JP3148514B2 - Method for producing R-Fe-M-N bonded magnet - Google Patents
Method for producing R-Fe-M-N bonded magnetInfo
- Publication number
- JP3148514B2 JP3148514B2 JP11452194A JP11452194A JP3148514B2 JP 3148514 B2 JP3148514 B2 JP 3148514B2 JP 11452194 A JP11452194 A JP 11452194A JP 11452194 A JP11452194 A JP 11452194A JP 3148514 B2 JP3148514 B2 JP 3148514B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- phase
- treatment
- magnet
- type structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000000843 powder Substances 0.000 claims description 73
- 238000005121 nitriding Methods 0.000 claims description 32
- 238000009792 diffusion process Methods 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 30
- 238000005551 mechanical alloying Methods 0.000 claims description 25
- 229920005989 resin Polymers 0.000 claims description 21
- 239000011347 resin Substances 0.000 claims description 21
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- 239000000956 alloy Substances 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 230000027311 M phase Effects 0.000 claims 1
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 229910017086 Fe-M Inorganic materials 0.000 description 26
- 230000005291 magnetic effect Effects 0.000 description 20
- 239000013078 crystal Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000002994 raw material Substances 0.000 description 7
- 229910000859 α-Fe Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000000748 compression moulding Methods 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000005347 demagnetization Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910001009 interstitial alloy Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/059—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
- H01F1/0596—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、各種モーター、アク
チュエーター等の磁気回路を構成する永久磁石に用いる
ことが可能なR−Fe−M−N系ボンド磁石の製造方法
に係り、所要組成に配合、混合した所要金属粉末または
合金粉末を特定雰囲気にてメカニカルアロイングし、拡
散処理にてTh2Zn17型構造またはTbCu7型構造を
有するR2Fe17-xMx相(但し、x=0.2〜3.
5)、ならびにbcc構造を有するFe−M相の2相
が、各々微細結晶粒径を有し、互いに混合している集合
粉体となし、さらに窒化処理を行い、前記拡散処理と窒
化処理を同一炉内で雰囲気を切換えることにより連続的
に行い、得られた合金粉末を樹脂で結合することによ
り、高保磁力を有するR−Fe−M−N系ボンド磁石を
得る製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an R--Fe--M--N bonded magnet which can be used for a permanent magnet constituting a magnetic circuit such as various motors and actuators, and is incorporated into a required composition. The required metal powder or alloy powder mixed is mechanically alloyed in a specific atmosphere, and an R 2 Fe 17-x M x phase having a Th 2 Zn 17 type structure or a TbCu 7 type structure by diffusion treatment (where x = 0.2-3.
5), and two-phase Fe-M phases having a bcc structure, each having a fine grain size, without a set powder are mixed with each other, further subjected to nitriding, the diffusion process and the denitrification
Process by changing the atmosphere in the same furnace
And bonding the obtained alloy powder with a resin to obtain an R—Fe—M—N-based bonded magnet having a high coercive force.
【0002】[0002]
【従来の技術】ボンド磁石は寸法精度のよさ、他部材と
の一体成形によるコストダウンメリット、薄肉成形品で
の歩留りの良さ等の理由により多方面で使用されてお
り、その原料としてNd−Fe−B系粉末がある。Nd
−Fe−B系永久磁石用粉末としては、超急冷法などに
より得られた超微細組織を有する磁石粉末が用いられて
きた。2. Description of the Related Art Bonded magnets are used in various fields because of their high dimensional accuracy, cost reduction by integrally molding with other members, and good yield of thin molded products. -B type powder. Nd
As the Fe-B-based permanent magnet powder, a magnet powder having an ultrafine structure obtained by a rapid quenching method or the like has been used.
【0003】前記Nd−Fe−B系永久磁石用粉末は、
キュリー点(Tc)が約300℃前後と低く、Br、i
Hcの温度係数が大きいため、ボンド磁石に用いた場合
の磁石特性の温度係数が大きいという問題がある。その
ためCo等の添加によりTcを上昇させてBrの温度係
数を改善することが可能であるが、Brの温度係数αは
せいぜい−0.08%/℃程度が限界であった。[0003] The Nd-Fe-B permanent magnet powder is
Curie point (Tc) is as low as about 300 ° C, Br, i
Since the temperature coefficient of Hc is large, there is a problem that the temperature coefficient of the magnet characteristics when used for a bonded magnet is large. Therefore, the temperature coefficient of Br can be improved by increasing Tc by adding Co or the like, but the temperature coefficient α of Br is limited to about -0.08% / ° C at most.
【0004】最近Th2Zn17型構造を持つSm2Fe17
化合物は、窒素を格子間に侵入させることによりTcが
絶対温度で2倍近く高くなり、Nd−Fe−B系のTc
よりも160℃も高く、Nd2Fe14Bを上回る異方性
磁界が得られることが報告されている(J.M.D.C
oey and H.Sun,J.Magn. Mag
n. Mat. 87 (1990)L251)。ま
た、ThMn12型構造を持つNd−Fe−M(M=T
i,V,Cr,Mo等)系化合物でも、窒素を格子間に
侵入せしめることによりTcが上昇し、Nd2Fe14B
と同程度の異方性磁界が得られることが報告されている
(Ying−chang Yang et al.,S
olid State Commun.78(199
1)317.)。Recently, Sm 2 Fe 17 having a Th 2 Zn 17 type structure
The compound increases the Tc almost twice in absolute temperature by injecting nitrogen into the lattice, and the Tc of Nd-Fe-B system
It is reported that an anisotropic magnetic field higher than Nd 2 Fe 14 B by 160 ° C. can be obtained (JMDC).
oey and H.S. Sun, J .; Magn. Mag
n. Mat. 87 (1990) L251). Nd-Fe-M having a ThMn 12 type structure (M = T
(i, V, Cr, Mo, etc.)-based compounds also increase Tc by allowing nitrogen to penetrate into the interstitial space, and increase Nd 2 Fe 14 B
It has been reported that an anisotropic magnetic field of the same degree as that obtained by Y-chang Yang et al., S.
olid State Commun. 78 (199
1) 317. ).
【0005】[0005]
【発明が解決しようとする課題】発明者らは先に、上記
Nd−Fe−M系組成を持つ合金をメカニカルアロイン
グ法で得た後、加熱拡散処理によりThMn12型構造の
微細な結晶を析出させ、さらに窒化処理して得られる磁
石粉末を樹脂で結合するR−T−M−N系ボンド磁石の
製造方法を提案した(特開平5−234731号)。こ
の製造方法においては、添加元素MはThMn12構造を
安定化させる必須元素として7at%以上添加する必要
があるが、この非磁性元素の添加により磁化が低下する
という磁気特性上の問題点があった。We [0005] The above, after obtaining the alloy having the above Nd-Fe-M-based composition by a mechanical alloying method, a heat diffusion treatment by fine crystals of ThMn 12 type structure A method for producing an RTMN bonded magnet in which magnet powder obtained by precipitating and further nitriding is bonded with a resin was proposed (Japanese Patent Application Laid-Open No. Hei 5-234731). In this manufacturing method, the additional element M is it is necessary to add more than 7 atomic% as an essential element which stabilizes ThMn 12 structure, there are problems in the magnetic property of magnetization is lowered by the addition of the non-magnetic element Was.
【0006】一方、Sm2Fe17系窒化物は、資源的に
少ないSmを多く含有することから比較的高価になる問
題があり、資源的に豊富な元素を多く含有する永久磁石
粉末が求められている。その解決策として、SmとFe
の組成比をSm2Fe17の化学量論比よりもFeを多く
した組成比となるように配合、混合した原料をメカニカ
ルアロイングし、加熱拡散処理によりSm2Fe17相と
α−Fe相を微細に析出、混合させた後、窒化するSm
2Fe17Nx+α−Fe系2相磁石の製造方法が提示され
ている(例えば、J.Ding,P.G.McCorm
icandR.Street,J.Magn.Mag
n.Mat.124(1993),1)。しかし、この
方法によれば、Sm2Fe17Nx相およびα−Fe相の結
晶粒径を充分に微細することができず、高保磁力を得る
ことができない。On the other hand, Sm 2 Fe 17- based nitrides have a problem that they are relatively expensive because they contain a large amount of Sm, which is a small amount of resources, and a permanent magnet powder containing a large number of elements which are abundant in resources is required. ing. As a solution, Sm and Fe
Are mixed so that the composition ratio of Fe is larger than the stoichiometric ratio of Sm 2 Fe 17 , and the mixed raw materials are mechanically alloyed, and the Sm 2 Fe 17 phase and the α-Fe phase are heated and diffused. Is finely precipitated and mixed, and then nitrided.
A method for producing a 2 Fe 17 N x + α-Fe-based two-phase magnet has been proposed (for example, J. Ding, PG McCorm).
icandR. Street, J.M. Magn. Mag
n. Mat. 124 (1993), 1). However, according to this method, the crystal grain size of the Sm 2 Fe 17 N x phase and the α-Fe phase cannot be made sufficiently small, and a high coercive force cannot be obtained.
【0007】この発明は、R2Fe17NX+α−Fe系2
相磁石の製造、特にメカニカルアロイング法を用いた製
造方法において、微細な結晶粒径の磁石粉末を得て磁気
特性の高いボンド磁石を製造できるR−Fe−M−N系
ボンド磁石の製造方法の提供を目的としている。The present invention relates to an R 2 Fe 17 N X + α-Fe system 2
In a method for producing a phase magnet, in particular, a production method using a mechanical alloying method, a method for producing an R-Fe-M-N-based bonded magnet capable of producing a magnet powder having a fine crystal grain size to produce a bonded magnet having high magnetic properties The purpose is to provide.
【0008】[0008]
【問題を解決するための手段】発明者らは、メカニカル
アロイング法を用いたSm2Fe17NX+α−Fe系2相
磁石の製造方法において、磁気特性を向上させるため、
このタイプの磁石にとって理想的な組織、すなわち、窒
化後にハード相となるSm2Fe17と、ソフト相である
α−Feのそれぞれが、極めて微細に析出し、互いに混
合し合っているような組織を実現させる方法を鋭意検討
した結果、出発原料中に15at%以下の添加元素M
(M:Ti,V,Cr,Co,Ni,Nb,Mo,T
a,W,Al,Si,Ga,Zr,In,Sn,Hf,
のうち1種または2種以上)を加え、メカニカルアロイ
ングを行った後、適当な条件で加熱拡散処理を行うこと
により、上記の理想的組織が現出し、窒化処理後の磁気
特性が向上することを知見し、この発明を完成した。ま
た、発明者らは、上記加熱拡散処理と窒化処理の工程に
おいて、両工程を同一の炉内で連続的に行うことによ
り、それぞれ個別に実施する場合に比べて処理する粉末
中の酸素量が低減され、磁気特性が向上することを知見
し、この発明を完成した。Means for Solving the Problems The inventors of the present invention have proposed a method for manufacturing a Sm 2 Fe 17 N X + α-Fe-based two-phase magnet using a mechanical alloying method, in order to improve magnetic characteristics.
An ideal structure for this type of magnet, that is, a structure in which Sm 2 Fe 17 , which becomes a hard phase after nitriding, and α-Fe, which is a soft phase, are extremely finely precipitated and mixed with each other. As a result of intensive studies on the method of realizing
(M: Ti, V, Cr, Co, Ni, Nb, Mo, T
a, W, Al, Si, Ga, Zr, In, Sn, Hf,
One or more of them), and after performing mechanical alloying, performing heat diffusion treatment under appropriate conditions, whereby the above-described ideal structure appears and the magnetic properties after nitriding treatment are improved. With this in mind, the present invention has been completed. In addition, the inventors of the present invention performed the heating diffusion process and the nitriding process in the same furnace continuously in the same furnace, so that the amount of oxygen in the powder to be processed is smaller than in the case where the processes are performed individually. It was found that the magnetic properties were reduced and the magnetic properties were improved, and the present invention was completed.
【0009】すなわち、この発明は、 1) R 6〜8at%、Fe 75〜92at%、M
1〜15at%、(但し、R:Yを含む希土類元素の
少なくとも1種で、かつSmを50%以上含有、 M:Ti,V,Cr,Co,Ni,Nb,Mo,Ta,
W,Al,Si,Ga,Zr,In,Sn,Hfのうち
一種または2種以上)の配合組成となるように、所要の
金属粉末または合金粉末を配合、混合後、 2) 真空中あるいはArガス中にてメカニカルアロイ
ングし、 3) さらに真空中あるいはArガス中にて600〜8
50℃、10分〜12時間の加熱拡散処理を行い、Th
2Zn17型構造またはTbCu7型構造を有するR2Fe
17-xMx相(但し、x=0.2〜3.5)、ならびにb
cc構造を有するFe−M相の2相が、各々平均粒径
0.05〜0.5μmを有して互いに混合している平均
粒度0.5〜500μmの粉末を得、 4) この粉末を0.5〜1000atmのN2ガス中
で300〜550℃に10分〜12時間保持する窒化処
理を行い、前記加熱拡散処理と窒化処理を同一炉内で雰
囲気を切換えて連続的に行い、R 5〜7at%、Fe
75〜92at%、M 1〜15at%、N3〜12
at%を含有する合金粉末を得、 5) これを樹脂で結合したことを特徴とする温度特性
にすぐれたR−Fe−M−N系ボンド磁石の製造方法で
ある。That is, the present invention provides: 1) R 6 to 8 at%, Fe 75 to 92 at%, M
1 to 15 at%, (where R is at least one kind of rare earth element including Y and contains 50% or more of Sm; M: Ti, V, Cr, Co, Ni, Nb, Mo, Ta,
(W, Al, Si, Ga, Zr, In, Sn, Hf), after mixing and mixing the required metal powder or alloy powder so that the composition becomes 2) in vacuum or Ar Mechanical alloying in gas, 3) 600-8 in vacuum or Ar gas
Perform a heat diffusion treatment at 50 ° C. for 10 minutes to 12 hours,
R 2 Fe having a 2 Zn 17 type structure or a TbCu 7 type structure
17-x M x phase (where x = 0.2-3.5), and b
2) Fe-M phase having a cc structure is mixed with each other having an average particle size of 0.05 to 0.5 μm to obtain a powder having an average particle size of 0.5 to 500 μm. perform nitriding treatment of holding N 10 minutes to 12 hours 300 to 550 ° C. in 2 gas of 0.5~1000Atm, cut the heat diffusion treatment and the nitriding treatment in the same furnace
It is performed continuously by changing the atmosphere , R 5-7at%, Fe
75 to 92 at%, M 1 to 15 at%, N3 to 12
5) An R-Fe-M-N-based bonded magnet having excellent temperature characteristics, characterized in that an alloy powder containing at.
【0010】[0010]
【0011】組成の限定理由 この発明の製造方法によるR−Fe−M−N系ボンド磁
石では、Fe−M相の存在が必須条件であり、この点が
従来のR−T−M−N系磁石と本質的に異なるところで
ある。この発明に使用する原料組成において、希土類元
素RはY,La,Pr,Nd,Sm,Gd,Tb,H
o,Er,Tm,Luが包含され、これらのうち少なく
とも1種以上で、SmをRの50at%以上含有する。
Rの50at%以上をSmとするのは、Smが50%以
下では十分な保磁力が得られないためである。また、R
として全量Smを使用してもよい。メカニカルアロイン
グ前のR組成は、6at%未満ではFe−M相に対する
R2Fe17-xMx相の体積比が小さすぎて、保磁力が低下
し、また、8at%を超えるとFe−M相が減少して磁
化が低下するため、6〜8at%とする。Rとして全量
Smを使用する場合のSmの組成範囲も、上記と同じ理
由で6〜8at%とする。より好ましいメカニカルアロ
イング前のRの範囲は、7〜8at%である。Reasons for Restricting Composition The R-Fe-MN-based bonded magnet according to the production method of the present invention requires the presence of the Fe-M phase, which is a problem with the conventional R-T-M-N-based magnet. It is essentially different from a magnet. In the raw material composition used in the present invention, the rare earth element R is Y, La, Pr, Nd, Sm, Gd, Tb, H
o, Er, Tm, and Lu are included, and at least one of them contains Sm at 50 at% or more of R.
The reason why 50 at% or more of R is Sm is that if Sm is 50% or less, a sufficient coercive force cannot be obtained. Also, R
May be used as the total amount Sm. If the R composition before mechanical alloying is less than 6 at%, the volume ratio of the R 2 Fe 17-x M x phase to the Fe-M phase is too small, and the coercive force is reduced. Since the M phase is reduced and the magnetization is reduced, the content is set to 6 to 8 at%. When the total amount of Sm is used as R, the composition range of Sm is also set to 6 to 8 at% for the same reason as described above. A more preferable range of R before mechanical alloying is 7 to 8 at%.
【0012】メカニカルアロイング後に加熱拡散処理を
経て、窒化処理した後のR組成は、Rがメカニカルアロ
イング中にミル内壁やボール表面に付着したり、あるい
は加熱拡散処理時に蒸発したりするため、メカニカルア
ロイング前に比べて減少する傾向にある。また、窒化処
理による窒素量の増加や製造プロセス上、不可避な粉末
の酸化による酸素料の増加のため、Rの組成は相対的に
減少する。Rが5at%未満ではFe−M相に対するR
2Fe17-xMx相の体積比が小さすぎて、保磁力が低下
し、また、7at%を超えるとRがR2Fe17-xMxの化
学量論組成を超えるためFe−M相が消滅し、RFe3
相などが析出して磁化が低下するため、窒化処理後のR
は5〜7at%とする。より好ましい窒化処理後のRの
範囲は6〜7at%である。R composition after nitriding treatment after heat diffusion treatment after mechanical alloying, R adheres to the inner wall of a mill or a ball surface during mechanical alloying or evaporates during heat diffusion treatment. It tends to decrease compared to before mechanical alloying. In addition, the composition of R relatively decreases due to an increase in the amount of nitrogen due to nitriding treatment and an increase in oxygen charge due to oxidation of powder which is inevitable in the manufacturing process. If R is less than 5 at%, R with respect to the Fe-M phase
When the volume ratio of the 2 Fe 17-x M x phase is too small, the coercive force is reduced, and when it exceeds 7 at%, R exceeds the stoichiometric composition of R 2 Fe 17-x M x , so that Fe-M Phase disappears, RFe 3
Phase and the like are precipitated and the magnetization is reduced.
Is 5 to 7 at%. The more preferable range of R after the nitriding treatment is 6 to 7 at%.
【0013】この発明の製造方法によるR−Fe−M−
N系ボンド磁石では、Fe−M相の存在が必須条件であ
るが、ThMn12型構造の化合物においては、Rの化学
量論組成は7.7at%と低く、この発明のRの組成範
囲においてFe−M相を存在させることは困難となる。
このため、この発明では加熱拡散処理後の粉末を構成す
る化合物をTh2Zn17型構造またはTbCc7型構造を
有するR2Fe17-xMx相、ならびにbcc構造を有する
Fe−M相に限定する。Feは、75at%未満ではR
Fe3相などが析出して磁化が低下し、92at%を超
えるとFe−M相に対するR2Fe17-xMx相の体積比が
小さすぎて保磁力が低下するため、75〜92at%と
する。より好ましいFeの範囲は80〜85at%であ
る。[0013] R-Fe-M- by the production method of the present invention
In an N-based bonded magnet, the presence of an Fe-M phase is an essential condition. However, in a compound having a ThMn 12 type structure, the stoichiometric composition of R is as low as 7.7 at%, and in the R composition range of the present invention. It is difficult to make the Fe-M phase exist.
Therefore, in the present invention, the compound constituting the powder after the heat diffusion treatment is converted into an R 2 Fe 17-x M x phase having a Th 2 Zn 17 type structure or a TbCc 7 type structure, and an Fe-M phase having a bcc structure. limit. Fe is less than 75 at% when R
If the Fe 3 phase or the like precipitates and the magnetization decreases, and exceeds 92 at%, the volume ratio of the R 2 Fe 17-x M x phase to the Fe-M phase is too small and the coercive force decreases. And A more preferable range of Fe is 80 to 85 at%.
【0014】添加元素Mは、加熱拡散処理で結晶化する
R2Fe17相およびα−Fe相中に置換あるいは固溶し
て、両相の結晶粒径が0.5μm以上に粗大化するのを
防止し、結果として保磁力が低下するのを抑制する効果
を有する元素が望まれ、特に顕著な効果を持つものとし
て、Ti,V,Cr,Co,Ni,Nb,Mo,Ta,
Wがある。また、Mのうち、Al,Si,Ga,Zr,
In,Sn,Hfは、R2Fe17-xMx相の結晶構造を安
定化し、窒化処理における同相の分解反応を抑制するの
に有用な元素である。従って、Mとしては、上記の元素
を目的に応じて組み合せて用いることが得策である。添
加量は、15at%を超えると強磁性でない第2相が析
出して磁化を低下することから、Mは15at%以下と
する。より好ましいMの範囲は1〜10at%である。The additive element M substitutes or forms a solid solution in the R 2 Fe 17 phase and the α-Fe phase crystallized by the heat diffusion treatment, and the crystal grain size of both phases is increased to 0.5 μm or more. Are desired to have an effect of preventing the occurrence of a coercive force as a result, and Ti, V, Cr, Co, Ni, Nb, Mo, Ta,
There is W. Further, among M, Al, Si, Ga, Zr,
In, Sn, and Hf are elements useful for stabilizing the crystal structure of the R 2 Fe 17-x M x phase and suppressing the decomposition reaction of the same phase in the nitriding treatment. Therefore, as M, it is advisable to use a combination of the above elements according to the purpose. If the amount of addition exceeds 15 at%, the non-ferromagnetic second phase precipitates and lowers the magnetization, so M is set to 15 at% or less. A more preferable range of M is 1 to 10 at%.
【0015】Nは、R2Fe17-xMx相中に拡散し、一軸
異方性を持つ窒素侵入型化合物R2Fe17-xMxNyを形
成するが、Nが3at%未満だと一軸異方性が得られ
ず、また12at%を超えるとTh2Zn17型構造また
はTbCu7型構造が不安定となり、R2Fe17-xMxNy
相がRNとFe−Mに分解して好ましくないため、3〜
12at%とする。より好ましいNの範囲は7〜11a
t%である。N diffuses into the R 2 Fe 17-x M x phase to form a nitrogen interstitial compound R 2 Fe 17-x M x N y having uniaxial anisotropy, where N is less than 3 at%. If this is not the case, uniaxial anisotropy cannot be obtained, and if it exceeds 12 at%, the Th 2 Zn 17 type structure or TbCu 7 type structure becomes unstable, and R 2 Fe 17-x M x N y
The phase is decomposed into RN and Fe-M, which is not preferable.
12 at%. A more preferable range of N is 7 to 11a.
t%.
【0016】製造条件の限定理由 この発明において、メカニカルアロイングとは、所要組
成に配合した金属粉末あるいは合金粉末を混合、調整し
た後、真空中またはArガス中で鋼球などの微粉砕媒体
を収容した微粉砕装置により、前記金属粉末あるいは合
金粉末を原子レベルまで混合することにより、常温で機
械的に合金化する工程である。メカニカルアロイングに
使用する装置は、容器内を不活性ガスで置換することが
可能なものであれば、ボールミル、振動ミル、遊星ボー
ルミル、アトライターなどが使用できるが、その性能な
どにより運転条件が異なるので、適宜選定する必要があ
る。メカニカルアロイング後の生成物は、R−Fe−M
系非晶質あるいはR−Fe−M系非晶質中にbcc−F
e、元素MおよびFe−Mのうちの1種、あるいは2種
以上が微細に分散した状態のいずれかであることが望ま
しい。Reasons for Limiting Manufacturing Conditions In the present invention, mechanical alloying refers to mixing and adjusting a metal powder or an alloy powder blended to a required composition, and then milling a fine pulverizing medium such as a steel ball in a vacuum or Ar gas. This is a step of mechanically alloying at room temperature by mixing the metal powder or the alloy powder to the atomic level by the contained fine grinding device. As a device used for mechanical alloying, a ball mill, a vibration mill, a planetary ball mill, an attritor, or the like can be used as long as the inside of the container can be replaced with an inert gas. Since it is different, it is necessary to select it appropriately. The product after mechanical alloying is R-Fe-M
Bcc-F in amorphous amorphous or R-Fe-M amorphous
e, one of the elements M and Fe-M, or two or more of them are desirably in a finely dispersed state.
【0017】メカニカルアロイング後の加熱拡散処理条
件を600〜850℃、10分〜12時間に限定した理由は以下の
とおりである。加熱拡散処理温度が600℃未満では、構
成元素の拡散速度が遅いため、メカニカルアロイング後
に得られた構成元素が微視的オーダーで混合した組成物
から、Th2Zn17型構造あるいは多くの積層欠陥を含んだ
構造であるTbCu7型構造を有するR2Fe17-xMx化合物が析
出する速度が極めて遅くなり、反応に長時間を要するた
め好ましくなく、また850℃を超えるとTh2Zn17型構造ま
たはTbCu 7 型構造を有するR2Fe17-xMx化合物が速やかに
析出するが、粗大結晶となり保磁力が低下して好ましく
ない。より好ましい温度範囲は650〜750℃である。加熱
拡散処理時間が10分未満では、粉末全体を均一な組織に
することが困難となり、また12時間を超えると粗大粒成
長による保磁力の低下、および熱処理中の粉末の酸化に
より磁気特性に低下を招来し、また処理費用が高騰する
ため好ましくない。より好ましい加熱拡散処理時間は30
〜60分である。The reasons for limiting the heat diffusion treatment conditions after the mechanical alloying to 600 to 850 ° C. for 10 minutes to 12 hours are as follows. If the temperature of the heat-diffusion treatment is lower than 600 ° C, the diffusion rate of the constituent elements is low, so that a composition in which the constituent elements obtained after mechanical alloying are mixed in a microscopic order may have a Th 2 Zn 17- type structure or a large number of layers. R 2 Fe 17-x M x compound rate becomes extremely slow to precipitate with the TbCu 7 structure is a structure including the defect is not preferable because it takes a long time to reaction, and when it exceeds 850 ° C. Th 2 Zn Although an R 2 Fe 17-x M x compound having a 17- type structure or a TbCu 7- type structure is quickly precipitated, it is not preferable because it becomes a large crystal and the coercive force decreases. A more preferred temperature range is 650-750 ° C. If the heat diffusion treatment time is less than 10 minutes, it is difficult to form a uniform structure of the entire powder, and if it exceeds 12 hours, the coercive force decreases due to coarse grain growth, and the magnetic properties decrease due to oxidation of the powder during heat treatment. And the processing cost rises undesirably. More preferred heat diffusion treatment time is 30
~ 60 minutes.
【0018】加熱拡散処理後の粉末の平均結晶粒度を
0.05〜0.5μmに限定した理由は、0.05μm
未満では事実上生成が困難であり、0.05μm未満の
結晶が得られたとしても特性上の利点はなく、また0.
5μmを超えると窒化処理後のR2Fe17-xMxNy相の
粒径が単磁区粒子臨界径よりも大きくなり、粉末の保磁
力が減少して、永久磁石用粉末として好ましくないため
である。より好ましい平均結晶粒度は0.1〜0.3μ
mである。本発明の磁石粉末を構成するR2Fe17-xMx
Ny相およびFe−M相のいずれもが、上記の平均結晶
粒度範囲を維持し、しかも、両相が互いに結晶粒界を介
して混合していることが必要不可欠である。The reason why the average crystal grain size of the powder after the heat diffusion treatment is limited to 0.05 to 0.5 μm is that 0.05 μm
If it is less than 0.05 μm, it is practically difficult to produce a crystal.
If it exceeds 5 μm, the particle size of the R 2 Fe 17-x M x N y phase after nitriding becomes larger than the critical diameter of the single magnetic domain particles, and the coercive force of the powder decreases, which is not preferable as a powder for permanent magnets. It is. More preferred average grain size is 0.1 to 0.3 μm
m. R 2 Fe 17-x M x constituting the magnet powder of the present invention
It is essential that both the Ny phase and the Fe-M phase maintain the above average crystal grain size range, and that both phases are mixed with each other via a grain boundary.
【0019】この発明において、微細結晶粒径を有する
微粉末の平均粒度を0.5〜500μmに限定したの
は、0.5μm未満では粉末の酸化による磁気特性劣化
のおそれがあり、また、500μmを超えると窒化処理
に長時間を要して好ましくないためである。より好まし
い微粉末の平均粒度は1〜10μmである。In the present invention, the reason why the average particle size of the fine powder having a fine crystal grain size is limited to 0.5 to 500 μm is that if the average particle size is less than 0.5 μm, the magnetic properties may be deteriorated due to oxidation of the powder. This is because, if it exceeds 3, it takes a long time for the nitriding treatment, which is not preferable. The more preferable average particle size of the fine powder is 1 to 10 μm.
【0020】窒化処理時のN2圧力を0.5〜1000atmに限定
した理由は、0.5atm未満では窒化反応が遅く、圧力を上
げると反応は速やかに進行するが、1000atmを超えると
処理設備が大きくなりすぎ、工業生産コスト的に好まし
くないためである。より好ましい圧力範囲は1〜50atmで
ある。窒化処理時の温度を300〜550℃に限定した理由
は、300℃未満では窒化が進行せず、550℃を超えるとR2
Fe17-xMx化合物がRNとFe-Mに分解し、磁気特性の劣化を
招来するためである。より好ましい温度範囲は400〜450
℃である。また、窒化処理時の保持時間は、10分未満で
は充分な窒化が進行せず、また12時間を超えると分解が
起こり、磁気特性の劣化を招来するため、10分〜12時間
とする。より好ましい保持時間は1〜5時間である。The reason why the N 2 pressure during nitriding is limited to 0.5 to 1000 atm is that the nitriding reaction is slow when the pressure is less than 0.5 atm, and the reaction proceeds rapidly when the pressure is increased, but when the pressure exceeds 1000 atm, the processing equipment becomes large. This is because it is not preferable in terms of industrial production cost. A more preferred pressure range is 1 to 50 atm. The reason for limiting the temperature during the nitriding treatment to 300 to 550 ° C. is that nitriding does not proceed below 300 ° C. and R 2 exceeds 550 ° C.
This is because the Fe 17-x M x compound is decomposed into RN and Fe-M, leading to deterioration of magnetic properties. More preferred temperature range is 400-450
° C. The holding time of nitriding treatment, sufficient nitride does not proceed in less than 10 minutes, also occur decompose above 12 hours, because that causes invited the deterioration of the magnetic properties, and 10 minutes to 12 hours . A more preferred retention time is 1 to 5 hours.
【0021】この発明において、加熱拡散処理と窒化処
理の両工程を同一の炉内で雰囲気を切換えて連続的に行
う方法としては、バッチ式または連続式の炉のいずれを
用いてもよく、後者の場合は、加熱拡散処理室と窒化処
理室の少なくとも2室を備え、炉内の両室間で処理用原
料の入った容器を移動させる構造のものが好ましい。In the present invention, as a method of continuously performing both the heat diffusion process and the nitriding process by switching the atmosphere in the same furnace, either a batch type or a continuous type furnace may be used. In such a case, it is preferable to provide at least two chambers of a heat diffusion processing chamber and a nitriding processing chamber, and to move the container containing the processing raw material between the two chambers in the furnace.
【0022】この発明におけるR−Fe−M−N系ボン
ド磁石は、以下に示す圧縮成形、射出成形、押し出し成
形、圧延成形、樹脂含浸法など、公知のいずれの製造方
法であってもよい。圧縮成形の場合は、磁石粉末に熱硬
化性樹脂、カップリング剤、滑剤などを添加混練した
後、圧縮成形後加熱し、樹脂を硬化して得られる。射出
成形、押し出し成形、圧延成形の場合は、磁石粉末に熱
可塑性樹脂、カップリング剤、滑剤などを添加混練した
後、射出成形、押し出し成形、圧延成形のいずれかの方
法で成形して得られる。樹脂含浸法においては、磁石粉
末を圧縮成形後、必要に応じて熱処理した後、熱硬化性
樹脂を含浸し、加熱して樹脂を硬化させて得る。あるい
は、磁石粉末を圧縮成形後、必要に応じて熱処理した
後、熱可塑性樹脂を含浸して得る。The R-Fe-MN-based bonded magnet in the present invention may be manufactured by any known method such as compression molding, injection molding, extrusion molding, rolling molding, and resin impregnation described below. In the case of compression molding, a thermosetting resin, a coupling agent, a lubricant, and the like are added and kneaded to the magnet powder, and the mixture is heated after compression molding to cure the resin. In the case of injection molding, extrusion molding, and rolling molding, a thermoplastic resin, a coupling agent, a lubricant, etc. are added and kneaded to the magnet powder, and then molded by any of injection molding, extrusion molding, and rolling molding. . In the resin impregnation method, magnet powder is compression-molded, heat-treated as necessary, then impregnated with a thermosetting resin, and heated to cure the resin. Alternatively, the magnet powder is obtained by compression molding, heat-treating as necessary, and then impregnating with a thermoplastic resin.
【0023】この発明において、ボンド磁石中の磁石粉
末の充填率は、前記製造方法により異なるが、70〜9
9.5wt%であり、残部0.5〜30wt%が樹脂そ
の他である。圧縮成形法の場合、磁石粉末の充填率は9
5〜99.5wt%、射出成形法の場合、90〜95w
t%、樹脂含浸法の場合、96〜99.5wt%が好ま
しい。この発明において、バインダーとして用いる合成
樹脂は熱硬化性、熱可塑性のいずれでも使用できるが、
熱的に安定な樹脂が好ましく、例えば、ポリアミド、ポ
リイミド、ポリエステル、フェノール樹脂、フッソ樹
脂、ケイ素樹脂、エポキシ樹脂などが適宜選択される。In the present invention, the filling rate of the magnet powder in the bonded magnet varies depending on the above-mentioned manufacturing method.
9.5 wt%, and the remaining 0.5 to 30 wt% is resin and others. In the case of the compression molding method, the filling rate of the magnet powder is 9
5 to 99.5 wt%, 90 to 95 w in the case of the injection molding method
In the case of the resin impregnation method, the content is preferably 96 to 99.5 wt%. In the present invention, the synthetic resin used as the binder can be used in both thermosetting and thermoplastic.
A thermally stable resin is preferable, and for example, polyamide, polyimide, polyester, phenol resin, fluorine resin, silicon resin, epoxy resin and the like are appropriately selected.
【0024】[0024]
【作用】この発明は、Th2Zn17型構造またはTbC
u7型構造のR2Fe17のFeを添加元素Mで置換するた
め、メカニカルアロイング後に行う加熱拡散処理で晶出
するTh2Zn17型結晶構造またはTbCu7型構造を有
するR2Fe17-xMx化合物の粒径を0.5μm以下にす
ることができ、その結果、晶出した結晶粒径は単磁区粒
子径と同等以下となり、窒化処理の後、得られた磁石用
合金粉末はすぐれた保磁力を発現する。また、この発明
は、原子オーダーで混合された特定組成のR−Fe−M
系合金粉末をメカニカルアロイングにて作製した後、さ
らに600〜850℃で加熱拡散処理することにより、
Th2Zn17型構造またはTbCu7型構造のR2Fe
17-xMx相およびbcc構造のFe−M相の2相を主相
とする特定平均結晶粒径を有する粉末を得ることがで
き、これを同一炉内で特定条件にてN2ガス中で窒化処
理することにより、3kOe以上の保磁力を有する所要
のR−Fe−M−N系合金粉末を製造でき、これを樹脂
で結合することにより、温度特性の優れたR−Fe−M
−N系ボンド磁石を容易に製造できる。The present invention provides a Th 2 Zn 17 type structure or TbC
to replace the Fe in the R 2 Fe 17 of u 7 type structure with additive element M, R 2 Fe 17 having a Th 2 Zn 17 type crystal structure or the TbCu 7 structure crystallizes in heat diffusion treatment performed after mechanical alloying -x M x The particle size of the compound can be reduced to 0.5 μm or less. As a result, the crystallized crystal particle size becomes equal to or smaller than the single magnetic domain particle size, and after the nitriding treatment, the obtained alloy powder for magnet is obtained. Express excellent coercive force. Further, the present invention relates to a specific composition of R-Fe-M
After producing a system alloy powder by mechanical alloying, it is further subjected to heat diffusion treatment at 600 to 850 ° C,
R 2 Fe having a Th 2 Zn 17 type structure or a TbCu 7 type structure
17-x M x phase and two-phase Fe-M phase of the bcc structure can be obtained a powder having a specific average grain size of the main phase, N 2 gas at a particular condition this same furnace , A required R-Fe-M-N-based alloy powder having a coercive force of 3 kOe or more can be produced, and by combining this with a resin, R-Fe-M having excellent temperature characteristics can be obtained.
-An N-based bonded magnet can be easily manufactured.
【0025】[0025]
実施例 原料金属粉末として粒度250μm以下のR粉末、粒度
150μm以下のFe粉末、および添加元素Mの粉末を
表1に示す組成に配合後、この配合原料の36gを直径
128mm×高さ132mm寸法のボールミル内に装入
し、さらに微粉砕媒体として直径9.8mmのステンレ
ス鋼球500gを装入し、このボールミル内をArガス
にて置換後、回転数95rpm、回転時間200時間の
条件にてメカニカルアロイング処理した。メカニカルア
ロイングの結果、実施例No.1〜9の原料は、平均粒
度1.5μmの微粉末となった。この粉末は、X線回折
によるとアモルファス相と結晶質のbcc構造を有する
Fe−M相の混合物であった。Example After mixing R powder having a particle size of 250 μm or less, Fe powder having a particle size of 150 μm or less, and powder of an additive element M into the composition shown in Table 1, 36 g of the compounded raw material having a size of 128 mm in diameter × 132 mm in height was used as the raw metal powder. 500 g of stainless steel balls having a diameter of 9.8 mm were charged as a pulverizing medium in a ball mill, and the inside of the ball mill was purged with Ar gas, and then mechanically rotated at 95 rpm for 200 hours. Alloying treatment was performed. As a result of mechanical alloying, Example No. The raw materials Nos. 1 to 9 became fine powder having an average particle size of 1.5 μm. According to X-ray diffraction, this powder was a mixture of an amorphous phase and a Fe-M phase having a crystalline bcc structure.
【0026】次にArガス中にて表2に示す加熱拡散処
理条件にて熱処理を行い、Th2Zn17型構造のR2Fe
17-xMx相およびbcc構造のFe−M相の2相を主相
とする粉末を得た。粉末の平均結晶粒径ならびに平均粒
度はそれぞれ0.1μmおよび1.5μmであった。S
EM観察したところ、粉末粒度分布が大きく、さらに各
粉末は細かい粒子が凝集したように見えた。メカニカル
アロイング後の粉末を、新たにArガス中で表2に示す
加熱拡散処理条件にて熱処理を行い、さらに処理炉内の
雰囲気を圧力1atmのN2ガスで置換し、表2に示す
窒化条件にて窒化処理した後、冷却した。得られた合金
粉末の組成を表1に示し、また、実施例No.1〜3の
X線回折パターンを図1に示す。図1から明らかなよう
に、実施例の試料No.1,2,3の磁石粉末のX線回
折パターンは、いずれもSm2Fe17-xMxNy相とbc
c構造のFe−M相の回折ピークからなり、この発明の
磁石粉末がこれら2相からなっていることを示してい
る。Next, a heat treatment is performed in Ar gas under the heat diffusion treatment conditions shown in Table 2 to obtain an R 2 Fe having a Th 2 Zn 17 type structure.
The two phases of the 17-x M x phase and the bcc structure Fe-M phase to obtain a powder as a main phase. The average crystal grain size and average grain size of the powder were 0.1 μm and 1.5 μm, respectively. S
Upon EM observation, the powder particle size distribution was large, and each powder appeared to be agglomerated with fine particles. The powder after the mechanical alloying was newly heat-treated in Ar gas under the heat diffusion treatment conditions shown in Table 2, and the atmosphere in the processing furnace was replaced with N 2 gas at a pressure of 1 atm. After nitriding under the conditions, it was cooled. Table 1 shows the composition of the obtained alloy powder. The X-ray diffraction patterns of Nos. 1 to 3 are shown in FIG. As is clear from FIG. The X-ray diffraction patterns of the magnetic powders of 1, 2, and 3 show that the Sm 2 Fe 17-x M x N y phase and the bc
It consists of the diffraction peak of the Fe-M phase having the c structure, which indicates that the magnet powder of the present invention consists of these two phases.
【0027】また、得られた合金粉末に2.0wt%の
エポキシ樹脂を混合し、3.0ton/cm2の圧力で
圧縮成形し、さらに温度150℃、1時間の条件で樹脂
を硬化させてボンド磁石を作製した。ボンド磁石の特性
を測定し表2に示し、また、試料No.1(実施例N
o.1)の減磁カーブを図2に示す。図2から明らかな
ように、減磁カーブは点線で示したマイナーループの傾
きが大きいことから、Sm2Fe17−xMxNy相とF
e−Co相とが、互いに磁気的な交換相互作用を及ぼし
合うのに充分なほど短い距離で混合し合っていることが
わかる。さらに、試料No.1(実施例No.1)のボ
ンド磁石の残留磁束密度と保磁力の、20〜140℃に
おける温度変化率を測定したところ、それぞれα=−
0.02%/℃、β=−0.28/℃であった。Further, 2.0 wt% of an epoxy resin is mixed with the obtained alloy powder, compression-molded at a pressure of 3.0 ton / cm 2 , and further, the resin is cured at a temperature of 150 ° C. for one hour. A bonded magnet was produced. The properties of the bonded magnets were measured and are shown in Table 2; 1 (Example N
o. FIG. 2 shows the demagnetization curve of 1). As is apparent from FIG. 2, the demagnetization curve has a large slope of the minor loop indicated by the dotted line, so that the Sm 2 Fe 17 -xMxNy phase and the Fm
It can be seen that the e-Co phase is mixed at a distance short enough to cause magnetic exchange interaction with each other. Further, the sample No. When the rate of temperature change at 20 to 140 ° C. of the residual magnetic flux density and the coercive force of the bonded magnet of Example 1 (Example No. 1) was measured, α = −
0.02% / ° C., β = −0.28 / ° C.
【0028】[0028]
【0029】比較例1 実施例と同一の原料粉末を用いて、表1に示す組成に配
合後、実施例と同一のメカニカルアロイング処理を施
し、得られた粉末Arガス中で表2に示す加熱拡散処理
条件にて熱処理を行い、さらに処理炉内の雰囲気を圧力
1atmのN2ガスで置換し、表2に示す窒化条件にて
窒化処理し、磁石用粉末(比較例No.1)を得た。得
られた合金粉末の組成を表1に、実施例と同様の方法で
樹脂結合後のボンド磁石の磁気特性を表2に示す。Comparative Example 1 Using the same raw material powder as in the example, after blending into the composition shown in Table 1, the same mechanical alloying treatment as in the example was performed. Heat treatment was performed under the heat diffusion treatment conditions, the atmosphere in the treatment furnace was replaced with N 2 gas at a pressure of 1 atm, and nitriding treatment was performed under the nitriding conditions shown in Table 2 to obtain a magnet powder (Comparative Example No. 1). Obtained. Table 1 shows the composition of the obtained alloy powder, and Table 2 shows the magnetic properties of the bonded magnet after resin bonding in the same manner as in the example.
【0030】比較例2 実施例No.1と同一の組成に配合後、実施例と同一の
メカニカルアロイング処理を施し、得られた粉末をAr
ガス中300℃で15分間保持する加熱拡散処理を行
い、さらに処理炉内の雰囲気を圧力1atmのN2ガス
で置換し、表2に示す窒化条件にて窒化処理し、磁石用
粉末(比較例No.2)を得た。得られた合金粉末の組
成を表1に、実施例と同様の方法で樹脂結合後のボンド
磁石の磁気特性を表2に示す。Comparative Example 2 After blending into the same composition as in Example 1, the same mechanical alloying treatment as in the example was performed.
A heat diffusion treatment was performed for 15 minutes at 300 ° C. in a gas, the atmosphere in the treatment furnace was replaced with N 2 gas at a pressure of 1 atm, and nitriding treatment was performed under the nitriding conditions shown in Table 2. No. 2) was obtained. Table 1 shows the composition of the obtained alloy powder, and Table 2 shows the magnetic properties of the bonded magnet after resin bonding in the same manner as in the example.
【0031】比較例3 実施例No.2と同一の組成に配合後、実施例と同一の
メカニカルアロイング処理を施し、得られた粉末をAr
ガス中で表2に示す熱拡散処理条件で熱処理を行い、さ
らに処理炉内の雰囲気を圧力1atmのN2ガスで置換
し、900℃で2時間保持する窒化処理を行い、磁石用
粉末(比較例No.3)を得た。得られた合金粉末の組
成を表1に、実施例と同様の方法で樹脂結合後のボンド
磁石の磁気特性を表2に示す。Comparative Example 3 After blending into the same composition as in Example 2, the same mechanical alloying treatment as in Example was performed.
Heat treatment was performed in a gas under the thermal diffusion treatment conditions shown in Table 2, and the atmosphere in the treatment furnace was replaced with N 2 gas at a pressure of 1 atm, and nitriding treatment was performed at 900 ° C. for 2 hours. Example No. 3) was obtained. Table 1 shows the composition of the obtained alloy powder, and Table 2 shows the magnetic properties of the bonded magnet after resin bonding in the same manner as in the example.
【0032】比較例4 実施例と同一の原料粉末を用いて、表1に示す組成に配
合後、実施例と同一のメカニカルアロイング処理を施
し、得られた粉末Arガス中で表2に示す加熱拡散処理
条件にて熱処理を行い、さらに処理炉内の雰囲気を圧力
1atmのN2ガスで置換し、表2に示す窒化条件にて
窒化処理し、ThMn12型構造を有するNdFe12-xV
xNy相を主相とする磁石用粉末(比較例No.4)を得
た。得られた合金粉末の組成を表1に、実施例と同様の
方法で樹脂結合後のボンド磁石の磁気特性を表2に示
す。Comparative Example 4 Using the same raw material powder as in the example, after blending into the composition shown in Table 1, the same mechanical alloying treatment as in the example was performed. A heat treatment is performed under the heat diffusion processing conditions, the atmosphere in the processing furnace is replaced with a N 2 gas at a pressure of 1 atm, and a nitriding treatment is performed under the nitriding conditions shown in Table 2 to obtain an NdFe 12-x V having a ThMn 12 type structure.
x N y phase to obtain a powder for a magnet of a main phase (Comparative Example No.4). Table 1 shows the composition of the obtained alloy powder, and Table 2 shows the magnetic properties of the bonded magnet after resin bonding in the same manner as in the example.
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【表2】 [Table 2]
【0035】[0035]
【発明の効果】この発明によれば、Th2Zn17型構造
またはTbCu7型構造の安定化元素MとしてTi,
V,Cr,Co,Ni,Nb,Mo,Ta,W,Al,
Si,Ga,Zr,In,Sn,Hfの少なくとも1種
を15at%以下含有する特定組成のR−Fe−M系合
金粉末を作製することにより、メカニカルアロイング後
の加熱拡散処理温度を600〜850℃と比較的低い温
度とすることができ、この加熱拡散処理により容易にT
h2Zn17型構造またはTbCu7型構造のR2Fe17-x
Mx相およびbcc構造のFe−M相の2相を主相とす
る特定平均結晶粒径を有する粉末を得ることができ、こ
れを特定条件でのN2ガス中窒化処理することにより、
3kOe以上の保磁力を有する所要のR−Fe−M−N
系合金粉末を製造でき、これを樹脂で結合することによ
り、温度特性に優れたR−Fe−M−N系ボンド磁石を
容易に製造できる。According to the present invention, as a stabilizing element M having a Th 2 Zn 17 type structure or a TbCu 7 type structure, Ti,
V, Cr, Co, Ni, Nb, Mo, Ta, W, Al,
By preparing an R-Fe-M-based alloy powder having a specific composition containing at least one of Si, Ga, Zr, In, Sn, and Hf at 15 at% or less, the heat diffusion treatment temperature after mechanical alloying is set to 600 to The temperature can be set to a relatively low temperature of 850 ° C.
R 2 Fe 17-x having a h 2 Zn 17 type structure or a TbCu 7 type structure
It is possible to obtain a powder having a specific average crystal grain size having two main phases of an M x phase and a Fe-M phase having a bcc structure, and by subjecting the powder to nitriding in N 2 gas under specific conditions,
Required R-Fe-M-N having coercive force of 3 kOe or more
An R-Fe-MN-based bonded magnet having excellent temperature characteristics can be easily manufactured by producing a system alloy powder and bonding it with a resin.
【図1】実施例の試料No.1,2,3の磁石粉末のX
線回折パターンを示すグラフである。FIG. 1 shows sample Nos. X of 1, 2, 3 magnet powder
It is a graph which shows a line diffraction pattern.
【図2】実施例の試料No.1のボンド磁石の減磁カー
ブを示すグラフである。FIG. 2 shows sample Nos. 3 is a graph showing a demagnetization curve of a bonded magnet of No. 1;
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01F 1/08 H01F 1/06 A (56)参考文献 特開 平6−69010(JP,A) 特開 平6−330252(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 41/02 B22F 1/00 B22F 9/04 C22C 38/00 H01F 1/06 H01F 1/08 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI H01F 1/08 H01F 1/06 A (56) References JP-A-6-69010 (JP, A) JP-A-6-330252 ( JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 41/02 B22F 1/00 B22F 9/04 C22C 38/00 H01F 1/06 H01F 1/08
Claims (1)
も1種で、かつSmを50%以上含有)6〜8at%、
Fe 75〜92at%、M(M:Ti,V,Cr,C
o,Ni,Nb,Mo,Ta,W,Al,Si,Ga,
Zr,In,Sn,Hfのうち一種または2種以上)1
〜15at%の配合組成となるように、所要の金属粉末
または合金粉末を配合、混合後、真空中あるいはArガ
ス中にてメカニカルアロイングし、さらに真空中あるい
はArガス中にて600〜850℃、10分〜12時間
の加熱拡散処理を行い、Th2Zn17型構造またはTb
Cu7型構造を有するR2Fe17-xMx相(但し、x=
0.2〜3.5)、ならびにbcc構造を有するFe−
M相の2相が、各々平均粒径0.05〜0.5μmを有
して互いに混合している平均粒度0.5〜500μmの
粉末を得、この粉末を0.5〜1000atmのN2ガ
ス中で300〜550℃に10分〜12時間保持する窒
化処理を行い、前記加熱拡散処理を窒化処理と同一の炉
内で雰囲気を真空中またはAr中から窒素ガス中に切替
えることにより連続的に行い、R 5〜7at%、Fe
75〜92at%、M 1〜15at%、N 3〜1
2at%を含有する合金粉末を得、これを樹脂で結合し
たことを特徴とする温度特性にすぐれたR−Fe−M−
N系ボンド磁石の製造方法。1. 6 to 8 at% of R (at least one kind of rare earth element including R: Y and containing 50% or more of Sm)
Fe 75 to 92 at%, M (M: Ti, V, Cr, C
o, Ni, Nb, Mo, Ta, W, Al, Si, Ga,
One or more of Zr, In, Sn, and Hf) 1
After blending and mixing the required metal powder or alloy powder so as to have a composition of 1515 at%, mechanical alloying is performed in vacuum or Ar gas, and then 600 to 850 ° C. in vacuum or Ar gas. Heat diffusion treatment for 10 minutes to 12 hours to obtain a Th 2 Zn 17 type structure or Tb
R 2 Fe 17-x M x phase having a Cu 7 type structure (where x =
0.2-3.5), and Fe- having a bcc structure.
2 phase M-phase, to give an average particle size 0.5~500μm powder are mixed with one another each have an average particle size 0.05 to 0.5 [mu] m, the powder of 0.5~1000Atm N 2 A nitriding treatment is performed in a gas at 300 to 550 ° C. for 10 minutes to 12 hours, and the heat diffusion treatment is performed in the same furnace as the nitriding treatment.
Atmosphere is switched from vacuum or Ar to nitrogen gas inside
Continuously carried out by obtaining, R 5~7at%, Fe
75 to 92 at%, M 1 to 15 at%, N 3-1
R-Fe-M- having excellent temperature characteristics characterized in that an alloy powder containing 2 at% was obtained and bonded with a resin.
A method for producing an N-based bonded magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11452194A JP3148514B2 (en) | 1994-04-28 | 1994-04-28 | Method for producing R-Fe-M-N bonded magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11452194A JP3148514B2 (en) | 1994-04-28 | 1994-04-28 | Method for producing R-Fe-M-N bonded magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07302725A JPH07302725A (en) | 1995-11-14 |
JP3148514B2 true JP3148514B2 (en) | 2001-03-19 |
Family
ID=14639841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11452194A Expired - Lifetime JP3148514B2 (en) | 1994-04-28 | 1994-04-28 | Method for producing R-Fe-M-N bonded magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3148514B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2898229B2 (en) * | 1994-07-12 | 1999-05-31 | ティーディーケイ株式会社 | Magnet, manufacturing method thereof, and bonded magnet |
JP3473677B2 (en) * | 1998-06-24 | 2003-12-08 | 住友金属鉱山株式会社 | Magnetic powder for rare earth bonded magnet, composition for rare earth bonded magnet, and rare earth bonded magnet |
-
1994
- 1994-04-28 JP JP11452194A patent/JP3148514B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07302725A (en) | 1995-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3741597B2 (en) | Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them | |
JP3171558B2 (en) | Magnetic materials and bonded magnets | |
JP2001189206A (en) | Permanent magnet | |
EP0506412B1 (en) | Magnetic material | |
EP0249973A1 (en) | Permanent magnetic material and method for producing the same | |
EP0657899A1 (en) | Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom | |
JP4314244B2 (en) | Magnetic material powder manufacturing method and bonded magnet manufacturing method | |
US6338761B1 (en) | Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets | |
JPH01219143A (en) | Sintered permanent magnet material and its production | |
JPH01220803A (en) | Magnetic anisotropic sintered magnet and manufacture thereof | |
JP3135665B2 (en) | Magnetic materials and bonded magnets | |
JP3148514B2 (en) | Method for producing R-Fe-M-N bonded magnet | |
JP3779404B2 (en) | Permanent magnet materials, bonded magnets and motors | |
JP3247508B2 (en) | permanent magnet | |
JP3504735B2 (en) | Method for producing RTMN based anisotropic bonded magnet | |
JPH06207204A (en) | Production of rare earth permanent magnet | |
JPH04338604A (en) | Metallic bonding magnet and manufacture thereof | |
JP3469496B2 (en) | Manufacturing method of magnet material | |
JP3615177B2 (en) | Magnet material and method of manufacturing bonded magnet using the same | |
JPH045739B2 (en) | ||
JP3386552B2 (en) | Magnetic material | |
JP3157659B2 (en) | Manufacturing method of permanent magnet powder | |
JPH04260302A (en) | Magnetic powder and its manufacture and bonded magnet | |
JPH0669010A (en) | Manufacture method of r-t-m-n based bonded magnet | |
JP2927987B2 (en) | Manufacturing method of permanent magnet powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080112 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090112 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100112 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140112 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |