JP2917396B2 - Character recognition method - Google Patents
Character recognition methodInfo
- Publication number
- JP2917396B2 JP2917396B2 JP2101835A JP10183590A JP2917396B2 JP 2917396 B2 JP2917396 B2 JP 2917396B2 JP 2101835 A JP2101835 A JP 2101835A JP 10183590 A JP10183590 A JP 10183590A JP 2917396 B2 JP2917396 B2 JP 2917396B2
- Authority
- JP
- Japan
- Prior art keywords
- normalization
- pattern
- character
- feature
- recognition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Character Input (AREA)
- Character Discrimination (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は光学式文字認識における文字認識方式に関す
る。Description: TECHNICAL FIELD The present invention relates to a character recognition system in optical character recognition.
[従来の技術」 情報処理システムの多様化に伴い、様々なデータ入力
方法が要求されており、文字認識技術の有力なデータ入
力方法の実用化が進められている。しかし現在の文字認
識技術は文字の読取能力の点で人間に比べてはるかに劣
っており、より高い認識能力を有する文字読取装置が望
まれている。[Prior Art] With the diversification of information processing systems, various data input methods are required, and practical application of powerful data input methods of character recognition technology is progressing. However, the current character recognition technology is far inferior to humans in character reading ability, and a character reading device having higher recognition ability is desired.
文字認識能力を高めるためには、文字認識方式を構成
する前処理方式,正規化方式,特徴抽出方式,分類・識
別方式,後処理方式のそれぞれにおいて改良が進められ
ている。正規化方式は、従来はほとんどの場合に、文字
全体の位置合わせと図形の拡大縮小を基本にした線形正
規化が利用されていた。しかし手書き漢字の認識等に
は、文字イメージを部分的に拡大縮小して文字を構成す
るストローク単位の位置合わせまでを行う非線形正規化
の有効性が、例えば電子情報通信学会パターン認識・理
解研究会研究報告PRU87−104(1988.2)、津雲,田中:
「階層的な位置ずれ補正処理に基づく手書き漢字認識」
等の文献で示されている。通常の線形正規化で得られる
文字パタンの例を第2図(a)に、非線形正規化で得ら
れる文字パタンの例を第2図(b)に示す。In order to enhance the character recognition ability, improvements are being made in each of a pre-processing method, a normalization method, a feature extraction method, a classification / identification method, and a post-processing method that constitute the character recognition method. Conventionally, in most cases, the normalization method uses linear normalization based on alignment of entire characters and enlargement / reduction of graphics. However, for the recognition of handwritten kanji, etc., the effectiveness of nonlinear normalization, which partially scales up and down a character image and aligns it in units of strokes that compose a character, is, for example, the IEICE Pattern Recognition Research Group. Research report PRU87-104 (1988.2), Tsumo, Tanaka:
"Handwritten Kanji Recognition Based on Hierarchical Positional Correction"
And others. FIG. 2A shows an example of a character pattern obtained by ordinary linear normalization, and FIG. 2B shows an example of a character pattern obtained by nonlinear normalization.
[発明が解決しようとする課題] 非線形正規化は、ストローク数が多く、複雑な形状の
漢字の読取には非常に効果があるが、数字等のストロー
クの少ない比較的簡単な形状の文字に対しては正規化に
よって変形した字形の歪みが大きすぎて文字認識に悪影
響を及ぼすという問題点が生じる。文字読取装置の利用
形態を考えると、手書き漢字だけを独立に読み取る要求
よりは、手書き漢字と共に数字等の非漢字を混在して読
み取る要求がはるかに多い。[Problems to be Solved by the Invention] Nonlinear normalization is very effective for reading kanji having a large number of strokes and a complicated shape, but is relatively effective for characters with relatively few shapes such as numbers and few strokes. In other words, there is a problem that the distortion of the character shape deformed by the normalization is too large and adversely affects character recognition. Considering the usage of the character reading device, there are far more requests to read non-kanji characters such as numbers together with handwritten kanji characters than to read only handwritten kanji characters independently.
本発明の目的は、手書き漢字認識に関しては非線形正
規化の長所を残しながら、非漢字等の簡単な形状の文字
の読取にも悪影響を与えない文字認識方式を提供するこ
とにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a character recognition method which does not adversely affect the reading of characters having simple shapes such as non-kanji characters while retaining the advantage of nonlinear normalization in handwritten kanji recognition.
[課題を解決するための手段] 本発明の文字認識方式は、 2次元格子状のディジタル画像として表現される文字
イメージを格納する入力パタン記憶手段と、 前記入力パタン記憶手段から文字イメージを読み込
み、位置合わせと大きさの一様な拡大縮小による正規化
処理を行い第一の正規化パタンを出力する第一の正規化
手段と、 前記入力パタン記憶手段から文字イメージを読み込
み、文字イメージの部分的な拡大縮小による非線形正規
化処理を行い第二の正規化パタンと第二の特徴パタンを
出力する第二の正規化手段と、 前記第一の正規化手段から出力される第一の正規化パ
タンと前記第二の正規化手段から出力される第二の正規
化パタンとを入力し、それぞれの正規化パタンから文字
認識のための特徴を抽出して第一の特徴パタンを出力す
る特徴抽出手段と、 第一の正規化処理に対応して定められた字種のための
参照パタンを格納する第一の認識辞書と、 第二の正規化手段に対応して定められた字種のタめの
参照パタンを格納する第二の認識辞書と、 第一の特徴パタンと第一の認識辞書の各参照パタンと
の類似性の尺度を定める計算を行い、かつ第二の特徴パ
タンと第二の認識辞書の各参照パタンとの類似性の尺度
を定める計算を行うことによって、全字種に対する類似
性の尺度を定めて認識結果を決定して出力する分類・識
別手段とで構成されている。[Means for Solving the Problems] A character recognition method according to the present invention comprises: an input pattern storage unit for storing a character image expressed as a two-dimensional lattice-shaped digital image; First normalization means for performing a normalization process by alignment and uniform enlargement / reduction of size and outputting a first normalization pattern; reading a character image from the input pattern storage means; A second normalization unit that performs a non-linear normalization process by appropriate scaling to output a second normalization pattern and a second feature pattern; and a first normalization pattern output from the first normalization unit. And a second normalization pattern output from the second normalization means, and extract a feature for character recognition from each of the normalization patterns to output a first feature pattern. A first character recognition dictionary for storing a reference pattern for a character type defined corresponding to the first normalization processing; and a character defined corresponding to the second normalization means. A second recognition dictionary storing a reference pattern of the species, a calculation for determining a similarity measure between the first feature pattern and each reference pattern of the first recognition dictionary, and a second feature pattern And a classification / identification unit configured to determine a similarity measure for all character types by determining a measure of similarity with each reference pattern of the second recognition dictionary and determine and output a recognition result. Have been.
[作用] 以下、本発明の原理について説明する。[Operation] Hereinafter, the principle of the present invention will be described.
入力された文字パタンに通常の正規化を行うか非線形
正規化を行うかが事前に判定できれば、上記の問題が解
決できるが、混在読取では無理である。また通常の正規
化と非線形正規化とを行って2つの正規化文字パタンを
つくり、それぞれについて特徴抽出,分類・識別を行う
ことも考えられるが、2種類の認識用参照パタンを持た
なければならず、かつ参照パタンと入力パタンとの照合
計算が2倍になるという問題が生じる。If it can be determined in advance whether to perform normal normalization or non-linear normalization on the input character pattern, the above problem can be solved. However, mixed reading is impossible. It is also conceivable to create two normalized character patterns by performing normal normalization and nonlinear normalization, and perform feature extraction, classification and identification for each. However, it is necessary to have two types of reference patterns for recognition. In addition, there arises a problem that the matching calculation between the reference pattern and the input pattern is doubled.
そこで非線形正規化を行うと文字の形状が大きく歪む
字種に関しては通常の正規化を行った後に得られる参照
パタンを第一の認識辞書に登録し、それ以外の字種に関
しては非線形正規化を行った後に得られる参照パタンを
第二の認識辞書に登録して認識辞書の容量問題に対応す
る。また通常の正規化を第一の正規化、非線形正規化を
第二の正規化と呼ぶことにし、また第一の正規化の後に
特徴抽出を行って得られる特徴パタンを第一の特徴パタ
ン、第二の正規化の後に特徴抽出を行って得られる特徴
パタンを第二の特徴と呼ぶことにすると、第一の特徴パ
タンは第一の認識辞書の参照パタンと照合計算を行い、
第二の特徴パタンは第二の認識辞書の参照パタンと照合
計算を行って、照合計算の問題に対応する。Therefore, when performing non-linear normalization, reference patterns obtained after performing normal normalization are registered in the first recognition dictionary for character types whose character shape is greatly distorted, and nonlinear normalization is performed for other character types. The reference pattern obtained after the execution is registered in the second recognition dictionary to cope with the capacity problem of the recognition dictionary. Also, normal normalization will be referred to as first normalization, nonlinear normalization will be referred to as second normalization, and a feature pattern obtained by performing feature extraction after the first normalization will be referred to as a first feature pattern. If a feature pattern obtained by performing feature extraction after the second normalization is referred to as a second feature, the first feature pattern performs a matching calculation with a reference pattern of the first recognition dictionary,
The second feature pattern performs collation calculation with the reference pattern of the second recognition dictionary, and addresses the problem of collation calculation.
[実施例] 第1図は本発明の構成の一実施例を示すブロック図で
ある。Embodiment FIG. 1 is a block diagram showing an embodiment of the configuration of the present invention.
この文字認識方式は、入力パタン記憶手段1と、第一
の正規化手段2と、第二の正規化手段3と、特徴抽出手
段4と、第一の認識辞書5と、第二の認識辞書6と、分
類・識別手段7とから構成されている。This character recognition system includes an input pattern storage unit 1, a first normalization unit 2, a second normalization unit 3, a feature extraction unit 4, a first recognition dictionary 5, and a second recognition dictionary. 6 and classification / identification means 7.
入力パタン記憶手段1は、2次元格子状のディジタル
画像として表現される文字パタンを信号10として読み込
み、格納するもので通常の記憶手段でよい。The input pattern storage unit 1 reads and stores a character pattern expressed as a two-dimensional lattice digital image as a signal 10, and may be a normal storage unit.
第一の正規化手段2は、文字パタン記憶手段1から信
号11として文字イメージを読み込み、位置合わせと拡大
縮小による大きさの正規化処理を行い、正規化パタンを
信号12として出力するもので、文字認識で行われる通常
の線形正規化手段である。The first normalization means 2 reads a character image as a signal 11 from the character pattern storage means 1, performs a size normalization process by alignment and enlargement / reduction, and outputs a normalization pattern as a signal 12. This is a normal linear normalization means performed by character recognition.
第二の正規化手段3は、文字パタン記憶手段1から信
号11として文字イメージを読み込み、非線形正規化を行
い、正規化パタンを信号13として出力するもので、同一
出願人による特願昭62−185826号明細書「パタン正規化
方式」に示されている従来技術で実現できる。The second normalization means 3 reads a character image as a signal 11 from the character pattern storage means 1, performs non-linear normalization, and outputs a normalized pattern as a signal 13. This can be realized by the conventional technique described in the specification of Japanese Patent No. 185826 “pattern normalization method”.
特徴抽出手段4は、第一の正規化パタン信号12と第二
の正規化パタン信号13を入力し、両正規化パタンに対し
て特徴抽出を行い、第一の正規化パタンの特徴を第一の
特徴パタン信号14として出力し、第二の正規化パタンの
特徴を第二の特徴パタン信号15として出力するもので、
文字認識の従来技術で実現できる。特徴抽出は、例えば
同一出願人による特願昭63−237064号明細書「特徴抽出
方式」で示されるものでよいが、これに限らず、文字認
識で通常使用されている特徴抽出が利用可能である。The feature extraction means 4 receives the first normalized pattern signal 12 and the second normalized pattern signal 13, performs feature extraction on both normalized patterns, and extracts the features of the first normalized pattern into the first normalized pattern. And outputs the feature of the second normalized pattern as a second feature pattern signal 15,
It can be realized by the conventional technology of character recognition. The feature extraction may be, for example, the one described in Japanese Patent Application No. 63-237064 by the same applicant, "feature extraction method", but is not limited thereto, and feature extraction generally used in character recognition can be used. is there.
第一の認識辞書5は、非漢字等の形状の簡単な字種の
参照パタンを格納するもので通常の記憶手段でよい。The first recognition dictionary 5 stores a reference pattern of a simple character type having a shape such as a non-Kanji character, and may be an ordinary storage unit.
第二の認識辞書6は、漢字等の形状の複雑な字種の参
照パタンを格納するもので通常の記憶手段でよい。The second recognition dictionary 6 stores a reference pattern of a complicated character type having a shape such as a kanji, and may be an ordinary storage unit.
分類・識別手段7は、第一の特徴パタン信号14,第二
の特徴パタン信号15,第一の参照パタン信号16,第二の参
照パタン信号17を読み込み、第一の特徴パタンと第一の
各参照パタンとの類似性の尺度を定める照合計算を行
い、第二の特徴パタンと第二の各参照パタンとの類似性
の尺度を定める照合計算を行うことによって全字種に対
する類似性の尺度を求めて、認識結果を決定し、信号18
として出力するもので、文字認識の従来技術で実現でき
る。The classifying / identifying means 7 reads the first feature pattern signal 14, the second feature pattern signal 15, the first reference pattern signal 16, and the second reference pattern signal 17, and reads the first feature pattern and the first feature pattern. A similarity measure for all character types is calculated by performing a matching calculation that determines a measure of similarity with each reference pattern, and performing a matching calculation that determines a measure of similarity between the second feature pattern and each second reference pattern. To determine the recognition result, and the signal 18
And can be realized by the conventional technology of character recognition.
次に本実施例の動作を説明する。 Next, the operation of this embodiment will be described.
第一の認識辞書5は、非漢字等の形状の簡単な字種の
参照パタンを予め格納しておき、また第二の認識辞書6
には、漢字等の形状の複雑な字種の参照パタンを予め格
納しておく。The first recognition dictionary 5 stores in advance reference patterns of simple character types such as non-Kanji characters, and the second recognition dictionary 6
, A reference pattern of a complicated character type having a shape such as a kanji is stored in advance.
入力パタン記憶手段1は、認識しようとする文字パタ
ン信号10を読み込み、格納する。第一の正規化手段2
は、文字パタン記憶手段1からイメージ信号11を読み込
み、位置合わせた拡大縮小による大きさの正規化処理を
行い、正規化パタン信号12を出力する。一方、第二の正
規化手段3は、文字パタン記憶手段1から文字イメージ
信号11を読み込み、非線形正規化を行い、正規化パタン
信号13を出力する。特徴抽出手段4は、第一の正規化パ
タン信号12と第二の正規パタン信号13とを入力し、両正
規化パタンに対して特徴抽出を行い、第一の特徴パタン
信号14と第二の特徴パタン信号15とを出力する。The input pattern storage means 1 reads and stores a character pattern signal 10 to be recognized. First normalization means 2
Reads the image signal 11 from the character pattern storage unit 1, performs a size normalization process by scaling up and down, and outputs a normalized pattern signal 12. On the other hand, the second normalization means 3 reads the character image signal 11 from the character pattern storage means 1, performs nonlinear normalization, and outputs a normalized pattern signal 13. The feature extraction means 4 receives the first normalized pattern signal 12 and the second normal pattern signal 13, performs feature extraction on both normalized patterns, and outputs the first feature pattern signal 14 and the second A characteristic pattern signal 15 is output.
分類・識別手段7は、特徴抽出手段4から第一の特徴
パタン信号14および第二の特徴パタン信号15を、第一の
認識辞書5から第一の参照パタン信号16を、第二の認識
辞書6から第二の参照パタン信号17を読み込み、第一の
特徴パタンと第一の各参照パタンとの類似性の尺度を定
める照合計算を行い、第二の特徴パタンと第二の各参照
パタンとの類似性の尺度を定める照合計算を行うことに
よって全字種に対する類似性の尺度を求めて、認識結果
を決定し、信号18を出力する。The classifying / identifying means 7 converts the first feature pattern signal 14 and the second feature pattern signal 15 from the feature extracting means 4, the first reference pattern signal 16 from the first recognition dictionary 5, the second recognition dictionary 6, the second reference pattern signal 17 is read, and a matching calculation is performed to determine a similarity measure between the first feature pattern and the first reference pattern, and the second feature pattern and the second reference pattern are compared with each other. A similarity measure for all character types is obtained by performing a collation calculation to determine a measure of similarity of, and a recognition result is determined, and a signal 18 is output.
[発明の効果] 以上のように本発明によれば、非線形正規化によって
文字の形状が大きく歪む字種に関しては歪みの悪影響を
回避しながら、非線形正規化の効果を利用することがで
き、手書き漢字,非漢字の混在読取でも高い認識性能を
保つ文字認識方式が提供でき、文字認識装置の実現に大
きく役立つ。[Effects of the Invention] As described above, according to the present invention, it is possible to utilize the effect of nonlinear normalization while avoiding the adverse effects of distortion on character types in which the shape of characters is greatly distorted by nonlinear normalization. It is possible to provide a character recognition method that maintains high recognition performance even in the case of mixed reading of kanji and non-kanji, and is very useful for realizing a character recognition device.
第1図は本発明の一実施例の構成を示すブロック図、 第2図は線形正規化と非線形正規化の差を示す図であ
る。 1……入力パタン記憶手段 2……第一の正規化手段 3……第二の正規化手段 4……特徴抽出手段 5……第一の認識辞書 6……第二の認識辞書 7……分類・識別手段FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention, and FIG. 2 is a diagram showing a difference between linear normalization and nonlinear normalization. 1 ... input pattern storage means 2 ... first normalization means 3 ... second normalization means 4 ... feature extraction means 5 ... first recognition dictionary 6 ... second recognition dictionary 7 ... Classification and identification means
Claims (1)
される文字イメージを格納する入力パタン記憶手段と、 前記入力パタン記憶手段から文字イメージを読み込み、
位置合わせと大きさの一様な拡大縮小による正規化処理
を行い第一の正規化パタンを出力する第一の正規化手段
と、 前記入力パタン記憶手段から文字イメージを読み込み、
文字イメージの部分的な拡大縮小による非線形正規化処
理を行い第二の正規化パタンを出力する第二の正規化手
段と、 前記第一の正規化手段から出力される第一の正規化パタ
ンと前記第二の正規化手段から出力される第二の正規化
パタンとを入力し、それぞれの正規化パタンから文字認
識のための特徴を抽出して第一の特徴パタンと第二の特
徴パタンを出力する特徴抽出手段と、 第一の正規化処理に対応して定められた字種のための参
照パタンを格納する第一の認識辞書と、 第二の正規化手段に対応して定められた字種のための参
照パタンを格納する第二の認識辞書と、 第一の特徴パタンと第一の認識辞書の各参照パタンとの
類似性の尺度を定める計算を行い、かつ第二の特徴パタ
ンと第二の認識辞書の各参照パタンとの類似性の尺度を
定める計算を行うことによって、全字種に対する類似性
の尺度を定めて認識結果を決定して出力する分類・識別
手段とで構成される文字認識方式。An input pattern storage means for storing a character image represented as a two-dimensional lattice digital image, and a character image is read from the input pattern storage means.
A first normalization unit that performs a normalization process by alignment and uniform scaling of the size and outputs a first normalization pattern, and reads a character image from the input pattern storage unit,
A second normalization unit that performs a non-linear normalization process by partially enlarging and reducing the character image and outputs a second normalization pattern, and a first normalization pattern output from the first normalization unit. A second normalization pattern output from the second normalization means is input, and a feature for character recognition is extracted from each of the normalization patterns to obtain a first feature pattern and a second feature pattern. A feature extraction means for outputting, a first recognition dictionary for storing a reference pattern for a character type defined corresponding to the first normalization processing, and a feature dictionary defined corresponding to the second normalization means. A second recognition dictionary for storing reference patterns for character types, a calculation for determining a similarity between the first feature pattern and each reference pattern of the first recognition dictionary, and a second feature pattern And a measure of similarity between each reference pattern and the second recognition dictionary A character recognition system comprising classification / identification means for determining a similarity measure for all character types, determining a recognition result, and outputting the result by performing calculation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2101835A JP2917396B2 (en) | 1990-04-19 | 1990-04-19 | Character recognition method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2101835A JP2917396B2 (en) | 1990-04-19 | 1990-04-19 | Character recognition method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH041880A JPH041880A (en) | 1992-01-07 |
JP2917396B2 true JP2917396B2 (en) | 1999-07-12 |
Family
ID=14311141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2101835A Expired - Lifetime JP2917396B2 (en) | 1990-04-19 | 1990-04-19 | Character recognition method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2917396B2 (en) |
-
1990
- 1990-04-19 JP JP2101835A patent/JP2917396B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH041880A (en) | 1992-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2940936B2 (en) | Tablespace identification method | |
JP3139521B2 (en) | Automatic language determination device | |
US6038351A (en) | Apparatus and method for multi-entity, mixed document environment document identification and processing | |
US20030161523A1 (en) | MICR-based optical character recognition system and method | |
US7593600B2 (en) | Black white image scaling for optical character recognition | |
KR20010050887A (en) | Image processing apparatus and method for processing an image | |
JP2002298085A (en) | Character recognition device, character recognition method, and record medium | |
JP3335009B2 (en) | Image processing method and image processing apparatus | |
US6983071B2 (en) | Character segmentation device, character segmentation method used thereby, and program therefor | |
JPS5991582A (en) | Character reader | |
JP2917396B2 (en) | Character recognition method | |
JP2751865B2 (en) | String recognition device | |
JP3113769B2 (en) | Character recognition device | |
JP3090070B2 (en) | Form identification method and device | |
JP3163698B2 (en) | Character recognition method | |
JPH05159062A (en) | Document recognition device | |
JP3756660B2 (en) | Image recognition method, apparatus and recording medium | |
JP4011859B2 (en) | Word image normalization device, word image normalization program recording medium, and word image normalization program | |
JPH01321589A (en) | Feature extraction system | |
JPS5949671A (en) | Optical character reader | |
Thi et al. | Combining Feature Extraction Methods and Principal Component Analysis for Recognition of Vietnamese Off-Line Handwritten Uppercase Accented Characters | |
JPH02230366A (en) | Slip recognizing device | |
Goraine et al. | Recognition of typewritten Arabic characters in different fonts | |
JPH08123904A (en) | Character style classification processing device | |
JP2963474B2 (en) | Similar character identification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |