JP3337289B2 - Hydrodynamic bearing - Google Patents

Hydrodynamic bearing

Info

Publication number
JP3337289B2
JP3337289B2 JP28486993A JP28486993A JP3337289B2 JP 3337289 B2 JP3337289 B2 JP 3337289B2 JP 28486993 A JP28486993 A JP 28486993A JP 28486993 A JP28486993 A JP 28486993A JP 3337289 B2 JP3337289 B2 JP 3337289B2
Authority
JP
Japan
Prior art keywords
bearing
elastomer
wedge
groove
wedge groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28486993A
Other languages
Japanese (ja)
Other versions
JPH07139543A (en
Inventor
靖 毛利
昭民 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28486993A priority Critical patent/JP3337289B2/en
Publication of JPH07139543A publication Critical patent/JPH07139543A/en
Application granted granted Critical
Publication of JP3337289B2 publication Critical patent/JP3337289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、低粘度作動流体用動圧
軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure bearing for a low-viscosity working fluid.

【0002】[0002]

【従来の技術】図6は従来の動圧軸受の斜視図である。
図において、11は裏金、12はホワイト、13はジャ
ーナル、14は前記ホワイトに設けられているくさび
溝、15は同くさび溝の両側部および終端部に形成され
ているダム、Hはくさび溝の入口深さ、Dは軸受直径、
Xは回転体の荷重方向である。軸受は鋼製の裏金11に
ホワイト12を盛り形成され、回転体のジャーナル部1
3を支承している。回転体を支承する軸受に種々の型式
があるが、動圧軸受の中では、上記のようなくさび溝軸
受型式が、最も負荷容量と回転体の浮上特性に優れた型
式のものとして使われてきている。
2. Description of the Related Art FIG. 6 is a perspective view of a conventional dynamic pressure bearing.
In the figure, 11 is a backing metal, 12 is a white, 13 is a journal, 14 is a wedge groove provided on the white, 15 is a dam formed on both sides and an end of the wedge groove, and H is a wedge groove. Inlet depth, D is the bearing diameter,
X is the load direction of the rotating body. The bearing is formed by embossing a white 12 on a steel backing 11 and a journal 1 of a rotating body.
3 are supported. There are various types of bearings that support the rotating body, but among the dynamic pressure bearings, the wedge groove bearing type as described above has been used as the type with the best load capacity and the floating characteristics of the rotating body. ing.

【0003】上記軸受において、ホワイトの摺動面には
回転方向上流側より下流側に向かって潤滑作動流体のく
さび流路となる溝14が設けられ、その周囲三方にダム
15が設けられている。回転体を浮上させるのは、くさ
び流路で発生する圧力であるが、ジャーナルの回転とと
もに、くさびに入り込んだ作動流体は、ダムによって外
部への流出が抑制されるので軸受全面に均等な圧力が生
じ、高い負荷容量を得られるのが特長である。従って回
転体の回転とともにすばやく回転体を浮かせてジャーナ
ルと軸受との間に作動流体膜を作り、接触摺動によるジ
ャーナルおよび軸受の損傷を回避することが可能であ
る。
[0003] In the above bearing, a groove 14 is provided on the white sliding surface from the upstream side to the downstream side in the rotational direction as a wedge flow path for the lubricating working fluid, and dams 15 are provided on three sides around the groove. . The rotating body floats due to the pressure generated in the wedge channel, but with the rotation of the journal, the working fluid that has entered the wedge is prevented from flowing out to the outside by the dam. The advantage is that high load capacity can be obtained. Therefore, it is possible to quickly lift the rotating body with the rotation of the rotating body to form a working fluid film between the journal and the bearing, thereby avoiding damage to the journal and the bearing due to contact sliding.

【0004】くさび流路14およびダム15はホワイト
面を機械加工して成形され、油による潤滑の場合は、く
さび溝の入口深さHは、軸受直径Dの2/1000程度
(直径100mmの軸受の場合0.2mm程度)としてい
る。
The wedge flow path 14 and the dam 15 are formed by machining a white surface. In the case of lubrication with oil, the inlet depth H of the wedge groove is about 2/1000 of the bearing diameter D (a bearing having a diameter of 100 mm). In the case of about 0.2 mm).

【0005】[0005]

【発明が解決しようとする課題】軸受の作動流体として
油以外の低粘度流体(たとえば水、アルコール等の液体
あるいは空気、窒素等のガス)を使用する場合、粘度が
低いために流体膜の厚さが小さくないと充分な圧力(従
って負荷容量)が得られなくなる。原理的に大きな負荷
容量を出し得るくさび溝軸受においても、くさび溝の入
口深さを、粘度の比の平方根に比例して浅くしないとそ
の効果が発揮できない。つまりくさび溝の入口深さH/
軸受直径Dが、 水の場合: 0.4/1000程度(D=100mmでH
=0.004程度) 空気の場合:0.1/1000程度(D=100mmでH
=0.001程度) の軸受を製作することが必要となる。このような微少寸
法のくさび溝を精度良く加工することは従来の材料・加
工法では困難であり、また、最新の加工法を利用すると
しても非常に高価なものとなってしまう。
When a low-viscosity fluid other than oil (for example, a liquid such as water or alcohol or a gas such as air or nitrogen) is used as the working fluid for the bearing, the viscosity of the fluid film is low because the viscosity is low. If it is not small, a sufficient pressure (accordingly, load capacity) cannot be obtained. Even in a wedge groove bearing capable of providing a large load capacity in principle, the effect cannot be exhibited unless the entrance depth of the wedge groove is made shallow in proportion to the square root of the viscosity ratio. In other words, the entrance depth of the wedge groove H /
When the bearing diameter D is water: about 0.4 / 1000 (D = 100 mm and H
= About 0.004) In the case of air: about 0.1 / 1000 (H at D = 100 mm)
= About 0.001). It is difficult to accurately process such minute wedge grooves by using conventional materials and processing methods, and even if the latest processing method is used, it becomes very expensive.

【0006】本発明はこのような微少なくさび溝を形成
する新しい手段により、信頼性の高い低粘度作動流体用
の動圧軸受を安価に提供しようとするものである。
An object of the present invention is to provide an inexpensive dynamic pressure bearing for a low-viscosity working fluid with high reliability by a new means for forming such fine wedge grooves.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
したものであって、次の特徴を有する動圧軸受に関する
ものである。 (1)回転軸を支承する動圧軸受において、軸受裏金表
面の摺動方向の両側及び下流側を残してほぼ全面にわた
ってその深さが摺動方向上流側から下流側に向かって
々に浅くなるよう形成された楔状の溝と、上記裏金の全
表面をエラストマにて被覆した後に同エラストマの表面
を軸受摺動面として平滑に且つ上記楔状の溝に埋設され
る部分以外の上記エラストマの厚さが同軸受摺動面の何
れの部分でも一定に仕上げて形成された表層部とを備え
たこと。 (2)上記(1)項の動圧軸受において、その表層部が
100℃乃至200℃の温度下でエラストマの表面を平
滑に仕上げて形成された表層部であること。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems and relates to a dynamic pressure bearing having the following features. (1) In a dynamic pressure bearing that supports a rotating shaft, the depth of the bearing back metal gradually decreases from upstream to downstream in the sliding direction over substantially the entire surface except for both sides and downstream in the sliding direction. > and grooves wedge formed to be shallower s, the embedded surface of the elastomer after the hand covers the entire surface of the back metal in elastography Ma in the groove of the smooth and the wedge-shaped as a bearing sliding surface
The thickness of the elastomer other than the part
These parts also have a surface layer part that has been finished to a certain degree . (2) In the hydrodynamic bearing according to the above (1), the surface layer portion is a surface layer portion formed by smoothing the surface of the elastomer at a temperature of 100 ° C. to 200 ° C.

【0008】[0008]

【作用】回転体の回転上昇とともに摺動面間に少しでも
圧力が発生するとこの圧力によりエラストマは弾性圧縮
変化を始める。圧縮変形量はエラストマの厚いところが
大きく、薄いところは小さくなるので、楔状の溝に埋設
された部分以外の部分のエラストマの圧縮変形量より、
楔状の溝に埋設された部分のエラストマの圧縮変形量が
大きくなるため、始め平滑な軸受表面は変形後には従来
のダムを備えたくさび溝と同様な形状となり、くさび溝
軸受として作用する。
When a slight pressure is generated between the sliding surfaces with the rotation of the rotating body, the elastomer starts to undergo an elastic compression change due to the pressure. Since the amount of compressive deformation is large when the elastomer is thick and small when the elastomer is thin, it is embedded in a wedge-shaped groove.
From the amount of compression deformation of the elastomer other than the part
The amount of compressive deformation of the elastomer buried in the wedge-shaped groove is
Since it becomes larger, the initially smooth bearing surface has a shape similar to a wedge groove provided with a conventional dam after deformation, and acts as a wedge groove bearing.

【0009】回転体重量が小さく、従って浮上までに必
要な圧力が小さく、圧力変形量によるくさび溝形成深さ
が小さい場合等、圧力変形のみではくさび溝深さの形成
が不充分な場合には、高温(100℃〜200℃)下で
の摺動面平滑仕上工程を併用する。エラストマの線膨張
係数は金属のそれに較べて大きく、高温下ではエラスト
マの厚い部分の表面が薄い部分より凸となる。この状態
で表面を平滑に仕上げて常温に戻すとエラストマの厚い
部分がへこみダムを備えたくさび溝と同様な摺動面を形
成できる。
In the case where the wedge groove depth is insufficiently formed only by the pressure deformation, for example, when the weight of the rotating body is small, the pressure required for floating is small, and the depth of the wedge groove formation due to the amount of pressure deformation is small. And a step of smoothing the sliding surface under a high temperature (100 ° C. to 200 ° C.). The coefficient of linear expansion of an elastomer is larger than that of a metal, and at high temperatures, the surface of a thick portion of the elastomer becomes more convex than a thin portion. In this state, when the surface is smoothed and returned to room temperature, the thick portion of the elastomer can form a sliding surface similar to a wedge groove provided with a dent dam.

【0010】[0010]

【実施例】図1は本発明の第1実施例に係る動圧軸受の
斜視図である。図において、1は裏金、2は同裏金の内
面に設けられているエラストマからなる表層部、3はジ
ャーナル、Xは回転体荷重方向、2S(一点鎖線)は圧
力による変形後のエラストマ表層部の形状である。図2
はエラストマ被覆前の裏金の斜視図であり、4は同裏金
の内面に加工されたくさび溝である。
FIG. 1 is a perspective view of a dynamic pressure bearing according to a first embodiment of the present invention. In the figure, 1 is a backing metal, 2 is a surface layer made of an elastomer provided on the inner surface of the backing metal, 3 is a journal, X is a rotating body load direction, and 2S (dashed line) is an elastomer surface layer after deformation by pressure. Shape. FIG.
Is a perspective view of the back metal before the elastomer coating, and 4 is a wedge groove formed on the inner surface of the back metal.

【0011】本装置においては、まず材料面で従来のホ
ワイトに替えて弾性樹脂(=エラストマ)2を使用す
る。エラストマは一般にホワイトなどの金属に較べて 弾性に富み、弾性限界変形量が大きい 線膨張係数αが1桁大きい 特長をもっており、本実施例では主にの特長を利用す
る。
In this apparatus, first, an elastic resin (= elastomer) 2 is used instead of the conventional white in terms of material. Elastomers are generally richer in elasticity than metals such as white, and have a large elastic limit deformation. The linear expansion coefficient α is one order of magnitude greater, and this embodiment mainly uses the features.

【0012】次にエラストマ2を用いて裏金1を被覆す
るに当り、予め、従来のくさび溝軸受のくさび溝14に
類似のくさび溝加工4を裏金に施しておく。このくさび
溝加工4の深さは、従来のくさび溝14に較べて10倍
程度大きいものである。エラストマ被覆完了後、エラス
トマの摺動面を平滑に且つ、図1に示すように、くさび
溝加工4に埋設される部分以外のエラストマ2の厚さが
同摺動面の何れの部分でも一定になるように仕上げる。
Next, before coating the back metal 1 with the elastomer 2, a wedge groove processing 4 similar to the wedge groove 14 of the conventional wedge groove bearing is applied to the back metal in advance. The depth of the wedge groove processing 4 is about 10 times larger than that of the conventional wedge groove 14. After the elastomer coating is completed, the sliding surface of the elastomer is smoothed and, as shown in FIG.
The thickness of the elastomer 2 other than the part buried in the groove processing 4
Finish so that any part of the sliding surface is constant .

【0013】上述の構成を有する動圧浮上型軸受におい
て、回転体の回転上昇とともに摺動面間に少しでも圧力
が発生するとこの圧力によりエラストマは弾性圧縮変化
を始める。圧縮変形量はエラストマの厚いところが大き
く、薄いところは小さくなるので、くさび溝加工4の部
分以外の部分のエラストマの圧縮変形量より、くさび溝
加工4の部分のエラストマの圧縮変形量が大きくなるた
め、始め平滑な軸受表面は変形後、従来のくさび溝+ダ
ムと同様な形状(図1の一点鎖線2S)となり、くさび
溝軸受として作用する。この軸受では、圧力の発生と変
形とが同時に進行し、回転体が浮上する。
In the dynamic pressure floating bearing having the above-described structure, if any pressure is generated between the sliding surfaces as the rotation of the rotating body rises, the elastomer starts to undergo elastic compression change due to the pressure. The amount of compressive deformation is large the place thick elastomer, the thin place is reduced, part of the wedge grooves 4
Wedge groove from the amount of compressive deformation of the elastomer other than
The amount of compressive deformation of the elastomer in machining 4 was increased.
First, after the smooth bearing surface is deformed, it has the same shape as the conventional wedge groove + dam (the dashed line 2S in FIG. 1), and acts as a wedge groove bearing. In this bearing, pressure generation and deformation proceed simultaneously, and the rotating body floats.

【0014】回転体を浮上させ得る圧力レベルが発生し
た時、作動流体の粘度によって決まる最適なくさび溝深
さが形成されるようあらかじめエラストマの厚み分布を
設定しておけば、低粘度作動流体で要求される微細寸法
のくさび溝を変形によって形成させることができる。こ
のようなエラストマの圧力変形による溝形成は回転上昇
後瞬時に完了するので、回転体を非常に早く浮上させる
ことができるとともに大きな負荷容量を得ることができ
る。
If a thickness distribution of the elastomer is set in advance so that an optimum wedge groove depth determined by the viscosity of the working fluid is formed when a pressure level capable of causing the rotating body to float is generated, the working fluid with a low viscosity can be used. Wedge grooves of the required fine dimensions can be formed by deformation. Since the formation of the groove by the pressure deformation of the elastomer is completed instantly after the rotation rises, the rotating body can be floated very quickly and a large load capacity can be obtained.

【0015】回転体重量が小さく、従って浮上までに必
要な圧力が小さくて圧力変形量によるくさび溝の形成深
さが小さい場合等、圧力変形のみではくさび溝深さの形
成が不充分な場合には、高温下での摺動面平滑仕上工程
を併用する。これは、摺動面仕上加工時に前記のエラス
トマの特長のを利用し、軸受全体を加熱し、適当な高
温(100℃〜200℃)下にて平滑面に仕上げること
を併用して、常温に戻した時、予め微少な凹面が形成さ
れるようにするものである。
In the case where the wedge groove depth is insufficiently formed by only the pressure deformation, for example, when the weight of the rotating body is small and the pressure required for floating is small and the formation depth of the wedge groove due to the amount of pressure deformation is small. Uses a step of smoothing the sliding surface under high temperature. This utilizes the characteristics of the above-mentioned elastomer at the time of finishing the sliding surface, heating the entire bearing and finishing it to a smooth surface at an appropriate high temperature (100 ° C to 200 ° C). When it is returned, a minute concave surface is formed in advance.

【0016】エラストマの線膨張係数は金属のそれに較
べて大きく、高温下ではエラストマの厚い部分の表面が
薄い部分より凸となる。この状態で表面を平滑に仕上げ
て常温に戻すとエラストマの厚い部分がくぼみ、くさび
溝とダムを有する摺動面が形成される。このようにして
製作された軸受表面は初期状態で既にある程度のくさび
溝が形成されているので、回転時の圧力変形によるくさ
び溝形成の不足分を補なうことが可能となり、回転体を
早く浮上させることが出来る。
The coefficient of linear expansion of an elastomer is larger than that of a metal, and at a high temperature, the surface of a thick portion of the elastomer becomes more convex than a thin portion. In this state, when the surface is smoothed and returned to room temperature, the thick portion of the elastomer is dented, and a sliding surface having a wedge groove and a dam is formed. Since a certain amount of wedge grooves are already formed in the initial state of the bearing surface manufactured in this manner, it is possible to compensate for the lack of wedge groove formation due to pressure deformation during rotation, and to speed up the rotating body. Can be raised.

【0017】図1の実施例において、エラストマとして
PTFE(テフロン)を使用し、空気を作動流体とする
場合の各部寸法例を示す。
FIG. 1 shows an example of the dimensions of each part when PTFE (Teflon) is used as the elastomer and air is used as the working fluid in the embodiment of FIG.

【0018】軸受諸元 ・軸受直径×幅 10cm×4cm ・軸受静荷重 150kg ・定格回転数 20,000rpm 回転体を浮上させるにはくさび溝内に平均4kg/cm2程度
の圧力が発生しなければならない。この圧力でのPTF
Eの圧力変形量が0.1/1000D=0.001cm程
度となるためにはPTFEの厚みを1.0cmとすれば良
い。つまり裏金に入口深さ1.0cmより徐々に浅くなる
くさび溝を加工後PTFEで被覆したものに4kg/cm2
内圧が加わるとPTFEの変形で入口深さ0.001cm
のくさび溝軸受が形成されることとなる。
Bearing specifications ・ Bearing diameter × width 10cm × 4cm ・ Bearing static load 150kg ・ Rated speed 20,000rpm To float a rotating body, a pressure of about 4kg / cm 2 must be generated in the wedge groove on average. No. PTF at this pressure
In order for the amount of pressure deformation of E to be about 0.1 / 1000D = 0.001 cm, the thickness of PTFE may be set to 1.0 cm. In other words, when a wedge groove that gradually becomes shallower than 1.0 cm in the back metal is machined and coated with PTFE, an inner pressure of 4 kg / cm 2 is applied to the back metal and the inlet depth is 0.001 cm due to deformation of PTFE.
As a result, a wedge groove bearing is formed.

【0019】次に、このようなくさび溝軸受の負荷容量
計算を実施すると、低速でも高い負荷容量があり、わず
か周速2.5m/s で150kgの負荷容量を発生させて回
転体を浮上させ得ることが判る。この浮上回転数におけ
るPV値(面圧×周速)は10(kg/cm2)(m/s )であ
り、無潤滑テフロン摺動軸受の限界値とされる20(kg
/cm2)(m/s )に至る前に摺動状態より非接触流体潤滑
状態に移行し、高PV値下での無潤滑摺動によるジャー
ナルおよび軸受の損傷を回避できる。なお、この浮上周
速は回転体回転数にて500rpm 相当し、定格回転数2
0,000rpmに向けての起動を考えると起動後瞬時に
回転体が浮上すると言って良い。適当な特性を持ったエ
ラストマの選定とエラストマ被覆厚みの調整により、ど
のような軸受諸元が与えられ場合においても、上述のよ
うな構成と作用を実現することができる。
Next, when the load capacity of the wedge groove bearing is calculated as described above, the load capacity is high even at a low speed, and a load capacity of 150 kg is generated at only a peripheral speed of 2.5 m / s to lift the rotating body. It turns out that it gets. The PV value (contact pressure × peripheral speed) at this floating rotation speed is 10 (kg / cm 2 ) (m / s), which is 20 (kg), which is the limit value of a non-lubricated Teflon sliding bearing.
/ cm 2 ) (m / s) before shifting from the sliding state to the non-contact fluid lubricating state, thereby avoiding damage to journals and bearings due to unlubricated sliding at high PV values. In addition, this floating peripheral speed is equivalent to 500 rpm in terms of the rotation speed of the rotating body.
Considering the start toward 000 rpm, it can be said that the rotating body floats immediately after the start. By selecting an elastomer having appropriate characteristics and adjusting the thickness of the elastomer coating, the above-described configuration and operation can be realized regardless of the bearing specifications.

【0020】図1および図2は本発明のライナ固定式ジ
ャーナル軸に対して適用した実施例があるが、本発明は
ティルティングパッド式の軸受あるいはスラスト軸受に
対する適用も可能である。図3は本発明の第2実施例に
係るライナ固定式スラスト軸受の斜視図、図4は本発明
の第3実施例に係るティルティングパッド式ジャーナル
軸受の斜視図、図5は本発明の第4実施例に係るティル
ティングパッド式スラスト軸受の斜視図である。図にお
いて、1は裏金、2はエラストマ、4は裏金に加工され
たくさび溝、5はスラストカラーである。
Although FIGS. 1 and 2 show an embodiment in which the present invention is applied to a liner fixed journal shaft, the present invention is also applicable to a tilting pad type bearing or a thrust bearing. FIG. 3 is a perspective view of a liner fixed type thrust bearing according to a second embodiment of the present invention, FIG. 4 is a perspective view of a tilting pad type journal bearing according to a third embodiment of the present invention, and FIG. It is a perspective view of a tilting pad type thrust bearing concerning a 4th example. In the figure, 1 is a back metal, 2 is an elastomer, 4 is a wedge groove processed on the back metal, and 5 is a thrust collar.

【0021】いずれの場合も前述のとおり裏金1に従来
のくさび溝軸受のくさび溝14に対応した溝加工4を施
したあと、エラストマ2にて被覆を施してある。従って
いずれの実施例も、低粘度作動流体を使用した場合に
も、くさび溝軸受特有の大きな負荷容量や良好なロータ
浮上特性が得られる。また第1実施例と同様に大きな線
膨張係数を利用した高温(100℃〜200℃)下での
表面仕上げと、上記の圧力変形との組合せによる構成・
作用も可能である。
In any case, as described above, the back metal 1 is subjected to the groove processing 4 corresponding to the wedge groove 14 of the conventional wedge groove bearing, and then coated with the elastomer 2. Therefore, in each of the embodiments, even when a low-viscosity working fluid is used, a large load capacity and good rotor floating characteristics unique to a wedge groove bearing can be obtained. Further, as in the first embodiment, the structure is a combination of the surface finishing under a high temperature (100 ° C. to 200 ° C.) using a large coefficient of linear expansion and the above-described pressure deformation.
Action is also possible.

【0022】以上詳述したように、上記各実施例は、エ
ラストマの圧力変形、あるいは大きな線膨張係数を利用
した高温下(100℃〜200℃)での表面仕上と圧力
変形との組合せにより従来の材料・加工法では実現不可
能であった低粘度作動流体用の軸受を安価に実現させる
ことが可能となり、低粘度作動流体を使用した場合でも
くさび溝軸受として働き、低粘度作動流体軸受で問題と
なる負荷容量不足、ロータの浮上特性不良による接触損
傷などを回避可能とすることができる。
As described in detail above, each of the above-described embodiments is based on the conventional technique based on the combination of the pressure deformation of the elastomer or the combination of the surface finishing and the pressure deformation at a high temperature (100 ° C. to 200 ° C.) utilizing a large linear expansion coefficient. Low-viscosity working fluid bearings, which were not feasible with the materials and processing methods described above, can be realized at low cost, and even when low-viscosity working fluids are used, they function as wedge groove bearings. Insufficient load capacity and contact damage due to poor floating characteristics of the rotor can be avoided.

【0023】[0023]

【発明の効果】本発明の動圧軸受においては、軸受裏金
表面の摺動方向の両側及び下流側を残してほぼ全面にわ
たってその深さが摺動方向上流側から下流側に向かって
々に浅くなるよう形成された楔状の溝と、上記裏金の
全表面をエラストマにて被覆した後に同エラストマの表
面を軸受摺動面として平滑に且つ上記楔状の溝に埋設さ
れる部分以外の上記エラストマの厚さが同軸受摺動面の
何れの部分でも一定に仕上げて形成された表層部とを備
え、あるいはその表層部が100℃乃至200℃の温度
下でエラストマの表面を平滑に仕上げて形成されている
ので、楔状の溝に埋設された部分以外の部分のエラスト
マの圧縮変形量より、楔状の溝に埋設された部分のエラ
ストマの圧縮変形量が大きくなり、始め平滑な軸受摺動
面は変形後、くさび溝軸受として作用するため、低粘度
作動流体用の動圧軸受を安価に提供することができる。
In the dynamic pressure bearing of the present invention, the depth of the bearing back metal surface extends from the upstream side to the downstream side in the sliding direction over substantially the entire surface except for both sides and the downstream side in the sliding direction.
And grooves wedge formed to be shallower gradually, is embedded surface of the elastomer to the entire surface of the back metal after hand coated elastography Ma in the groove of the smooth and the wedge-shaped as a bearing sliding surface
The thickness of the elastomer other than the part
Either part is provided with a surface layer part which is finished to a certain degree , or the surface part is formed by smoothing the surface of the elastomer at a temperature of 100 ° C. to 200 ° C., so that it is embedded in a wedge-shaped groove. Elast of the part other than the part
Error in the part buried in the wedge-shaped groove
The amount of compressive deformation of the stoma increases and the bearing slides smoothly at the beginning.
After the surface is deformed, it acts as a wedge groove bearing, so that a dynamic pressure bearing for a low-viscosity working fluid can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る動圧軸受の斜視図。FIG. 1 is a perspective view of a dynamic pressure bearing according to a first embodiment of the present invention.

【図2】同実施例の部分斜視図。FIG. 2 is a partial perspective view of the embodiment.

【図3】本発明の第2実施例に係る動圧軸受の斜視図。FIG. 3 is a perspective view of a dynamic pressure bearing according to a second embodiment of the present invention.

【図4】本発明の第3実施例に係る動圧軸受の斜視図。FIG. 4 is a perspective view of a dynamic pressure bearing according to a third embodiment of the present invention.

【図5】本発明の第4実施例に係る動圧軸受の斜視図。FIG. 5 is a perspective view of a dynamic pressure bearing according to a fourth embodiment of the present invention.

【図6】従来の動圧軸受の斜視図。FIG. 6 is a perspective view of a conventional dynamic pressure bearing.

【符号の説明】[Explanation of symbols]

1 裏金 2 エラストマ 2S 圧力による変形後のエラストマの表面形状 3 ジャーナル 4 裏金に加工されたくさび溝 5 スラストカラー DESCRIPTION OF SYMBOLS 1 Backing metal 2 Elastomer 2S Elastomeric surface shape after deformation by pressure 3 Journal 4 Wedge groove processed on backing metal 5 Thrust collar

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16C 17/00 - 17/26 F16C 21/00 - 27/08 F16C 33/00 - 33/28 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F16C 17/00-17/26 F16C 21/00-27/08 F16C 33/00-33/28

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転軸を支承する動圧軸受において、軸
受裏金表面の摺動方向の両側及び下流側を残してほぼ全
面にわたってその深さが摺動方向上流側から下流側に向
かって々に浅くなるよう形成された楔状の溝と、上記
裏金の全表面をエラストマにて被覆した後に同エラスト
マの表面を軸受摺動面として平滑に且つ上記楔状の溝に
埋設される部分以外の上記エラストマの厚さが同軸受摺
動面の何れの部分でも一定に仕上げて形成された表層部
とを備えたことを特徴とする動圧軸受。
1. A hydrodynamic bearing for supporting a rotating shaft, its depth over substantially the entire surface, leaving the sides and downstream of the sliding direction of the bearing back metal surface gradually toward the downstream side from the sliding direction upstream side s and shallow so as groove formed wedge shape, the entire surface of the back metal to the surface of the elastomer after hand coated elastography Ma in the groove of the smooth and the wedge-shaped as a bearing sliding surface
The thickness of the elastomer other than the part to be buried
A dynamic pressure bearing comprising: a surface layer formed by uniformly finishing any part of a moving surface.
【請求項2】 請求項1の動圧軸受において、その表層
部が100℃乃至200℃の温度下でエラストマの表面
を平滑に仕上げて形成された表層部であることを特徴と
する動圧軸受。
2. The dynamic pressure bearing according to claim 1, wherein the surface layer is a surface layer formed by smoothing the surface of the elastomer at a temperature of 100 ° C. to 200 ° C. .
JP28486993A 1993-11-15 1993-11-15 Hydrodynamic bearing Expired - Fee Related JP3337289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28486993A JP3337289B2 (en) 1993-11-15 1993-11-15 Hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28486993A JP3337289B2 (en) 1993-11-15 1993-11-15 Hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JPH07139543A JPH07139543A (en) 1995-05-30
JP3337289B2 true JP3337289B2 (en) 2002-10-21

Family

ID=17684092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28486993A Expired - Fee Related JP3337289B2 (en) 1993-11-15 1993-11-15 Hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JP3337289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795914A (en) * 2014-10-14 2017-05-31 赛峰航空器发动机 A kind of method of the Hydrostatic fluid bearing with chamber of production

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087920A (en) * 1998-09-11 2000-03-28 Kayaba Ind Co Ltd Expansion/retraction position detecting mechanism
JP2004125105A (en) * 2002-10-04 2004-04-22 Mitsubishi Heavy Ind Ltd Thrust bearing
CN103075416B (en) * 2013-01-24 2015-04-29 郑州大学 Dynamic and static pressure conical bearing with wedged dovetail cavities
JP6786230B2 (en) * 2016-03-16 2020-11-18 三菱パワー株式会社 Journal bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795914A (en) * 2014-10-14 2017-05-31 赛峰航空器发动机 A kind of method of the Hydrostatic fluid bearing with chamber of production
CN106795914B (en) * 2014-10-14 2019-05-31 赛峰航空器发动机 A kind of method for producing Hydrostatic fluid bearing with chamber

Also Published As

Publication number Publication date
JPH07139543A (en) 1995-05-30

Similar Documents

Publication Publication Date Title
US5192136A (en) Crankshaft bearing having hydrodynamic thrust flanges
US6280090B1 (en) Bearings and mechanical seals enhanced with microstructures
US3829180A (en) Pad construction for tilting pad thrust bearing
JP2599787B2 (en) Packing ring
EP3508763A1 (en) Sliding component
JPH03504628A (en) Dynamic seals and bearings with different degrees of surface roughness
KR20050081560A (en) Radial foil bearing
EP3143297A1 (en) Five-axial groove cylindrical journal bearing with pressure dams for bi-directional rotation
JP3337289B2 (en) Hydrodynamic bearing
Ettles Some factors affecting the design of spring supported thrust bearings in hydroelectric generators
JPS59102568A (en) Manufacture of seal-ring made of cast iron
US4618270A (en) Hydrostatic bearing structure
JP3377612B2 (en) Dynamic pressure gas journal bearing
JP4550319B2 (en) Multi-tuft hydrostatic hydrodynamic bearing and method of manufacturing the same
JPS6346287B2 (en)
JP7487146B2 (en) SLIDING MEMBER, MANUFACTURING METHOD OF SLIDING MEMBER, AND EVALUATION METHOD OF SLIDING MEMBER
JPH11351242A (en) Low viscosity fluid lubricating bearing
JPS5917018A (en) Fluid bearing device utilizing dynamic pressure type lubricating oil
JPS5830525A (en) Dynamically pressurized fluid bearing device
JP2006090516A (en) Cylindrical roller bearing
JP3536545B2 (en) Thrust bearing
JPH02493Y2 (en)
Otto Triangular asperities control seal leakage and lubrication
US5284393A (en) Sliding bearing
Heshmat On the mechanism of operation of flat land bearings

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070809

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees