JP3295748B2 - Refrigeration equipment - Google Patents
Refrigeration equipmentInfo
- Publication number
- JP3295748B2 JP3295748B2 JP20060794A JP20060794A JP3295748B2 JP 3295748 B2 JP3295748 B2 JP 3295748B2 JP 20060794 A JP20060794 A JP 20060794A JP 20060794 A JP20060794 A JP 20060794A JP 3295748 B2 JP3295748 B2 JP 3295748B2
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- refrigerant
- container
- valve
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、冷媒蒸気を吸着あるい
は冷媒と反応して冷媒蒸気の圧力を低下させる反応材
(あるいは吸着材)と冷媒を組合わせ、0℃以下の冷熱
を発生することのできるケミカル型の冷凍装置の構成お
よび反応材(吸着材)と冷媒の組み合わせに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the generation of cold heat of 0.degree. C. or less by combining a refrigerant with a reactant (or adsorbent) which adsorbs or reacts with the refrigerant to reduce the pressure of the refrigerant vapor. The present invention relates to a configuration of a chemical type refrigerating apparatus and a combination of a reactant (adsorbent) and a refrigerant.
【0002】[0002]
【従来の技術】本発明に関連ある公知例としては、文献
1(吸収式冷凍機による氷水生成、No.930−63,日
本機械学会第71期全国大会講演論文集 Vol D,P1
06〜P108,1993年10月2−4 広島 )及び文献2
(工業材料、Vol 32,No.5,P49〜54,1984年)が
ある。2. Description of the Related Art A well-known example related to the present invention is disclosed in Document 1 (Ice water generation by absorption refrigerator, No. 930-63, Proceedings of the 71st Annual Meeting of the Japan Society of Mechanical Engineers, Vol D, P1).
06-P108, 2-4 October 1993 Hiroshima) and Reference 2
(Industrial materials, Vol. 32, No. 5, p. 49-54, 1984).
【0003】[0003]
【発明が解決しようとする課題】文献1は吸収材を用い
て冷媒としての水を氷結させた結果について開示してい
るが、0℃以下の冷熱を作るに至っていない。また文献
2には吸着材としてシリカゲル、冷媒としてメタノール
を用いて0℃以下の冷熱を発生させたことについて若干
の記述があるが、具体的な装置の構成については開示し
ておらず、また有機物であるメタノールを吸着材に接触
させて用いるので変成する等の難点を有している。Document 1 discloses the result of freezing water as a cooling medium using an absorbent, but does not produce cold heat of 0 ° C. or less. In addition, there is some description in Literature 2 that the use of silica gel as an adsorbent and methanol as a refrigerant to generate cold heat of 0 ° C. or less, but does not disclose the specific configuration of the apparatus and disclose organic substances. Since methanol is used in contact with the adsorbent, there is a problem such as denaturation.
【0004】本発明の目的は、0℃以下の冷熱が発生で
き、かつ冷媒が使用中変成しない反応材と冷媒の組合わ
せを提供するとともに、0℃以下の冷熱を発生させて液
体を氷結させ、大容量の蓄冷を行なうことができるよう
にした具体的な装置の構成を提供するにある。[0004] It is an object of the present invention to provide a combination of a reactant and a refrigerant that can generate cold heat of 0 ° C or less and that is not denatured during use of the refrigerant, and generate a cold heat of 0 ° C or less to freeze a liquid. Another object of the present invention is to provide a specific device configuration capable of performing a large-capacity cold storage.
【0005】[0005]
【課題を解決するための手段】冷媒としてLiBr水溶
液、CaCl2水溶液、NaCl水溶液等の無機塩水溶液、およ
びこれに準ずる物質を用いる。このような冷媒を収納し
た蒸発器、反応材(あるいは吸着材)を入れた容器、冷媒
の蒸気を凝縮させる凝縮器をパイプによって循環ル−プ
を構成するように連結する。LiBr solution as refrigerant SUMMARY OF THE INVENTION, CaCl 2 aqueous solution, aqueous inorganic salt solution such as NaCl aqueous solution, and a substance equivalent thereto. An evaporator containing such a refrigerant, a container containing a reactant (or adsorbent), and a condenser for condensing refrigerant vapor are connected by a pipe so as to form a circulation loop.
【0006】上記の目的は、反応材を収納しかつ熱交換
手段を具備した複数の容器と、これら複数の容器それぞ
れにバルブを介して接続され前記容器で発生した冷媒蒸
気を凝縮させる凝縮器と、該凝縮器に接続されて冷媒を
その内部で蒸発させる蒸発器と、該蒸発器を内装し槽内
の液体中に該蒸発器を浸漬した槽と、前記蒸発器と前記
複数の容器それぞれとをバルブを介して接続し蒸発器で
発生した冷媒蒸気を前記容器に導くパイプと、前記槽に
設けられた熱利用手段と、を含んで構成され、前記凝縮
器及び蒸発器内に0℃では凝固しない冷媒が封入されて
いるとともに、前記蒸発器が2個以上であり、凝縮器と
各々の蒸発器とがバルブを介して接続されていることを
特徴とする冷凍装置により達成される。An object of the present invention is to provide a plurality of containers containing a reactant and having a heat exchange means, a condenser connected to each of the plurality of containers via a valve, and condensing refrigerant vapor generated in the containers. An evaporator connected to the condenser to evaporate a refrigerant therein, a tank having the evaporator therein and having the evaporator immersed in a liquid in a tank, the evaporator and the plurality of containers, respectively. Is connected via a valve and guides the refrigerant vapor generated in the evaporator to the container, and a heat utilization means provided in the tank, wherein the condenser and the evaporator have a temperature of 0 ° C. together with the refrigerant without solidification is sealed, the evaporator is two or more, a condenser
Make sure that each evaporator is connected via a valve.
Achieved by the refrigerating device characterized .
【0007】上記の目的はまた、反応材を収納しかつ熱
交換手段を具備した複数の容器と、これら複数の容器そ
れぞれにバルブを介して接続され前記容器で発生した冷
媒蒸気を凝縮させる凝縮器と、該凝縮器にバルブを介し
て接続され冷媒をその内部で蒸発させる蒸発器と、該蒸
発器の下方に配置されて液体を貯溜した槽と、前記蒸発
器の表面に槽内の液体を流下させる手段と、前記蒸発器
と前記複数の容器それぞれとをバルブを介して接続し蒸
発器で発生した冷媒蒸気を前記容器に導くパイプと、前
記槽に設けられた熱利用手段と、を含んで構成され、前
記凝縮器及び蒸発器内に0℃では凝固しない冷媒が封入
されている冷凍装置によっても達成される。[0007] Another object of the present invention is to provide a plurality of containers containing a reactant and provided with heat exchange means, and a condenser connected to each of the plurality of containers via a valve for condensing refrigerant vapor generated in the containers. An evaporator connected to the condenser via a valve to evaporate the refrigerant therein; a tank disposed below the evaporator for storing liquid; and a liquid in the tank on the surface of the evaporator. Means for flowing down, a pipe connecting the evaporator and each of the plurality of containers via a valve to guide refrigerant vapor generated in the evaporator to the container, and a heat utilization means provided in the tank. And a refrigeration system in which a refrigerant that does not solidify at 0 ° C. is sealed in the condenser and the evaporator.
【0008】[0008]
【作用】無機塩水溶液は反応材(あるいは吸着材)と接触
しても変成しない。また0℃以下になっても氷結を起さ
ず0℃以下の冷熱の発生に有効である。また前記蒸発
器、反応材収納容器、凝縮器は0℃以下の冷熱を連続的
に発生させ蒸発器周りの液体を氷結させるのに有効であ
る。The inorganic salt aqueous solution does not change even when it comes into contact with the reactant (or adsorbent). Further, even when the temperature becomes 0 ° C. or less, freezing does not occur and it is effective for generating cold heat of 0 ° C. or less. Further, the evaporator, the reaction material storage container, and the condenser are effective for continuously generating cold heat of 0 ° C. or less to freeze the liquid around the evaporator.
【0009】反応材を収納した容器、凝縮器、蒸発器等
の冷媒が循環する系統の内部は、真空ポンプ等により排
気され、減圧される。反応材は冷媒蒸気と反応(吸着)
して冷媒蒸気を取り込むから、反応材を収納した容器内
には冷媒蒸気はなくなり、圧力は減圧された状態になっ
ている。冷媒を供給された蒸発器と反応材を収納した容
器が接続されると、蒸発器内の冷媒蒸気は容器内に流入
し、反応材と反応して取り込まれる。この過程が容器の
反応過程である。蒸発器内の冷媒は冷媒蒸気の反応材へ
の取り込みが続く間、蒸発を続ける。反応材が冷媒蒸気
と反応すると反応熱により、反応材の温度が上昇する。
反応材が冷媒蒸気を取り込む力は温度が上がると低下す
るから、空冷ファンやヒートパイプによる冷却を行う。
蒸発器はその壁面を隔てて槽に貯溜された液体と接して
おり、冷媒は該液体及び蒸発器内の液冷媒から蒸発熱を
奪って蒸発する。従って液冷媒と槽内の液体は冷却され
る。すなわち、冷熱の生成である。冷媒は0℃でも凝固
しないものが用いられているから、冷媒の蒸発につれて
0℃以下の低温となり、一方、槽内の液体は例えば水で
あれば、蒸発器に接する部分から凍り始める。つまり相
変化を行うので大きな冷熱を蓄えることができる。な
お、凝縮器から蒸発器への冷媒供給は連続的に行われる
のでなく、バッチ処理的に行われる。The inside of a system in which a refrigerant circulates, such as a container containing a reactant, a condenser, and an evaporator, is evacuated by a vacuum pump or the like to be depressurized. Reactant reacts with refrigerant vapor (adsorption)
As a result, the refrigerant vapor is removed from the container storing the reactant, and the pressure is reduced. When the evaporator supplied with the refrigerant is connected to the container containing the reactant, the refrigerant vapor in the evaporator flows into the container, reacts with the reactant, and is taken in. This process is the reaction process of the container. The refrigerant in the evaporator continues to evaporate while the refrigerant vapor continues to be taken into the reactant. When the reactant reacts with the refrigerant vapor, the heat of the reaction increases the temperature of the reactant.
Since the force with which the reactant takes in the refrigerant vapor decreases as the temperature rises, cooling is performed by an air cooling fan or a heat pipe.
The evaporator is in contact with the liquid stored in the tank across the wall surface, and the refrigerant evaporates by taking away the heat of evaporation from the liquid and the liquid refrigerant in the evaporator. Therefore, the liquid refrigerant and the liquid in the tank are cooled. That is, generation of cold heat. Since a refrigerant that does not solidify even at 0 ° C. is used, the temperature of the liquid in the tank becomes 0 ° C. or less as the refrigerant evaporates. On the other hand, if the liquid in the tank is, for example, water, it starts to freeze from a portion in contact with the evaporator. That is, since the phase change is performed, a large amount of cold heat can be stored. The supply of the refrigerant from the condenser to the evaporator is not performed continuously, but is performed in a batch process.
【0010】反応材が反応しきって冷媒蒸気を取り込ま
なくなったら、蒸発器と容器の接続が断たれ、容器と凝
縮器が接続される。次いで容器中の反応材が熱交換手段
を介して加熱される。加熱された反応材は冷媒蒸気取り
込み時と逆の反応を生じて冷媒蒸気を放出する。放出さ
れた冷媒蒸気は凝縮器に導かれ、冷却凝縮されて液冷媒
となる。この過程が容器の再生過程である。再生過程は
反応材から冷媒蒸気が放出されなくなって終了し、容器
と凝縮器の接続が断たれる。When the reactants have completely reacted and no longer take in refrigerant vapor, the connection between the evaporator and the container is cut off, and the container and the condenser are connected. Next, the reaction material in the vessel is heated via the heat exchange means. The heated reactant causes a reaction opposite to that at the time of taking in the refrigerant vapor, and releases the refrigerant vapor. The released refrigerant vapor is led to a condenser, where it is cooled and condensed into a liquid refrigerant. This process is a container regeneration process. The regeneration process ends when no refrigerant vapor is released from the reactants, and the connection between the container and the condenser is disconnected.
【0011】再生過程が終了すると、容器の冷却過程が
始まる。反応材は再生過程で加熱されているので、冷却
が必要である。反応材(容器)の冷却は空冷あるいはヒ
ートパイプによる冷却で行われる。一方、凝縮器と蒸発
器が接続され、凝縮器から所定量の液冷媒が蒸発器に供
給される。冷媒の供給が終わると、再び凝縮器と蒸発器
は隔離される。これから再び上述のサイクルが繰り返さ
れ、槽内の液体への蓄冷が進行する。When the regeneration process is completed, a cooling process of the container is started. Since the reactants are heated during the regeneration process, they need to be cooled. The cooling of the reaction material (vessel) is performed by air cooling or cooling by a heat pipe. On the other hand, the condenser and the evaporator are connected, and a predetermined amount of liquid refrigerant is supplied from the condenser to the evaporator. When the supply of the refrigerant is completed, the condenser and the evaporator are isolated again. Thereafter, the above-described cycle is repeated again, and cold storage in the liquid in the tank proceeds.
【0012】容器、凝縮器、蒸発器が各1個の場合、容
器の反応過程と同時に蒸発器の蒸発過程が進行し、容器
の再生過程と同時に凝縮器の凝縮過程が進行する。凝縮
器から蒸発器への冷媒供給は、容器の再生過程あるいは
冷却過程で行われる。容器や蒸発器の数を複数にすれ
ば、これらの各過程を組合せ、連続的に冷熱を発生させ
ることが可能である。In the case of one container, one condenser and one evaporator, the evaporation process of the evaporator proceeds simultaneously with the reaction process of the container, and the condensation process of the condenser proceeds simultaneously with the regeneration process of the container. The supply of the refrigerant from the condenser to the evaporator is performed during a regeneration process or a cooling process of the container. If the number of containers and evaporators is plural, it is possible to combine these processes to generate cold heat continuously.
【0013】蒸発器を槽内の液体に接して配置するので
なくて、例えば槽の上方空間中に配置し、液体を蒸発器
上面に流下させて凍結させ、ある厚さまで凍結したもの
を槽内に落下させるようにすれば、凍結による熱伝達率
の低下が大きくなるのを防ぐことができる。Instead of disposing the evaporator in contact with the liquid in the tank, the evaporator is disposed, for example, in the space above the tank, and the liquid is allowed to flow down to the upper surface of the evaporator to be frozen. If this is done, it is possible to prevent a large decrease in the heat transfer coefficient due to freezing.
【0014】圧縮式冷凍機とケミカル式冷凍機を組合
せ、圧縮式冷凍機の圧縮機の吐出側のパイプを分岐して
ケミカル式冷凍機の反応材を収納した容器の熱交換器に
接続して該熱交換器内に圧縮式冷凍機から吐出された冷
媒が流れるようにすると、圧縮式冷凍機において凝縮器
で外部に放出されていた凝縮熱を、前記容器再生過程に
おける加熱に利用でき、全体としての効率が向上する。A compression type refrigerator and a chemical type refrigerator are combined, and a pipe on the discharge side of the compressor of the compression type refrigerator is branched and connected to a heat exchanger of a container containing a reaction material of the chemical type refrigerator. When the refrigerant discharged from the compression refrigerator is caused to flow into the heat exchanger, the condensation heat released to the outside by the condenser in the compression refrigerator can be used for heating in the container regeneration process. As a result, the efficiency is improved.
【0015】[0015]
【実施例】図1は、本発明の冷凍装置の第1の参考例の
構成図である。この参考例は反応材として生石灰、シリ
カゲル、ゼオライトなどを、冷媒としてLiBr水溶液、
CaCl2水溶液、NaCl水溶液等を用いるもので、反応
材3,4を入れた第1の容器1,第2の容器2と、該第
1の容器1にバルブ11を介装したパイプ16で接続さ
れて冷媒8を凝縮させる凝縮器7と、該バルブ11と凝
縮器7を結ぶパイプ16と前記第2の容器を接続するパ
イプ17と、該パイプ17に介装されたバルブ12と、
低温熱媒体である水21を湛えた槽23と、該槽23の
水21に浸漬され冷媒8をその内部で蒸発させる蒸発器
10と、該蒸発器10と前記凝縮器7の液相部をバルブ
15を介して連通するパイプ19と、第1の容器1とバ
ルブ11の間のパイプ16と前記蒸発器10とをバルブ
13を介して連通するパイプ18と、第2の容器2とバ
ルブ12の間のパイプ17と前記蒸発器10とをバルブ
14を介して連通するパイプ20と、槽23と放熱器2
9の一端を結合するパイプ25と、放熱器29の他端と
槽23をポンプ24を介して接続するパイプ26と、を
含んで構成されている。DETAILED DESCRIPTION FIG. 1 is a configuration diagram of a first reference example of the refrigeration system of the present invention. In this reference example , quicklime, silica gel, zeolite and the like are used as a reactant, and a LiBr aqueous solution is used as a refrigerant.
It uses an aqueous solution of CaCl2, an aqueous solution of NaCl, or the like, and is connected to a first container 1 and a second container 2 containing reactants 3 and 4 by a pipe 16 having a valve 11 interposed in the first container 1. A condenser 7 for condensing the refrigerant 8 with a pipe, a pipe 16 connecting the valve 11 and the condenser 7 and a pipe 17 connecting the second container, a valve 12 interposed in the pipe 17,
A tank 23 filled with water 21 as a low-temperature heat medium, an evaporator 10 immersed in the water 21 of the tank 23 to evaporate the refrigerant 8 therein, and a liquid phase part of the evaporator 10 and the condenser 7 A pipe 19 communicating through a valve 15, a pipe 16 connecting the first vessel 1 and the valve 11 and the evaporator 10 through a valve 13, a pipe 18 communicating with the second vessel 2 and a valve 12; A pipe 20, which connects the pipe 17 between the evaporator 10 and the evaporator 10 via the valve 14, a tank 23, and the radiator 2
9 is connected, and a pipe 26 connects the other end of the radiator 29 and the tank 23 via the pump 24.
【0016】バルブ15は、凝縮器7内の冷媒8が蒸発
器10に流入する量を調節するためのものであるが、こ
のバルブ15がなくても本装置は動作する。槽23内の
水21は、ポンプ24,パイプ25,26によって放熱
器29内に循環できるようになっており、これによって
水21の保有する熱は放熱器29に輸送され、冷房等に
利用される。第1、第2の容器にはそれぞれ反応材3,
4の熱を取り去る(あるいは該容器より熱を取り去る)
熱交換器5,6が設けられており、凝縮器7にも、冷媒
蒸気を冷却液化する熱交換器9が設けられている。The valve 15 is for adjusting the amount of the refrigerant 8 in the condenser 7 flowing into the evaporator 10, but the apparatus operates even without the valve 15. The water 21 in the tank 23 can be circulated into the radiator 29 by the pump 24 and the pipes 25 and 26, whereby the heat of the water 21 is transported to the radiator 29 and used for cooling or the like. You. The first and second containers have reactants 3,
Remove heat from 4 (or remove heat from the container)
The heat exchangers 5 and 6 are provided, and the condenser 7 is also provided with a heat exchanger 9 for cooling and liquefying the refrigerant vapor.
【0017】上記構成の装置の水21を低温度にする動
作を以下に説明する。図中の白抜きのバルブは開、黒塗
りのバルブは閉の状態を示している。蒸発器10内の冷
媒8は水21の熱を奪って蒸発し、パイプ20,バルブ
14を通って第2の容器2内へ入る。第2の容器2内へ
入った冷媒蒸気は、反応材4と反応して消費され、反応
材4は反応により発熱する。この反応によって冷媒蒸気
が消費されるので、第2の容器2内の冷媒蒸気の圧力は
所定の値に保たれ、蒸発器における冷媒の蒸発が継続さ
れる。この反応時発生した熱は、第2の容器2に設けて
ある熱交換器6内に導入される低温度の熱媒体(水や油
など)によって除去される。一方第1の容器1内の反応
材3は熱交換器5内に導入される高温度の熱媒体(水や
油)によって加熱され、これによって反応材3中の冷媒
は蒸気として脱離される。この蒸気はパイプ16,バル
ブ11を通って凝縮器7内へ入り、熱交換器9内に導入
される冷却用熱媒体(水)によって冷却されて凝縮し、
冷媒液8となる。この冷媒液8は、パイプ19,バルブ
15を通って蒸発器10内へ戻り、同じサイクルをくり
返す。その後バルブ11,14を閉じ、第1の容器1内
の熱交換器5中に低温度の熱媒体を流して反応材3を冷
却する。一方バルブ12を開いて第2の容器2内の熱交
換器6中に高温度の熱媒体を流して反応材4を加熱し、
この時反応材4より発生する冷媒の蒸気をバルブ12,
パイプ17,16を通して凝縮器7内へ導入して凝縮さ
せる。その後バルブ13を開くと、蒸発器10内の冷媒
は蒸発し、この時発生する蒸気はパイプ18,バルブ1
3を通って第1の容器1内へ入り、反応材3と反応す
る。この時発生する熱は、熱交換器5内へ低温度の熱媒
体を流すことによって除去される。The operation of the apparatus having the above structure for lowering the temperature of the water 21 will be described below. In the figure, white valves indicate open states, and black valves indicate closed states. The refrigerant 8 in the evaporator 10 removes the heat of the water 21 to evaporate and enters the second container 2 through the pipe 20 and the valve 14. The refrigerant vapor that has entered the second container 2 reacts with the reaction material 4 and is consumed, and the reaction material 4 generates heat by the reaction. Since the refrigerant vapor is consumed by this reaction, the pressure of the refrigerant vapor in the second container 2 is kept at a predetermined value, and the evaporation of the refrigerant in the evaporator is continued. The heat generated during the reaction is removed by a low-temperature heat medium (such as water or oil) introduced into a heat exchanger 6 provided in the second container 2. On the other hand, the reaction material 3 in the first vessel 1 is heated by a high-temperature heat medium (water or oil) introduced into the heat exchanger 5, whereby the refrigerant in the reaction material 3 is desorbed as vapor. This vapor enters the condenser 7 through the pipe 16 and the valve 11, and is cooled and condensed by the cooling heat medium (water) introduced into the heat exchanger 9;
It becomes the refrigerant liquid 8. This refrigerant liquid 8 returns to the inside of the evaporator 10 through the pipe 19 and the valve 15, and repeats the same cycle. Thereafter, the valves 11 and 14 are closed, and a low-temperature heat medium is caused to flow through the heat exchanger 5 in the first container 1 to cool the reaction material 3. On the other hand, the valve 12 is opened to heat the reaction material 4 by flowing a high-temperature heat medium into the heat exchanger 6 in the second vessel 2,
At this time, the vapor of the refrigerant generated from the reaction material 4 is supplied to the valve 12,
It is introduced into the condenser 7 through the pipes 17 and 16 to be condensed. Thereafter, when the valve 13 is opened, the refrigerant in the evaporator 10 evaporates, and the vapor generated at this time is supplied to the pipe 18 and the valve 1.
3 and enters the first container 1 and reacts with the reactant 3. The heat generated at this time is removed by flowing a low-temperature heat medium into the heat exchanger 5.
【0018】すなわち、第2の容器2で反応過程(冷媒
蒸気を消費、あるいは吸着する過程)が行われている
間、第1の容器1では再生過程(反応材を加熱して冷媒
蒸気を脱離させ、反応材の反応力を回復させる過程)を
行わせ、ついで第2の容器2を再生過程に切り換えて第
1の容器1で反応過程を行わせるようにし、このような
操作を交互に行なうことによって蒸発器10内の冷媒8
は連続的に蒸発して冷熱が生じる。これによって蒸発器
10の周りの水21は冷却され、その周りには結晶22
が生ずる。このような操作を続ければ、槽23内の水2
1の大部分を結晶化することができ、槽23を大きいも
のにすれば、大容量の蓄冷槽として利用できる。また熱
交換器5,6に流す熱媒体に温排水を利用すれば、電動
圧縮機を利用せずして槽23内の水21を結晶化して大
容量の蓄冷をすることができ、夏場の昼間の冷房に利用
すればピーク電力の低減に役立てることができる。That is, while the reaction process (the process of consuming or adsorbing the refrigerant vapor) is being performed in the second container 2, the regeneration process (heating the reactant to remove the refrigerant vapor in the first container 1) is performed. To recover the reaction force of the reaction material), and then the second container 2 is switched to the regeneration process to perform the reaction process in the first container 1, and such operations are alternately performed. By doing so, the refrigerant 8 in the evaporator 10
Continuously evaporates to produce cold heat. This cools the water 21 around the evaporator 10 and surrounds it with crystals 22
Occurs. If such an operation is continued, the water 2 in the tank 23
1 can be crystallized, and if the tank 23 is made large, it can be used as a large-capacity regenerator. Also, if hot wastewater is used as a heat medium flowing through the heat exchangers 5 and 6, the water 21 in the tank 23 can be crystallized without using an electric compressor and a large amount of cold storage can be achieved. If used for daytime cooling, it can help reduce peak power.
【0019】図2は本発明の第1の実施例の構成図であ
る。これは蒸発器を2つに分割して2つの蒸発器10,
10aを液体21に浸漬したものである。このため凝縮
器7の液相部に接続されたパイプ19は途中で2つのパ
イプ30,30aに分岐して、それぞれ蒸発器10,1
0aに接続するとともに、それらのパイプの途中にバル
ブ15,15−aを設けてある。また、パイプ18が蒸
発器10aに、パイプ20が蒸発器10に、それぞれ接
続してある。他の構成は前記第1の参考例と同じである
(放熱器29、ポンプ24、パイプ25、26は図示を
省略してある)。FIG. 2 is a block diagram of the first embodiment of the present invention. This divides the evaporator into two and evaporator 10,
10a is immersed in a liquid 21. For this reason, the pipe 19 connected to the liquid phase part of the condenser 7 branches into two pipes 30 and 30a on the way, and the evaporators 10 and 1 are connected to the pipes 30 and 30a respectively.
0a, and valves 15, 15-a are provided in the middle of these pipes. The pipe 18 is connected to the evaporator 10a, and the pipe 20 is connected to the evaporator 10. Other configurations are the same as those of the first embodiment (the radiator 29, the pump 24, and the pipes 25 and 26 are not shown).
【0020】本実施例においても、バルブ11,12,
バルブ13,14およびバルブ15,15−aを交互に
操作して、蒸発器10,10a内に冷熱を発生させ、そ
の周りに結晶22,22−aを作ることができる。この
ようにすると槽23内を広く利用して蓄冷をでき、液体
21を速く結晶化することができる。またパイプ18と
蒸発器10との間、およびパイプ20と蒸発器10aと
の間に別個のバルブ付きパイプで連結すれば、蒸発器1
0あるいは蒸発器10a単独で運転させることができ、
装置としての運転を継続しつつ蒸発器の保守を行うこと
ができる。また、蒸発器を2個とすることにより、蒸発
器が液体21と接する表面積を大きくすることができ
る。Also in this embodiment, the valves 11, 12,
By operating the valves 13, 14 and the valves 15, 15-a alternately, cold heat can be generated in the evaporators 10, 10a, around which crystals 22, 22-a can be produced. In this way, the inside of the tank 23 can be widely used for cold storage, and the liquid 21 can be crystallized quickly. Further, if separate pipes with valves are connected between the pipe 18 and the evaporator 10 and between the pipe 20 and the evaporator 10a, the evaporator 1
0 or can be operated solely by the evaporator 10a,
The evaporator can be maintained while the operation as the device is continued. Further, by using two evaporators, the surface area of the evaporator in contact with the liquid 21 can be increased.
【0021】図3は本発明の第2の参考例の構成図であ
る。本参考例は、前記図1に示した第1の参考例におい
て、第1の容器1,第2の容器2に加えて反応材あるい
は吸着材4aを充填したもう1つの第3の容器2aを設
けて、この中に、熱交換器6aを配設し、バルブ12と
パイプ16を結ぶパイプ17と第3の容器2aをバルブ
12aを介装したパイプ17aで接続し、さらに、第3
の容器2aとバルブ12aの間のパイプ17aを、バル
ブ14aを介装したパイプ20aで蒸発器10の気相部
に接続したものである。他の構成は前記図1に示した参
考例と同一である。FIG. 3 is a block diagram of a second embodiment of the present invention. This reference example, the shown here with the first reference example odor <br/> shown in 1, the first container 1, of another filled with reaction material or adsorbent 4a in addition to the second container 2 a The third container 2a is provided, a heat exchanger 6a is disposed therein, and a pipe 17 connecting the valve 12 and the pipe 16 is connected to the third container 2a by a pipe 17a interposed with the valve 12a. , Third
The pipe 17a between the vessel 2a and the valve 12a is connected to the gas phase of the evaporator 10 by a pipe 20a with a valve 14a interposed. Participation other configurations shown in FIG. 1
It is the same as the example.
【0022】本参考例で、バルブ11,12,12a,
およびバルブ13,14,14aを時間的にずらして、
交互に開閉操作することによって、連続的に蒸発器10
内の冷媒を蒸発させ冷熱を発生させることができる。図
1の参考例に対して、反応材4−aの入った第3の容器
2aを設けることにより、反応材3,4,4aの反応過
程、再生過程のほか冷却過程を確実に設けることができ
反応材3,4,4aの反応時の性能を良好にすることが
できる。In this embodiment , the valves 11, 12, 12a,
And the valves 13, 14, 14a are shifted in time,
By alternately opening and closing, the evaporator 10 is continuously operated.
The cooling medium can be generated by evaporating the refrigerant inside. By providing the third container 2a containing the reaction material 4-a with respect to the reference example of FIG. Thus, the performance of the reaction materials 3, 4, and 4a during the reaction can be improved.
【0023】図4は本発明の第3の参考例の構成図であ
る。本参考例と前記第1の参考例との相違点は、パイプ
18およびパイプ20を直接蒸発器10に接続するので
なく、パイプ18およびパイプ20を連ねる連結部(マ
ニホルド)31が設けられ、この連結部31と蒸発器1
0がパイプ18aで接続されていること、蒸発器10は
屈曲した管からなり、この管の入り口と出口がパイプ1
9、18aにそれぞれ接続されていることである。他の
構成要素は第1の参考例と同じである。連結部31は蒸
発器10内の冷媒が沸騰した時、その液体の一部がパイ
プ18あるいは20を通って容器1,2内へ入って反応
材3,4に直接付着してしまわないようにするための気
液分離器の役目をしている。この参考例に示す屈曲した
管状の蒸発器10を槽23内の液体21中に広く配設す
ると伝熱面積を大きくすることができ、効率よく液体2
1を結晶22にすることができる。FIG. 4 is a block diagram of a third embodiment of the present invention. The difference between this embodiment and the first embodiment is that a connecting portion (manifold) 31 for connecting the pipes 18 and 20 is provided instead of connecting the pipes 18 and 20 directly to the evaporator 10. Connecting part 31 and evaporator 1
0 is connected by a pipe 18a, and the evaporator 10 is formed of a bent pipe, and the inlet and the outlet of the pipe are pipe 1
9 and 18a. The other components are the same as in the first reference example . The connection part 31 prevents a part of the liquid from entering the containers 1 and 2 through the pipes 18 or 20 and directly adhering to the reactants 3 and 4 when the refrigerant in the evaporator 10 boils. It serves as a gas-liquid separator for If the bent tubular evaporator 10 shown in this reference example is widely disposed in the liquid 21 in the tank 23, the heat transfer area can be increased, and the liquid 2 can be efficiently discharged.
1 can be a crystal 22.
【0024】図5は本発明の第2の実施例の構成図であ
る。本実施例は前記図2に示す第1の実施例において、
蒸発器10,10aを冷媒を内蔵する薄い箱状に構成し
て槽23の上方に傾斜させて配置し、各蒸発器の下端を
パイプ30,30aでバルブ15,15aに接続し、各
蒸発器の上端をパイプ20,18でバルブ14,13に
接続し、さらに、槽23の液相部に一端を接続されたパ
イプ41と、該パイプ41の他端に吸入口を接続したポ
ンプ40と、該ポンプ40の吐出口に接続されたパイプ
41Aと、該パイプ41Aに分岐して接続されたパイプ
42,43と、該パイプ42にバルブ44を介して接続
されたパイプ46と、前記パイプ43にバルブ45を介
して接続されたパイプ47とを設けたもので、パイプ4
6の末端は蒸発器10の外面上端に、パイプ47の末端
は蒸発器10aの外面上端に、それぞれ液体21を滴下
させる位置に配置されている。また、蒸発器10,10
aはその下端側端部がほぼL字形に上方に折れ曲がった
形状になっている。L字形の形状(折れ曲げ度)は、蒸
発器10、10aの表面に生じた結晶を下方部に落下さ
せやすいように設計することが重要である。他の構成は
前記第1の実施例と同様である。FIG. 5 is a block diagram of a second embodiment of the present invention. This embodiment is different from the first embodiment shown in FIG.
The evaporators 10 and 10a are formed in a thin box shape containing a refrigerant, and are arranged to be inclined above the tank 23. The lower ends of the evaporators are connected to the valves 15 and 15a by pipes 30 and 30a. The upper end is connected to valves 14 and 13 by pipes 20 and 18, and a pipe 41 having one end connected to the liquid phase portion of the tank 23, a pump 40 having a suction port connected to the other end of the pipe 41, A pipe 41A connected to a discharge port of the pump 40, pipes 42 and 43 branched and connected to the pipe 41A, a pipe 46 connected to the pipe 42 via a valve 44, and a pipe 43 A pipe 47 connected via a valve 45 is provided.
The end of 6 is located at the upper end of the outer surface of the evaporator 10, and the end of the pipe 47 is located at the upper end of the outer surface of the evaporator 10 a at a position where the liquid 21 is dropped. Also, the evaporators 10, 10
“a” is shaped such that its lower end is bent upward in a substantially L-shape. It is important to design the L-shape (the degree of bending) so that crystals generated on the surfaces of the evaporators 10 and 10a can easily fall down. Other configurations are the same as those of the first embodiment .
【0025】本実施例においては、槽23内の液体21
はポンプ40により蒸発器10,10aの上面に滴下さ
れ、滴下された液体21は蒸発器内で蒸発する冷媒に冷
媒に蒸発熱を奪われて結晶化(液体21として水が使用
された場合は、結氷)され、蓄冷される。蒸発器10,
10a内には凝縮器7内の冷媒8が適宜流入するが、バ
ルブ13あるいは14を開いて第1の容器1と蒸発器1
0aあるいは第2の容器2と蒸発器10を連通させるこ
とによって、冷媒8は蒸発して蒸発器10,あるいは蒸
発器10aは冷却され、その上面を流下する液体21は
その表面で結晶化する。蒸発器10,あるいは蒸発器1
0aの外面での液体21の結晶化がある程度進行し、ま
た蒸発器10,あるいは蒸発器10a内での冷媒の蒸発
が少なくなったら、パイプ19に連なるパイプ30,3
0a部のバルブ15あるいはバルブ15aが開かれ、凝
縮器7内の冷媒8が蒸発器10,あるいは蒸発器10a
内に流入する。流入する冷媒の温度が高いので、蒸発器
10あるいは蒸発器10aに成長した結晶22の一部は
融解し、このため結晶22はその重さによって蒸発器1
0,10aの傾斜面を利用して落下する。このようにし
て落下した結晶22あるいは結晶22aは、槽23内の
液体21中に貯められる。バルブ11,12,バルブ1
3,14,バルブ15,15aを交互に切換ることによ
って蒸発器10,10aの表面には交互に結晶の成長と
離脱が行なわれ、連続的に結晶22,22aを作ること
ができる。なお、蒸発器への冷媒の供給は、連続的に行
われるのでなくて断続的に行われ、冷媒の蒸発が行われ
ている段階では、冷媒の蒸発によって蒸発器内に溜って
いる冷媒それ自体も冷却されるので凝縮器から供給され
た冷媒の熱によって蒸発器外面の結晶が融解されて落下
する恐れはない。In this embodiment, the liquid 21 in the tank 23 is
Is dropped on the upper surfaces of the evaporators 10 and 10a by the pump 40, and the dropped liquid 21 is crystallized by the refrigerant evaporating in the evaporator, deprived of the heat of evaporation by the refrigerant (in the case where water is used as the liquid 21). Icing) and is stored cold. Evaporator 10,
The refrigerant 8 in the condenser 7 flows into the condenser 10a as appropriate, but the valve 13 or 14 is opened to open the first container 1 and the evaporator 1
When the evaporator 10 communicates with the evaporator 10 or the second container 2, the refrigerant 8 evaporates and the evaporator 10 or the evaporator 10a is cooled, and the liquid 21 flowing down the upper surface thereof crystallizes on the surface. Evaporator 10 or evaporator 1
When the crystallization of the liquid 21 on the outer surface of the evaporator 0a progresses to some extent and the evaporation of the refrigerant in the evaporator 10 or the evaporator 10a decreases, the pipes 30, 3 connected to the pipe 19
The valve 15 or the valve 15a of the portion 0a is opened, and the refrigerant 8 in the condenser 7 is discharged to the evaporator 10 or the evaporator
Flows into. Since the temperature of the inflowing refrigerant is high, a part of the crystal 22 grown on the evaporator 10 or the evaporator 10a is melted.
It falls using the slope of 0,10a. The crystal 22 or the crystal 22a that has fallen in this way is stored in the liquid 21 in the tank 23. Valves 11 and 12, Valve 1
By alternately switching the valves 3, 14, and the valves 15, 15a, crystals are grown and separated alternately on the surfaces of the evaporators 10, 10a, and crystals 22, 22a can be continuously produced. The supply of the refrigerant to the evaporator is performed not intermittently but intermittently. In a stage where the refrigerant is being evaporated, the refrigerant itself accumulated in the evaporator due to the evaporation of the refrigerant is itself. Is cooled, so that there is no danger that the crystals on the outer surface of the evaporator are melted and dropped by the heat of the refrigerant supplied from the condenser.
【0026】なお、この実施例において蒸発器10、1
0aの表面で結晶している氷を積極的に落し易くするに
は、第1の容器1あるいは第2の容器2内の反応材3あ
るいは4の再生時に発生する冷媒の蒸気を、凝縮器7を
介さずして直接蒸発器10、10a内に導入すればよ
い。このときパイプ18あるいはパイプ20内を通流さ
せるように蒸気を流せばよい。また、パイプ16あるい
はパイプ17にバルブ付分岐パイプを付けて蒸発器1
0、10aに連結しても同様のことが行える。In this embodiment, the evaporators 10, 1
In order to positively drop the ice crystallized on the surface of the first container 1a, the vapor of the refrigerant generated at the time of regenerating the reactant 3 or 4 in the first container 1 or the second container 2 is supplied to the condenser 7a. What is necessary is just to introduce | transduce directly into the evaporators 10, 10a without passing through. At this time, steam may be flowed so as to flow through the pipe 18 or the pipe 20. Also, a branch pipe with a valve is attached to the pipe 16 or 17 so that the evaporator 1
The same can be done by connecting to 0, 10a.
【0027】次にケミカル式冷凍機に用いる反応材(吸
着材)と冷媒との組合わせにおいて、0℃以下の冷熱を
発生し、熱サイクル試験において劣化せず、また反応材
(吸着材)を加熱再生した時に、容易に吸着質(冷媒の
蒸気)を脱離する組合せを実験的に見い出したことを以
下に述べる。 〔実験例1〕 内容積約2000cm3の吸着容器(ガラス製)と内容積
1000cm3の冷媒容器(ガラス製)を用意し、これを
バルブ付きパイプで連結したケミカル式冷凍装置におい
て、表1に示す吸着材A(細孔容積0.4ml/g,吸着表
面積720m2/g,平均細孔径22Å,平均粒径2〜4m
m)を約1kg吸着材容器に入れ、また冷媒として表2に
示す臭化リチウム水溶液(10wt%)を約0.25kg冷
媒容器に入れ、常温にて各々の容器を真空に引いた後、
パイプに付いているバルブを開放し、Next, in a combination of a reactant (adsorbent) and a refrigerant used in a chemical refrigerator, cold heat of 0 ° C. or less is generated, the heat does not deteriorate in a heat cycle test, and the reactant (adsorbent) is used. The following is a description of experimentally finding a combination that easily removes adsorbate (refrigerant vapor) during heating and regeneration. Prepared Experimental Example 1] adsorber vessel (made of glass) having an internal volume of about 2000 cm 3 and the refrigerant container having an inner volume of 1000 cm 3 (made of glass), which in the chemical type refrigerating apparatus which is connected in valved pipes, in Table 1 Adsorbent A (pore volume 0.4 ml / g, adsorption surface area 720 m 2 / g, average pore diameter 22 °, average particle diameter 2 to 4 m
m) in an adsorbent container, and about 0.25 kg of a lithium bromide aqueous solution (10 wt%) shown in Table 2 as a refrigerant in a refrigerant container, and evacuating each container at room temperature.
Open the valve on the pipe,
【0028】[0028]
【表1】 [Table 1]
【0029】[0029]
【表2】 冷媒をパイプを通して吸着材容器側に導入して吸着材A
に吸着させた。冷媒容器内の冷媒の温度は実験開始後急
激に低下し、約1.5時間後に最低温度−17℃に達し
た。[Table 2] The refrigerant is introduced into the adsorbent container side through the pipe and adsorbent A
Was adsorbed. The temperature of the refrigerant in the refrigerant container rapidly decreased after the start of the experiment, and reached a minimum temperature of -17 ° C after about 1.5 hours.
【0030】同様の実験を1000回行なったが、最終
回においても冷媒の温度は約−17℃に達し、初期とほ
とんど変化は見られなかった。またこの系の再生温度を
ヒートサイクル試験の過程で測定した所、50℃から8
0℃で比較的低い温度で再生できることが分った。 〔実験例2〕 前記実験例1と同じ装置で、実験例1の条件のうち冷媒
である臭化リチウム水溶液の濃度のみを50wt%に変え
て同様の実験を行なった。冷媒の温度は約−2℃に達し
た。同様の実験を1000回行なったが、最終回におい
ても冷媒の温度は約−2℃と、初期とほとんど変らない
ことが確認された。またこの系の再生温度をヒートサイ
クル試験の過程で測定した所、50℃から80℃と比較
的低い温度で再生できることが分った。The same experiment was carried out 1000 times, but the temperature of the refrigerant reached about −17 ° C. even in the final experiment, and there was almost no change from the initial stage. When the regeneration temperature of this system was measured during the heat cycle test, it was found that the temperature was 50 ° C to 8 ° C.
It was found that regeneration was possible at a relatively low temperature of 0 ° C. [Experimental Example 2] A similar experiment was performed using the same apparatus as in Experimental Example 1 except that the concentration of the aqueous solution of lithium bromide as the refrigerant was changed to 50 wt% among the conditions of Experimental Example 1. The temperature of the refrigerant reached about -2 ° C. The same experiment was performed 1000 times, but it was confirmed that the temperature of the refrigerant was about −2 ° C. in the final round, which was almost the same as the initial temperature. Further, when the regeneration temperature of this system was measured in the course of the heat cycle test, it was found that regeneration was possible at a relatively low temperature of 50 ° C. to 80 ° C.
【0031】シリカゲルAに対して冷媒の種類と濃度を
変え、冷熱の発生実験を行ない表2に示す。冷媒として
臭化リチウム水溶液のほか塩化カルシウム水溶液、塩化
ナトリウム水溶液、塩化マグネシウム水溶液、エチレン
グリコール水溶液、プロピレングリコール水溶液、ポリ
エチレングリコール水溶液、E181(テトラエチレン
グリコールジメチルエーテル Dimethyl ether of tet
ra ethylene glycol),E141(ジエチレングリコー
ルジメチルエーテル Dimethyl ether ofdiethlene
glycol),DMF(ジメチルホルムアミド Dimethyl f
orm amide)についても実験を行なった結果、0℃以下
の低温度を発生できること、1000回のヒートサイク
ル試験に耐えること、および再生温度は50℃〜80℃
と比較的低いことが確認された。An experiment for generating cold heat was conducted by changing the type and concentration of the refrigerant with respect to silica gel A, and the results are shown in Table 2. As a refrigerant, an aqueous solution of lithium bromide, an aqueous solution of calcium chloride, an aqueous solution of sodium chloride, an aqueous solution of magnesium chloride, an aqueous solution of ethylene glycol, an aqueous solution of propylene glycol, an aqueous solution of polyethylene glycol, E181 (tetramethyl glycol dimethyl ether)
ra ethylene glycol), E141 (Diethylene ether of diethlene
glycol), DMF (dimethylformamide)
As a result of conducting experiments on orm amide), a low temperature of 0 ° C. or less can be generated, it can withstand 1000 heat cycle tests, and the regeneration temperature is 50 ° C. to 80 ° C.
Was relatively low.
【0032】また同様の実験をシリカゲルB(細孔容積
0.6ml/g,吸着表面積590m2/g,平均細孔径40
Å,平均粒径0.5〜2mm),およびゼオライト13X
(細孔容積0.35ml/g,吸着表面積500〜700m
/g,平均細孔径10Å,平均的大きさ径,1.5mm×長
さ5mm)についても行ない、0℃以下の低温度の発生が
でき、1000回のヒートサイクルテストに耐えること
が確認された。In a similar experiment, silica gel B (pore volume: 0.6 ml / g, adsorption surface area: 590 m 2 / g, average pore diameter: 40
Å, average particle size 0.5 to 2 mm), and zeolite 13X
(Pore volume 0.35ml / g, adsorption surface area 500-700m
/ G, average pore diameter 10 mm, average size diameter, 1.5 mm × length 5 mm), a low temperature of 0 ° C. or less was able to be generated, and it was confirmed that the material could withstand 1000 heat cycle tests. .
【0033】しかし再生温度に関しては表3に示すよう
に、シリカゲルAとBの場合は50℃〜80℃程度と低
いがゼオライト13Xの場合は150℃以上必要であ
り、加熱再生が行ない難いことがわかった。However, as shown in Table 3, the regeneration temperature is as low as about 50 ° C. to 80 ° C. for silica gels A and B, but is required to be 150 ° C. or more for zeolite 13X. all right.
【0034】[0034]
【表3】 [Table 3]
【発明の効果】請求項1に記載の本発明の冷凍装置によ
れば、槽内に浸漬下蒸発器において0℃以下の冷熱を発
生させることができ、かつその周りの液体を容易に結晶
化できて、大容量の蓄熱が行えるようになったととも
に、冷熱発生量の制御が容易と言う効果がある。According to the refrigerating apparatus of the present invention, it is possible to generate cold heat of 0 ° C. or less in the evaporator while immersed in the tank, and to easily crystallize the liquid around the evaporator. made, both became to allow the heat storage of large capacity
In addition, there is an effect that it is easy to control the amount of generated cold .
【0035】請求項2に記載の本発明の冷凍装置によれ
ば、蒸発器において0℃以下の冷熱を発生させ、その上
に流下される液体を凝固させて蓄冷することができると
ともに、蒸発器上で凝固した液体を適宜落下させること
ができるので、液体の凝固による熱伝達率の低下の影響
を抑制できる。According to the refrigeration apparatus of the present invention, the evaporator generates cold heat of 0 ° C. or less.
That the liquid flowing down to the surface can be solidified and stored cold
In both cases, the solidified liquid on the evaporator must be dropped as appropriate.
Of the heat transfer coefficient due to solidification of the liquid
Can be suppressed .
【図1】本発明の第1の参考例の要部構成を示す系統図
である。FIG. 1 is a system diagram showing a configuration of a main part of a first reference example of the present invention.
【図2】本発明の第1の実施例の要部構成を示す系統図
である。FIG. 2 is a system diagram showing a configuration of a main part of the first embodiment of the present invention.
【図3】本発明の第2の参考例の要部構成を示す系統図
である。FIG. 3 is a system diagram showing a configuration of a main part of a second reference example of the present invention.
【図4】本発明の第3の参考例の要部構成を示す系統図
である。FIG. 4 is a system diagram showing a configuration of a main part of a third reference example of the present invention.
【図5】本発明の第2の実施例の要部構成を示す系統図
である。FIG. 5 is a system diagram showing a configuration of a main part of a second embodiment of the present invention.
1,2 容器 3,4 反応材 5,6,9 熱交換器 7 凝縮器 8 冷媒 10,10a 蒸発器 21 液体 22 結晶 23 槽 24 ポンプ 29 放熱器 31 連結部 1, 2 container 3, 4 reaction material 5, 6, 9 heat exchanger 7 condenser 8 refrigerant 10, 10a evaporator 21 liquid 22 crystal 23 tank 24 pump 29 radiator 31 connecting part
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−138665(JP,A) 特開 平4−148163(JP,A) 特開 平6−193993(JP,A) 特開 平4−236076(JP,A) 特表 平6−502715(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 17/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-138665 (JP, A) JP-A-4-148163 (JP, A) JP-A-6-193993 (JP, A) JP-A-4-193 236076 (JP, A) Table 6-502715 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 17/08
Claims (2)
た複数の容器と、これら複数の容器それぞれにバルブを
介して接続され前記容器で発生した冷媒蒸気を凝縮させ
る凝縮器と、該凝縮器に接続されて冷媒をその内部で蒸
発させる蒸発器と、該蒸発器を内装し槽内の液体中に該
蒸発器を浸漬した槽と、前記蒸発器と前記複数の容器そ
れぞれとをバルブを介して接続し蒸発器で発生した冷媒
蒸気を前記容器に導くパイプと、前記槽に設けられた熱
利用手段と、を含んで構成され、前記凝縮器及び蒸発器
内に0℃では凝固しない冷媒が封入されているととも
に、前記蒸発器が2個以上であり、凝縮器と各々の蒸発
器とがバルブを介して接続されていることを特徴とする
冷凍装置。1. A plurality of containers accommodating a reactant and provided with heat exchange means, a condenser connected to each of the plurality of containers via a valve for condensing refrigerant vapor generated in the containers, An evaporator connected to the evaporator to evaporate the refrigerant therein, a tank equipped with the evaporator and immersed in the liquid in the tank, the evaporator and the plurality of containers each having a valve. A refrigerant that is not solidified at 0 ° C. in the condenser and the evaporator, the pipe including a pipe connected to connect the refrigerant vapor generated in the evaporator to the container, and a heat utilization unit provided in the tank. Tomo and There has been sealed
In addition, there are two or more evaporators, a condenser and each evaporator.
The refrigeration apparatus is connected to the vessel via a valve .
た複数の容器と、これら複数の容器それぞれにバルブを
介して接続され前記容器で発生した冷媒蒸気を凝縮させ
る凝縮器と、該凝縮器にバルブを介して接続され冷媒を
その内部で蒸発させる蒸発器と、該蒸発器の下方に配置
されて液体を貯溜した槽と、前記蒸発器の表面に槽内の
液体を流下させる手段と、前記蒸発器と前記複数の容器
それぞれとをバルブを介して接続し蒸発器で発生した冷
媒蒸気を前記容器に導くパイプと、前記槽に設けられた
熱利用手段と、を含んで構成され、前記凝縮器及び蒸発
器内に0℃では凝固しない冷媒が封入されている冷凍装
置。2. A plurality of containers accommodating a reactant and provided with heat exchange means, a condenser connected to each of the plurality of containers via a valve to condense refrigerant vapor generated in the containers, and An evaporator connected to the vessel via a valve to evaporate the refrigerant inside the vessel, a tank disposed below the evaporator to store the liquid, and a means for flowing the liquid in the tank to the surface of the evaporator. A pipe that connects the evaporator and each of the plurality of containers via a valve and guides the refrigerant vapor generated by the evaporator to the container, and heat utilization means provided in the tank, A refrigeration system in which a refrigerant that does not solidify at 0 ° C. is sealed in the condenser and the evaporator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20060794A JP3295748B2 (en) | 1994-08-25 | 1994-08-25 | Refrigeration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20060794A JP3295748B2 (en) | 1994-08-25 | 1994-08-25 | Refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0861801A JPH0861801A (en) | 1996-03-08 |
JP3295748B2 true JP3295748B2 (en) | 2002-06-24 |
Family
ID=16427187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20060794A Expired - Fee Related JP3295748B2 (en) | 1994-08-25 | 1994-08-25 | Refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3295748B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101814118B1 (en) | 2016-05-20 | 2018-01-02 | 김경옥 | Icecream manufacturing device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2766148B1 (en) * | 1997-07-16 | 1999-09-17 | Soc D Const De Materiel Metall | TROLLEY COMPRISING A COOLING DEVICE THAT CAN BE INSTALLED AT ANY TIME CHOSEN BY THE USER AND METHOD FOR PROVIDING A HEATED FOOD |
JP2005344973A (en) * | 2004-06-01 | 2005-12-15 | Mayekawa Mfg Co Ltd | Adsorption type refrigeration machine |
JP2010002084A (en) * | 2008-06-18 | 2010-01-07 | Fujitsu Ltd | Loop-type heat pipe, computer, and cooling apparatus |
FR3034179B1 (en) * | 2015-03-23 | 2018-11-02 | Centre National De La Recherche Scientifique | SOLAR DEVICE FOR AUTONOMOUS COLD PRODUCTION BY SOLID-GAS SORPTION. |
JP2024033247A (en) * | 2022-08-30 | 2024-03-13 | ダイキン工業株式会社 | Adsorption-type refrigerator |
-
1994
- 1994-08-25 JP JP20060794A patent/JP3295748B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101814118B1 (en) | 2016-05-20 | 2018-01-02 | 김경옥 | Icecream manufacturing device |
Also Published As
Publication number | Publication date |
---|---|
JPH0861801A (en) | 1996-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930008821B1 (en) | Refrigerating system | |
JPH08240357A (en) | Adsorption frezeer | |
JP3295748B2 (en) | Refrigeration equipment | |
JPH1089798A (en) | Chemical thermal storage type suction cooler | |
JP4363336B2 (en) | Air conditioning | |
JPH11117713A (en) | Chemical heat-accumulating type intake air cooling device | |
JPH0792295B2 (en) | Cold storage device | |
JPH06272989A (en) | Refrigerator | |
JP4069691B2 (en) | Air conditioner for vehicles | |
JPH1137597A (en) | Adsorption-type freezer | |
JP3466018B2 (en) | Liquid phase separation type absorption refrigeration system | |
JP2005104087A (en) | Heat storage type mold cooling system | |
JP2744712B2 (en) | Adsorption cooling device | |
JP2503752B2 (en) | Adsorption refrigerator | |
JPH09170846A (en) | On-vehicle chemical heat pump | |
JP2004251541A (en) | Dual freezing equipment | |
JP2005090880A (en) | Ice making machine | |
JP2004085009A (en) | Manufacturing method for hydrate slurry by use of adsorption refrigerator | |
JPH1163720A (en) | Coupled refrigerant and adsorbing agent and adsorbing type cold heat generating device using this coupled refrigerant and adsorbing agent | |
JPH11223415A (en) | Refrigerating device | |
JP2001304715A (en) | Adsorption refrigerating machine | |
JPH09119740A (en) | Engine exhaust heat recovery absorption refrigerating machine | |
JP2876893B2 (en) | Absorption type ice cold storage device | |
JP2005344973A (en) | Adsorption type refrigeration machine | |
JP4196753B2 (en) | Adsorption type refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080412 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090412 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090412 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100412 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110412 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120412 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120412 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130412 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |