JP3369810B2 - Communication module - Google Patents
Communication moduleInfo
- Publication number
- JP3369810B2 JP3369810B2 JP23429395A JP23429395A JP3369810B2 JP 3369810 B2 JP3369810 B2 JP 3369810B2 JP 23429395 A JP23429395 A JP 23429395A JP 23429395 A JP23429395 A JP 23429395A JP 3369810 B2 JP3369810 B2 JP 3369810B2
- Authority
- JP
- Japan
- Prior art keywords
- antenna
- module
- mmic
- parasitic element
- parasitic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Description
【産業上の利用分野】この発明はミリ波帯送受信器に関
し、例えば構内無線伝送システムに用いられる通信モジ
ュールに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a millimeter-wave band transceiver, for example, a communication module used in a local wireless transmission system.
【従来の技術】ミリ波の様な高周波では、表皮の厚さが
薄くなるので、配線の引き回しによる伝送損失が非常に
大きくなる。例えば周波数を60GHz、配線に用いら
れる金属を金とした場合、表皮の厚さは0.3μm程度
となる。この為、ミリ波無線に用いられる送受信モジュ
ールでは、送受信部とアンテナを結ぶ給電線での損失が
大きいためなるべく両者間を短くし、できるだけ給電線
での損失を抑える工夫が成される。そこで、ミリ波無線
に用いられる送受信機ではミリ波モジュールIC、即ち
MMIC上に平面アンテナを形成するなどして、アンテ
ナ一体型のモジュールとする試みが成されている。たと
えば、特開平4−21203号に示されているアンテナ
一体型MMICは、能動素子と受動素子とで構成され、
増幅、変調等の機能動作をするMMICの上面に別の絶
縁性層を介してアンテナが形成されている。この際、例
えばMMICには例えばGaAs基板が用いられ、絶縁
層にはポリイミドが用いられる。このような構成を取る
と、出力回路部からアンテナに電力を供給するための給
電線が短くて済み、ミリ波のような高周波帯でもアンテ
ナに給電する際の損失を抑えることができる。一方、ア
ンテナをMMICに一体に形成することによる不具合も
生じる。MMICを一旦作製してしまうと、放射パター
ン、アンテナの周波数帯域、アンテナインピーダンスが
固定されてしまう。通常、アンテナに供給された電力
が、アンテナを通じて空間に効率よく放射される様にイ
ンピーダンス整合が行われるが、アンテナを一体成形し
てしまうと作成後にインピーダンスを調整することは困
R>難になる。作製したMMIC上の回路の設計値からの
ずれ、また大量生産したときのロット内の特性のバラツ
キによるインピーダンス不整合を後工程の調整により取
り除くことは困難である。また、アンテナの指向性を変
えたり、周波数帯域を拡張させるためにアンテナの上に
無給電の素子を積層させることがあるが、寄生素子とも
呼ばれるアンテナ上の無給電素子は一般に面積が能動素
子部に較べて大きいので、MMIC面積の増大を招き、
小型化、低価格化を阻害する要因となってしまう。ま
た、MMICとアンテナが一体成形されているので、異
なる放射パターン、周波数帯域のモジュールを実現させ
るためには、個別にMMICを作製しなければならな
い。オフィスの無線LANの様に閉空間での無線伝送に
ミリ波を用いた場合、近接反射などによるマルチパスの
影響等伝搬環境は一般に複雑になる。この為アンテナと
しても、指向性、周波数帯域等の多彩な要求に応える必
要がある。ところが、アンテナがMMICと一体で形成
されている場合、上記の理由で素子作製上もしくは素子
をシステムに適用する上で、大きな制約となっていた。2. Description of the Related Art At high frequencies such as millimeter waves, the thickness of the skin becomes thin, so that the transmission loss due to wiring arrangement becomes very large. For example, when the frequency is 60 GHz and the metal used for the wiring is gold, the skin thickness is about 0.3 μm. For this reason, in the transmission / reception module used for millimeter-wave wireless, the loss in the power supply line connecting the transmission / reception unit and the antenna is large. Therefore, in a transceiver used for millimeter-wave radio, an attempt has been made to form a module integrated with an antenna by forming a planar antenna on a millimeter-wave module IC, that is, MMIC. For example, an antenna-integrated MMIC disclosed in Japanese Patent Laid-Open No. 4-21203 is composed of an active element and a passive element,
An antenna is formed on the upper surface of the MMIC that performs functional operations such as amplification and modulation, with another insulating layer interposed. At this time, for example, a GaAs substrate is used for the MMIC, and polyimide is used for the insulating layer. With such a configuration, the power supply line for supplying power from the output circuit unit to the antenna can be short, and it is possible to suppress loss when power is supplied to the antenna even in a high frequency band such as a millimeter wave. On the other hand, there is also a problem due to the antenna being formed integrally with the MMIC. Once the MMIC is manufactured, the radiation pattern, the frequency band of the antenna, and the antenna impedance are fixed. Normally, impedance matching is performed so that the power supplied to the antenna is efficiently radiated into the space through the antenna, but once the antenna is integrally molded, it is difficult to adjust the impedance after creation.
R> difficult. It is difficult to remove the impedance mismatch due to the deviation from the design value of the circuit on the manufactured MMIC and the variation in the characteristics in the lot when mass-produced by adjusting the subsequent process. In addition, parasitic elements may be stacked on the antenna in order to change the directivity of the antenna or extend the frequency band. However, parasitic elements on the antenna, also called parasitic elements, generally have an active element area. Since it is larger than, it causes an increase in MMIC area,
It becomes a factor that hinders downsizing and price reduction. Further, since the MMIC and the antenna are integrally molded, the MMIC must be individually manufactured in order to realize a module having different radiation patterns and frequency bands. When millimeter waves are used for wireless transmission in a closed space like an office wireless LAN, the propagation environment such as the influence of multipath due to proximity reflection and the like is generally complicated. Therefore, as an antenna, it is necessary to meet various requirements such as directivity and frequency band. However, in the case where the antenna is formed integrally with the MMIC, it has been a great limitation in manufacturing the element or applying the element to the system for the above reason.
【発明が解決しようとする課題】ミリ波帯の電磁波を構
内無線LANに使用する場合、室内の什器、壁、天井等
による多重反射が発生するため、伝搬環境は複雑にな
り、アンテナにも様々な指向性、周波数帯域等が要求さ
れる。一方、ミリ波特有の問題、即ちアンテナ迄の給電
線上の損失をできるだけ抑える目的から、アンテナ内蔵
型MMICの研究が盛んに行われているが、多彩な伝搬
環境に対応するアンテナに対する要求に柔軟に応えるこ
とは困難であった。本発明の目的は、上記従来の欠点を
除去し、ペレットの面積を増大させることなく、また、
MMICの種類を変えずに、様々な指向性、周波数帯
域、入力インピーダンスを持つアンテナを内蔵したモジ
ュールを提供することにある。When an electromagnetic wave in the millimeter wave band is used for a wireless LAN on a premises, multiple reflections occur due to furniture, walls, ceilings, etc. in the room, which complicates the propagation environment and causes various antennas. Directivity, frequency band, etc. are required. On the other hand, MMICs with built-in antennas are being actively researched for the purpose of suppressing the problem peculiar to millimeter waves, that is, the loss on the feeder line to the antennas as much as possible. Was difficult to meet. The object of the present invention is to eliminate the above-mentioned conventional drawbacks, without increasing the area of pellets, and
An object of the present invention is to provide a module incorporating an antenna having various directivities, frequency bands, and input impedances without changing the type of MMIC.
【課題を解決するための手段】本発明は、通信信号処理
部と、この通信信号処理部側に設けられる給電アンテナ
層とこの給電アンテナ層に非直流的に結合される無給電
アンテナ層とにより構成される多層構造アンテナとによ
り構成される通信モジュールを提供する。本発明による
と、多層平面構造を有するアンテナに於て、ミリ波モジ
ュールIC(MMIC)上の出力回路からアンテナに電
力を供給するための給電線と直流的に接続されているア
ンテナパターンをMMIC上に構成し、該給電線と直流
に接続されていない層の一部もしくは全部をMMICが
搭載されているモジュールの一部もしくはモジュールに
取り付けられる機構を有する外部部品に形成するアンテ
ナ内蔵型送信、受信または送受信モジュール、即ち通信
モジュールを提供する。本発明においては、アンテナ内
蔵型通信モジュールにおいてアンテナが多層平面で構成
され、給電線の接続されていない寄生素子、即ち無給電
素子をMMICと空間的に分離された層に構成すること
により、MMIC上の構成を変えずにアンテナの指向
性、周波数帯域を変えることができ、多様な電波伝搬環
境に対応させることが可能となる。また、アンテナの一
部を構成する給電線で直流的に接続されていない寄生素
子、即ち無給電素子をMMIC外に構成させることによ
り、アンテナ一体型MMICの長所である出力回路から
アンテナまでの給電線上の伝送損失を最小限に抑えると
言った効果を保持したまま、MMICの面積を小さく抑
えることができる。According to the present invention, there is provided a communication signal processing section, a feeding antenna layer provided on the communication signal processing section side, and a parasitic antenna layer non-directly coupled to the feeding antenna layer. Provided is a communication module configured with a configured multi-layered antenna. According to the present invention, in an antenna having a multi-layered planar structure, an antenna pattern, which is DC-connected to a power supply line for supplying power to the antenna from an output circuit on a millimeter wave module IC (MMIC), is formed on the MMIC. And a part or the whole of the layer not connected to the power supply line and the direct current is formed in a part of the module in which the MMIC is mounted or an external part having a mechanism to be attached to the module. Alternatively, a transmission / reception module, that is, a communication module is provided. According to the present invention, in the communication module with a built-in antenna, the antenna is composed of a multi-layered plane, and the parasitic element to which the feeding line is not connected, that is, the parasitic element is formed in a layer spatially separated from the MMIC. The directivity and frequency band of the antenna can be changed without changing the above configuration, and it becomes possible to cope with various radio wave propagation environments. In addition, by forming a parasitic element, which is not connected in a direct current manner by a power supply line that forms a part of the antenna, that is, a parasitic element outside the MMIC, the advantage of the antenna-integrated MMIC is that the power is fed from the output circuit to the antenna. It is possible to reduce the area of the MMIC while keeping the effect of minimizing the transmission loss on the line.
【発明の実施の形態】以下、図面を参照しながら実施例
を説明する。図1には本発明の一実施例に係る通信モジ
ュール、特にミリ波モジュールが示されている。この実
施例によると、送受信の通信信号処理を行うミリ波モジ
ュールIC、即ちMMIC11上にはパッチアンテナ1
2と能動素子を含む回路(図示せず)とが一体に形成さ
れている。MMIC11は、モジュール基体14に半田
または樹脂系接着剤等で機械的に接続される。また、電
気的には金属細線15により基体14の回路に接続され
ている。モジュール蓋体13に無給電素子16が形成さ
れており、蓋体13をモジュール基体14に実装するこ
とにより蓋体13の無給電素子16とモジュール基体1
4のMMIC11上のパッチアンテナ12とが結合さ
れ、アンテナが完成する。上記のようなアンテナによる
と、蓋体13上の無給電素子16の位置や形状、または
MMIC11上のパッチアンテナパターン12と蓋体1
3に形成された無給電素子16との距離を適当に設定す
ることにより、アンテナの指向性、利得、周波数帯域等
を高い自由度で良好な状態で得ることができる。従っ
て、従来のようにアンテナの全てをMMIC11上に固
定的に構成させた場合とは異なり、MMIC作製後でも
蓋体を取り付ける段階で、アンテナの諸特性を所望の値
に変更することができ、多彩な伝搬環境に対応可能な送
信または受信あるいは送受信モジュールを実現すること
ができる。なお、無給電素子16は、図1および図2に
示されるように蓋体13の表面、即ちモジュールの外側
の面に設けて良いし、図3に示されるように蓋体13の
裏面、即ちモジュールの内側の面に設けても良い。ま
た、図には示されていないが、蓋体13の表裏面両方に
設けても良い。なお、無給電素子16は蓋体13を回転
させたとき指向性などが変わるようにMMIC11上に
形成されたパッチアンテナパターン12に対して変位す
るように形成配置される。図1〜図3では、アンテナの
一部を構成する無給電素子16がモジュールの蓋体13
に設けられているが、本発明は、給電線を含む平面アン
テナの一部をMMIC上に形成し、残りの無給電素子を
MMICが搭載されるモジュール上に形成することを特
徴としているので、無給電素子が形成される面は蓋体で
ある必要が無い。例えば、図4に示すようにMMICを
封止する為の蓋体13とは別に無給電素子16を設けた
基板17を蓋体13の上部に可動に取り付けても良い。
また、無給電素子16を設けた蓋体13および無給電素
子基板17をモータ等の駆動装置により自動的に駆動で
きるようにアンテナの指向性、利得、周波数帯域等を自
動的に調整できるように構成しても良い。また、モジュ
ール基体14または蓋体13などにネジ切りを設け、同
調し易いようにし、また適正な位置に固定するように構
成しても良い。さらに、無給電素子を有する蓋体および
基板を複数個準備し、使用場所に応じて交換できるよう
に構成することができる。図1〜図3では、金属細線1
5を用いてMMIC11とモジュール基体14との電気
的な接続を取っているが、フリップチップ接続の方法を
採用しても良い。即ち、図5に示すようにMMIC11
に形成された電気接続用電極20をモジュール基体14
に対向するように設け、基体14の配線に接続する。こ
の場合、接続は一般に半田で行われる。また、本発明
は、給電線を含む平面アンテナの一部をMMIC上に形
成し、残りの無給電素子をMMICが搭載されるモジュ
ール上に設けることを特徴としているので、無給電素子
はモジュール基体14の裏面に設けても良い。第6図
は、スロット22によって結合されるパッチアンテナを
モジュールに一体化させた実施例を示している。この図
6では、給電線路21を有する給電板22とスロット2
3を有するスロット板24と無給電素子25が配設され
た蓋体26が互いに対面して配置されている。この実施
例において、第7図の例では、給電線路21までの部分
がMMIC11に形成され、スロット23及びパッチ型
無給電素子25が蓋体26に設けられている。図8の例
では、スロット23のある接地面までの部分がMMIC
11上に構成され、パッチ型の無給電素子25が蓋体2
6に形成される。第9図は、2つの離散的な周波数に対
応したスロット結合パッチアンテナの例を示している。
第6図で説明したようにスロット結合アンテナを本発明
に適用する場合、例えば、最下層の給電線21をMMI
C11に設け、最上層の無給電パッチ、即ち無給電素子
25をモジュール上、即ちモジュール基体14上に設け
る。中間の第2及び第3層、即ちスロット板24a及び
24bはMMIC11上に設けても、モジュール基体1
4上に設けても良い。本発明によれば、例えば第4層の
給電線21と第3層のスロット板24bとをMMIC1
1に設けた場合、第1及び第2層、即ち蓋体(無給電素
子板)26及びスロット板24aをモジュール上に構成
することにより2周波数対応のアンテナを実現でき、1
層目のみをモジュール上に構成することにより単一周波
数対応のアンテナを実現することができる。層数を増や
すことにより、さらに多周波に対応させることができ
る。また、スロットの形状、位置を適切な値に設定する
ことにより、アンテナの入力インピーダンス、周波数を
広範囲に変えることができる。この他にも本発明と公知
の平面多層アンテナとを組み合わせることにより、広範
囲の放射パターン、周波数帯域、入力インピーダンスを
持ったアンテナを搭載した、アンテナ一体型送信または
受信あるいは送受信モジュールを実現できる。また、図
1では、リードレスチップキャリアタイプのモジュール
を用いた実施例について説明したが、本発明はこれに限
定されるものではない。即ち、モジュールの形状はクワ
ッドフラットパッケージでも良いし、トランスファーモ
ールドタイプのパッケージでも良い。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments will be described below with reference to the drawings. FIG. 1 shows a communication module, particularly a millimeter wave module, according to an embodiment of the present invention. According to this embodiment, the patch antenna 1 is provided on the millimeter wave module IC, that is, the MMIC 11, which performs processing of communication signals for transmission and reception.
2 and a circuit (not shown) including an active element are integrally formed. The MMIC 11 is mechanically connected to the module base 14 with solder or resin adhesive. Further, it is electrically connected to the circuit of the base 14 by the thin metal wire 15. The parasitic element 16 is formed on the module lid body 13. By mounting the lid body 13 on the module base body 14, the parasitic element 16 of the lid body 13 and the module base body 1 are mounted.
4 is combined with the patch antenna 12 on the MMIC 11 to complete the antenna. According to the above-mentioned antenna, the position and shape of the parasitic element 16 on the lid 13, or the patch antenna pattern 12 on the MMIC 11 and the lid 1 are used.
By appropriately setting the distance to the parasitic element 16 formed in No. 3, the antenna directivity, gain, frequency band, etc. can be obtained in a good state with a high degree of freedom. Therefore, unlike the conventional case where all the antennas are fixedly configured on the MMIC 11, various characteristics of the antenna can be changed to desired values at the stage of attaching the lid even after the MMIC is manufactured. It is possible to realize a transmission / reception or transmission / reception module that can support various propagation environments. The parasitic element 16 may be provided on the front surface of the lid body 13, that is, on the outer surface of the module as shown in FIGS. 1 and 2, or on the back surface of the lid body 13, that is, as shown in FIG. It may be provided on the inner surface of the module. Although not shown in the drawing, they may be provided on both the front and back surfaces of the lid 13. The parasitic element 16 is formed and arranged so as to be displaced with respect to the patch antenna pattern 12 formed on the MMIC 11 so that the directivity changes when the lid 13 is rotated. In FIGS. 1 to 3, the parasitic element 16 forming a part of the antenna is the lid 13 of the module.
However, the present invention is characterized in that a part of the planar antenna including the feed line is formed on the MMIC and the remaining parasitic elements are formed on the module on which the MMIC is mounted. The surface on which the parasitic element is formed does not have to be the lid. For example, as shown in FIG. 4, a substrate 17 provided with a parasitic element 16 separately from the lid 13 for sealing the MMIC may be movably attached to the top of the lid 13.
In addition, the antenna directivity, gain, frequency band, etc. are automatically adjusted so that the lid 13 provided with the parasitic element 16 and the parasitic element substrate 17 can be automatically driven by a driving device such as a motor. It may be configured. Further, the module base body 14 or the lid 13 may be provided with a thread cut so as to facilitate synchronization, and may be fixed at an appropriate position. Furthermore, it is possible to prepare a plurality of lids and substrates each having a parasitic element, and to replace them according to the place of use. 1 to 3, the thin metal wire 1
Although the electrical connection between the MMIC 11 and the module base 14 is made by using 5, the flip chip connection method may be adopted. That is, as shown in FIG.
The electrode 20 for electrical connection formed on the module base 14
To be connected to the wiring of the base 14. In this case, the connection is generally made with solder. Further, the present invention is characterized in that a part of the planar antenna including the feed line is formed on the MMIC and the remaining parasitic elements are provided on the module on which the MMIC is mounted. It may be provided on the back surface of 14. FIG. 6 shows an embodiment in which the patch antenna coupled by the slot 22 is integrated with the module. In FIG. 6, the feeding plate 22 having the feeding line 21 and the slot 2
The slot plate 24 having the number 3 and the lid body 26 on which the parasitic element 25 is disposed are arranged to face each other. In this embodiment, in the example of FIG. 7, the portion up to the feed line 21 is formed in the MMIC 11, and the slot 23 and the patch type parasitic element 25 are provided in the lid 26. In the example of FIG. 8, the portion up to the ground plane where the slot 23 is located is the MMIC.
11, the patch-type parasitic element 25 is provided on the lid body 2.
6 is formed. FIG. 9 shows an example of a slot-coupled patch antenna corresponding to two discrete frequencies.
When the slot-coupled antenna is applied to the present invention as described with reference to FIG. 6, for example, the lowermost feed line 21 is MMI.
Provided on C11, the uppermost parasitic patch, that is, the parasitic element 25 is provided on the module, that is, the module base 14. Even if the intermediate second and third layers, that is, the slot plates 24a and 24b are provided on the MMIC 11, the module substrate 1
4 may be provided. According to the present invention, for example, the fourth-layer feed line 21 and the third-layer slot plate 24b are connected to the MMIC1.
When it is provided in No. 1, an antenna compatible with two frequencies can be realized by configuring the first and second layers, that is, the lid (parasitic element plate) 26 and the slot plate 24a on the module.
An antenna compatible with a single frequency can be realized by configuring only the layer on the module. By increasing the number of layers, it is possible to support multiple frequencies. Also, by setting the shape and position of the slot to appropriate values, the input impedance and frequency of the antenna can be changed over a wide range. In addition to this, by combining the present invention with a known planar multilayer antenna, it is possible to realize an antenna-integrated transmission or reception or transmission / reception module equipped with an antenna having a wide range of radiation patterns, frequency bands, and input impedances. Although FIG. 1 illustrates the embodiment using the leadless chip carrier type module, the present invention is not limited to this. That is, the shape of the module may be a quad flat package or a transfer mold type package.
【発明の効果】本発明によれば、MMIC作製後にアン
テナの指向性、周波数帯域、インピーダンスを調整でき
るので、伝搬環境に応じた放射パターンの最適化、イン
ピーダンス整合が容易に実施できる。According to the present invention, the directivity, frequency band, and impedance of the antenna can be adjusted after manufacturing the MMIC, so that the radiation pattern can be optimized and the impedance matching can be easily performed according to the propagation environment.
【図1】本発明の一実施例のミリ波モジュールの斜視図FIG. 1 is a perspective view of a millimeter wave module according to an embodiment of the present invention.
【図2】図1のミリ波モジュールの断面図2 is a cross-sectional view of the millimeter wave module of FIG.
【図3】図1の実施例の変形例であるミリ波モジュール
の断面図FIG. 3 is a sectional view of a millimeter wave module which is a modification of the embodiment of FIG.
【図4】本発明の他の実施例のミリ波モジュールの斜視
図FIG. 4 is a perspective view of a millimeter wave module according to another embodiment of the present invention.
【図5】本発明の他の実施例のミリ波モジュールの一部
断面図FIG. 5 is a partial sectional view of a millimeter wave module according to another embodiment of the present invention.
【図6】本発明をスロット結合アンテナに適用した他の
実施例のミリ波モジュールの主要部の斜視図FIG. 6 is a perspective view of a main part of a millimeter wave module of another embodiment in which the present invention is applied to a slot coupling antenna.
【図7】図6の実施例のミリ波モジュールの断面図7 is a sectional view of the millimeter wave module of the embodiment of FIG.
【図8】図7の実施例の変形例であるミリ波モジュール
の断面図8 is a cross-sectional view of a millimeter wave module that is a modification of the embodiment of FIG.
【図9】スロット結合アンテナに適用した他の実施例の
ミリ波モジュールの主要部の斜視図FIG. 9 is a perspective view of a main part of a millimeter wave module of another embodiment applied to a slot-coupled antenna.
【符号の説明】
11…MMIC、12…アンテナ、13…蓋体、14…
モジュール基体
15…金属細線、16…無給電素子、17…無給電素子
基板
21…給電線路、22…スロット、25…無給電素子、
26…蓋体[Explanation of Codes] 11 ... MMIC, 12 ... Antenna, 13 ... Lid, 14 ...
Module base 15 ... Metal thin wire, 16 ... Parasitic element, 17 ... Parasitic element substrate 21, Feed line, 22 ... Slot, 25 ... Parasitic element,
26 ... Lid
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01Q 13/08 H01Q 23/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01Q 13/08 H01Q 23/00
Claims (3)
くとも一方を行う通信モジュールにおいて: 通信信号処理部と; 多層平面アンテナの最上層を含む単層または複数の層に
より構成される無給電素子と、この無給電素子に非直流
的に結合され前記多層平面アンテナを構成する残りの層
を構成する給電アンテナ素子とにより構成され、前記無
給電素子は前記給電アンテナ素子に対して変位可能に配
置される多層構造アンテナとを具備することを特徴とす
る通信モジュール。1. A communication module having a built-in antenna and performing at least one of transmission and reception: a communication signal processing section; and a parasitic element composed of a single layer or a plurality of layers including an uppermost layer of a multilayer planar antenna. And a non-direct current-coupled parasitic element to the parasitic antenna constituting the remaining layers of the multilayer planar antenna, the parasitic element being arranged so as to be displaceable with respect to the parasitic antenna element. And a multi-layered structure antenna.
部としてのミリ波モジュールICに形成されたパッチア
ンテナパターンを有し、前記無給電素子は前記ミリ波モ
ジュールICに実装される蓋体に形成されることを特徴
とする請求項1の通信モジュール。2. The feeding antenna element has a patch antenna pattern formed on a millimeter wave module IC as the communication signal processing section, and the parasitic element is formed on a lid mounted on the millimeter wave module IC. The communication module according to claim 1, wherein the communication module is provided.
くとも一方を行う通信モジュールにおいて: 通信信号処理部と; 給電アンテナ素子とこの給電アンテナ素子に非直流的に
結合される無給電素子とにより構成される多層構造アン
テナとを具備し、 前記給電アンテナ素子は前記通信信号処理部としてのミ
リ波モジュールICに形成されたパッチアンテナパター
ンを有し、前記無給電素子は前記ミリ波モジュールIC
に実装される蓋体に形成され、前記蓋体は前記ミリ波モ
ジュールICに対して移動可能であることを特徴とする
通信モジュール。3. A communication module having a built-in antenna and performing at least one of transmission and reception, comprising: a communication signal processing section; a feeding antenna element and a parasitic element non-directly coupled to the feeding antenna element. The multi-layered antenna described above, wherein the feeding antenna element has a patch antenna pattern formed on a millimeter wave module IC as the communication signal processing unit, and the parasitic element is the millimeter wave module IC.
A communication module, characterized in that it is formed on a lid mounted on, and the lid is movable with respect to the millimeter wave module IC.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23429395A JP3369810B2 (en) | 1995-09-12 | 1995-09-12 | Communication module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23429395A JP3369810B2 (en) | 1995-09-12 | 1995-09-12 | Communication module |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0983240A JPH0983240A (en) | 1997-03-28 |
JP3369810B2 true JP3369810B2 (en) | 2003-01-20 |
Family
ID=16968727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23429395A Expired - Fee Related JP3369810B2 (en) | 1995-09-12 | 1995-09-12 | Communication module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3369810B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2806350B2 (en) * | 1996-03-14 | 1998-09-30 | 日本電気株式会社 | Patch type array antenna device |
ATE365985T1 (en) * | 2001-02-13 | 2007-07-15 | Koninkl Philips Electronics Nv | STRIP LINE ANTENNA WITH SWITCHABLE REACTIVE COMPONENTS FOR MULTI-FREQUENCY USE IN MOBILE TELEPHONE COMMUNICATIONS |
EP1563570A1 (en) | 2002-11-07 | 2005-08-17 | Fractus, S.A. | Integrated circuit package including miniature antenna |
DE10350034A1 (en) | 2003-10-27 | 2005-05-25 | Robert Bosch Gmbh | Antenna arrangement in particular for radar applications in motor vehicles |
EP1771919A1 (en) | 2004-07-23 | 2007-04-11 | Fractus, S.A. | Antenna in package with reduced electromagnetic interaction with on chip elements |
US8531337B2 (en) | 2005-05-13 | 2013-09-10 | Fractus, S.A. | Antenna diversity system and slot antenna component |
JP4861303B2 (en) * | 2007-12-27 | 2012-01-25 | 株式会社日立製作所 | Radar sensor |
DE102008019366B3 (en) * | 2008-04-17 | 2009-11-19 | Kathrein-Werke Kg | Multilayer antenna of planar design |
WO2016146339A1 (en) * | 2015-03-17 | 2016-09-22 | Philips Lighting Holding B.V. | Lighting device with first and second coupled and inter-movable antennas |
EP4456332A1 (en) | 2021-12-24 | 2024-10-30 | Kyocera Corporation | Wireless communication device and structure |
-
1995
- 1995-09-12 JP JP23429395A patent/JP3369810B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0983240A (en) | 1997-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6809688B2 (en) | Radio communication device with integrated antenna, transmitter, and receiver | |
US8179333B2 (en) | Antennas using chip-package interconnections for millimeter-wave wireless communication | |
US7728774B2 (en) | Radio frequency (RF) integrated circuit (IC) packages having characteristics suitable for mass production | |
US8629540B2 (en) | Apparatus and methods for packaging integrated circuit chips with antennas formed from package lead wires | |
US8269671B2 (en) | Simple radio frequency integrated circuit (RFIC) packages with integrated antennas | |
US8256685B2 (en) | Compact millimeter wave packages with integrated antennas | |
US8164167B2 (en) | Integrated circuit structure and a method of forming the same | |
US7999753B2 (en) | Apparatus and methods for constructing antennas using vias as radiating elements formed in a substrate | |
JP5308512B2 (en) | Radio frequency (RF) integrated circuit (IC) package with integrated aperture coupled patch antenna in ring cavity and / or offset cavity | |
US11621491B2 (en) | Chip antenna | |
US20010050654A1 (en) | Printed circuit board-configured dipole array having matched impedance-coupled microstrip feed and parasitic elements for reducing sidelobes | |
JPH09237867A (en) | High-frequency package | |
US6195062B1 (en) | Printed circuit board-configured dipole array having matched impedance-coupled microstrip feed and parasitic elements for reducing sidelobes | |
US7109948B2 (en) | Dielectric antenna module | |
JP3369810B2 (en) | Communication module | |
JP2005183884A (en) | High frequency module and its manufacturing method | |
JPH06334421A (en) | Radio communication product with board mount antenna | |
JPH0983241A (en) | Semiconductor device | |
KR102692514B1 (en) | Rf element assembly using a plurality of laminates | |
JPH0951210A (en) | Antenna system | |
JP4021600B2 (en) | Active antenna | |
KR20240098642A (en) | Multi-band radiator module | |
JPH1092868A (en) | High frequency semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071115 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |