JP3094688B2 - Manufacturing method of insulating film - Google Patents

Manufacturing method of insulating film

Info

Publication number
JP3094688B2
JP3094688B2 JP04272095A JP27209592A JP3094688B2 JP 3094688 B2 JP3094688 B2 JP 3094688B2 JP 04272095 A JP04272095 A JP 04272095A JP 27209592 A JP27209592 A JP 27209592A JP 3094688 B2 JP3094688 B2 JP 3094688B2
Authority
JP
Japan
Prior art keywords
film
substrate
plasma
magnetic field
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04272095A
Other languages
Japanese (ja)
Other versions
JPH06124942A (en
Inventor
光夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP04272095A priority Critical patent/JP3094688B2/en
Publication of JPH06124942A publication Critical patent/JPH06124942A/en
Application granted granted Critical
Publication of JP3094688B2 publication Critical patent/JP3094688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、半導体集積デバイス
における層間絶縁膜または表面保護膜に代表される絶縁
膜の製造方法に関し、より詳しくは、マイクロ波透過窓
を一方の端面に備えるとともにプラズマ生成用ガスが導
入される筒状のプラズマ生成室と、該プラズマ生成室の
外側に該プラズマ生成室と同軸に配され該プラズマ生成
室内にマイクロ透過窓を通して導入されたマイクロ波と
の電子サイクロトロン共鳴を生じる磁界領域を形成する
主コイルと、マイクロ波透過窓と対面する側でプラズマ
生成室と連通し被成膜基板が置かれるとともに反応性ガ
スが導入される反応室と、被成膜基板に高周波電力を供
給する高周波電源と、主コイルと同軸に被成膜基板の裏
面側に配される補助コイルとを備えてなる電子サイクロ
トロン共鳴プラズマCVD装置(以下ECRプラズマC
VD装置という)を用い、プラズマ生成室に導入するプ
ラズマ生成用ガスとしてO2 を、反応室に導入する反応
性ガスとしてSiH4 を用いて被成膜基板表面にSiO
2 絶縁膜を形成する絶縁膜製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an insulating film typified by an interlayer insulating film or a surface protective film in a semiconductor integrated device, and more particularly, to a method for providing a microwave transmission window on one end face and generating plasma. The electron cyclotron resonance of a cylindrical plasma generation chamber into which the application gas is introduced, and microwaves arranged coaxially with the plasma generation chamber outside the plasma generation chamber and introduced through the micro transmission window into the plasma generation chamber. A main coil for forming a magnetic field region to be generated, a reaction chamber in which a substrate on which a film is to be formed is placed in communication with a plasma generation chamber on the side facing the microwave transmission window and a reactive gas is introduced, An electron cyclotron resonance plate including a high-frequency power supply for supplying power and an auxiliary coil disposed coaxially with the main coil on the back side of the substrate on which the film is to be formed. CVD apparatus (hereinafter ECR plasma C
VD apparatus), O 2 is used as a plasma generation gas to be introduced into the plasma generation chamber, and SiH 4 is used as a reactive gas to be introduced into the reaction chamber.
(2) The present invention relates to an insulating film manufacturing method for forming an insulating film.

【0002】[0002]

【従来の技術】半導体集積回路の層間絶縁膜や表面保護
膜としては、通常、絶縁膜の原料となるガス分子の励起
に熱エネルギーを用いる熱CVD法や高周波電圧による
プラズマ放電によりガス分子を励起する高周波プラズマ
CVD法により形成された酸化膜,窒化膜等が用いられ
ている。しかし、近年、半導体装置の集積化および高密
度化が進み、配線間隔や配線幅等の構造寸法がサブミク
ロン領域に移行するのに伴って絶縁膜の高品質化が要求
されるようになり、上記成膜方法以外の手法が種々試み
られている。そのうちの1つとして耐酸性,緻密性に優
れた絶縁膜を形成できるECRプラズマCVD法が開発
されている。
2. Description of the Related Art Generally, as an interlayer insulating film or a surface protective film of a semiconductor integrated circuit, gas molecules are excited by a thermal CVD method using thermal energy to excite gas molecules as a raw material of the insulating film or a plasma discharge by a high frequency voltage. An oxide film, a nitride film, or the like formed by a high-frequency plasma CVD method is used. However, in recent years, the integration and density of semiconductor devices have been advanced, and as the structural dimensions such as wiring intervals and wiring widths have shifted to the submicron region, higher quality insulating films have been required, Various methods other than the above-described film forming method have been tried. As one of them, an ECR plasma CVD method capable of forming an insulating film having excellent acid resistance and denseness has been developed.

【0003】[0003]

【発明が解決しようとする課題】上記成膜方法のうち、
高周波プラズマCVD法は、成膜温度を約350℃と高
くするので、基板上に形成された電極や配線等(特にア
ルミ配線)に対する熱ストレスダメージが大きく、デバ
イスの寿命を短くする要因となっていた。また、ECR
プラズマCVD法を用いて成膜温度を室温〜150℃と
する場合、熱ストレスダメージの問題は無くなる反面、
成膜後のアニール前の膜応力とアニール後の膜応力との
変動量が大きいために応力によるダメージを与える問題
と耐透水性に欠ける問題点とを有していた。
SUMMARY OF THE INVENTION Among the above film forming methods,
Since the high-frequency plasma CVD method raises the film forming temperature to about 350 ° C., the thermal stress damage to electrodes, wirings, etc. (particularly aluminum wirings) formed on the substrate is large, which is a factor to shorten the life of the device. Was. Also, ECR
When the film formation temperature is set to a room temperature to 150 ° C. using a plasma CVD method, the problem of thermal stress damage is eliminated,
Since the fluctuation between the film stress before the annealing after the film formation and the film stress after the annealing is large, there is a problem of causing damage due to the stress and a problem of lack of water permeability.

【0004】この発明の目的は、上記問題点を解決し、
熱ストレスダメージやアニール前後の応力変動による電
極や配線等のダメージがなく、かつ耐透水性の高い高品
質の絶縁膜を製造可能な絶縁膜製造方法を提供すること
である。
An object of the present invention is to solve the above problems,
An object of the present invention is to provide an insulating film manufacturing method capable of manufacturing a high-quality insulating film having high water resistance and no damage to electrodes and wiring due to thermal stress damage and stress fluctuation before and after annealing.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、冒頭記載の構成による絶縁膜製造装置と原料ガスと
を用いたSiO2 絶縁膜製造方法として、主コイルと補
助コイルとにより形成される磁界をミラー磁界とし、該
ミラー磁界の中心軸に垂直な断面内の磁束密度が最小と
なる該断面の軸方向位置から軸方向に±20mm以内の位
置に被成膜基板を配置した後、成膜プロセスに入る絶縁
膜製造方法をとるものとする。
In order to solve the above-mentioned problems, as an SiO 2 insulating film manufacturing method using an insulating film manufacturing apparatus having the configuration described at the outset and a raw material gas, a method of forming an SiO 2 insulating film using a main coil and an auxiliary coil is described. The magnetic field is a mirror magnetic field, and after depositing the film-forming substrate at a position within ± 20 mm in the axial direction from the axial position of the cross section where the magnetic flux density in the cross section perpendicular to the central axis of the mirror magnetic field is minimum, It is assumed that a method for manufacturing an insulating film that enters a film forming process is employed.

【0006】さらに、ミラー磁界の中心軸に垂直な断面
内の磁束密度が最小となる該断面の軸方向位置が、主コ
イルが形成する電子サイクロトロン共鳴磁界領域の中心
軸上の位置から350〜400mmの範囲内に位置する
ように主コイル電流およびまたは補助コイル電流を制御
することとする。そして、成膜プロセス開始後は、加熱
および冷却可能に形成したステージに基板を載置して成
膜中の基板温度を200〜300℃の範囲内に保持する
とともにガス流量比をSiH4/O2=0.72〜0.9
2、ガス圧力を1×10-4〜5×10-3Torr、マイ
クロ波電力を200〜1200W、高周波電力を被成膜
基板の単位面積当り2.0〜4.0W/cm2として成
膜を行う。
Further , the axial position of the cross section perpendicular to the central axis of the mirror magnetic field, at which the magnetic flux density is minimized, is 350 to 400 mm from the position on the central axis of the electron cyclotron resonance magnetic field region formed by the main coil. you with controlling the main coil current and or auxiliary coil current to lie within the range of. After the start of the film formation process, the substrate is placed on a stage formed so as to be capable of heating and cooling, the substrate temperature during film formation is kept within the range of 200 to 300 ° C., and the gas flow ratio is set to SiH 4 / O. 2 = 0.72-0.9
2. Film formation at a gas pressure of 1 × 10 -4 to 5 × 10 -3 Torr, a microwave power of 200 to 1200 W, and a high frequency power of 2.0 to 4.0 W / cm 2 per unit area of the substrate on which the film is to be formed. I do.

【0007】この場合、マイクロ波電力とSiH4 ガス
流量との割合を1〜2cc/s/200Wととして成膜
するようにすれば好適である。また、基板温度を200
〜300℃の範囲内に保持した成膜プロセスに入る前
に、基板の前処理過熱工程として、プラズマ生成室で生
成したO2 プラズマを基板に照射することにより、基板
ステージの加熱による初期温度から200〜300℃の
範囲内に基板温度を上昇させるようにすれば好適であ
る。
In this case, it is preferable that the film is formed by setting the ratio between the microwave power and the flow rate of the SiH 4 gas to 1 to 2 cc / s / 200 W. When the substrate temperature is 200
Before entering the film forming process held in the range of 300 ° C. to 300 ° C., the substrate is irradiated with O 2 plasma generated in the plasma generation chamber as a pretreatment heating step of the substrate, thereby reducing the initial temperature due to the heating of the substrate stage. It is preferable to increase the substrate temperature within the range of 200 to 300 ° C.

【0008】さらに、マイクロ波電力と主コイル電流と
を制御してプラズマ生成室のプラズマ密度を1×1011
〜1×1012cm-3として成膜するようにすればさらに好
適である。
Further, by controlling the microwave power and the main coil current, the plasma density in the plasma generation chamber is reduced to 1 × 10 11
It is more preferable that the film is formed at a thickness of about 1 × 10 12 cm −3 .

【0009】[0009]

【作用】SiO2 絶縁膜の製造方法として、主コイルと
補助コイルとにより形成される磁界をミラー磁界とし、
該ミラー磁界の中心軸に垂直な断面内の磁束密度が最小
となる該断面の軸方向位置から軸方向に±20mm以内の
位置に被成膜基板を配置した後成膜プロセスに入る絶縁
膜製造方法とすると、磁界の中心軸に垂直な断面内の磁
束密度が最小となる該断面の軸方向の位置は、主コイル
と補助コイルとの内側を通る磁束が最大限に膨らんだ位
置であり、磁束密度分布が中心軸上のほかの位置と比べ
ると均一性が最も高くなる位置であること、また、プラ
ズマ生成室で生成されたプラズマは磁力線に沿って移動
すること、からこの位置から軸方向±20mm以下の位置
ではプラズマ密度分布が実質均一となり、膜厚分布が均
一となるほか、膜内応力,耐透水性等の膜特性分布が均
一な膜を得ることができる。従って、膜形成後の残留応
力やアニールによる応力変動が基板上で局所的に集中す
ることがなくなり、配線等の損傷が起こりにくくなる。
また、上記位置での磁束密度は、ミラー磁界中では最小
であっても、主コイルのみによる発散磁界による磁束の
基板位置での磁束密度と比べると大きくなるので基板位
置でのプラズマ密度が大きく、より緻密な膜が形成さ
れ、結果として、配線等の応力ダメージが起こりにくい
緻密な膜が形成される。
According to a method of manufacturing an SiO 2 insulating film, a magnetic field formed by a main coil and an auxiliary coil is used as a mirror magnetic field,
Insulating film production which starts the film forming process after arranging the film forming substrate at a position within ± 20 mm in the axial direction from the axial position of the cross section where the magnetic flux density in the cross section perpendicular to the center axis of the mirror magnetic field is minimum. According to the method, the axial position of the cross section where the magnetic flux density in the cross section perpendicular to the central axis of the magnetic field is minimum is the position where the magnetic flux passing inside the main coil and the auxiliary coil expands to the maximum, The position where the magnetic flux density distribution has the highest uniformity compared to other positions on the central axis, and the plasma generated in the plasma generation chamber moves along the lines of magnetic force. At a position of ± 20 mm or less, the plasma density distribution becomes substantially uniform, the film thickness distribution becomes uniform, and a film having a uniform film characteristic distribution such as intra-film stress and water resistance can be obtained. Therefore, residual stress after film formation and stress fluctuation due to annealing are not locally concentrated on the substrate, and wiring and the like are less likely to be damaged.
Further, even if the magnetic flux density at the above position is minimum in the mirror magnetic field, the magnetic flux density due to the divergent magnetic field generated only by the main coil is larger than the magnetic flux density at the substrate position, so the plasma density at the substrate position is large, A denser film is formed, and as a result, a dense film in which stress damage to wiring and the like does not easily occur is formed.

【0010】また、磁束密度最小の位置をECR磁界領
域の中心軸上の位置から350〜400mmとすると、
この位置は主コイルの基板側端面から通常主コイルの内
側へ向かってドーム状を呈するECR磁界領域から十分
離れた位置であり、ミラー磁界中の磁束密度最小位置の
近傍に基板を設置することによる膜特性均一化の効果を
損なうことなく膜を形成することができる。
If the position of the minimum magnetic flux density is 350 to 400 mm from the position on the central axis of the ECR magnetic field region,
This position is sufficiently away from the dome-shaped ECR magnetic field region from the substrate-side end surface of the main coil to the inside of the main coil, and is set by placing the substrate near the minimum magnetic flux density position in the mirror magnetic field. The effect of uniform film characteristics
A film can be formed without loss .

【0011】ECRプラズマCVD法による低温成膜の
場合、SiH4 とO2 との反応過程で生ずるH2 OとH
2 とがある程度の割合で膜中に取り込まれる。このた
め、低温で成膜すると、上記生成ガスが膜中に膜組成と
してSi−HやO−HまたはH 2 Oのかたちで取り込ま
れている。これにより、膜の応力や耐透水性に悪影響を
与えて、応力変動や耐透水性に欠ける膜質となる。そこ
で、成膜中、基板温度を200〜300℃に保持するこ
とにより、基板上のH2 O分子が熱エネルギーを得て離
脱して膜に取り込まれる量が減少し、膜の耐透水性が向
上する。
Low temperature film formation by ECR plasma CVD
In case, SiHFourAnd OTwoH generated during the reaction withTwoO and H
TwoAre taken into the film at a certain rate. others
Therefore, when the film is formed at a low temperature, the generated gas is mixed with the film composition in the film.
And Si-H, O-H or H TwoCaptured in the form of O
Have been. This has an adverse effect on membrane stress and water resistance.
As a result, a film quality that lacks stress fluctuation and water resistance is obtained. There
During the film formation, the substrate temperature is maintained at 200 to 300 ° C.
And the H on the substrateTwoO molecules gain thermal energy and separate
The amount that is removed and taken into the membrane decreases, and the water resistance of the membrane is improved.
Up.

【0012】また、ガス流量比をSiH4 /O2 =0.
85〜0.92とすると、屈折率を1.46〜1.50
の範囲内にでき、適正なSiとOとの組成比が得られ
る。このガス流量比の範囲外では、例えば、流量比が
0.85以下であると酸素過剰な膜となり、0.92以
上であるシリコン過剰な膜となり、ともに耐透水性が低
下する傾向になる。一方、ガス流量比を0.72〜0.
95とすると、Si−HやO−Hがアニール時の応力変
動によるダメージを避け得る量の範囲内に収まる。従っ
てガス流量比を0.72〜0.95とすることにより、
実用上、応力,耐透水性の両面で満足できる膜が得られ
る。
Further, the gas flow ratio is set to SiH 4 / O 2 = 0.
If it is 85 to 0.92, the refractive index is 1.46 to 1.50.
And a proper composition ratio of Si and O can be obtained. When the gas flow ratio is out of the range, for example, if the flow ratio is 0.85 or less, the film becomes an oxygen-excessive film, and if the gas flow ratio is 0.92 or more, the film becomes a silicon-excessive film. On the other hand, the gas flow ratio is set to 0.72-0.
If it is set to 95, Si-H and O-H fall within a range in which damage due to stress fluctuation during annealing can be avoided. Therefore, by setting the gas flow ratio to 0.72 to 0.95,
In practice, a film that is satisfactory in both stress and water resistance can be obtained.

【0013】また、マイクロ波パワーを200W以上に
増大することでプラズマ密度を高密度化でき、反応性ガ
スの分解効率が高まることにより活性化が進み、これに
より反応も活性化され良質の膜が形成される。また、マ
イクロ波パワーを増大する際にこのパワーに見合って反
応性ガスを供給する必要があるが、反応に必要な最適パ
ワーがあるので、この最適パワーに見合ってガス流量を
変えることでガス使用効率と反応が良くなる。
By increasing the microwave power to 200 W or more, the plasma density can be increased, and the activation of the reactive gas can be enhanced by increasing the decomposition efficiency of the reactive gas. It is formed. In addition, when increasing the microwave power, it is necessary to supply a reactive gas corresponding to this power, but there is an optimum power required for the reaction. Efficiency and response are better.

【0014】また、基板温度を200〜300℃の範囲
内に保持した成膜プロセスに入る前に、基板の前処理過
熱工程として、プラズマ生成室で生成したO2 プラズマ
を基板に照射することにより、基板ステージの加熱によ
る初期温度から200〜300℃の範囲内に基板温度を
上昇させるようにすることにより、熱媒体として沸点が
比較的低い物質を使用することができ、加熱系の形成が
容易になる。
Before the film formation process in which the substrate temperature is kept in the range of 200 to 300 ° C., the substrate is irradiated with O 2 plasma generated in a plasma generation chamber as a pretreatment and heating step of the substrate. By increasing the substrate temperature within a range of 200 to 300 ° C. from the initial temperature due to the heating of the substrate stage, a substance having a relatively low boiling point can be used as a heat medium, and the heating system can be easily formed. become.

【0015】また、マイクロ波電力と主コイル電流とを
制御してプラズマ生成室のプラズマ密度を1×1011
1×1012cm-3とプラズマ密度を高めることにより、反
応性ガスの分解効率が高まり、反応が活性化され、良質
の膜が形成される。この場合、マイクロ波電力および主
コイル電流の制御には、マイクロ波電力の大きさの制
御,主コイル電流の大きさの制御によるECR磁界領域
の対マイクロ波電界相対位置の制御のほか、マイクロ波
電力の出力させ方の制御があり、例えばマイクロ波電力
をパルス状に出力させることにより出力の絶対値を上げ
てプラズマ密度を上げることも可能である。この場合に
は、当然、高周波電力もマイクロ波電力の出力させ方に
対応してパルス状にしてマイクロ波電力と同期させ、マ
イクロ波で発生させたプラズマを効率よく基板に打ち込
ませて良質な膜質を得ることになる。
Further, by controlling the microwave power and the main coil current, the plasma density of the plasma generation chamber is set to 1 × 10 11 to
By increasing the plasma density to 1 × 10 12 cm −3 , the decomposition efficiency of the reactive gas is increased, the reaction is activated, and a high-quality film is formed. In this case, the control of the microwave power and the main coil current includes controlling the magnitude of the microwave power, controlling the relative position of the ECR magnetic field region with respect to the microwave electric field by controlling the magnitude of the main coil current, and controlling the microwave. There is control of how to output the power. For example, it is also possible to increase the absolute value of the output by outputting microwave power in a pulse form to increase the plasma density. In this case, of course, the high-frequency power is also pulsed in accordance with the method of outputting the microwave power, synchronized with the microwave power, and the plasma generated by the microwave is efficiently driven into the substrate to provide a good film quality. You will get

【0016】[0016]

【実施例】図1に本発明が対象としているECRプラズ
マCVD装置の概要を示す。図示されないマイクロ波源
からプラズマ生成室5にマイクロ波を伝達するための導
波管1が、一方の端面にマイクロ波透過室2を備えたプ
ラズマ生成室5に接続されており、また、プラズマ生成
室5の外側にはプラズマ生成室5と同軸に主コイル4が
配置されている。プラズマ生成室5のマイクロ波透過窓
2と対面する側には、基板9が置かれる反応室6がプラ
ズマ引出し窓5aを介して連通状態に接続されている。
基板9は試料台10上に載置され、試料台10にはコン
デンサ13を介して高周波電源,いわゆるRF電源12
が接続されている。また、基板9の裏面側には、主コイ
ル4と同軸に補助コイル11が設置されている。
FIG. 1 shows an outline of an ECR plasma CVD apparatus to which the present invention is applied. A waveguide 1 for transmitting microwaves from a microwave source (not shown) to the plasma generation chamber 5 is connected to the plasma generation chamber 5 having the microwave transmission chamber 2 on one end surface. A main coil 4 is arranged outside of 5 coaxially with the plasma generation chamber 5. A reaction chamber 6 in which a substrate 9 is placed is connected to a side of the plasma generation chamber 5 facing the microwave transmission window 2 through a plasma extraction window 5a.
The substrate 9 is mounted on a sample stage 10, and a high frequency power source, a so-called RF power source 12 is connected to the sample stage 10 via a capacitor 13.
Is connected. On the back side of the substrate 9, an auxiliary coil 11 is provided coaxially with the main coil 4.

【0017】基板9への薄膜形成のために、主コイル4
に電流を流して磁束密度875ガウスの磁界領域をプラ
ズマ生成室5内に形成して第1ガス導入系3からO2
スを導入するとともに、周波数が2.45GHzのマイ
クロ波をマイクロ波透過窓2を介してプラズマ生成室5
に導入すると、O2 ガスは875ガウスの磁界領域でマ
イクロ波エネルギーを共鳴吸収し、高密度のプラズマと
なる。このO2 プラズマは、主コイル4と補助コイル1
1とにより形成されるミラー磁界の磁力線に沿い、反応
室6内に引き出される。このとき、第2ガス導入系7か
らSiH4 ガスを導入すると、O2 プラズマのエネルギ
ーによりSiH4 ガスが分解され、試料台10に載置さ
れた基板9の表面にSiO2 膜が形成される。
To form a thin film on the substrate 9, the main coil 4
And a magnetic field of 875 gauss is formed in the plasma generation chamber 5 to introduce O 2 gas from the first gas introduction system 3, and a microwave having a frequency of 2.45 GHz is transmitted through the microwave transmission window. Plasma generation chamber 5 through 2
When introduced into the O 2 gas, the O 2 gas resonates and absorbs microwave energy in a magnetic field region of 875 gauss, and becomes a high-density plasma. The O 2 plasma is generated by the main coil 4 and the auxiliary coil 1
1 is drawn out into the reaction chamber 6 along the magnetic field lines of the mirror magnetic field formed by the mirror 1. At this time, when the SiH 4 gas is introduced from the second gas introduction system 7, the SiH 4 gas is decomposed by the energy of the O 2 plasma, and an SiO 2 film is formed on the surface of the substrate 9 placed on the sample stage 10. .

【0018】主コイル4と補助コイル11とにより形成
されるミラー磁界は、両コイルの間に図2のように形成
される。主コイル4により形成された発散磁界が、補助
コイル11により主コイル4と同方向に形成される磁界
により集束され、中央部は膨らむも磁束密度は主コイル
4のみによる磁束密度より大きくなる磁束が形成され
る。この磁束は、図に示すように、中央部で磁束密度が
最小となるが、磁束密度分布は最も均一となり、この位
置から軸方向±20mmの範囲内では磁束密度分布は実質
均一となる。従って、磁力線に沿って移動するプラズマ
の密度分布も基板位置で均一となり、基板9に形成され
る薄膜の膜厚分布や、膜応力,耐透水性等の膜特性分布
が均一となる。そして、主コイル4およびまたは補助コ
イル11の電流を調整して上記磁束密度最小の位置がE
CR磁界領域の中心軸上の位置から350〜40mmの範
囲内に位置するようにすると、ECR磁界領域と基板位
置とがかなり離れるので、ECR磁界領域がドーム状に
湾曲していても膜厚や膜特性の均一性を損なうことなく
薄膜形成が可能になる。
A mirror magnetic field formed by the main coil 4 and the auxiliary coil 11 is formed between both coils as shown in FIG. The divergent magnetic field formed by the main coil 4 is converged by the magnetic field formed in the same direction as the main coil 4 by the auxiliary coil 11. It is formed. As shown in the figure, this magnetic flux has the minimum magnetic flux density at the center, but has the most uniform magnetic flux density distribution, and the magnetic flux density distribution is substantially uniform within a range of ± 20 mm in the axial direction from this position. Accordingly, the density distribution of the plasma moving along the lines of magnetic force also becomes uniform at the substrate position, and the film thickness distribution of the thin film formed on the substrate 9 and the film characteristic distribution such as film stress and water resistance become uniform. Then, the current of the main coil 4 and / or the auxiliary coil 11 is adjusted so that the position where the magnetic flux density is minimum is E.
If the ECR magnetic field region is located within a range of 350 to 40 mm from the position on the central axis of the CR magnetic field region, the ECR magnetic field region is considerably separated from the substrate position. A thin film can be formed without deteriorating the uniformity of film characteristics.

【0019】さらに、この装置では、基板温度を制御で
きるように加熱・冷却用の配管をし、熱媒体としてフッ
化炭素系物質(沸点174℃)を用い、加熱系でこの物
質を170℃程度に加熱して熱交換ホールダ17(図
1)へ輸送し、試料台10を形成している静電チャック
を加熱する。このとき静電チャックの温度は150℃と
なり、成膜開始時の基板温度も150℃となる。この初
期温度に達してから、プラズマ生成室5で生成されたO
2 プラズマが基板9に照射され、このプラズマ照射によ
り基板9はさらに加熱され、所定の温度範囲内に到達し
た所で冷却系が作動し、基板温度が所定範囲内に保持さ
れ、同時に反応室6内へSiH4 ガスが導入される。図
1の装置を用いて基板9にSiO2 膜を形成したときの
成膜条件を表1に示す。
Further, in this apparatus, piping for heating and cooling is provided so that the substrate temperature can be controlled, a fluorocarbon-based substance (boiling point: 174 ° C.) is used as a heat medium, and this substance is heated to about 170 ° C. in the heating system. And transported to the heat exchange holder 17 (FIG. 1) to heat the electrostatic chuck forming the sample stage 10. At this time, the temperature of the electrostatic chuck becomes 150 ° C., and the substrate temperature at the start of film formation also becomes 150 ° C. After reaching this initial temperature, O generated in the plasma generation chamber 5
2 The substrate 9 is irradiated with plasma, and the substrate 9 is further heated by the plasma irradiation. When the substrate 9 reaches a predetermined temperature range, a cooling system is activated to keep the substrate temperature within the predetermined range. SiH 4 gas is introduced into the inside. Table 1 shows the film forming conditions when a SiO 2 film was formed on the substrate 9 using the apparatus shown in FIG.

【0020】[0020]

【表1】 上記表1により得られた膜特性を図3ないし図6に示
す。図3および図4はそれぞれ、膜応力が比較的大きく
なるがガス流量比SiH4 /O2 =0.9において膜応
力,屈折率,成膜速度および膜厚分布のマイクロ波パワ
ーおよびRFパワー依存性を、ガス流量比以外の条件を
種々変えて測定した結果の一例を示す。また、図5は成
膜後アニール前およびアニール後の膜応力のガス流量比
依存性を示す。また、図6はRFプラズマCVD法によ
るSiO2 膜(P−SiO膜)の耐透水性とECRプラ
ズマCVD法によるSiO2 膜(ECR−SiO膜)の
耐透水性との比較を示す。耐透水性試験は評価膜として
基板にPSG膜(燐酸化ガラス膜)を形成し、これを温
度120℃,湿度100%,圧力(ゲージ)1気圧の雰
囲気内に置き、P=O(燐・酸素2重結合)面積の時間
変化をみるものであり、ECR−SiO膜の耐透水性が
P−SiO膜と比べて顕著にすぐれていることが分か
る。そして、表1における各項目の設定範囲内で各項目
を組み合わせることにより、膜特性として、成膜速度≧
850Å/minで順テーパの成膜すなわち基板表面凹
凸部の頂面から底面方向へ側壁の膜厚が厚くなる成膜が
行われ、膜形成後の残留応力も−1.0×109 dyne/
cm2 以下の低ストレースの膜が得られ、また、成膜後の
熱処理による膜応力変動量も0.5×109 dyne/cm2
以下となり、配線等のストレスダメージが低減され、か
つ耐透水性にすぐれた膜が得られることが明らかになっ
た。
[Table 1] The film characteristics obtained from Table 1 are shown in FIGS. 3 and 4 show that the film stress, the refractive index, the film formation rate and the film thickness distribution depend on the microwave power and the RF power at a gas flow ratio of SiH 4 / O 2 = 0.9, respectively. An example of the results obtained by measuring the properties under various conditions other than the gas flow rate ratio is shown. FIG. 5 shows the gas flow ratio dependence of the film stress after film formation and before and after annealing. FIG. 6 shows a comparison between the water permeability of the SiO 2 film (P-SiO film) by the RF plasma CVD method and the water permeability of the SiO 2 film (ECR-SiO film) by the ECR plasma CVD method. In the water resistance test, a PSG film (phosphorized glass film) was formed on a substrate as an evaluation film, and this was placed in an atmosphere at a temperature of 120 ° C., a humidity of 100%, and a pressure (gauge) of 1 atm. This shows the time change of the area of (oxygen double bond), and it can be seen that the water resistance of the ECR-SiO film is remarkably superior to that of the P-SiO film. Then, by combining each item within the setting range of each item in Table 1, as a film characteristic, a film formation rate ≧
At 850 ° / min, a film having a forward taper, that is, a film having a thicker side wall from the top surface to the bottom surface of the uneven portion of the substrate surface is formed, and the residual stress after film formation is also -1.0 × 10 9 dyne /
A film having a low trace of less than 2 cm 2 is obtained, and the amount of change in film stress due to heat treatment after film formation is also 0.5 × 10 9 dyne / cm 2.
The results below show that stress damage to wiring and the like is reduced and that a film having excellent water resistance can be obtained.

【0021】[0021]

【発明の効果】以上に述べたように、本発明の絶縁膜製
造方法によれば、主コイルと補助コイルとにより形成さ
れる磁界をミラー磁界とし、該ミラー磁界の中心軸に垂
直な断面内の磁束密度が最小となる該断面の軸方向位置
から軸方向に±20mm以内の位置に被成膜基板を配置し
た後成膜プロセスに入るので、成膜が磁束密度分布の均
一な,従ってプラズマ密度の均一な領域で行われ、膜厚
分布や応力,耐透水性等の膜特性の均一な膜を得ること
ができ、膜形成後の残留応力やアニールによる応力変動
が基板上で局所的に集中することがなくなり、配線等の
ストレスダメージが起こりにくい膜を得ることができ
る。
As described above, according to the insulating film manufacturing method of the present invention, the magnetic field formed by the main coil and the auxiliary coil is used as the mirror magnetic field, and the magnetic field formed in the cross section perpendicular to the central axis of the mirror magnetic field. After the substrate is placed at a position within ± 20 mm in the axial direction from the axial position of the cross-section where the magnetic flux density of the cross-section becomes minimum, the film-forming process is started. Performed in a region with uniform density, it is possible to obtain a film with uniform film characteristics such as film thickness distribution, stress, and water permeability. Residual stress after film formation and stress fluctuation due to annealing are localized on the substrate. It is possible to obtain a film that is not concentrated and hardly causes stress damage such as wiring.

【0022】また、上記磁束密度分布が均一な位置をE
CR磁界領域の軸線上の位置から350〜400mmと
離して形成するようにしたので、通常ドーム状を呈する
ECR磁界領域のプラズマ密度不均一化作用が及ばなく
なり、膜特性の均一性を維持しての成膜が可能となっ
た。従って、請求項第項に記載の成膜条件における各
項目の設定範囲内で各項目を組み合わせて成膜を行うこ
とにより、残留応力やアニールによる応力変動の小さい
膜が得られ、また耐透水性にもすぐれた膜が得られるよ
うになった。
The position where the magnetic flux density distribution is uniform is defined as E
Since it is formed at a distance of 350 to 400 mm from the position on the axis of the CR magnetic field region, the effect of making the plasma density non-uniformity of the ECR magnetic field region which usually has a dome shape does not reach, and the uniformity of film characteristics is maintained. Has become possible. Therefore, by forming a film by combining each item within the setting range of each item under the film forming conditions described in claim 2 , a film having small residual stress and small stress fluctuation due to annealing can be obtained. A film with excellent properties has been obtained.

【0023】また、マイクロ波電力とSiH4 ガス流量
との割合を1〜2cc/s/200Wとしたので、反応
効率よく成膜が行われ、良質な膜が得られる。さらに、
基板温度を200〜300℃に上昇させるために、初期
温度を比較的低くし、プラズマ照射により温度を上げる
ようにしたので、加熱系の構成が容易となり、わずかな
がらも装置のコストが低減される。
Further, since the ratio between the microwave power and the flow rate of the SiH 4 gas is set to 1 to 2 cc / s / 200 W, the film is formed with high reaction efficiency, and a high quality film can be obtained. further,
Since the initial temperature is relatively low and the temperature is increased by plasma irradiation in order to raise the substrate temperature to 200 to 300 ° C., the configuration of the heating system is simplified, and the cost of the apparatus is reduced slightly. .

【0024】また、請求項第項に記載の条件により成
膜を行うに当り、1×1011〜1×1012 cm -3 の高密
度で行うようにしたので、反応性ガスの分解効率が高ま
り、反応が活性化され、高品質の膜が得られ、半導体デ
バイスの寿命を伸ばすことができるようになった。
Further, when the film is formed under the conditions described in claim 2, the film is formed at a high density of 1 × 10 11 to 1 × 10 12 cm -3 , so that the efficiency of decomposition of the reactive gas is increased. , The reaction is activated, a high quality film is obtained, and the life of the semiconductor device can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が対象としている絶縁膜製造装置構成の
一実施例を示す縦断面図
FIG. 1 is a longitudinal sectional view showing an embodiment of an insulating film manufacturing apparatus configuration to which the present invention is directed.

【図2】本発明の絶縁膜製造方法に従って形成されるミ
ラー磁界の形状とミラー磁界中の基板位置とを示す説明
FIG. 2 is an explanatory view showing the shape of a mirror magnetic field formed according to the method of manufacturing an insulating film of the present invention and the position of a substrate in the mirror magnetic field.

【図3】本発明の絶縁膜製造方法における成膜条件に従
って成膜をしたときの膜応力,屈折率,成膜速度,膜厚
分布のマイクロ波パワー依存性の一実施例を示すマイク
ロ波パワー特性図
FIG. 3 shows a microwave power showing an example of a microwave power dependency of a film stress, a refractive index, a film forming speed, and a film thickness distribution when a film is formed according to film forming conditions in the insulating film manufacturing method of the present invention. Characteristic diagram

【図4】本発明の絶縁膜製造方法における成膜条件に従
って成膜をしたときの膜応力,屈折率,成膜速度,膜厚
分布のRFパワー依存性の一実施例を示すRFパワー特
性図
FIG. 4 is an RF power characteristic diagram showing an example of the RF power dependence of a film stress, a refractive index, a film forming speed, and a film thickness distribution when a film is formed according to the film forming conditions in the insulating film manufacturing method of the present invention.

【図5】本発明の絶縁膜製造方法における成膜条件に従
って成膜をしたときの膜応力のガス流量比依存性を膜形
成後アニール前およびアニール後について示す,膜応力
のガス流量比特性図
FIG. 5 is a gas flow ratio characteristic diagram of film stress showing the dependence of film stress on gas flow ratio after film formation and before and after annealing when the film is formed according to the film forming conditions in the insulating film manufacturing method of the present invention.

【図6】本発明が対象としている絶縁膜製造装置によっ
て製造した絶縁膜とRFプラズマCVD法によって製造
した絶縁膜との耐透水性の比較を示す耐透水性特性図
FIG. 6 is a water resistance characteristic diagram showing a comparison of water resistance between an insulating film manufactured by an insulating film manufacturing apparatus to which the present invention is applied and an insulating film manufactured by an RF plasma CVD method.

【符号の説明】[Explanation of symbols]

1 導波管 2 マイクロ波透過窓 3 第1ガス導入系 4 主コイル 5 プラズマ生成室 6 反応室 7 第2ガス導入系 9 基板 10 試料台 11 補助コイル 12 RF電源(高周波電源) 14 加熱器 15 冷却器 17 熱交換ホールダ DESCRIPTION OF SYMBOLS 1 Waveguide 2 Microwave transmission window 3 1st gas introduction system 4 Main coil 5 Plasma generation room 6 Reaction room 7 2nd gas introduction system 9 Substrate 10 Sample stand 11 Auxiliary coil 12 RF power supply (high frequency power supply) 14 Heater 15 Cooler 17 Heat exchange holder

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】マイクロ波透過窓を一方の端面に備えると
ともにプラズマ生成用ガスが導入される筒状のプラズマ
生成室と、該プラズマ生成室の外側に該プラズマ生成室
と同軸に配され該プラズマ生成室内にマイクロ透過窓
を通して導入されたマイクロ波との電子サイクロトロン
共鳴を生じる磁界領域を形成する主コイルと、マイクロ
波透過窓と対面する側でプラズマ生成室と連通し被成膜
基板が置かれるとともに反応性ガスが導入される反応室
と、被成膜基板に高周波電力を供給する高周波電源と、
主コイルと同軸に被成膜基板の裏面側に配される補助コ
イルとを備えてなる電子サイクロトロン共鳴プラズマC
VD装置を用い、プラズマ生成室に導入するプラズマ生
成用ガスとしてO2を、反応室に導入する反応性ガスと
してSiH4を用いて被成膜基板表面にSiO2絶縁膜を
形成する絶縁膜製造方法において、主コイルと補助コイ
ルとにより形成される磁界をミラー磁界とし、該ミラー
磁界の中心軸に垂直な断面内の磁束密度が最小となる該
断面の軸方向位置から軸方向に±20mm以内の位置に
被成膜基板を配置するとともに、 ミラー磁界の中心軸に垂直な断面内の磁束密度が最小と
なる該断面の軸方向位置が、主コイルが形成する電子サ
イクロトロン共鳴磁界領域の中心軸上の位置から350
〜400mmの範囲内に位置するように主コイル電流お
よびまたは補助コイル電流を制御する ことを特徴とする
絶縁膜の製造方法。
1. A cylindrical plasma generation chamber having a microwave transmission window on one end face and into which a plasma generation gas is introduced, and a plasma disposed outside the plasma generation chamber and coaxial with the plasma generation chamber. A main coil that forms a magnetic field region that generates electron cyclotron resonance with microwaves introduced through the microwave transmission window into the generation chamber, and a substrate on which the film is to be formed are placed in communication with the plasma generation chamber on the side facing the microwave transmission window. A reaction chamber into which a reactive gas is introduced and a high-frequency power supply for supplying high-frequency power to a substrate on which a film is to be formed;
An electron cyclotron resonance plasma C comprising a main coil and an auxiliary coil disposed coaxially on the back side of the substrate on which the film is to be formed.
With VD device, the O 2 as the plasma generation gas introduced into the plasma generation chamber, the insulating film manufacture to form an SiO 2 insulating film on the target substrate surface using SiH 4 as a reactive gas to be introduced into the reaction chamber In the method, a magnetic field formed by the main coil and the auxiliary coil is a mirror magnetic field, and is within ± 20 mm in an axial direction from an axial position of the cross section where a magnetic flux density in a cross section perpendicular to a central axis of the mirror magnetic field is minimum. with placing a deposition target substrate to a position of the magnetic flux density in the perpendicular cross section to the central axis of the mirror magnetic field minimum
The position of the cross section in the axial direction is determined by the electronic sensor formed by the main coil.
350 from the center axis of the cyclotron resonance magnetic field region
Main coil current and
And / or controlling an auxiliary coil current .
【請求項2】請求項第1項に記載の方法において、被成
膜基板が置かれるステージを加熱および冷却可能に形成
して成膜中の基板温度を200〜300℃の範囲内に保
持するとともにガス流量比をSiH4/O2=0.72〜
0.92、ガス圧力を1×10-4〜5×10-3Tor
r、マイクロ波電力を200〜1200W、高周波電力
を被成膜基板の単位面積当り2.0〜4.0W/cm2
とすることを特徴とする絶縁膜の製造方法。
2. A method according to claim 1, wherein the stage on which the substrate on which the film is to be formed is placed is formed so as to be capable of being heated and cooled, and the substrate temperature during the film formation is kept in the range of 200 to 300 ° C. And the gas flow rate ratio was set to SiH 4 / O 2 = 0.72-
0.92, gas pressure 1 × 10 -4 to 5 × 10 -3 Torr
r, microwave power of 200 to 1200 W and high frequency power of 2.0 to 4.0 W / cm 2 per unit area of the substrate on which the film is to be formed.
A method of manufacturing an insulating film.
【請求項3】請求項第項に記載の方法において、マイ
クロ波電力とSiH4ガス流量との割合を1〜2cc/
s/200Wとすることを特徴とする絶縁膜の製造方
法。
3. The method according to claim 2 , wherein the ratio between the microwave power and the flow rate of the SiH 4 gas is 1 to 2 cc /.
s / 200W, a method for manufacturing an insulating film.
【請求項4】請求項第項に記載の方法において、基板
温度を200〜300℃の範囲内に保持した成膜プロセ
スに入る前に、基板の前処理熱工程として、プラズマ
生成室で生成したO2プラズマを基板に照射することに
より、基板ステージの加熱による初期温度から200〜
300℃の範囲内に基板温度を上昇させることを特徴と
する絶縁膜の製造方法。
4. The method according to the second claims, prior to entering the deposition process holding the substrate temperature within the range of 200 to 300 [° C., as a pretreatment pressurized thermal process of the substrate, in the plasma generating chamber By irradiating the substrate with the generated O 2 plasma, the temperature from the initial temperature by heating the substrate stage to 200 to
A method of manufacturing an insulating film, wherein the temperature of a substrate is increased within a range of 300 ° C.
【請求項5】請求項第項に記載の方法において、マイ
クロ波電力と主コイル電流とを制御してプラズマ生成室
のプラズマ密度を1×1011〜1×1012cm-3とする
ことを特徴とする絶縁膜の製造方法。
5. The method according to claim 2 , wherein the microwave power and the main coil current are controlled to make the plasma density in the plasma generation chamber 1 × 10 11 to 1 × 10 12 cm -3. A method for manufacturing an insulating film, comprising:
JP04272095A 1992-10-12 1992-10-12 Manufacturing method of insulating film Expired - Fee Related JP3094688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04272095A JP3094688B2 (en) 1992-10-12 1992-10-12 Manufacturing method of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04272095A JP3094688B2 (en) 1992-10-12 1992-10-12 Manufacturing method of insulating film

Publications (2)

Publication Number Publication Date
JPH06124942A JPH06124942A (en) 1994-05-06
JP3094688B2 true JP3094688B2 (en) 2000-10-03

Family

ID=17509011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04272095A Expired - Fee Related JP3094688B2 (en) 1992-10-12 1992-10-12 Manufacturing method of insulating film

Country Status (1)

Country Link
JP (1) JP3094688B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182420A (en) * 1991-12-26 1993-07-23 Kenwood Corp Optical disk recorder

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955376A (en) * 1995-08-15 1997-02-25 Sony Corp Plasma cvd method
KR100226736B1 (en) * 1996-11-07 1999-10-15 구본준 Method of forming a device isolation film of semiconductor device
AU6977998A (en) * 1997-04-21 1998-11-13 Tokyo Electron Arizona, Inc. Method and apparatus for ionized sputtering of materials
US10354860B2 (en) * 2015-01-29 2019-07-16 Versum Materials Us, Llc Method and precursors for manufacturing 3D devices
CN113025998B (en) * 2019-12-24 2023-09-01 广东众元半导体科技有限公司 Substrate table for diamond film microwave plasma chemical vapor deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182420A (en) * 1991-12-26 1993-07-23 Kenwood Corp Optical disk recorder

Also Published As

Publication number Publication date
JPH06124942A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
TW583343B (en) Plasma processing apparatus and dielectric plate adapted to be provided between a process chamber of a plasma processing apparatus and slot electrode guiding a microwave used for a plasma process
US6165377A (en) Plasma etching method and apparatus
TWI512793B (en) Solid state introduction of dopants and additives for a plasma doping process
JPH05275345A (en) Plasma cvd method and its device
WO2000063955A1 (en) Plasma processing apparatus
TWI729495B (en) High temperature rf heater pedestals
CN106952798B (en) Engraving method
JPS61136229A (en) Dry etching device
US6736930B1 (en) Microwave plasma processing apparatus for controlling a temperature of a wavelength reducing member
JP3094688B2 (en) Manufacturing method of insulating film
EP0749148B1 (en) Plasma processing apparatus
JP3079818B2 (en) Plasma processing equipment
TW462091B (en) Plasma process apparatus
JPH06232113A (en) Deposition of insulating film for semiconductor device
TWI388245B (en) Plasma processing device
JP3018627B2 (en) Manufacturing method of insulating film
JPH01298725A (en) Thin film formation, apparatus therefor, and semiconductor element
JPH06104098A (en) Microwave plasma treatment device
JP2595640B2 (en) Plasma processing equipment
JPH06330305A (en) Film forming method by sputtering
JPH0817801A (en) Ecr plasma etching method of diamond thin film
JPH05144773A (en) Plasma etching apparatus
JP2019102508A (en) Method and apparatus for forming boron-based film
JP3055229B2 (en) Insulating film forming method
Ueda et al. Deposition of a-Si: H films by ECR plasma CVD using large diameter multi-slot antennae

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees