JP3402237B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP3402237B2 JP3402237B2 JP01211399A JP1211399A JP3402237B2 JP 3402237 B2 JP3402237 B2 JP 3402237B2 JP 01211399 A JP01211399 A JP 01211399A JP 1211399 A JP1211399 A JP 1211399A JP 3402237 B2 JP3402237 B2 JP 3402237B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- aqueous electrolyte
- weight
- methylnaphthalene
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質二次電
池に関するものである。TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.
【0002】[0002]
【従来の技術】電子機器の急激な小型軽量化に伴い、そ
の電源である電池に対して小型で軽量かつ高エネルギー
密度、更に繰り返し充放電が可能な二次電池開発への要
求が高まっている。また、大気汚染や二酸化炭素の増加
等の環境問題により、電気自動車の早期実用化が望まれ
ており、高効率、高出力、高エネルギー密度、軽量等の
特徴を有する優れた二次電池の開発が要望されている。2. Description of the Related Art With the rapid reduction in size and weight of electronic equipment, there is an increasing demand for developing a secondary battery that is small, lightweight, has a high energy density, and can be repeatedly charged and discharged with respect to a battery as a power source. . In addition, due to environmental problems such as air pollution and increase in carbon dioxide, early commercialization of electric vehicles is desired, and development of excellent secondary batteries having characteristics such as high efficiency, high output, high energy density, and light weight. Is required.
【0003】これらの要求を満たす二次電池として、非
水電解質を使用した二次電池が実用化されている。この
電池は、従来の水溶液電解液を使用した電池の数倍のエ
ネルギー密度を有している。その例として、正極にコバ
ルト複合酸化物、ニッケル複合酸化物又はスピネル型リ
チウムマンガン酸化物を用い、負極にリチウムが吸蔵・
放出可能な炭素材料などを用い、電解質として有機電解
液を用いた、高エネルギーで長寿命な4V級非水電解質
二次電池が実用化されている。As a secondary battery satisfying these requirements, a secondary battery using a non-aqueous electrolyte has been put into practical use. This battery has an energy density several times that of a battery using a conventional aqueous electrolyte solution. As an example, cobalt composite oxide, nickel composite oxide or spinel type lithium manganese oxide is used for the positive electrode, and lithium is occluded in the negative electrode.
A high-energy and long-life 4V class non-aqueous electrolyte secondary battery using a releasable carbon material and an organic electrolyte as an electrolyte has been put into practical use.
【0004】さらに、負極に高容量のアモルファスカー
ボンまたは/および酸化物などを用いた高容量の非水電
解質二次電池が開発されてきており、小型高容量化の技
術開発が急速に進んでいる。このような非水電解質電池
では、小型高容量化、すなわち体積エネルギー密度の飛
躍的な増大にともなう、過充電、過放電の防止や内部短
絡の防止等が大きな課題となっている。Further, a high-capacity non-aqueous electrolyte secondary battery using a high-capacity amorphous carbon or / and an oxide or the like for a negative electrode has been developed, and technological development for miniaturization and high capacity is rapidly progressing. . In such a non-aqueous electrolyte battery, there is a big problem to prevent overcharging and over-discharging, prevent internal short-circuiting, and the like, which is accompanied by miniaturization and high capacity, that is, a dramatic increase in volume energy density.
【0005】過充電の防止対策としては充電器による充
電電圧の制御、過放電の防止対策としては放電時の終止
電圧の制御を行う方法が主流となっている。また、充電
器等の制御が故障した場合や内部短絡による大電流の発
生に備え、電池側に所定の電池内圧に達したときに開裂
する安全弁や電流遮断手段を持たせている。過充電を防
止する手段としては、現状では、保護回路・保護素子を
装着する方法、セパレータの熱閉塞を利用した方法など
がいくつか提案されている。As a measure for preventing overcharge, a method of controlling a charge voltage by a charger and a method for controlling an end voltage at the time of discharge as a measure for preventing overdischarge have become mainstream. Further, in case of control failure of a charger or the like or occurrence of large current due to internal short circuit, the battery side is provided with a safety valve and a current cutoff means that are cleaved when a predetermined battery internal pressure is reached. As means for preventing overcharging, at present, several methods such as a method of mounting a protection circuit / protection element and a method of utilizing thermal blocking of a separator have been proposed.
【0006】しかし、保護回路・保護素子の利用は、電
池パックの小型化・低コスト化に大きな制約を与える
し、また、セパレータの熱閉塞は、非安全化時の発熱反
応を利用しているため、発熱が急激に生じた場合には有
効に作用しないことがある。そこで、過充電時の安全化
を図る手段の一つとしては、正極活物質の発熱速度を緩
和し、セパレータの熱閉塞機構を確実に作用させる方法
が考えられる。However, the use of the protection circuit / protection element imposes great restrictions on the downsizing and cost reduction of the battery pack, and the heat blocking of the separator utilizes the exothermic reaction at the time of non-safety. Therefore, when heat is generated rapidly, it may not work effectively. Therefore, as one means for achieving safety during overcharge, a method of relaxing the heat generation rate of the positive electrode active material and allowing the heat blocking mechanism of the separator to operate reliably can be considered.
【0007】[0007]
【発明が解決しようとする課題】一般に、過充電防止対
策としては、充電器によって充電電圧を制御する方法が
採用されているが、充電器が故障した場合を想定する
と、非水電解質二次電池が所定量以上の電気量の充電を
されると、電池が発熱し、最悪の場合発火に至ることが
ありうる。また、充電時に何らかの原因で内部短絡が発
生した場合を想定して、電池中央に釘を刺した場合に
も、最悪の場合、電池が発火する恐れがある。Generally, as a measure for preventing overcharge, a method of controlling the charging voltage by a charger is adopted. However, assuming a case where the charger fails, a non-aqueous electrolyte secondary battery is used. If the battery is charged with a predetermined amount of electricity or more, the battery may generate heat and, in the worst case, may ignite. In addition, even if a nail is stuck in the center of the battery, assuming that an internal short circuit occurs for some reason during charging, the battery may be ignited in the worst case.
【0008】過充電時の非水電解質二次電池における不
安全化の主な原因は、リチウム又また/およびリチウム
イオンを吸蔵・放出するリチウム含有金属酸化物等の正
極活物質(以下、「正極ホスト物質」とする)が、過充
電時にリチウムの脱離によって熱的に不安定な物質へと
変化し、電池温度が臨界温度に達した時点で、不安定に
なった正極活物質から酸素が放出され、この酸素と電解
液溶媒等が非常に大きな発熱分解反応を起こして熱逸走
することにある。The main cause of unsafety in a non-aqueous electrolyte secondary battery during overcharge is a positive electrode active material such as a lithium-containing metal oxide that occludes and releases lithium and / or lithium ions (hereinafter referred to as "positive electrode"). Host material)) changes to a thermally unstable substance due to desorption of lithium during overcharge, and when the battery temperature reaches the critical temperature, oxygen becomes unstable from the unstable positive electrode active material. The released oxygen causes a very large exothermic decomposition reaction of the solvent of the electrolytic solution and the like, resulting in heat escape.
【0009】そこで本発明は、充電器が故障して過充電
状態になったとしても、熱的に不安定な物質が生成する
電位以下、かつ実使用電位域以上で速やかに酸化分解さ
れ、その分解熱または内部抵抗の上昇によるジュール熱
でセパレータをシャットダウン(熱閉塞)させ、電池が
熱暴走を起こさないよう効果的に発熱を抑止しうる、非
水電解質二次電池を提供することを目的とする。Therefore, according to the present invention, even if the charger fails and becomes overcharged, it is rapidly oxidatively decomposed below the potential generated by the thermally unstable substance and above the actual use potential range. An object of the present invention is to provide a non-aqueous electrolyte secondary battery in which the separator is shut down (thermally closed) by decomposition heat or Joule heat due to an increase in internal resistance, and heat generation can be effectively suppressed so that the battery does not cause thermal runaway. To do.
【0010】ここで、「シャットダウン(熱閉塞)」と
は、非水電解質二次電池において、電池が外部短絡など
による大電流によって、電池温度が異常に上昇したと
き、セパレータが熱収縮してイオンの通路である孔を塞
ぎ、それ以降の短絡電流の流れを止め、発熱を抑える機
能のことをさす。Here, "shutdown (heat blocking)" means that in a non-aqueous electrolyte secondary battery, when the battery temperature rises abnormally due to a large current due to an external short circuit or the like, the separator heat-shrinks to cause ionization. The function of blocking heat generation by blocking the hole that is the passage of, and stopping the flow of short-circuit current after that.
【0011】[0011]
【課題を解決するための手段】本発明は、リチウムイオ
ンを吸蔵放出可能なリチウム含有金属酸化物等を正極活
物質として含有する正極合材層が形成された正極と、リ
チウムイオンを吸蔵放出可能なホスト物質を負極活物質
として含有する負極合材層が形成された負極とを備えた
非水電解質二次電池において、非水電解液が2−メチル
ナフタレンと側鎖アルキル基のα−位に第三級水素をも
つベンゼン化合物とを同時に含み、前記2−メチルナフ
タレンと前記側鎖アルキル基のα−位に第三級水素をも
つベンゼン化合物との総量が、前記2−メチルナフタレ
ンと前記側鎖アルキル基のα−位に第三級水素をもつベ
ンゼン化合物とを除く非水電解液に対して1〜10重量
%含むことを特徴とするものである。The present invention is capable of occluding and releasing lithium ions, and a positive electrode having a positive electrode mixture layer containing a lithium-containing metal oxide capable of occluding and releasing lithium ions as a positive electrode active material. In a non-aqueous electrolyte secondary battery comprising a negative electrode on which a negative electrode mixture layer containing a host material as a negative electrode active material is formed, the non-aqueous electrolyte solution is at the α-position of 2-methylnaphthalene and a side chain alkyl group. Simultaneously containing a benzene compound having a tertiary hydrogen, the total amount of the 2-methylnaphthalene and the benzene compound having a tertiary hydrogen at the α-position of the side chain alkyl group is the 2-methylnaphthalene and the pendant compound. It is characterized in that it is contained in an amount of 1 to 10% by weight with respect to the non-aqueous electrolyte except the benzene compound having a tertiary hydrogen at the α-position of the chain alkyl group.
【0012】第2の発明は、請求項1の発明において、
側鎖アルキル基のα−位に第三級水素をもつベンゼン化
合物がイソプロピルナフタレン、クメン、カダリン、グ
ヤアズレンからなる群から選ばれた少なくとも一種であ
ることを特徴とするものである。A second invention is the invention according to claim 1,
The benzene compound having a tertiary hydrogen at the α-position of the side chain alkyl group is at least one selected from the group consisting of isopropylnaphthalene, cumene, cadarine, and guaiazulene.
【0013】[0013]
【0014】[0014]
【0015】[0015]
【0016】[0016]
【0017】[0017]
【発明の実施の形態】本発明は、リチウムイオンを吸蔵
放出可能なリチウム含有金属酸化物を有する正極合材層
が形成された正極と、リチウムイオンを吸蔵放出可能な
ホスト物質を有する負極合材層が形成された負極とを備
えた非水電解質二次電池において、過充電時に正極活物
質が熱的に不安定な物質へと転換する電位以下で、か
つ、実使用時における満充電時の正極電位よりも貴な電
位で優先的に酸化分解を受ける、2−メチルナフタレン
と側鎖アルキル基のα−位に第三級水素をもつベンゼン
化合物とを同時に含ませるものである。2−メチルナフ
タレンと側鎖アルキル基のα−位に第三級水素をもつベ
ンゼン化合物は、電池内部に不安定物質の蓄積を防ぐこ
とにより、セパレータがシャットダウンするまで電池を
安全に保つ物質である。側鎖をもつ多環式芳香族化合物
およびベンゼン化合物は、それぞれ単独で用いても過充
電時の安全性向上に効果をもたらすが、併用した場合に
はさらなる飛躍的な安全性の向上が得られ、かつ、実使
用性能も低下しないことを見いだした。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is directed to a positive electrode on which a positive electrode mixture layer having a lithium-containing metal oxide capable of occluding and releasing lithium ions is formed, and a negative electrode mixture having a host material capable of occluding and releasing lithium ions. In a non-aqueous electrolyte secondary battery provided with a layered negative electrode, the positive electrode active material is below a potential at which it is converted into a thermally unstable substance during overcharging, and when fully charged during actual use. 2-methylnaphthalene and a benzene compound having a tertiary hydrogen at the α-position of a side chain alkyl group, which undergoes oxidative decomposition preferentially at a potential nobler than the positive electrode potential, are simultaneously contained. 2-Methylnaphthalene and a benzene compound having a tertiary hydrogen at the α-position of a side chain alkyl group are substances that keep the battery safe until the separator shuts down by preventing the accumulation of unstable substances inside the battery. . A polycyclic aromatic compound having a side chain and a benzene compound are effective in improving safety during overcharge when used alone, but when used together, a further dramatic improvement in safety can be obtained. It was also found that the actual use performance did not deteriorate.
【0018】それゆえに、電池内に熱的に不安定な物質
が蓄積することがなくなるため、従来電池に起こるよう
な、過充電時の爆発的な発熱分解反応を効果的に抑止す
ることができる。Therefore, since a thermally unstable substance does not accumulate in the battery, it is possible to effectively suppress the explosive exothermic decomposition reaction at the time of overcharging which occurs in a conventional battery. .
【0019】ここで、2−メチルナフタレンおよび側鎖
アルキル基のα−位に第三級水素をもつベンゼン化合物
は、満充電時の正極電位よりも貴な電位に酸化電位を有
することが好ましいが、その理由は電池の実使用条件の
電位域では、2−メチルナフタレンおよび側鎖アルキル
基のα−位に第三級水素をもつベンゼン化合物が酸化さ
れてはならないからである。Here, the 2-methylnaphthalene and the benzene compound having a tertiary hydrogen at the α-position of the side chain alkyl group preferably have an oxidation potential at a potential nobler than the positive electrode potential at the time of full charge. The reason is that 2-methylnaphthalene and the benzene compound having a tertiary hydrogen at the α-position of the side chain alkyl group should not be oxidized in the potential range of the actual use conditions of the battery.
【0020】さらに、2−メチルナフタレンを用いるの
は、置換基にメチル基をもつナフタレンでは、芳香環自
体の反応性が増し、側鎖メチル基よりも先に環が酸化さ
れるためである。Furthermore, the reason why 2-methylnaphthalene is used is that in naphthalene having a methyl group as a substituent, the reactivity of the aromatic ring itself increases and the ring is oxidized before the side chain methyl group.
【0021】[0021]
【0022】さらに、側鎖アルキル基のα−位に第三級
水素をもつベンゼン化合物を用いるのは、ベンゼン化合
物の側鎖アルキル基の反応性は、α位の水素が、第一級
<第二級<第三級となる順に増加するためである。Further, the use of a benzene compound having a tertiary hydrogen at the α-position of the side chain alkyl group is because the reactivity of the side chain alkyl group of the benzene compound is such that the hydrogen at the α position is primary < This is because the numbers increase in the order of second grade <third grade.
【0023】また、本発明は、2−メチルナフタレンと
前記側鎖アルキル基のα−位に第三級水素をもつベンゼ
ン化合物との総量が、2−メチルナフタレンと側鎖アル
キル基のα−位に第三級水素をもつベンゼン化合物とを
除く非水電解液に対して1〜10重量%含有するもので
ある。その理由は、添加量が多すぎると、電解液の電導
度が低下して、電池の充放電特性に悪影響を与えるし、
一方、添加量が少なすぎると、過充電時や高温時に生成
する熱的不安定な物質を安定な物質へと還元するのに不
十分である。In the present invention, the total amount of 2-methylnaphthalene and the benzene compound having a tertiary hydrogen at the α-position of the side chain alkyl group is such that the amount of 2-methylnaphthalene and the α-position of the side chain alkyl group are equal to each other. 1 to 10% by weight with respect to the non-aqueous electrolyte except the benzene compound having tertiary hydrogen. The reason is that if the addition amount is too large, the conductivity of the electrolytic solution decreases, which adversely affects the charge and discharge characteristics of the battery.
On the other hand, if the amount added is too small, it is insufficient to reduce the thermally unstable substance generated at the time of overcharge or high temperature to a stable substance.
【0024】側鎖アルキル基のα−位に第三級水素をも
つベンゼン化合物がイソプロピルナフタレン、クメン、
カダリン、グヤアズレンからなる群から選ばれた少なく
とも一種であることが好ましい。これらの側鎖アルキル
基のα−位に第三級水素をもつベンゼン化合物をそれぞ
れ少なくとも1種づつ電解液に添加すればよい。本発明
になる非水電解質電池の正極活物質としてのリチウム又
は/及びリチウムイオンを吸蔵放出可能な化合物として
は、前述のリチウム含有金属酸化物に限定されるもので
はない。これ以外にも、無機化合物としては、組成式L
ixMO2またはLiyM2O4(ただしMは遷移金
属、0≦x≦1、0≦y≦2)で表わされる複合酸化
物、トンネル状の空孔を有する酸化物、層状構造の金属
カルコゲン化物を用いることができる。その具体例とし
ては、LiCoO2、LiNiO2、LiMn2O4、
Li2Mn2O2、MnO2、FeO2、V2O5、V
6O13、TiO2、TiS2などが挙げられる。さら
にこれらの活物質を混合して用いてもよい。The benzene compound having a tertiary hydrogen at the α-position of the side chain alkyl group is isopropylnaphthalene, cumene,
It is preferably at least one selected from the group consisting of kadarin and guaiazulen. At least one benzene compound having a tertiary hydrogen at the α-position of these side chain alkyl groups may be added to the electrolytic solution. The compound capable of inserting and extracting lithium and / or lithium ions as the positive electrode active material of the non-aqueous electrolyte battery according to the present invention is not limited to the above-mentioned lithium-containing metal oxide. In addition to this, as the inorganic compound, the composition formula L
i x MO 2 or Li y M 2 O 4 (where M is a transition metal, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2), a composite oxide, an oxide having tunnel-shaped vacancies, and a layered structure. Metal chalcogenides can be used. Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 ,
Li 2 Mn 2 O 2 , MnO 2 , FeO 2 , V 2 O 5 , V
6 O 13 , TiO 2 , TiS 2 and the like can be mentioned. Further, these active materials may be mixed and used.
【0025】また、本発明に使用する負極ホスト物質
は、リチウムイオンを吸蔵・放出できるものであればい
かなるものでもよい。例えば、グラファイト、コーク
ス、カーボン、アモルファスカーボン、SnO、SnO
2、Sn1-xO(ただし0≦x<1)、Si1-xO(ただ
し0≦x<1)などの物質を例示することができる。酸
化物を用いて高容量化電池としても、本発明を適用する
ことによって安全性の向上が可能である。The negative electrode host material used in the present invention may be any material as long as it can store and release lithium ions. For example, graphite, coke, carbon, amorphous carbon, SnO, SnO
2 , substances such as Sn 1-x O (where 0 ≦ x <1) and Si 1-x O (where 0 ≦ x <1) can be exemplified. Even if a high capacity battery is formed by using an oxide, the safety can be improved by applying the present invention.
【0026】また、電解液に溶解するリチウム塩として
は、LiPF6、LiBF4、LiAsF6、LiCF3C
O2、LiCF3SO3、LiN(SO2CF3)2、LiN
(SO2CF2CF3)2、LiN(COCF3)2およびL
iN(COCF2CF3)2などの塩もしくはこれらの混
合物を使用することができる。The lithium salt which can be dissolved in the electrolytic solution includes LiPF 6 , LiBF 4 , LiAsF 6 and LiCF 3 C.
O 2 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN
(SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 and L
A salt such as iN (COCF 2 CF 3 ) 2 or a mixture thereof can be used.
【0027】また、電解液の溶媒としては、プロピレン
カーボネートやエチレンカーボネートなどの環状炭酸エ
ステル、ジエチルカーボネートやジメチルカーボネート
やメチルエチルカーボネートなどの鎖状炭酸エステルを
単独であるいはこれらの混合物を使用することができ
る。As the solvent of the electrolytic solution, cyclic carbonic acid esters such as propylene carbonate and ethylene carbonate, chain carbonic acid esters such as diethyl carbonate, dimethyl carbonate and methyl ethyl carbonate may be used alone or in a mixture thereof. it can.
【0028】なお、本発明になる非水電解質二次電池
は、普通その構成として正極、負極及びセパレータと非
水電解液との組み合わせからなっているが、セパレータ
としては、多孔性ポリ塩化ビニル膜などの多孔性ポリマ
ー膜やリチウムイオン又はイオン導伝性ポリマー電解質
膜を、単独または組み合わせて使用することができる。The non-aqueous electrolyte secondary battery according to the present invention usually comprises a combination of a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte solution. The separator is a porous polyvinyl chloride film. Porous polymer membranes such as and lithium ion or ion conductive polymer electrolyte membranes can be used alone or in combination.
【0029】ポリマー電解質膜が、ポリエチレンオキシ
ド、ポリアクリロニトリル、ポリエチレングリコールお
よびこれらの変性体などの場合には、軽量で柔軟性があ
り、巻回極板に使用する場合に有利である。さらに、イ
オン導伝性ポリマー電解質膜と有機電解液を組み合わせ
て使用することができる。また、電解質としはポリマー
電解質以外にも、無機固体電解質あるいは有機ポリマー
電解質と無機固体電解質の混合材料、もしくは有機バイ
ンダーによって結着された無機固体粉末など、いずれも
公知のものの使用が可能である。When the polymer electrolyte membrane is polyethylene oxide, polyacrylonitrile, polyethylene glycol, or modified products thereof, it is lightweight and flexible, which is advantageous when used for a wound electrode plate. Furthermore, the ion conductive polymer electrolyte membrane and the organic electrolyte can be used in combination. As the electrolyte, in addition to the polymer electrolyte, known materials such as an inorganic solid electrolyte, a mixed material of an organic polymer electrolyte and an inorganic solid electrolyte, or an inorganic solid powder bound by an organic binder can be used.
【0030】[0030]
【実施例】以下に、本発明になる、電解液に側鎖をもつ
多環式芳香族化合物およびベンゼン化合物を含有する非
水電解質二次電池を、実施例を用いてを説明する。EXAMPLES A non-aqueous electrolyte secondary battery according to the present invention containing a polycyclic aromatic compound having a side chain in an electrolyte and a benzene compound will be described below with reference to examples.
【0031】[実施例1]渦巻き状電極群を備えた角型
非水電解質二次電池を4種類作製した。正極板は、集電
体としての厚み20μmのアルミニウム箔に、リチウム
イオンを吸蔵放出するリチウム含有金属酸化物としての
リチウムコバルト複合酸化物を保持したものである。正
極板は、結着剤であるポリフッ化ビニリデン6重量部と
導電剤であるアセチレンブラック3重量部とをリチウム
コバルト複合酸化物91重量部とともに混合して溶媒で
あるNMP(N−メチルピロリドン)を適宜加えてペー
スト状に調整した後、集電体材料の両面に塗布して乾燥
し、そして、厚さ180μmにプレスし、矩形状のリー
ド部を残して幅24mmに切断することによって製作し
た。[Example 1] Four types of prismatic non-aqueous electrolyte secondary batteries having spiral electrode groups were prepared. The positive electrode plate is obtained by holding a lithium-cobalt composite oxide as a lithium-containing metal oxide that absorbs and releases lithium ions on an aluminum foil having a thickness of 20 μm as a current collector. The positive electrode plate was prepared by mixing 6 parts by weight of polyvinylidene fluoride as a binder and 3 parts by weight of acetylene black as a conductive agent together with 91 parts by weight of lithium-cobalt composite oxide to prepare NMP (N-methylpyrrolidone) as a solvent. After being appropriately added to form a paste, the current collector material is coated on both sides, dried, and pressed to a thickness of 180 μm, and cut into a width of 24 mm while leaving a rectangular lead portion.
【0032】負極板は、集電体としての厚み10μmの
銅箔に、ホスト物質としての黒鉛を保持したものであ
る。負極板は、黒鉛92重量部と結着剤としてのポリフ
ッ化ビニリデン8重量部とを混合し、溶媒であるNMP
を適宜加えてペースト状にしたものを両面に塗布して乾
燥した。そして、厚さ220μmに圧延し、矩形状のリ
ード部を残して幅26mmに切断することによって製作
した。セパレータは、厚さ25μm、幅28μmのポリ
エチレン微多孔膜とした。The negative electrode plate is a copper foil having a thickness of 10 μm serving as a current collector and holding graphite serving as a host material. The negative electrode plate was prepared by mixing 92 parts by weight of graphite and 8 parts by weight of polyvinylidene fluoride as a binder, and using NMP as a solvent.
Was added to form a paste, which was applied to both sides and dried. Then, it was rolled to a thickness of 220 μm and cut to a width of 26 mm while leaving a rectangular lead portion. The separator was a polyethylene microporous film having a thickness of 25 μm and a width of 28 μm.
【0033】図1は、本発明になる非水電解液二次電池
の断面図であり、図において、1は非水電解液二次電
池、2は電極群、3は負極板、4は正極板、5はセパレ
ータ、6は電池ケースである。非水電解液二次電池1の
構成は、負極板3、正極板4、セパレータ5からなる渦
巻き状の電極群2及び電解液が電池ケース6に収納され
た角形電池であり、7は蓋、8は安全弁、10は負極端
子、11は負極リードである。FIG. 1 is a sectional view of a non-aqueous electrolyte secondary battery according to the present invention. In the figure, 1 is a non-aqueous electrolyte secondary battery, 2 is an electrode group, 3 is a negative electrode plate, and 4 is a positive electrode. A plate, 5 is a separator, and 6 is a battery case. The configuration of the non-aqueous electrolyte secondary battery 1 is a prismatic battery in which a negative electrode plate 3, a positive electrode plate 4, a spiral electrode group 2 including a separator 5 and an electrolytic solution are housed in a battery case 6, and 7 is a lid, 8 is a safety valve, 10 is a negative electrode terminal, and 11 is a negative electrode lead.
【0034】電池ケース6は、厚さ0.3mm、内寸3
0×40×8.0mmの鉄製本体の表面に厚さ5μmの
ニッケルメッキを施したものであり、側部上部には電解
液注入用の孔(図示せず)が設けられている。The battery case 6 has a thickness of 0.3 mm and inner dimensions of 3
The surface of a 0 × 40 × 8.0 mm iron main body is plated with nickel having a thickness of 5 μm, and a hole (not shown) for injecting an electrolytic solution is provided in the upper side portion.
【0035】基本となる電解液は、LiPF6を1mo
l/l含むエチレンカーボネート:ジエチルカーボネー
ト=1:1(体積比)の混合液とした。この基本電解液
100重量部に2−メチルナフタレン3重量部とクメン
3重量部を添加した電解液を注液した電池を電池Aと
し、また、基本電解液100重量部に2−メチルナフタ
レンのみを6重量部添加した電解液を注液した電池を電
池B、クメンのみを6重量部添加した電解液を注液した
電池を電池C、基本電解液のみを注液した電池を電池D
とした。The basic electrolyte is LiPF 6 at 1 mo.
A mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) containing 1 / l was prepared. A battery prepared by injecting an electrolyte solution obtained by adding 3 parts by weight of 2-methylnaphthalene and 3 parts by weight of cumene to 100 parts by weight of this basic electrolyte solution is referred to as Battery A, and 100 parts by weight of the basic electrolyte solution contains only 2-methylnaphthalene. Battery B in which 6 parts by weight of the electrolyte solution was injected, Battery B, battery C in which the electrolyte solution of 6 parts by weight of cumene was added was battery C, and battery B in which the basic electrolyte solution was injected
And
【0036】各電解液を電極、セパレータが十分に湿潤
し、電極群外にフリーな電解液が存在しない量を減圧注
液(4ml)して電解液注入用の孔を封じ、設計容量9
00mAhの電池A、B、C、Dをそれぞれ10個、計
40個製作した。The electrolyte and the separator were sufficiently moistened with each electrolyte, and the amount of free electrolyte not present outside the electrode group was reduced by pressure injection (4 ml) to seal the electrolyte injection hole, and the designed capacity 9
Ten 00 Ah batteries A, B, C, and D were manufactured, and a total of 40 batteries were manufactured.
【0037】これらの電池A、B、C、Dを各5個ずつ
用い、45℃の環境下において、900mAで4.1V
まで充電した後定電圧で2時間充電、900mAで2.
75Vまで放電の条件で充放電サイクルを繰り返した。
300サイクル目の平均放電容量と、300サイクル目
放電後の平均電池厚みを表1に示す。また、各電池5個
ずつを、電源電圧を10Vとし、2700mAの電流で
1時間充電という条件で過充電試験を行った。過充電試
験後の電池状態の変化を表2に示Five of each of these batteries A, B, C and D were used, and 4.1 V at 900 mA in an environment of 45 ° C.
Charge at constant voltage for 2 hours, then at 900mA 2.
The charge / discharge cycle was repeated under the condition of discharging up to 75V.
Table 1 shows the average discharge capacity at the 300th cycle and the average battery thickness after the 300th cycle. In addition, an overcharge test was performed under the condition that each of the five batteries was charged with a power supply voltage of 10 V and a current of 2700 mA for 1 hour. Table 2 shows the changes in the battery status after the overcharge test.
【0038】[0038]
【表1】 [Table 1]
【0039】[0039]
【表2】 [Table 2]
【0040】これらの試験結果から、本発明になる電解
液を使用した電池Aは、300サイクル目の放電容量が
720mAhあり、電池のふくれも小さく、過充電試験
においても電池の状態はまったく変化しなかった。From these test results, the battery A using the electrolytic solution according to the present invention has a discharge capacity of 720 mAh at the 300th cycle, the battery swells small, and the battery state does not change even in the overcharge test. There wasn't.
【0041】一方、基本電解液に2−メチルナフタレン
のみを添加した電池B、基本電解液にクメンのみを添加
した電池Cおよび基本電解液のみを使用した電池Dにお
いては、300サイクル目の放電容量が大幅に低下した
り、電池がふくれたり、あるいは過充電試験において
は、電池が漏液、発煙、破裂するなどした。On the other hand, in the battery B in which only 2-methylnaphthalene was added to the basic electrolytic solution, the battery C in which only cumene was added to the basic electrolytic solution, and the battery D in which only the basic electrolytic solution was used, the discharge capacity at the 300th cycle Significantly decreased, the battery swelled, or the battery leaked, smoked, or exploded in the overcharge test.
【0042】[実施例2]使用する電解液以外は、実施
例1と全く同様な電池を4種類作製した。[Example 2] Four kinds of batteries exactly the same as in Example 1 except for the electrolytic solution used were prepared.
【0043】基本となる電解液は、LiPF6を1mo
l/l含むエチレンカーボネート:ジエチルカーボネー
ト=1:1(体積比)の混合液とした。この基本電解液
100重量部に2−メチルナフタレン0.1重量部とク
メン0.1重量部を添加した電解液を注液した電池を電
池Eとした。また、基本電解液100重量部に2−メチ
ルナフタレン0.5重量部とクメン0.5重量部を添加
した電解液を注液した電池を電池F、基本電解液100
重量部に2−メチルナフタレン5重量部とクメン5重量
部を添加した電解液を注液した電池を電池G、基本電解
液100重量部に2−メチルナフタレン10重量部とク
メン10重量部を添加した電解液を注液した電池を電池
Hとした。The basic electrolyte is LiPF 6 at 1 mo.
A mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) containing 1 / l was prepared. A battery in which 100 parts by weight of this basic electrolytic solution was infused with an electrolytic solution prepared by adding 0.1 parts by weight of 2-methylnaphthalene and 0.1 parts by weight of cumene was designated as a battery E. In addition, a battery prepared by injecting an electrolyte solution prepared by adding 0.5 parts by weight of 2-methylnaphthalene and 0.5 parts by weight of cumene to 100 parts by weight of the basic electrolyte solution is referred to as Battery F and 100 parts by weight of the basic electrolyte solution.
A battery in which 5 parts by weight of 2-methylnaphthalene and 5 parts by weight of cumene are added to parts by weight of the battery is battery G, and 10 parts by weight of 2-methylnaphthalene and 10 parts by weight of cumene are added to 100 parts by weight of the basic electrolyte. The battery in which the prepared electrolytic solution was injected was designated as Battery H.
【0044】各電解液を電極、セパレータが十分に湿潤
し、電極群外にフリーな電解液が存在しない量を減圧注
液(4ml)して電解液注入用の孔を封じ、設計容量9
00mAhの電池E、F、G、Hをそれぞれ10個、計
40個製作した。The electrolyte and the separator were sufficiently moistened with each electrolyte, and the amount of free electrolyte not present outside the electrode group was reduced pressure injection (4 ml) to seal the electrolyte injection hole, and the designed capacity 9
For each of the 00 mAh batteries E, F, G, and H, a total of 40 batteries were manufactured.
【0045】これらの電池E、F、G、Hを各5個ずつ
用い、45℃の環境下において、900mAで4.1V
まで充電した後定電圧で2時間充電、900mAで2.
75Vまで放電の条件で充放電サイクルを繰り返した。
300サイクル目の平均放電容量と、300サイクル目
放電後の平均電池厚みを表3に示す。また、各電池5個
ずつを、電源電圧を10Vとし、2700mAの電流で
1時間充電という条件で過充電試験を行った。過充電試
験後の電池状態の変化を表4に示す。Five of each of these batteries E, F, G, and H were used and 4.1 V at 900 mA in an environment of 45 ° C.
Charge at constant voltage for 2 hours, then at 900mA 2.
The charge / discharge cycle was repeated under the condition of discharging up to 75V.
Table 3 shows the average discharge capacity at the 300th cycle and the average battery thickness after the 300th cycle. In addition, an overcharge test was performed under the condition that each of the five batteries was charged with a power supply voltage of 10 V and a current of 2700 mA for 1 hour. Table 4 shows changes in the battery state after the overcharge test.
【0046】[0046]
【表3】 [Table 3]
【0047】[0047]
【表4】 [Table 4]
【0048】これらの試験結果から、基本電解液に対す
る2−メチルナフタレンとクメンの合計添加量が、1重
量部である電池Fおよび10重量部である電池Gにおい
ては、300サイクル目の放電容量が700mAh以上
あり、電池のふくれも小さく、過充電試験においても電
池の状態はまったく変化しなかった。From these test results, in the battery F in which the total amount of 2-methylnaphthalene and cumene added to the basic electrolytic solution was 1 part by weight and the battery G in which the total amount was 10 parts by weight, the discharge capacity at the 300th cycle was found. It was 700 mAh or more, the swelling of the battery was small, and the state of the battery did not change even in the overcharge test.
【0049】一方、基本電解液に対する2−メチルナフ
タレンとクメンの合計添加量が0.2重量部である電池
Eでは、300サイクル目の放電容量が700mAh以
上あり、電池のふくれも小さかったが、過充電試験にお
いてはすべての電池が破裂した。また、基本電解液に対
する2−メチルナフタレンとクメンの合計添加量が20
重量部である電池Hでは、過充電試験においては電池の
状態はまったく変化しなかったが、300サイクル目の
放電容量が大幅に低下したり、電池がふくれたりした。On the other hand, in the battery E in which the total amount of 2-methylnaphthalene and cumene added to the basic electrolyte was 0.2 parts by weight, the discharge capacity at the 300th cycle was 700 mAh or more, and the battery swelled was small. All batteries burst in the overcharge test. In addition, the total amount of 2-methylnaphthalene and cumene added to the basic electrolyte is 20
In the battery H, which is a part by weight, the state of the battery did not change at all in the overcharge test, but the discharge capacity at the 300th cycle was significantly reduced, or the battery swelled.
【0050】[0050]
【発明の効果】本発明によれば、電池内に1〜10重量
%添加された、2−メチルナフタレンおよび側鎖アルキ
ル基のα−位に第三級水素をもつベンゼン化合物が、過
充電時に正極が熱的に不安定な物質となる電位以下、か
つ、実使用時における満充電時の正極電位よりも貴な電
位で優先的に酸化分解を受け、不安定物質の蓄積を防ぐ
ため、セパレーターがシャットダウンするまで電池を安
全に保つことができる。INDUSTRIAL APPLICABILITY According to the present invention, a benzene compound having a tertiary hydrogen at the α-position of a side-chain alkyl group and 2-methylnaphthalene, which is added to a battery in an amount of 1 to 10% by weight, is used during overcharge. To prevent the accumulation of unstable substances, the positive electrode is preferentially subjected to oxidative decomposition at a potential below the potential at which it becomes a thermally unstable substance, and at a potential nobler than the positive electrode potential at the time of full charge during actual use. You can keep the battery safe until your shut down.
【0051】また、2−メチルナフタレンおよび側鎖ア
ルキル基のα−位に第三級水素をもつベンゼン化合物
は、それぞれ単独で用いても過充電時の安全性向上に効
果をもたらすが、それらの併用によって飛躍的な安全性
の向上と実使用性能の保持が可能となる。Further, 2-methylnaphthalene and a benzene compound having a tertiary hydrogen at the α-position of a side chain alkyl group are effective in improving safety during overcharge even if they are used alone. When used together, it is possible to dramatically improve safety and maintain actual use performance.
【0052】したがって、実使用性能は従来電池と同等
のままで、従来電池に起こるような過充電時の爆発的な
発熱分解反応を効果的に抑止することができる。それゆ
えに、高容量化が可能であるばかりでなく、安全性のさ
らなる向上ができうる非水電解液二次電池を提供するこ
とができる。よって、本発明の工業的価値は極めて高
い。Therefore, the actual use performance remains the same as that of the conventional battery, and the explosive exothermic decomposition reaction at the time of overcharging which occurs in the conventional battery can be effectively suppressed. Therefore, it is possible to provide a non-aqueous electrolyte secondary battery that not only has a high capacity but can further improve safety. Therefore, the industrial value of the present invention is extremely high.
【0053】[0053]
【図1】実施例1になる非水電解液二次電池の断面図。FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery according to a first embodiment.
1 非水電解液二次電池 2 電極群 3 負極板 4 正極板 5 セパレータ 6 電池ケース 7 蓋 8 安全弁 10 負極端子 11 負極リード 1 Non-aqueous electrolyte secondary battery 2 electrode group 3 Negative electrode plate 4 Positive plate 5 separator 6 battery case 7 lid 8 safety valve 10 Negative electrode terminal 11 Negative electrode lead
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−55822(JP,A) 特開 平7−302614(JP,A) 特開 平9−45369(JP,A) 特開 平5−36439(JP,A) 特開 平6−150970(JP,A) 特開2000−58116(JP,A) 特開2000−156243(JP,A) 特開 平5−234618(JP,A) 特表2001−525597(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-10-55822 (JP, A) JP-A-7-302614 (JP, A) JP-A-9-45369 (JP, A) JP-A-5- 36439 (JP, A) JP-A-6-150970 (JP, A) JP-A-2000-58116 (JP, A) JP-A-2000-156243 (JP, A) JP-A-5-234618 (JP, A) Special Table 2001-525597 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/40
Claims (2)
鎖アルキル基のα−位に第三級水素をもつベンゼン化合
物とを同時に含み、前記2−メチルナフタレンと前記側
鎖アルキル基のα−位に第三級水素をもつベンゼン化合
物との総量が、前記2−メチルナフタレンと前記側鎖ア
ルキル基のα−位に第三級水素をもつベンゼン化合物と
を除く非水電解液に対して1〜10重量%含むことを特
徴とする非水電解質二次電池。1. A non-aqueous electrolyte solution is 2-methylnaphthalene and side.
Of Benzene Compounds with Tertiary Hydrogen at α-position of Chain Alkyl Group
And 2-methylnaphthalene and the side
Of Benzene Compounds with Tertiary Hydrogen at α-position of Chain Alkyl Group
The total amount of the 2-methylnaphthalene and the side chain
A benzene compound having a tertiary hydrogen at the α-position of the rukyl group
The non-aqueous electrolyte secondary battery is characterized by containing 1 to 10 wt% with respect to the non-aqueous electrolyte solution excluding .
もつベンゼン化合物がイソプロピルナフタレン、クメ
ン、カダリン、グヤアズレンからなる群から選ばれた少
なくとも一種であることを特徴とする請求項1記載の非
水電解質二次電池。2. A tertiary hydrogen is added to the α-position of a side chain alkyl group.
Benzene compounds have isopropyl naphthalene,
Selected from the group consisting of
The non-aqueous electrolyte secondary battery according to claim 1, wherein the even without a kind.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01211399A JP3402237B2 (en) | 1999-01-20 | 1999-01-20 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01211399A JP3402237B2 (en) | 1999-01-20 | 1999-01-20 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000215909A JP2000215909A (en) | 2000-08-04 |
JP3402237B2 true JP3402237B2 (en) | 2003-05-06 |
Family
ID=11796519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01211399A Expired - Fee Related JP3402237B2 (en) | 1999-01-20 | 1999-01-20 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3402237B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3113652B1 (en) * | 1999-06-30 | 2000-12-04 | 三洋電機株式会社 | Lithium secondary battery |
HU228244B1 (en) * | 2000-10-03 | 2013-02-28 | Ube Industries | Lithium secondary cell and nonaqueous electrolyte |
JP4573474B2 (en) * | 2001-08-06 | 2010-11-04 | 日立マクセル株式会社 | Non-aqueous secondary battery |
JP4974316B2 (en) * | 2001-08-06 | 2012-07-11 | 日立マクセルエナジー株式会社 | Non-aqueous secondary battery |
JP3914048B2 (en) * | 2001-12-21 | 2007-05-16 | 日立マクセル株式会社 | Non-aqueous secondary battery and portable device using the same |
KR100611940B1 (en) | 2003-11-21 | 2006-08-11 | 주식회사 엘지화학 | Electrochemical cell having an improved safety |
FR2866478A1 (en) * | 2004-02-12 | 2005-08-19 | Commissariat Energie Atomique | Lithium battery with protection against inappropriate utilization, notably to provide an energy source for portable equipment |
JP5309233B2 (en) * | 2012-02-13 | 2013-10-09 | 株式会社日立製作所 | Lithium ion secondary battery and overcharge inhibitor for lithium ion secondary battery |
JP6740928B2 (en) * | 2017-02-17 | 2020-08-19 | 株式会社村田製作所 | Electrolyte for lithium-ion secondary battery, lithium-ion secondary battery, battery pack, electric vehicle, power storage system, power tool and electronic equipment |
-
1999
- 1999-01-20 JP JP01211399A patent/JP3402237B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000215909A (en) | 2000-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6074777A (en) | Additives for overcharge protection in non-aqueous rechargeable lithium batteries | |
EP1065744B1 (en) | Lithium secondary battery | |
CA2163187C (en) | Aromatic monomer gassing agents for protecting non-aqueous lithium batteries against overcharge | |
US7833661B2 (en) | Electrolytes for lithium ion secondary batteries | |
KR101073228B1 (en) | Nonaqueous Electrolyte Secondary Battery | |
KR101836043B1 (en) | Nonaqueous electrolyte secondary battery | |
KR20020077445A (en) | Nonaqueous electrolytic secondary battery | |
JP2000058117A (en) | Nonaqueous secondary battery | |
JP2000058116A (en) | Nonaqueous battery electrolyte and secondary battery using the same | |
CN111640980A (en) | Nonaqueous electrolyte secondary battery | |
JP4843848B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4701599B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4595205B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3402237B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2963898B1 (en) | Electrolyte for non-aqueous battery and secondary battery using this electrolyte | |
JP2004030991A (en) | Nonaqueous electrolyte secondary battery | |
JP2001185213A (en) | Nonaqueous electrolyte battery and manufacturing method therefor | |
JP2005347222A (en) | Electrolyte liquid and battery | |
JP2007172969A (en) | Battery | |
KR100826084B1 (en) | Additives for lithium secondarty battery | |
JP2000058113A (en) | Nonaqueous battery electrolyte and secondary battery using the same | |
JP3402233B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH1140199A (en) | Lithium secondary battery | |
JP2000188132A (en) | Nonaqueous electrode secondary battery | |
JP3030995B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |