JP3411663B2 - Permanent magnet alloy, permanent magnet alloy powder and method for producing the same - Google Patents
Permanent magnet alloy, permanent magnet alloy powder and method for producing the sameInfo
- Publication number
- JP3411663B2 JP3411663B2 JP07446594A JP7446594A JP3411663B2 JP 3411663 B2 JP3411663 B2 JP 3411663B2 JP 07446594 A JP07446594 A JP 07446594A JP 7446594 A JP7446594 A JP 7446594A JP 3411663 B2 JP3411663 B2 JP 3411663B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- magnet alloy
- compound
- phase
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 36
- 239000000956 alloy Substances 0.000 title claims description 36
- 239000000843 powder Substances 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 56
- 239000013078 crystal Substances 0.000 claims description 54
- 230000005291 magnetic effect Effects 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 21
- 229910052717 sulfur Inorganic materials 0.000 claims description 17
- 229910052697 platinum Inorganic materials 0.000 claims description 15
- 238000010791 quenching Methods 0.000 claims description 15
- 229910052725 zinc Inorganic materials 0.000 claims description 15
- 239000000470 constituent Substances 0.000 claims description 14
- 229910052737 gold Inorganic materials 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 229910000859 α-Fe Inorganic materials 0.000 claims description 14
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 229910052745 lead Inorganic materials 0.000 claims description 12
- 229910052779 Neodymium Inorganic materials 0.000 claims description 10
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 230000000630 rising effect Effects 0.000 claims description 8
- -1 M is A 1 Inorganic materials 0.000 claims description 4
- 238000009689 gas atomisation Methods 0.000 claims description 4
- 238000007783 splat quenching Methods 0.000 claims description 4
- 238000010298 pulverizing process Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 21
- 238000002425 crystallisation Methods 0.000 description 13
- 230000008025 crystallization Effects 0.000 description 13
- 229910052761 rare earth metal Inorganic materials 0.000 description 13
- 230000005347 demagnetization Effects 0.000 description 11
- 229910052742 iron Inorganic materials 0.000 description 8
- 230000004907 flux Effects 0.000 description 6
- 238000009776 industrial production Methods 0.000 description 5
- 150000002910 rare earth metals Chemical class 0.000 description 5
- 229910001047 Hard ferrite Inorganic materials 0.000 description 4
- 229910000828 alnico Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 229910001172 neodymium magnet Inorganic materials 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、各種モーター、スピ
ーカー用並びにメーターおよびフォーカスコンバージェ
ンスリングなどに最適なボンド磁石用合金及び合金粉末
とその製造方法に係り、希土類元素を少量含有する特定
組成のFe−B−R−M(M=Al,Si,S,Cu,
Zn,Ga,Ag,Pt,Au,Pb)合金溶湯を回転
ロールを用いた超急冷法、スプラット急冷法、ガスアト
マイズ法あるいはこれらの併用法にてアモルファス組織
あるいは微細結晶とアモルファスが混在する組織とし、
特定の熱処理にてFe3B型化合物並びにα−鉄とNd2
Fe14B型結晶構造の構成相との微細結晶集合体からな
る合金粉末を得、これを樹脂にて結合することにより、
ハードフェライト磁石では得られなかった8kG以上の
残留磁束密度Brを有し、温度特性にすぐれたFe−B
−R系ボンド磁石を得ることができる永久磁石合金並び
に永久磁石合金粉末とその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to alloys and alloy powders for bond magnets optimal for various motors, speakers and meters and focus convergence rings, and a method for producing the same, and Fe of a specific composition containing a small amount of a rare earth element. -B-R-M (M = Al, Si, S , Cu,
Zn, Ga, Ag, Pt, Au, Pb) alloy melt is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by a super quenching method using a rotating roll, a splat quenching method, a gas atomizing method or a combination thereof.
Fe 3 B type compound as well as α-iron and Nd 2 by specific heat treatment
By obtaining an alloy powder consisting of a fine crystal aggregate with the constituent phases of the Fe 14 B type crystal structure and binding this with a resin,
Fe-B having a residual magnetic flux density Br of 8 kG or more, which was not obtained with a hard ferrite magnet, and excellent temperature characteristics.
Permanent magnet alloy powder in the permanent magnet alloy sequence <br/> can get -R based bonded magnet and a method for manufacturing the same.
【0002】[0002]
【従来の技術】高い残留磁束密度Brを要求される分野
や高温並びに低温下での使用を要求される永久磁石に
は、主にBrが10kG以上、固有保磁力iHcが0.
5kOe〜2kOeの磁気特性を有するアルニコ磁石、
あるいはBrが8kG以上、iHcが6kOe以上のS
m−Co磁石が使用されている。2. Description of the Related Art In fields requiring a high residual magnetic flux density Br and permanent magnets required to be used at high and low temperatures, Br is mainly 10 kG or more and an intrinsic coercive force iHc is 0.
An alnico magnet having a magnetic characteristic of 5 kOe to 2 kOe,
Or S with Br of 8 kG or more and iHc of 6 kOe or more
m-Co magnets are used.
【0003】これらの磁石は、原産国からの供給量が不
安定であり、安定的に入手し難いCoを主原料としてお
り、アルニコ磁石の場合で20〜30wt%、Sm−C
o磁石で50〜65wt%も含有している。また、Sm
−Co磁石に含有されるSmは希土類鉱物中に含まれる
量が少なく極めて高価で安定的に入手し難い問題があ
る。しかし、自動車の電装品用のモーターやスピードメ
ーターに用いられる磁石は、80℃以上の環境で使用さ
れる可能性があるため、かかる用途にはアルニコ磁石並
びにSm−Co磁石が、はるかに安価で入手できるハー
ドフェライトをしのいで主流を占めている。These magnets are mainly made of Co, which is difficult to obtain stably because the supply amount from the country of origin is unstable. In the case of Alnico magnet, 20 to 30 wt%, Sm-C
It also contains 50 to 65 wt% of a magnet. Also, Sm
There is a problem that Sm contained in a Co magnet is extremely expensive because it is contained in a rare earth mineral in a small amount and is difficult to obtain stably. However, magnets used for motors and speedometers for automobile electrical components may be used in an environment of 80 ° C. or higher, so Alnico magnets and Sm-Co magnets are much cheaper for such applications. It occupies the mainstream over the available hard ferrites.
【0004】特に、Sm−Co磁石は今日の自動車の燃
費向上の要請から高価な磁石であるにもかかわらず、そ
の優れた磁気特性を有することから、小型高性能化が要
求される磁気回路に使用されている。そこで、CoやS
mを含有せず、磁気特性と温度特性のすぐれた永久磁石
材料が要求されているが、現在のところ大量生産が可能
で安価に提供でき、Brが8kG以上の磁石材料は、見
出されていない。In particular, the Sm-Co magnet is an expensive magnet due to the demand for improving the fuel efficiency of today's automobiles, but has excellent magnetic characteristics, so that it is suitable for a magnetic circuit that requires a small size and high performance. It is used. So Co and S
There is a demand for a permanent magnet material that does not contain m and has excellent magnetic characteristics and temperature characteristics. At present, however, a magnetic material that can be mass-produced and can be provided at low cost and has a Br of 8 kG or more has been found. Absent.
【0005】[0005]
【発明が解決しようとする課題】CoやSmを含有しな
いNd−Fe−B系磁石において、最近、Nd4Fe77
B19(at%)近傍でFe3B型化合物を主相とする磁
石材料が提案(R.Coehoorn等、J.de P
hys.,C8,1988,669〜670頁)され
た。この磁石材料はアモルファスリボンを熱処理するこ
とにより、Fe3B相とNd2Fe14B相が混在する結晶
集合組織を有する準安定構造の永久磁石材料であり、1
0kG程度のBrと2〜3kOeのiHcを有するが、
硬磁性材料になり得るための熱処理条件が狭く限定さ
れ、工業生産上実用的でない。Recently, in an Nd-Fe-B system magnet containing no Co or Sm, Nd 4 Fe 77 was used.
A magnetic material having a Fe 3 B type compound as a main phase in the vicinity of B 19 (at%) is proposed (R. Coehorn et al., J. de P.
hys. , C8, 1988, pp. 669-670). This magnet material is a metastable structure permanent magnet material having a crystal texture in which Fe 3 B phase and Nd 2 Fe 14 B phase are mixed by heat-treating an amorphous ribbon.
Although it has Br of about 0 kG and iHc of 2 to 3 kOe,
The heat treatment conditions for becoming a hard magnetic material are narrowly limited, which is not practical in industrial production.
【0006】また、このFe3B型化合物を主相とする
Nd−Fe−B系磁石のNdの一部をDyとTbで置換
してiHcを3〜5kOeに改善する研究が発表されて
いるが、高価な元素を添加する問題のほか、添加希土類
元素はその磁気モーメントがNdやFeの磁気モーメン
トと反平行して結合するため磁化並びに減磁曲線の角形
性が減少する問題がある(R.Coehoorn、J.
Magn,Magn,Mat.、83(1990)22
8〜230頁)。Further, a study has been published to improve iHc to 3 to 5 kOe by substituting a part of Nd of the Nd-Fe-B system magnet having the Fe 3 B type compound as a main phase with Dy and Tb. However, in addition to the problem of adding an expensive element, there is a problem that the magnetic moment of the rare earth element added is coupled antiparallel to the magnetic moments of Nd and Fe, and the squareness of the magnetization and demagnetization curve is reduced (R Coehoorn, J .;
Magn, Magn, Mat. , 83 (1990) 22
8 to 230).
【0007】いずれにしてもFe3B型Nd−Fe−B
系磁石は、超急冷法によりアモルファス化した後、熱処
理して硬磁性材料化できるが、iHcが低く、かつ前記
熱処理条件が狭く、安定した工業生産ができず、アルニ
コ磁石やSm−Co磁石の代替えとして安価に提供する
ことができない。In any case, Fe 3 B type Nd-Fe-B
The system magnet can be made into a hard magnetic material by heat treatment after being made amorphous by the ultra-quenching method, but iHc is low and the heat treatment conditions are narrow, and stable industrial production cannot be performed. As an alternative, it cannot be provided inexpensively.
【0008】この発明は、軟磁性相と硬磁性相が同一組
織内に混在し、希土類濃度が低い鉄系永久磁石材料に着
目し、この磁石のiHcを向上させ、安定した工業生産
が可能な製造方法の確立と、10kG以上の残留磁束密
度Brを有しハードフェライト磁石に匹敵するコストパ
フォーマンスを有し、安価に提供できる永久磁石合金並
びに永久磁石合金粉末とその製造方法の提供を目的とし
ている。The present invention focuses on an iron-based permanent magnet material in which a soft magnetic phase and a hard magnetic phase are mixed in the same structure and has a low rare earth concentration, and the iHc of this magnet is improved to enable stable industrial production. Establishing a manufacturing method, and having a residual magnetic flux density Br of 10 kG or more, having cost performance comparable to that of a hard ferrite magnet, providing a permanent magnet alloy that can be provided at low cost, and a permanent magnet alloy powder and a manufacturing method thereof. It is intended to be provided.
【0009】[0009]
【課題を解決するための手段】この発明は、軟磁性相と
硬磁性相が同一組織内に混在し、希土類濃度が4at%
程度と低い鉄系永久磁石のiHcを向上させ、安定した
工業生産が可能な製造方法を目的に種々検討した結果、
希土類元素の含有量が少なく、Al,Si,S,Cu,
Zn,Ga,Ag,Pt,Au,Pbの少なくとも1種
を少量添加した鉄基の特定組成の合金溶湯を超急冷法等
にてアモルファス組織あるいは微細結晶とアモルファス
が混在する組織とし、特定の熱処理にてFe3B型化合
物並びにα−鉄とNd2Fe14B型結晶構造の構成相と
の微細結晶集合体からなる合金粉末を得ることにより、
アルニコ磁石やSm−Co磁石に匹敵する10kG以上
の残留磁束密度Brを有するボンド磁石に最適の希土類
磁石合金粉末が得られることを知見し、この発明を完成
した。According to the present invention, a soft magnetic phase and a hard magnetic phase are mixed in the same structure, and the rare earth concentration is 4 at%.
As a result of various studies aimed at improving the iHc of the iron-based permanent magnet, which is as low as a degree, and enabling stable industrial production,
The content of rare earth elements is low, and Al, Si, S , Cu,
A specific heat treatment is performed by using an ultra-quenching method or the like to form an alloy melt having a specific composition of an iron base to which a small amount of at least one of Zn, Ga, Ag, Pt, Au, and Pb is added as an amorphous structure or a structure in which fine crystals and amorphous are mixed. To obtain an alloy powder composed of a Fe 3 B type compound and a fine crystal aggregate of α-iron and a constituent phase of the Nd 2 Fe 14 B type crystal structure,
The inventors have found that an optimum rare earth magnet alloy powder can be obtained for a bond magnet having a residual magnetic flux density Br of 10 kG or more, which is comparable to an alnico magnet or an Sm-Co magnet, and completed the present invention.
【0010】この発明は、組成式をFe100-x-y-z Bx
RyMz (但しRはPrまたはNdの1種または2種、
MはAl,Si,S,Cu,Zn,Ga,Ag,Pt,
Au,Pbの1種または2種以上)と表し、組成範囲を
限定する記号x、y、zが下記値を満足し、Fe3B型
化合物並びにα−鉄と、Nd2Fe14B型結晶構造を有
する化合物とが同一粉末粒子中に共存し、各構成相の平
均結晶粒径が1nm〜50nmの範囲にある微細結晶集
合体であり、磁気特性がiHc≧3.0kOe、Br≧
11kG、(BH)max≧16MGOeであることを
特徴とする永久磁石合金である。
10≦x≦30at%、
3≦y≦5at%、
0.1≦z≦3at%The present invention uses the composition formula Fe 100-xyz B x
R y M z (where R is one or two of Pr or Nd,
M is Al, Si, S , Cu, Zn, Ga, Ag, Pt,
Au, Pb 1 type or 2 types or more), and the symbols x, y, z that limit the composition range satisfy the following values, and Fe 3 B type compounds and α-iron, and Nd 2 Fe 14 B type crystals It is a fine crystal aggregate in which a compound having a structure coexists in the same powder particle, and the average crystal grain size of each constituent phase is in the range of 1 nm to 50 nm , and the magnetic characteristics are iHc ≧ 3.0 kOe, Br ≧
It is a permanent magnet alloy characterized in that 11 kG and (BH) max ≧ 16 MGOe . 10 ≦ x ≦ 30 at% , 3 ≦ y ≦ 5 at% , 0.1 ≦ z ≦ 3 at%
【0011】この発明は、組成式をFe100-x-y-zBxR
yMz (但しRはPrまたはNdの1種または2種、M
はAl,Si,S,Cu,Zn,Ga,Ag,Pt,A
u,Pbの1種または2種以上)と表し、組成範囲を限
定する記号x、y、zが下記値を満足し、Fe3B型化
合物並びにα−鉄とNd2Fe14B型結晶構造を有する
構成相とが同一粉末粒子中に共存し、各構成相の平均結
晶粒径が1nm〜50nmの範囲にある微細結晶集合体
からなり、磁気特性がiHc≧3.0kOe、Br≧1
0kG、(BH)max≧9MGOeであることを特徴
とする永久磁石合金粉末である。
10≦x≦30at%、
3≦y≦5at%、
0.1≦z≦3at%The present invention uses the composition formula Fe 100-xyz B x R
y M z (where R is one or two of Pr or Nd, M
Is Al, Si, S 2 , Cu, Zn, Ga, Ag, Pt, A
u or Pb), and the symbols x, y and z for limiting the composition range satisfy the following values, and Fe 3 B type compounds and α-iron and Nd 2 Fe 14 B type crystal structures And a constituent phase having a coexistence in the same powder particle, and each constituent phase is composed of a fine crystal aggregate having an average crystal grain size in the range of 1 nm to 50 nm, and has magnetic properties of iHc ≧ 3.0 kOe and Br ≧ 1.
It is a permanent magnet alloy powder characterized in that 0 kG and (BH) max ≧ 9 MGOe. 10 ≦ x ≦ 30 at% , 3 ≦ y ≦ 5 at% , 0.1 ≦ z ≦ 3 at%
【0012】また、この発明は、
(1)組成式をFe100-x-y-zBxRyMz (但しRはP
rまたはNdの1種または2種、MはAl,Si,S,
Cu,Zn,Ga,Ag,Pt,Au,Pbの1種また
は2種以上)と表し、組成範囲を限定する記号x、y、
zが上述の値を満足する合金溶湯を回転ロールを用いた
超急冷法、スプラット急冷法、ガスアトマイズ法あるい
はこれらを組み合せて急冷し、アモルファス組織あるい
は微細結晶とアモルファスが混在する組織となし、
(2)さらに結晶化が開始する温度付近から600℃〜
700℃の処理温度までの昇温速度が15℃/分〜50
℃/秒になる結晶化熱処理を施し、
(3)Fe3B型化合物並びにα−鉄と、Nd2Fe14B
型結晶構造を有する化合物とが同一粉末粒子中に共存
し、各構成相の平均結晶粒径が1nm〜50nmの範囲
にある微結晶集合体を得たのち、
(4)必要に応じてこれを、平均粒径3μm〜500μ
mに粉砕して磁石合金粉末を得ることを特徴とする希土
類合金粉末の製造方法である。The present invention also provides (1) the composition formula: Fe 100-xyz B x R y M z (where R is P
1 or 2 of r or Nd, M is Al, Si, S 2 ,
Cu, Zn, Ga, Ag, Pt, Au, and Pb), and symbols x and y for limiting the composition range.
A molten alloy having z satisfying the above-mentioned value is quenched by a super-quenching method using a rotating roll, a splat quenching method, a gas atomizing method or a combination of these methods to obtain an amorphous structure or a structure in which fine crystals and amorphous are mixed. ) Further, from a temperature around the point where crystallization starts, 600 ° C ~
The temperature rising rate up to the processing temperature of 700 ° C. is 15 ° C./min to 50
(3) Fe 3 B type compound and α-iron, and Nd 2 Fe 14 B
A compound having a type crystal structure coexists in the same powder particle, and a fine crystal aggregate in which the average crystal grain size of each constituent phase is in the range of 1 nm to 50 nm is obtained, and then (4) , Average particle size 3 μm to 500 μm
It is a method for producing a rare earth alloy powder, which is characterized by pulverizing to m to obtain a magnet alloy powder.
【0013】組成の限定理由
希土類元素RはPrまたはNdの1種また2種を特定量
含有のときのみ、高い磁気特性が得られ、他の希土類、
例えばCe、LaではiHcが2kOe以上の特性が得
られず、またSm以降の中希土類元素、重希土類元素は
磁気特性の劣化を招来するとともに磁石を高価格にする
ため好ましくない。Rは、3at%未満では3kOe以
上のiHcが得られず、また5at%を越えると10k
G以上のBrが得られないため、3〜5at%の範囲と
する。Reasons for limiting the composition The rare earth element R has high magnetic properties only when it contains one or two of Pr or Nd in a specific amount.
For example, in the case of Ce and La, the characteristic that iHc is 2 kOe or more cannot be obtained, and medium rare earth elements and heavy rare earth elements after Sm cause deterioration of magnetic characteristics and make the magnet expensive, which is not preferable. If R is less than 3 at%, iHc of 3 kOe or more cannot be obtained, and if it exceeds 5 at%, it is 10 k.
Since Br of G or more cannot be obtained, the range is 3 to 5 at%.
【0014】Bは、10at%未満では超急冷法を用い
てもアモルファス組織が得られず、熱処理を施しても3
kOe未満のiHcしか得られない。また、30at%
を越えると減磁曲線の角形性が著しく低下し、10kG
以上のBrが得られないため、10〜30at%の範囲
とする。好ましくは、15〜20at%が良い。If B is less than 10 at%, an amorphous structure cannot be obtained even if the ultra-quenching method is used, and even if a heat treatment is applied, it becomes 3
Only iHc less than kOe can be obtained. Also, 30 at%
If it exceeds, the squareness of the demagnetization curve will be significantly reduced and 10 kG
Since the above Br cannot be obtained, the range is 10 to 30 at%. It is preferably 15 to 20 at%.
【0015】Al、Si、S、Cu、Zn、Ga、A
g、Pt、Au、Pbは減磁曲線の角型性を改善し、B
rおよび(BH)maxを増大させる効果を有するが、
0.1at%未満ではかかる効果が得られず、3at%
を超えると10kG以上のBrが得られないため、0.
1〜3at%の範囲とする。好ましくは、0.5〜1.
5at%が良い。Al, Si, S , Cu, Zn, Ga, A
g, Pt, Au, and Pb improve the squareness of the demagnetization curve, and B
has the effect of increasing r and (BH) max,
If it is less than 0.1 at%, such an effect cannot be obtained, and 3 at%
Exceeding 10 kG, no Br of 10 kG or more can be obtained.
The range is 1 to 3 at%. Preferably 0.5-1.
5at% is good.
【0016】Feは、上述の元素の含有残余を占める。Fe occupies the remaining content of the above-mentioned elements.
【0017】製造条件の限定理由
この発明において、上述の特定組成の合金溶湯を超急冷
法にてアモルファスあるいは微細結晶とアモルファスが
混在する組織となし、結晶化が開始する温度付近から6
00℃〜700℃の処理温度までの昇温速度が15℃/
分〜50℃/秒になる結晶化熱処理を施すことにより、
Fe3B型化合物並びにα−鉄と、Nd2Fe14B型結晶
構造を有する化合物相とが同一粉末中に共存し、各構成
相の平均結晶粒径が1nm〜50nmの範囲にある微結
晶集合体を得ることが最も重要であり、合金溶湯の超急
冷処理には公知の回転ロールを用いた超急冷法を採用で
きるが、実質的にアモルファスもしくは微細結晶がアモ
ルファスの混在する組織が得られれば、回転ロールを用
いた超急冷法の他にもスプラット急冷法、ガスアトマイ
ズ法あるいはこれらを組み合せた急冷方法を採用しても
よい。例えば、Cu製ロールを用いる場合は、そのロー
ル表面周速度が10〜50m/秒の範囲が好適な急冷組
織が得られるため好ましい。すなわちロール周速度が1
0m/秒未満ではアモルファス組織とならず好ましくな
い。また50m/秒を超えると、結晶化の際、良好な硬
磁気特性の得られる微細結晶集合体とならず好ましくな
い。ただし、少量のα−Fe相が急冷組織中に存在して
いても磁気特性を著しく低下させるものでなく許容され
る。Reasons for limiting manufacturing conditions In the present invention, the molten alloy having the above-mentioned specific composition is formed into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method, and the temperature is about 6 from the temperature at which crystallization starts.
The temperature rising rate from the processing temperature of 00 ° C to 700 ° C is 15 ° C /
By performing the crystallization heat treatment at a temperature of min.
Fe 3 B type compounds and α-iron, and a compound phase having an Nd 2 Fe 14 B type crystal structure coexist in the same powder, and the average crystal grain size of each constituent phase is in the range of 1 nm to 50 nm It is most important to obtain an aggregate, and a super-quenching method using a known rotating roll can be adopted for the super-quenching treatment of the molten alloy, but it is possible to obtain a structure in which amorphous or fine crystals are substantially mixed. For example, a splat quenching method, a gas atomizing method, or a quenching method combining these methods may be adopted in addition to the super quenching method using a rotating roll. For example, when a Cu roll is used, a roll surface peripheral velocity in the range of 10 to 50 m / sec is preferable because a suitable quenched structure can be obtained. That is, the roll peripheral speed is 1
When it is less than 0 m / sec, an amorphous structure is not formed, which is not preferable. On the other hand, if it exceeds 50 m / sec, it is not preferable because it does not form a fine crystal aggregate capable of obtaining good hard magnetic properties during crystallization. However, even if a small amount of α-Fe phase is present in the quenched structure, it does not significantly deteriorate the magnetic properties and is acceptable.
【0018】この発明において、上述の特定組成の合金
溶湯を超急冷法にてアモルファスあるいは微細結晶とア
モルファスが混在する組織となした後、磁気特性が最高
となる熱処理条件は組成に依存するが、熱処理温度が6
00℃未満ではNd2Fe14B相が析出しないためiH
cが発現しない。また700℃を超えると粒成長が著し
く、iHc、Brおよび減磁曲線の角形性が劣化し、上
述の磁気特性が得られないため、熱処理温度は600〜
700℃に限定する。熱処理雰囲気は酸化をふせぐた
め、Arガス、N2ガスなどの不活性ガス雰囲気中もし
くは10-2Torr以上の真空中が好ましい。磁気特性
は熱処理時間には依存しないが、6時間を超えるような
場合、若干時間の経過とともにBrが低下する傾向があ
るため、好ましくは6時間未満が良い。In the present invention, after the molten alloy having the above-mentioned specific composition is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the ultra-quenching method, the heat treatment condition that maximizes the magnetic characteristics depends on the composition. Heat treatment temperature is 6
If the temperature is less than 00 ° C, the Nd 2 Fe 14 B phase does not precipitate, so iH
c is not expressed. Further, when the temperature exceeds 700 ° C., grain growth is remarkable, iHc, Br, and the squareness of the demagnetization curve are deteriorated, and the above-mentioned magnetic properties cannot be obtained.
Limit to 700 ° C. Since the heat treatment atmosphere prevents oxidation, it is preferably in an atmosphere of an inert gas such as Ar gas or N 2 gas or in a vacuum of 10 -2 Torr or more. Magnetic properties are not dependent on heat treatment time, when the 6 hours that obtain super, since the Br with the passage of some time tends to decrease, preferably less than 6 hours.
【0019】この発明において重要な特徴として、熱処
理に際して結晶化が開始する温度付近以上からの昇温速
度であり、15℃/分未満の昇温速度では、昇温中に粒
成長が起こり、良好な硬磁気特性の得られる微細結晶集
合体とならず、3kOe以上のiHcが得られず好まし
くない。また、50℃/秒を超える昇温速度では、60
0℃を通過してから生成するNd2Fe14B相の析出が
十分に行われず、iHcが低下するだけでなく、Br点
近傍の減磁曲線の第2象限に磁化の低下のある減磁曲線
となり、(BH)maxが低下するため好ましくない。
結晶化が開始する温度は本磁石組成の非晶質合金中にお
いてFe3BおよびFeが結晶化する温度であり、昇温
過程における発熱反応として、DTA、DSCなどの手
法を用いて明瞭に測定できる。なお、熱処理に際して結
晶化開始温度までの昇温速度は任意であり、急速加熱な
どを適用して処理能率を高めることができる。An important feature of the present invention is the rate of temperature increase from around the temperature at which crystallization starts during heat treatment, and at a rate of temperature increase of less than 15 ° C./min, grain growth occurs during temperature increase, which is good. It is not preferable because it does not form a fine crystal aggregate having excellent hard magnetic properties and iHc of 3 kOe or more cannot be obtained. Also, in the ultra-El heating rate is 50 ° C. / sec, 60
The Nd 2 Fe 14 B phase generated after passing 0 ° C. is not sufficiently precipitated, and not only the iHc decreases, but also the demagnetization with a decrease in the magnetization in the second quadrant of the demagnetization curve near the Br point. It becomes a curve and (BH) max decreases, which is not preferable.
The temperature at which crystallization starts is the temperature at which Fe 3 B and Fe crystallize in the amorphous alloy of the present magnet composition, and it is clearly measured using a method such as DTA or DSC as an exothermic reaction in the temperature rising process. it can. In the heat treatment, the temperature rising rate up to the crystallization start temperature is arbitrary, and rapid heating or the like can be applied to increase the processing efficiency.
【0020】結晶構造
この発明による永久磁石合金の結晶相は、強磁性を有す
るFe3B型化合物並びにα−鉄からなる軟磁性相と、
Nd2Fe14B型結晶構造を有する硬磁性相とが同一粉
末中に共存し、各構成相の平均結晶粒径が1nm〜50
nmの範囲の微細結晶集合体からなることを特徴として
いる。この発明において、磁石合金の平均結晶粒径が5
0nmを超えると、Brおよび減磁曲線の角形性が劣化
し、Br≧10kG、(BH)max≧9MGOeの磁
気特性を得ることができない。また、平均結晶粒径は細
かいほど好ましいが、1nm未満の平均結晶粒径を得る
ことは工業生産上困難であるため、下限を1nmとす
る。[0020] The crystal structure crystalline phase of the permanent magnet alloy according to the present invention, a soft magnetic phase consisting of Fe 3 B type compound and α- iron having ferromagnetic,
A hard magnetic phase having an Nd 2 Fe 14 B type crystal structure coexists in the same powder, and the average crystal grain size of each constituent phase is 1 nm to 50.
It is characterized by comprising a fine crystal aggregate in the range of nm. In the present invention, the average crystal grain size of the magnet alloy is 5
If it exceeds 0 nm, the squareness of Br and the demagnetization curve deteriorates, and the magnetic characteristics of Br ≧ 10 kG and (BH) max ≧ 9 MGOe cannot be obtained. Further, the smaller the average crystal grain size is, the more preferable, but it is difficult to obtain the average crystal grain size of less than 1 nm in industrial production. Therefore, the lower limit is set to 1 nm.
【0021】磁石化方法
特定組成の合金溶湯を前述の超急冷法にてアモルファス
組織あるいは微細結晶とアモルファスが混在する組織と
なし、結晶化が開始する温度付近から600℃〜700
℃の処理温度までの昇温速度が15℃/分〜50℃/秒
になる結晶化熱処理を施すことにより、平均結晶粒径が
1nm〜50nmの範囲にある微結晶集合体を得たこの
発明による永久磁石合金粉末を用いて磁石化するには、
700℃以下で固化、圧密化できる公知の焼結磁石化方
法ならびにボンド磁石化方法の何れも採用することがで
き、必要な場合は、当該合金を平均結晶粒径が3〜50
0μmに粉砕したのち、公知のバインダーと混合して所
要のボンド磁石となすことにより、8kG以上の残留磁
束密度Brを有するボンド磁石を得ることができる。Magnetization Method A molten alloy having a specific composition is made into an amorphous structure or a structure in which fine crystals and amorphous are mixed by the above-mentioned rapid quenching method, and 600 ° C. to 700 ° C. near the temperature at which crystallization starts.
The present invention provides a fine crystal aggregate having an average crystal grain size in the range of 1 nm to 50 nm by performing a crystallization heat treatment at a temperature rising rate up to a treatment temperature of 15 ° C of 15 ° C / min to 50 ° C / sec. To magnetize using the permanent magnet alloy powder by
Any known sintered magnetizing method and bond magnetizing method capable of solidifying and compacting at 700 ° C. or less can be adopted, and if necessary, the alloy has an average crystal grain size of 3 to 50.
After crushing to 0 μm and mixing with a known binder to form a required bonded magnet, a bonded magnet having a residual magnetic flux density Br of 8 kG or more can be obtained.
【0022】[0022]
【作用】この発明は、希土類元素の含有量が少ない特定
組成のFe−B−R−M(RはPrまたはNd、MはA
l、Si、S、Cu、Zn、Ga、Ag、Pt、Au、
Pbの1種もしくは2種以上)の合金溶湯を超急冷法に
てアモルファス組織あるいは微細結晶とアモルファスが
混在する組織となし、得られたリボン、フレーク、球状
粉末を結晶化が開始する温度付近から600〜700℃
での温度処理までの昇温速度が15℃/分〜50℃/秒
になる結晶化熱処理を施すことにより、軟磁性を有する
Fe3B型化合物並びにα−鉄と、Nd2Fe14B型結晶
構造を有する硬磁性相とが同一粉末中に共存し、各構成
相の平均結晶粒径が1nm〜50nmの範囲にある微結
晶集合体を得る。この際、M(=Al、Si、S、C
u、Zn、Ga、Ag、Pt、Au、Pb)を加える
と、Mを含まない組成に比べ約1/2〜1/3に結晶粒
が微細化する。この微細結晶化によりBrおよび角形性
の向上が得られ、iHc≧3.0kOe、Br≧11k
G、(BH)max≧16MGOeの磁気特性を有する
永久磁石合金、及びiHc≧3kOe、Br≧10k
G、(BH)max≧9MGOeの磁気特性を有する永
久磁石合金粉末を得ることができる。The present invention is characterized in that Fe-B-R-M (R is Pr or Nd, M is A) of a specific composition containing a small amount of rare earth elements.
1, Si, S 2 , Cu, Zn, Ga, Ag, Pt, Au,
The molten alloy of Pb (one or more kinds of Pb) is formed by an ultra-quenching method into an amorphous structure or a structure in which fine crystals and amorphous are mixed, and the obtained ribbons, flakes and spherical powders are heated from around the temperature at which crystallization starts. 600-700 ° C
The Fe 3 B type compound having soft magnetism and α-iron, and Nd 2 Fe 14 B type are obtained by performing a crystallization heat treatment at a temperature rising rate up to the temperature treatment of 15 ° C./min to 50 ° C./sec. A hard magnetic phase having a crystal structure coexists in the same powder, and a fine crystal aggregate having an average crystal grain size of each constituent phase in the range of 1 nm to 50 nm is obtained. At this time, M (= Al, Si, S , C
When u, Zn, Ga, Ag, Pt, Au, and Pb) are added, the crystal grains become finer by about 1/2 to 1/3 as compared with the composition not containing M. Improvement of Br and squareness is obtained by this fine crystallization, iHc ≧ 3.0 kOe, Br ≧ 11 k
G, has magnetic properties of (BH) max ≧ 16 MGOe
Permanent magnet alloy, and iHc ≧ 3kOe, Br ≧ 10k
A permanent magnet alloy powder having magnetic properties of G, (BH) max ≧ 9 MGOe can be obtained.
【0023】[0023]
【実施例】実施例1
表1のNo.1〜13の組成となるように、純度99.
5%以上のFe、Al、Si、S、Cu、Zn、Ga、
Ag、Pt、Au、Pb、B、Nd、Prの金属を用い
て、総量が30grとなるように秤量し、底部に直径
0.8mmのオリフィスを有する石英るつぼ内に投入
し、圧力56cmHgのAr雰囲気中で高周波加熱によ
り溶解し、溶解温度を1300℃にした後、湯面をAr
ガスにより加圧してロール周速度20m/秒にて回転す
る室温のCu製ロールの外周面に0.7mmの高さから
溶湯を噴出させて、幅2〜3mm、厚み20〜40μm
の超急冷薄帯を作製した。得られた超急冷薄帯をCuK
αの特性X線によりアモルファスであることを確認し
た。Example 1 No. 1 in Table 1 Purity of 99.
5% or more of Fe, Al, Si, S 2 , Cu, Zn, Ga,
Metals of Ag, Pt, Au, Pb, B, Nd, and Pr were weighed so that the total amount was 30 gr, put into a quartz crucible having an orifice with a diameter of 0.8 mm at the bottom, and Ar at a pressure of 56 cmHg. It is melted by high frequency heating in an atmosphere, and the melting temperature is set to 1300 ° C.
A molten metal is jetted from a height of 0.7 mm onto the outer peripheral surface of a room temperature Cu roll that is pressurized with a gas and rotates at a roll peripheral speed of 20 m / sec, and has a width of 2 to 3 mm and a thickness of 20 to 40 μm.
The ultra-quenched ribbon of was produced. The obtained ultra-quenched ribbon is CuK
It was confirmed to be amorphous by the characteristic X-ray of α.
【0024】この超急冷薄帯をArガス中で、結晶化が
始まる580℃〜600℃以上を表1に示す昇温速度で
昇温し、表1に示す熱処理温度で7分間保持し、その後
室温まで冷却して薄帯を取り出し、幅2〜3mm、厚み
20〜40μm、長さ3〜5mmの試料を作製し、VS
Mを用いて磁気特性並びに25℃〜140℃におけるB
r及びiHcの温度係数を測定した。測定結果を表2に
示す。No.2の試料については、図1に減磁曲線(試
料形状;幅3mm、厚み30μm、長さ3mm)を示
す。なお、No.4の試料は参考例を示す。なお、試料
の構成相をCuKαの特性X線で調査した結果、α−F
e相、Fe3B相、Nd2Fe14B相が混在する多相組織
であった。なお、Al、Si、S、Cu、Zn、Ga、
Ag、Pt、Au、Pbはこれらの各相でFeの一部を
置換する。平均結晶粒径はいずれも30nm以下であっ
た。The ultra-quenched ribbon was heated in Ar gas at a temperature rising rate shown in Table 1 above 580 ° C. to 600 ° C. at which crystallization begins, and held at the heat treatment temperature shown in Table 1 for 7 minutes. After cooling to room temperature, the thin strip was taken out, and a sample having a width of 2 to 3 mm, a thickness of 20 to 40 μm, and a length of 3 to 5 mm was prepared.
Magnetic property using M and B at 25 ° C to 140 ° C
The temperature coefficient of r and iHc was measured. The measurement results are shown in Table 2. No. For the sample No. 2, a demagnetization curve (sample shape; width 3 mm, thickness 30 μm, length 3 mm) is shown in FIG. In addition, No. The sample of 4 shows a reference example. As a result of investigating the constituent phases of the sample with the characteristic X-ray of CuKα, α-F
It had a multiphase structure in which the e phase, the Fe 3 B phase and the Nd 2 Fe 14 B phase were mixed. In addition, Al, Si, S 2 , Cu, Zn, Ga,
Ag, Pt, Au, and Pb replace part of Fe in each of these phases. The average crystal grain size was 30 nm or less in all cases.
【0025】比較例
表1のNo.14〜16の組成となるように純度99.
5%以上のFe、B、Rを用いて実施例1と同条件で超
急冷薄帯を作製した。得られた薄帯を実施例1と同一条
件の熱処理を施し、冷却後に実施例1と同条件で試料化
(比較例No.14〜16)してVSMを用いて磁気特
性並びに25℃〜140℃におけるBr及びiHcの温
度係数を測定した。測定結果を表2に示す。No.15
の試料については、図1に減磁曲線(試料形状;幅3m
m、厚み30μm、長さ3mm)を示す。なお、試料の
構成相はFe3B相を主相とするα−Fe相とNd2Fe
14B相の多相組織であり、平均結晶粒径は50nm前後
とNo.1〜No.13の試料に比べ粗大であった。Comparative Example No. 1 in Table 1 Purity of 99.
An ultra-quenched ribbon was produced under the same conditions as in Example 1 using 5% or more of Fe, B, and R. The obtained ribbon was subjected to heat treatment under the same conditions as in Example 1, and after cooling, sampled under the same conditions as in Example 1 (Comparative Examples Nos. 14 to 16), and magnetic properties and 25 ° C to 140 ° C were measured using VSM. The temperature coefficient of Br and iHc in ° C was measured. The measurement results are shown in Table 2. No. 15
For the sample of Fig. 1, the demagnetization curve (sample shape; width 3 m
m, thickness 30 μm, length 3 mm). The constituent phases of the sample are α-Fe phase having Fe 3 B phase as a main phase and Nd 2 Fe phase.
14 It has a multi-phase structure of B phase, and the average crystal grain size is around 50 nm, and it is 1-No. It was coarser than the 13 samples.
【0026】実施例2
実施例1で得られた表1の組成No.2の超急冷薄帯
を、表1の熱処理後に平均粉末粒径を150μm以下に
粉砕し、エポキシ樹脂からなるバインダーを3wt%の
割合で混合したのち、12mm×12mm×8mm寸法
のボンド磁石を作成した。得られたボンド磁石の磁気特
性は、密度6.0g/cm3、iHc=3.5kOe、
Br=9.2kG、(BH)max=8.7MGOeで
あった。Example 2 Composition No. of Table 1 obtained in Example 1 After the heat treatment of Table 1, the ultra-thin quenched ribbon of No. 2 was ground to an average powder particle size of 150 μm or less, and a binder made of an epoxy resin was mixed at a ratio of 3 wt%, and then a bond magnet having a size of 12 mm × 12 mm × 8 mm was prepared. did. The magnetic properties of the obtained bonded magnet have a density of 6.0 g / cm 3 , iHc = 3.5 kOe,
Br = 9.2 kG and (BH) max = 8.7 MGOe.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】[0029]
【発明の効果】この発明は、希土類元素の含有量が少な
い特定組成のFe−B−R−M(RはPr またはN
d、Mは Al、Si、S、Cu、Zn、Ga、Ag、
Pt、Au、Pbの1種もしくは2種以上)の合金溶湯
を超急冷法にてアモルファス組織あるいは微細結晶とア
モルファスが混在する組織となし、得られたリボン、フ
レーク、球状粉末に特定条件の熱処理を施すことによ
り、Fe3B型化合物並びにα−鉄と、Nd2Fe14B型
結晶構造を有する化合物相とが同一粉末中に共存し、各
構成相の平均結晶粒径が1nm〜50nmの範囲にある
微結晶集合体を得る。この際、M(=Al、Si、S、
Cu、Zn、Ga、Ag、Pt、Au、Pb)を加える
ことで組織がMを含まない組成に比べ1/2〜1/3に
微細化されることによりBrおよび減磁曲線の角形性が
向上し、実施例から明らかなように、iHc≧3.0k
Oe、Br≧11kG、(BH)max≧16MGOe
の磁気特性を有する永久磁石合金、及びHc≧3kO
e、Br≧10kG、(BH)max≧9MGOeの磁
気特性を有する温度特性に優れた永久磁石合金粉末を得
ることができる。また、この発明は、SmやCoを含ま
ず、製造方法が簡単で大量生産に適しているため、8k
G以上の残留磁束密度Brを有し、ハードフェライト磁
石を越える磁気的性能を有する安価なボンド磁石を安定
して提供できる。INDUSTRIAL APPLICABILITY The present invention has a specific composition of Fe-B-RM (where R is Pr or N) with a low content of rare earth elements.
d and M are Al, Si, S 2 , Cu, Zn, Ga, Ag,
A molten alloy of Pt, Au, Pb (one or more kinds) is formed by an ultra-quenching method into an amorphous structure or a structure in which fine crystals and amorphous are mixed, and the obtained ribbons, flakes and spherical powders are heat-treated under specific conditions. The Fe 3 B type compound and α-iron and the compound phase having the Nd 2 Fe 14 B type crystal structure coexist in the same powder, and the average crystal grain size of each constituent phase is 1 nm to 50 nm. Obtain a crystallite aggregate within the range. At this time, M (= Al, Si, S 2 ,
By adding Cu, Zn, Ga, Ag, Pt, Au, Pb), the structure is refined to 1/2 to 1/3 as compared with the composition not containing M, so that the squareness of Br and the demagnetization curve is improved. Improved, as is clear from the examples, iHc ≧ 3.0k
Oe, Br ≧ 11 kG, (BH) max ≧ 16 MGOe
Permanent magnet alloy with magnetic properties of Hc ≧ 3 kO
e, Br ≧ 10 kG, (BH) max ≧ 9 MGOe, and permanent magnet alloy powder having excellent temperature characteristics can be obtained. In addition, the present invention does not contain Sm or Co, has a simple manufacturing method, and is suitable for mass production.
It is possible to stably provide an inexpensive bonded magnet having a residual magnetic flux density Br of G or more and having magnetic performance exceeding that of a hard ferrite magnet.
【図1】減磁曲線を示すグラフである。FIG. 1 is a graph showing a demagnetization curve.
フロントページの続き (56)参考文献 特開 平6−53019(JP,A) 特開 平6−61026(JP,A) 特開 平7−245208(JP,A) 特開 平7−245207(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/053 B22F 1/00 B22F 9/04 C22C 38/00 303 Continuation of front page (56) Reference JP-A-6-53019 (JP, A) JP-A-6-61026 (JP, A) JP-A-7-245208 (JP, A) JP-A-7-245207 (JP , A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1/053 B22F 1/00 B22F 9/04 C22C 38/00 303
Claims (3)
(但しRはPrまたはNdの1種または2種、MはA
l,Si,S,Cu,Zn,Ga,Ag,Pt,Au,
Pbの1種または2種以上)と表し、組成範囲を限定す
る記号x、y、zが下記値を満足し、Fe3B型化合物
並びにα−鉄と、Nd2Fe14B型結晶構造を有する化
合物とが同一粉末粒子中に共存し、各構成相の平均結晶
粒径が1nm〜50nmの範囲にある微細結晶集合体で
あり、磁気特性がiHc≧3.0kOe、Br≧11k
G、(BH)max≧16MGOeであることを特徴と
する永久磁石合金。 10≦x≦30at%、 3≦y≦5at%、 0.1≦z≦3at%1. The composition formula is Fe 100-xyz B x R y M z
(However, R is one or two of Pr or Nd, M is A
1, Si, S 2 , Cu, Zn, Ga, Ag, Pt, Au,
Pb is one or two or more), and the symbols x, y, and z that limit the composition range satisfy the following values, and the Fe 3 B type compound and α-iron and the Nd 2 Fe 14 B type crystal structure are represented. a reduction <br/> compound having coexist in the same powder particle, an average crystal grain size of each component phase is in the fine crystal aggregate in the range of 1nm~50nm
Yes, magnetic characteristics are iHc ≧ 3.0 kOe, Br ≧ 11 k
G, (BH) max ≧ 16 MGOe , a permanent magnet alloy. 10 ≦ x ≦ 30 at% , 3 ≦ y ≦ 5 at% , 0.1 ≦ z ≦ 3 at%
(但しRはPrまたはNdの1種または2種、MはA
l,Si,S,Cu,Zn,Ga,Ag,Pt,Au,
Pbの1種または2種以上)と表し、組成範囲を限定す
る記号x、y、zが下記値を満足し、Fe3B型化合物
並びにα−鉄と、Nd2Fe14B型結晶構造を有する化
合物とが同一粉末粒子中に共存し、各構成相の平均結晶
粒径が1nm〜50nmの範囲にある微細結晶集合体か
らなり、磁気特性がiHc≧3.0kOe、Br≧10
kG、(BH)max≧9MGOeであることを特徴と
する永久磁石合金粉末。 10≦x≦30at%、 3≦y≦5at%、 0.1≦z≦3at%2. The composition formula is Fe 100-xyz B x R y M z
(However, R is one or two of Pr or Nd, M is A
1, Si, S 2 , Cu, Zn, Ga, Ag, Pt, Au,
Pb is one or more of Pb), and the symbols x, y, and z that limit the composition range satisfy the following values, and Fe 3 B type compounds and α-iron and Nd 2 Fe 14 B type crystal structures are represented. The compound having the compound coexists in the same powder particle, and is composed of a fine crystal aggregate in which the average crystal grain size of each constituent phase is in the range of 1 nm to 50 nm, and the magnetic characteristics are iHc ≧ 3.0 kOe and Br ≧ 10.
kG, (BH) max ≧ 9 MGOe, a permanent magnet alloy powder. 10 ≦ x ≦ 30 at% , 3 ≦ y ≦ 5 at% , 0.1 ≦ z ≦ 3 at%
しRはPrまたはNdの1種または2種、MはAl,S
i,S,Cu,Zn,Ga,Ag,Pt,Au,Pbの
1種または2種以上)と表し、組成範囲を限定する記号
x、y、zが下記値を満足する合金溶湯を回転ロールを
用いた超急冷法、スプラット急冷法、ガスアトマイズ法
あるいはこれらを組み合せて急冷し、アモルファス組織
あるいは微細結晶とアモルファスが混在する組織とな
し、さらに結晶化が開始する温度付近から600℃〜7
00℃の処理温度までの昇温速度15℃/分〜50℃/
秒になる結晶化熱処理を施し、Fe3B型化合物並びに
α−鉄と、Nd2Fe14B型結晶構造を有する化合物と
が同一粉末粒子中に共存し、各構成相の平均結晶粒径が
1nm〜50nmの範囲にある微結晶集合体を得たの
ち、必要に応じてこれを平均粒径3μm〜500μmに
粉砕して磁石合金粉末を得ることを特徴とする永久磁石
合金粉末の製造方法。 10≦x≦30at%、 3≦y≦5at%、 0.1≦z≦3at%3. The composition formula is Fe 100-xyz B x R y M z (wherein R is one or two of Pr or Nd, M is Al, S
i, S , Cu, Zn, Ga, Ag, Pt, Au, Pb), and the symbols x, y, z for limiting the composition range satisfy the following values. Ultra-quenching method using splat, splat quenching method, gas atomizing method or a combination of these methods to obtain an amorphous structure or a structure in which fine crystals and amorphous are mixed.
Temperature rising rate up to processing temperature of 00 ° C 15 ° C / min to 50 ° C /
The Fe 3 B type compound and α-iron and the compound having the Nd 2 Fe 14 B type crystal structure coexist in the same powder particle, and the average crystal grain size of each constituent phase is A method for producing a permanent magnet alloy powder, comprising obtaining a microcrystalline aggregate in the range of 1 nm to 50 nm, and then pulverizing the aggregate to have an average particle size of 3 μm to 500 μm, if necessary, to obtain a magnet alloy powder. 10 ≦ x ≦ 30 at% , 3 ≦ y ≦ 5 at% , 0.1 ≦ z ≦ 3 at%
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07446594A JP3411663B2 (en) | 1994-03-18 | 1994-03-18 | Permanent magnet alloy, permanent magnet alloy powder and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07446594A JP3411663B2 (en) | 1994-03-18 | 1994-03-18 | Permanent magnet alloy, permanent magnet alloy powder and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07263210A JPH07263210A (en) | 1995-10-13 |
JP3411663B2 true JP3411663B2 (en) | 2003-06-03 |
Family
ID=13548039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07446594A Expired - Lifetime JP3411663B2 (en) | 1994-03-18 | 1994-03-18 | Permanent magnet alloy, permanent magnet alloy powder and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3411663B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100345995B1 (en) * | 1997-02-06 | 2002-07-24 | 스미토모 도큐슈 긴조쿠 가부시키가이샤 | Method of manufacturing thin plate magnet having microcrystalline structrue |
JP3643215B2 (en) * | 1997-07-04 | 2005-04-27 | 株式会社Neomax | Method for producing laminated permanent magnet |
JP3643214B2 (en) * | 1997-06-26 | 2005-04-27 | 株式会社Neomax | Method for producing laminated permanent magnet |
JP4529198B2 (en) * | 1999-03-19 | 2010-08-25 | 日立金属株式会社 | Iron-based permanent magnet containing a small amount of rare earth metal and method for producing the same |
AU2003301577A1 (en) | 2002-10-25 | 2004-05-13 | Showa Denko K.K. | Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material |
JP2005036302A (en) * | 2002-10-25 | 2005-02-10 | Showa Denko Kk | Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance |
JP2010212501A (en) * | 2009-03-11 | 2010-09-24 | Tdk Corp | Exchange spring magnetic powder |
CN105702402B (en) * | 2014-11-25 | 2017-11-28 | 有研稀土新材料股份有限公司 | Rare earth permanent magnet powder, its preparation method, bonded permanent magnet and device |
-
1994
- 1994-03-18 JP JP07446594A patent/JP3411663B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07263210A (en) | 1995-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4836868A (en) | Permanent magnet and method of producing same | |
JP2727506B2 (en) | Permanent magnet and manufacturing method thereof | |
JP3488358B2 (en) | Method for producing microcrystalline permanent magnet alloy and permanent magnet powder | |
JP3411663B2 (en) | Permanent magnet alloy, permanent magnet alloy powder and method for producing the same | |
JP2853838B2 (en) | Manufacturing method of rare earth permanent magnet | |
JP2853839B2 (en) | Manufacturing method of rare earth permanent magnet | |
JP3519443B2 (en) | Permanent magnet alloy powder and method for producing the same | |
JP4788300B2 (en) | Iron-based rare earth alloy nanocomposite magnet and manufacturing method thereof | |
JP3488354B2 (en) | Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder | |
JP2966169B2 (en) | Rare earth magnet, alloy powder for rare earth magnet and method for producing the same | |
JP2999648B2 (en) | Rare earth magnet, rare earth magnet alloy powder and method for producing the same | |
JP3238779B2 (en) | Rare earth magnet alloy powder and its manufacturing method | |
JP2999649B2 (en) | Rare earth magnet, rare earth magnet alloy powder and method for producing the same | |
JPH1064710A (en) | Isotropic permanent magnet having high magnetic flux density and manufacture thereof | |
JP3519438B2 (en) | Rare earth magnet alloy powder and its production method | |
JP3710154B2 (en) | Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet | |
JP3432858B2 (en) | Method for producing Fe-BR bonded magnet | |
JP3547016B2 (en) | Rare earth bonded magnet and method of manufacturing the same | |
JP2966168B2 (en) | Rare earth magnet, alloy powder for rare earth magnet and method for producing the same | |
JPH07176417A (en) | Iron based bonded magnet and its manufacture | |
JP3040895B2 (en) | Rare earth bonded magnet and its manufacturing method | |
JP2925840B2 (en) | Fe-BR bonded magnet | |
JP3459440B2 (en) | Rare earth magnet, rare earth magnet alloy powder and method for producing the same | |
JP3795056B2 (en) | Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet | |
JP3411659B2 (en) | Rare earth magnet, rare earth magnet alloy powder and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080320 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080320 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130320 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140320 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |