてい
る。The side wall of the vortex generator 3 is provided with a pair of pressure introduction ports 5 and 6 for communicating the flow passage in the pipe 2 with the measurement passage 4. The pressure inlets 5 and 6 are respectively opened toward the downstream side of the flow passage so as to face the left and right pipe walls of the vortex generator 3, and the vortex is formed at a symmetrical position from the center of the pipe 2. The generators 3 are arranged at intervals in the longitudinal direction.
【0017】渦発生体3の両端部には、それぞれボール
弁7,8(開閉弁)の一端側が接続されている。ボール
弁7,8は、計測通路4と連通するこれと略同径の直線
状の通路9,10の途中に、この通路9,10と略同径の流
路11a ,12a を有する球状の弁体11,12が回転可能に支
持されており、弁体11,12に連結された操作レバー13,
14によって弁体11,12を回転させることにより、通路
9,10を開閉するようになっている。そして、図1に示
すように、開弁させたとき、通路9,10と弁体11,12の
流路11a ,12a とが一体となって連通されるようになっ
ている。To both ends of the vortex generator 3, one ends of ball valves 7 and 8 (open / close valves) are connected, respectively. The ball valves 7 and 8 are spherical valves having passages 11a and 12a having substantially the same diameter as the passages 9 and 10 in the middle of the linear passages 9 and 10 having the same diameter and communicating with the measurement passage 4. The bodies 11 and 12 are rotatably supported, and the operating levers 13 and 12 connected to the valve bodies 11 and 12,
By rotating the valve bodies 11 and 12 by 14, the passages 9 and 10 are opened and closed. Then, as shown in FIG. 1, when the valves are opened, the passages 9 and 10 and the flow passages 11a and 12a of the valve bodies 11 and 12 are integrally connected.
【0018】 ボール弁7,8の他端側には、それぞれ
超音波送信器15および超音波受信器16が取付けられてお
り、計測通路4の両端部にボール弁7,8を介装して超
音波送信器15と超音波受信器16とが互いに対向するよう
に配置されている。そして、計測通路4とボール弁7,
8の流路 11a , 12a と超音波送受信器 15 , 16 とが一直線上
に配置されている。超音波送信器15および超音波受信器
16には、超音波送信器15から送信され、ボール弁7,8
の通路9,10および計測通路4内の流体中を伝搬して超
音波受信器16で受信されて、計測通路4内の流体の流れ
によって変調を受けた超音波信号Sを復調して、変調分
を検出し、この変調分に基づいて管路2内の流体の流速
すなわち流量に比例した信号を演算、出力する復調・演
算回路(図示せず)が接続されている。An ultrasonic transmitter 15 and an ultrasonic receiver 16 are attached to the other ends of the ball valves 7 and 8, respectively, and the ball valves 7 and 8 are provided at both ends of the measurement passage 4. The ultrasonic transmitter 15 and the ultrasonic receiver 16 are arranged so as to face each other. Then, the measurement passage 4 and the ball valve 7,
8 channels 11a and 12a and ultrasonic transmitters / receivers 15 and 16 are aligned
It is located in. Ultrasonic transmitter 15 and ultrasonic receiver
16 to the ball valve 7, 8 transmitted from the ultrasonic transmitter 15.
Of the ultrasonic wave S propagated in the fluids in the passages 9 and 10 and the measurement passage 4 and received by the ultrasonic receiver 16 and modulated by the flow of the fluid in the measurement passage 4 are demodulated and modulated. A demodulation / arithmetic circuit (not shown) is connected to detect the minute amount and to calculate and output a signal proportional to the flow velocity, that is, the flow rate of the fluid in the conduit 2 based on the modulated amount.
【0019】以上のように構成した本実施形態の作用に
ついて次に説明する。The operation of the present embodiment configured as described above will be described below.
【0020】流量計測時は、ボール弁7,8を開弁させ
て、ボール弁7,8の通路9,10、弁体11,12の流路11
a ,12a および計測通路4によって一体的に流路を形成
して使用する。管路2の流路に計測流体が流れると、渦
発生体3の下流側の左右に、交互に流速(流量)に比例
した周期でカルマン渦K(図2参照)が発生する。この
カルマン渦Kの発生にともない、渦発生体3の下流側の
左右に圧力差が生じ、これにより渦発生体3の左右に設
けられた圧力導入口5,6間に圧力差が生じて、計測通
路4内の圧力導入口5,6間の流体がカルマン渦Kの発
生周期と同じ周期で交互に反対に方向に流れて動揺す
る。When measuring the flow rate, the ball valves 7 and 8 are opened, and the passages 9 and 10 of the ball valves 7 and 8 and the flow passage 11 of the valve elements 11 and 12 are opened.
The flow path is integrally formed by the a and 12a and the measurement passage 4 for use. When the measurement fluid flows in the flow path of the pipe line 2, Karman vortices K (see FIG. 2) are alternately generated on the left and right sides of the vortex generator 3 on the downstream side in a cycle proportional to the flow velocity (flow rate). Along with the generation of the Karman vortex K, a pressure difference is generated on the left and right of the vortex generator 3 on the downstream side, which causes a pressure difference between the pressure introduction ports 5 and 6 provided on the left and right of the vortex generator 3. The fluid between the pressure introduction ports 5 and 6 in the measurement passage 4 fluctuates by alternately flowing in opposite directions at the same cycle as the generation cycle of the Karman vortex K.
【0021】そして、超音波送信器15と超音波受信器16
との間でボール弁7,8の通路9,10および計測通路4
内の流体中を伝搬して送受信される超音波信号Sは、計
測通路4内の圧力導入口5,6間の流体の流れにより変
調を受ける。超音波受信器16の出力信号を復調・演算回
路で復調して超音波信号Sが受けた変調分を検出し、こ
の変調はカルマン渦Kの交番的な発生周期に同期して正
弦的に生じることから、前記変調分の変化周波数を計測
することにより、計測流体の流速すなわち流量を演算す
ることができる。Then, the ultrasonic transmitter 15 and the ultrasonic receiver 16
Between the passages 9 and 10 of the ball valves 7 and 8 and the measurement passage 4
The ultrasonic signal S transmitted and received in the fluid inside is modulated by the flow of the fluid between the pressure introduction ports 5 and 6 in the measurement passage 4. The output signal of the ultrasonic receiver 16 is demodulated by the demodulation / arithmetic circuit to detect the modulation component of the ultrasonic signal S, and this modulation occurs sinusoidally in synchronization with the alternating generation cycle of the Karman vortex K. Therefore, the flow velocity, that is, the flow rate of the measurement fluid can be calculated by measuring the change frequency of the modulation component.
【0022】このとき、計測通路4と超音波送受信器1
6,17との間に介装されたボール弁7,8は、計測通路
4と略同径の通路9,10および弁体11,12の流路11a ,
12a によって計測通路4と一体的に流路を形成するの
で、超音波信号Sのボール弁7,8を伝搬することによ
る減衰を僅かな量にとどめることができる。At this time, the measurement passage 4 and the ultrasonic transmitter / receiver 1
Ball valves 7 and 8 interposed between 6 and 17 are passages 9 and 10 having substantially the same diameter as the measurement passage 4 and passages 11a of valve bodies 11 and 12,
Since the flow path is formed integrally with the measurement passage 4 by the 12a, the attenuation of the ultrasonic signal S caused by propagating through the ball valves 7 and 8 can be suppressed to a slight amount.
【0023】また、超音波送信器16および超音波受信器
17の脱着時には、操作レバー13,14を操作してボール弁
7,8を閉弁させることにより、超音波送信器16および
超音波受信器17が管路2内から遮断されるので、管路2
内の流体を排出することなく超音波送信器16および超音
波受信器17を脱着することができる。よって、管路2内
の流体の流れを停止させることなく、超音波送信器16お
よび超音波受信器17の着脱を容易に迅速に行うことがで
きる。Further, the ultrasonic transmitter 16 and the ultrasonic receiver
At the time of attaching / detaching 17, by operating the operation levers 13 and 14 to close the ball valves 7 and 8, the ultrasonic transmitter 16 and the ultrasonic receiver 17 are cut off from the inside of the pipe line 2. Two
The ultrasonic transmitter 16 and the ultrasonic receiver 17 can be attached / detached without discharging the fluid therein. Therefore, the ultrasonic transmitter 16 and the ultrasonic receiver 17 can be easily and quickly attached and detached without stopping the flow of the fluid in the conduit 2.
【0024】[0024]
【発明の効果】以上詳述したように、請求項1に係る発
明は、超音波送信器および超音波受信器と計測通路との
間に開閉弁を介装したことにより、開閉弁を閉じること
によって超音波送信器および超音波受信器が管路内から
遮断されるので、管路内の流体を排出することなく超音
波送信器および超音波受信器を脱着することができる。As described above in detail, in the invention according to claim 1, the on-off valve is closed by providing the on-off valve between the ultrasonic transmitter and the ultrasonic receiver and the measurement passage. Since the ultrasonic transmitter and the ultrasonic receiver are shielded from the inside of the conduit by the above, the ultrasonic transmitter and the ultrasonic receiver can be attached and detached without discharging the fluid in the conduit.
【0025】また、請求項2に係る発明は、開閉弁をボ
ール弁としたことにより、ボール弁を開弁させると、計
測通路とボール弁とで超音波送受信器間に一体的に流路
が形成されるので、超音波信号が開閉弁を通過すること
による減衰を充分小さくすることができ、計測感度が低
下することがない。In the invention according to claim 2, the ball valve is used as the opening / closing valve. When the ball valve is opened, a flow path is integrally formed between the ultrasonic transmitter / receiver in the measurement passage and the ball valve. Since it is formed, the attenuation due to the ultrasonic signal passing through the on-off valve can be made sufficiently small, and the measurement sensitivity does not decrease.
【図1】本発明の一実施形態に係る渦流量計の正面の縦
断面図である。FIG. 1 is a front vertical sectional view of a vortex flowmeter according to an embodiment of the present invention.
【図2】図1の装置の横断面図である。2 is a cross-sectional view of the device of FIG.
【図3】図1の装置の縦断面図である。3 is a vertical cross-sectional view of the device of FIG.
1 渦流量計 2 管路 3 渦発生体 4 計測通路 5,6 圧力導入口 7,8 ボール弁(開閉弁) 16 超音波送信器 17 超音波受信器 K カルマン渦 S 超音波信号 1 Vortex flow meter 2 pipelines 3 Vortex generator 4 measurement passage 5,6 Pressure inlet 7,8 ball valve (open / close valve) 16 ultrasonic transmitter 17 Ultrasonic receiver K Karman vortex S Ultrasonic signal
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉倉 博史 神奈川県川崎市川崎区富士見1丁目6番 3号 トキコ株式会社内 (56)参考文献 特開 平7−190817(JP,A) 特開 昭62−177414(JP,A) 実開 昭60−109021(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01F 1/32 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Yoshikura 1-6-3 Fujimi, Kawasaki-ku, Kanagawa Prefecture Tokiko Corporation (56) Reference JP-A-7-190817 (JP, A) JP-A 62-177414 (JP, A) Actual development Sho 60-109021 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) G01F 1/32
Claims (2)
し、該渦発生体内に前記管路を貫通する計測通路を形成
し、該計測通路と前記管路内とを連通させる一対の圧力
導入口を前記渦発生体の側壁に長手方向に間隔をもって
配置し、前記計測通路の両端部に超音波送信器および超
音波受信器を取付け、前記渦発生体の下流側へのカルマ
ン渦の発生によって生じる前記計測通路内の流れによる
超音波信号の変調に基づいて前記管路内の流体の流量を
計測するようにした渦流量計において、前記計測通路の
両端部に開閉弁を設け、該開閉弁を介して前記計測通路
に前記超音波送信器および超音波受信器を取付け、前記
計測通路と前記開閉弁と前記超音波送受信器とを一直線
上に配置したことを特徴とする渦流量計。1. A vortex generator that traverses the pipeline is arranged in the pipeline, a measurement passage that penetrates the pipeline is formed in the vortex generator, and the measurement passage and the interior of the pipeline are communicated with each other. A pair of pressure introduction ports are arranged on the side wall of the vortex generator with a space in the longitudinal direction, and an ultrasonic transmitter and an ultrasonic receiver are attached to both ends of the measurement passage, and a Kalman to the downstream side of the vortex generator is installed. In the vortex flowmeter for measuring the flow rate of the fluid in the pipe line based on the modulation of the ultrasonic signal by the flow in the measurement passage caused by the generation of the vortex, opening / closing valves are provided at both ends of the measurement passage. Attaching the ultrasonic transmitter and the ultrasonic receiver to the measurement passage through the on-off valve ,
Align the measurement passage with the on-off valve and the ultrasonic transceiver
A vortex flowmeter characterized by being placed above .
流路を有するボール弁であることを特徴とする請求項1
に記載の渦流量計。Wherein said opening and closing valve, the measuring passage is substantially the same diameter
A ball valve having a flow path.
Vortex flowmeter described in.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25018195A JP3491185B2 (en) | 1995-09-04 | 1995-09-04 | Vortex flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25018195A JP3491185B2 (en) | 1995-09-04 | 1995-09-04 | Vortex flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0972769A JPH0972769A (en) | 1997-03-18 |
JP3491185B2 true JP3491185B2 (en) | 2004-01-26 |
Family
ID=17204028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25018195A Expired - Fee Related JP3491185B2 (en) | 1995-09-04 | 1995-09-04 | Vortex flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3491185B2 (en) |
-
1995
- 1995-09-04 JP JP25018195A patent/JP3491185B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0972769A (en) | 1997-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4646575A (en) | Ultrasonic flowmeter | |
US5717145A (en) | Detector for an ultrasonic flow meter | |
JP2005522686A (en) | Averaging orifice primary flow element | |
GB2161941A (en) | Mass flow meter | |
EP2074432B1 (en) | Arrangement for measuring fluid flow velocity | |
JP3491185B2 (en) | Vortex flow meter | |
JPH09101186A (en) | Pitot-tube type mass flowmeter | |
JP2935944B2 (en) | Ultrasonic flow meter unit | |
JP2008014829A (en) | Ultrasonic flowmeter | |
EP0744596A1 (en) | Ultrasonic flow meter | |
JP3355130B2 (en) | Pulsation absorption structure of flow meter | |
KR100394345B1 (en) | segmental wedge DP flow meter | |
JP2002214002A (en) | Flow meter | |
JP3757009B2 (en) | Split flow meter | |
JP3596948B2 (en) | Flow measurement system | |
JP2002340632A (en) | Flowmeter | |
RU2201578C2 (en) | Pickup of tachometric ball flowmeter ( variants ) | |
JPS60327A (en) | Vortex flow meter | |
JPH0128421Y2 (en) | ||
JP3021671B2 (en) | Vortex flow meter | |
JPH08247807A (en) | Flowmeter | |
Torigoe | Bypassing Flowmeter Capable of Detecting Bypass Rate | |
JPH04366728A (en) | Bypass unit for flow rate sensor | |
JPH07190817A (en) | Vortex flowmeter | |
JPS6135310A (en) | Vortex flowmeter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081114 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081114 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091114 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101114 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101114 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |