JP2901066B2 - Zoom lens - Google Patents
Zoom lensInfo
- Publication number
- JP2901066B2 JP2901066B2 JP63166788A JP16678888A JP2901066B2 JP 2901066 B2 JP2901066 B2 JP 2901066B2 JP 63166788 A JP63166788 A JP 63166788A JP 16678888 A JP16678888 A JP 16678888A JP 2901066 B2 JP2901066 B2 JP 2901066B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lenses
- positive
- group
- zoom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Lenses (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、カメラ特に銀塩フィルムを用いたコンパク
トカメラに適した小型軽量で低コストなズームレンズに
関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small, lightweight, low-cost zoom lens suitable for a camera, particularly a compact camera using a silver halide film.
[従来の技術] 近年、銀塩コンパクトカメラにおいては、撮影レンズ
のズーム化が進行しており、ズームレンズを用いたもの
は、撮影のバリエーションを増やすというメリットから
今後の主流になることが予想される。[Prior Art] In recent years, zooming of a photographing lens has been progressing in a silver halide compact camera, and a camera using a zoom lens is expected to become a mainstream in the future due to an advantage of increasing photographing variations. You.
2倍程度のズーム比を持ち、かつ小型なズームレンズ
としては、例えば特開昭62−264019号公報に記載された
ものがある。このズームレンズは、物体側より順に正の
屈折力を持つ第1群と負の屈折力を持つ第2群よりな
り、両群間の間隔を変化させることによって変倍を行な
うものであり、比較的コンパクトなレンズ系である。し
かしレンズ構成枚数は8枚と多く、高コストである上に
全長も広角端における望遠比が1.3程度であって十分短
いとはいえない。An example of a small zoom lens having a zoom ratio of about 2 and being described in Japanese Patent Application Laid-Open No. Sho 62-264019 is known. This zoom lens is composed of a first lens unit having a positive refractive power and a second lens unit having a negative refractive power in order from the object side, and performs zooming by changing the distance between the two units. It is a compact lens system. However, the number of lens components is as large as eight, which is expensive, and the overall length is not sufficiently short because the telephoto ratio at the wide-angle end is about 1.3.
したがって現在あるズームレンズ付コンパクトカメラ
は、本体に比べてズームレンズの占める割合が大きさ,
重さ,コスト共に大であって、このズームレンズの小
型,軽量,低コスト化は非常に重要な課題である。Therefore, in the existing compact camera with zoom lens, the proportion of the zoom lens occupied by
Since both weight and cost are large, it is very important to reduce the size, weight and cost of this zoom lens.
レンズ系の軽量化、低コスト化にとってレンズをプラ
スチック化することが非常に有力な手段である。しかし
現在光学用に使用できるプラスチックは種類が極めて限
られており、使用出来るものも屈折率が1.5〜1.6程度で
低い屈折率である。そのためレンズ設計において、プラ
スチックレンズを採用することは容易なことではない。
つまり従来のタイプのレンズ系にそのまま単にプラスチ
ックレンズをおきかえた場合、性能の劣化が大きい。Plasticizing the lens is a very effective means for reducing the weight and cost of the lens system. However, the types of plastics that can be used for optics at present are extremely limited, and those that can be used have a low refractive index of about 1.5 to 1.6. Therefore, it is not easy to adopt a plastic lens in lens design.
That is, when a plastic lens is simply replaced with a conventional type lens system, the performance is greatly deteriorated.
例えば小型なズームレンズでかつレンズ枚数の少ない
レンズ系として、特開昭57−201213号公報に記載されて
いるものがある。この従来のズームレンズは、物体側よ
り順に正の第1群と負の第2群よりなり、第1群が正,
負,正の3枚のレンズ又第2群が正,負の2枚のレンズ
の合計5枚のレンズにて構成され、少ない枚数のレンズ
系である。この従来例のようなレンズ構成は、レンズ系
の小型化にとっては非常に有利なレンズ構成である。し
かしこの従来例のズームレンズは、変倍比が1.5であっ
て小さい。又各レンズの屈折率が1.7前後であって、前
述のように低い屈折率のプラスチックレンズをそのまま
おきかえることは出来ない。For example, as a small zoom lens system having a small number of lenses, there is one disclosed in Japanese Patent Application Laid-Open No. 57-201213. This conventional zoom lens includes, in order from the object side, a positive first unit and a negative second unit, where the first unit is positive,
The negative and positive three lenses and the second group are composed of a total of five lenses including two positive and negative lenses, which is a small number of lens systems. The lens configuration as in this conventional example is a very advantageous lens configuration for downsizing the lens system. However, this conventional zoom lens has a variable magnification ratio of 1.5, which is small. Further, the refractive index of each lens is about 1.7, and it is not possible to replace a plastic lens having a low refractive index as described above.
上記の従来例と同じレンズ構成で、変倍比を2に又広
角端での望遠比を1.2程度にしようとすると第1群,第
2群のパワーが非常に大きくなり、球面収差,歪曲収
差,非点収差,コマ収差がいずれも大になり、結像性能
が著しく低下する。When the zoom ratio is set to 2 and the telephoto ratio at the wide-angle end is set to about 1.2 with the same lens configuration as the above-mentioned conventional example, the power of the first and second units becomes extremely large, and spherical aberration and distortion are caused. , Astigmatism, and coma are all large, and the imaging performance is significantly reduced.
[発明が解決しようとする課題] 本発明は、ズーム比が2程度のコンパクトカメラ用ズ
ームレンズで、小型,軽量,低コスト化を同時に達成
し、かつ良好な光学性能を有するものを提供することを
目的とするものである。[Problems to be Solved by the Invention] The present invention is to provide a zoom lens for a compact camera having a zoom ratio of about 2, which simultaneously achieves a reduction in size, weight, and cost and has good optical performance. It is intended for.
[課題を解決するための手段] 本発明のズームレンズは、前記の目的を達成するため
に、物体側より順に物体側に凸面を向けた正レンズの第
1レンズと物体側に凹面を向けた負レンズの第2レンズ
と両凸レンズの第3レンズよりなり全体として正の屈折
力を持つ第1群と、物体側に凹面を向けた正メニスカス
レンズの第4レンズと物体側に凹面を向けた負レンズの
第5レンズよりなり全体として負の屈折力を持つ第2群
よりなり、第1群と第2群の間隔を変化させてズーミン
グを行なうレンズ系において、前記第1レンズ乃至前記
第5レンズのすべてのレンズが均質レンズであり、それ
らのうち少なくとも3枚のレンズがプラスチックであ
り、前記第1群と前記第2群との間に絞りを有し、およ
び各群に少なくとも1面の非球面を有し、特に前記第3
レンズに非球面を有することを特徴としている。Means for Solving the Problems In order to achieve the above object, a zoom lens according to the present invention has a first lens of a positive lens having a convex surface facing the object side in order from the object side and a concave surface facing the object side. A first lens unit composed of a second lens of a negative lens and a third lens of a biconvex lens and having a positive refractive power as a whole, and a fourth lens of a positive meniscus lens having a concave surface facing the object side and a concave surface facing the object side. In a lens system comprising a second lens unit having a fifth negative lens and having a negative refractive power as a whole and performing zooming by changing an interval between the first unit and the second unit, the first lens to the fifth lens unit may be used. All of the lenses are homogeneous, at least three of which are plastic, have a diaphragm between the first and second groups, and each group has at least one surface. Having an aspheric surface, especially The third
The lens has an aspherical surface.
本発明のズームレンズは、前述の従来例と同様に第1
群を正,負,正の3枚、第2群を正,負の2枚の計5枚
の構成とし、少なくとも3枚のプラスチックレンズを用
いたにも拘らず、第1群と第2群の夫々に少なくとも1
面の非球面を適切に配置することによって、従来例より
も変倍比,広角端における望遠比の点で優れしかも諸収
差が良好なレンズ系となし得たものである。The zoom lens according to the present invention has the first
The first group and the second group are composed of a total of five lenses including three positive, negative and positive lenses and two positive and negative two lenses, and using at least three plastic lenses. At least one for each
By appropriately arranging the aspherical surfaces, a lens system which is more excellent in zoom ratio and telephoto ratio at the wide-angle end than in the conventional example and in which various aberrations are excellent can be obtained.
これら非球面のうち第1群に用いる非球面は、主に球
面収差を補正するのに有効であり、特に絞りに近い面に
用いると球面収差のみをコントロール出来る。この非球
面の形状は、球面収差を補正する形つまり光軸から離れ
るにつれて正の屈折率が弱まるようにする必要がある。Among these aspheric surfaces, the aspheric surface used for the first lens group is mainly effective for correcting spherical aberration. In particular, when used on a surface close to the stop, only the spherical aberration can be controlled. The shape of the aspheric surface needs to be such that spherical aberration is corrected, that is, the positive refractive index decreases as the distance from the optical axis increases.
又第2群に用いる非球面は、主に非点収差,歪曲収差
などの軸外収差を補正するのに有効である。ここで用い
る非球面の形状は、負の歪曲を補正する形つまり光軸か
ら離れるにしたがって負の屈折力が弱まるようにする必
要がある。The aspherical surface used for the second lens group is effective mainly for correcting off-axis aberrations such as astigmatism and distortion. The shape of the aspherical surface used here needs to be such that negative distortion is corrected, that is, the negative refractive power becomes weaker as the distance from the optical axis increases.
これらの非球面は、次の条件(1),(2)を満足す
ることが望ましい。It is desirable that these aspheric surfaces satisfy the following conditions (1) and (2).
(1) 5×10-4<(ΣΔxI)/fW<1×10-2 (y=y3.7) (2) 5×10-3<(ΣΔxII)/h<1×10-1 (y=yEC) ただしΔxIは第1群に用いる非球面の基準球面からの
ずれ量、ΔxIIは第2群に用いる非球面の基準球面から
のずれ量、fWは広角端におけるレンズ全系の焦点距離、
hは最大像高、yは光軸からの高さ、y3.7は第1群の
非球面における広角端でのF/3.7のマージナル光線高、y
ECは第2群の非球面における広角端での最大画角の主光
線高である。またΔxI,ΔxIIの符合はΔxIについては正
の屈折力を弱める方向を正、ΔxIIについては負の屈折
力を弱める方向を正にとるものとする。(1) 5 × 10 −4 <(ΣΔx I ) / f W <1 × 10 −2 (y = y 3.7 ) (2) 5 × 10 −3 <(ΣΔx II ) / h <1 × 10 −1 ( y = y EC ) where Δx I is the amount of deviation of the aspheric surface used for the first unit from the reference sphere, Δx II is the amount of deviation of the aspheric surface used for the second unit from the reference sphere, and f W is the total amount of the lens at the wide-angle end. The focal length of the system,
h is the maximum image height, y is the height from the optical axis, y 3.7 is the marginal ray height of F / 3.7 at the wide-angle end of the first group of aspheric surfaces, y
EC is the principal ray height at the maximum angle of view at the wide-angle end in the aspheric surface of the second lens unit. The signs of Δx I and Δx II are positive for Δx I in the direction in which the positive refractive power is weakened, and positive for Δx II in the direction in which the negative refractive power is weak.
上記条件(1)の下限を越えると球面収差が補正不足
になり又上限を越えると逆に補正過剰になる。If the lower limit of the above condition (1) is exceeded, the spherical aberration will be undercorrected. If the upper limit is exceeded, the correction will be overcorrected.
条件(2)の下限を越えると広角側において負の歪曲
収差が過大になるうえ非点収差が悪化し、上限を越える
と広角側において負の歪曲収差が補正過剰になるうえ非
点収差,コマ収差が悪化する。If the lower limit of the condition (2) is exceeded, the negative distortion becomes excessive and the astigmatism worsens on the wide-angle side. If the upper limit is exceeded, the negative distortion becomes overcorrected on the wide-angle side and the astigmatism and coma Aberration worsens.
次に本発明ズームレンズでは、多くのプラスチックレ
ンズを使用している。現在プラスチックレンズ等のよう
な光学用として使用できるプラスチック材料は、アクリ
ルに代表される低屈折率,低分散(屈折率約1.5、アッ
ベ数約60)のものと、ポリカーボネートに代表される中
屈折率,高分散(屈折率約1.6,アッベ数約30)の二つを
挙げることが出来る。Next, in the zoom lens of the present invention, many plastic lenses are used. Currently, plastic materials that can be used for optics, such as plastic lenses, have low refractive index and low dispersion (typically acrylic) and medium refractive index (typically polycarbonate) with low refractive index and low dispersion (about 1.5 and Abbe number about 60). , High dispersion (refractive index about 1.6, Abbe number about 30).
プラスチックレンズを本発明のズームレンズに適用す
る場合、色収差の補正を考慮すると第1レンズ,第3レ
ンズ,第4レンズ,第5レンズには低屈折率,低分散の
ものが適しており、第2レンズには中屈折率,高分散の
ものが適している。第2レンズ以外に高分散のものを用
いると色収差が過大になり、第2レンズに低分散のもの
を用いると色収差が補正不足になる。When a plastic lens is applied to the zoom lens of the present invention, a lens having a low refractive index and a low dispersion is suitable for the first lens, the third lens, the fourth lens, and the fifth lens in consideration of correction of chromatic aberration. A medium-refractive-index, high-dispersion lens is suitable for the two lenses. If a high-dispersion lens other than the second lens is used, the chromatic aberration becomes excessive, and if a low-dispersion lens is used for the second lens, the chromatic aberration is insufficiently corrected.
以上のことから次の条件(3)を満足することが望ま
しい。From the above, it is desirable to satisfy the following condition (3).
(3) ν2<45 ただしν2は第2レンズのアッベ数である。(3) ν 2 <45 where ν 2 is the Abbe number of the second lens.
この条件(3)はより外れると色収差が補正不足にな
る。If the condition (3) is further deviated, chromatic aberration will be insufficiently corrected.
前記のように本発明のレンズ系においてプラスチック
レンズを用いる場合、第1レンズ,第3レンズ,第4レ
ンズの各正レンズに低屈折率,低分散のものを用いるこ
とになる。この場合正レンズが低屈折率であるのでペッ
ツバール和が正の大きな値になる傾向があり、像面性を
良好に保つことが困難になる。これは非球面を用いても
補正困難である。As described above, when a plastic lens is used in the lens system of the present invention, each of the first lens, the third lens, and the fourth lens has a low refractive index and a low dispersion. In this case, since the positive lens has a low refractive index, the Petzval sum tends to have a large positive value, and it is difficult to maintain good image surface properties. This is difficult to correct even if an aspherical surface is used.
上記のペッツバール和を補正して像面性を保つために
は、負レンズである第5レンズに低屈折率の材質を用い
る必要がある。そのために第5レンズの屈折率n5は次の
条件(4)を満足することが好ましい。In order to correct the Petzval sum and maintain the image surface property, it is necessary to use a material having a low refractive index for the fifth lens, which is a negative lens. Refractive index n 5 of the fifth lens For that purpose it is preferable to satisfy the following condition (4).
(4) n5<1.6 条件(4)の範囲を越えると、プラスチックレンズを
多用する場合、ペッツバール和が正の大きな値になり像
面性が悪化する。(4) When n 5 exceeds the range of <1.6 Condition (4), when intensive plastic lens, the Petzval sum image surface resistance becomes a large value of the positive deteriorates.
本発明のレンズ系において、諸収差を一層良好に補正
するためには次の条件(5),(6)を満足することが
望ましい。In the lens system of the present invention, it is desirable to satisfy the following conditions (5) and (6) in order to better correct various aberrations.
(5) −0.3<f5/f4<0 (6) −6<fW/r10<−3 ただしf4,f5は夫々第4レンズ、第5レンズの焦点距
離、r10は第5レンズの物体側の面の曲率半径である。(5) −0.3 <f 5 / f 4 <0 (6) −6 <f W / r 10 <−3 where f 4 and f 5 are the fourth lens and the focal length of the fifth lens, respectively, and r 10 is the fourth lens. The radius of curvature of the object-side surface of the five lenses.
条件(5)は、第2群を構成する第4レンズと第5レ
ンズの焦点距離の比を規定したものである。Condition (5) defines the ratio of the focal lengths of the fourth lens and the fifth lens forming the second group.
本発明の目的であるズーム比が2程度で広角端での望
遠比が1.2程度のズームレンズを得ようとすると第2群
に大きな負のパワーが必要になる。このパワーを近軸理
論で計算すると−1/fw前後になり、これを第4レンズと
第5レンズで分担することになる。ここで第4レンズの
正のパワーが強くなるとそれに伴って第5レンズの負の
パワーが強くなり高次の収差の発生が過大になる。逆に
第4レンズの正のパワーが弱くなると、第5レンズで発
生する収差を補正する能力がなくなる。したがって第4
レンズと第5レンズのパワー配分は重要であり、条件
(5)を満足することが好ましい。In order to obtain a zoom lens having a zoom ratio of about 2 and a telephoto ratio at the wide-angle end of about 1.2, which is the object of the present invention, a large negative power is required for the second lens unit. When calculating this power in the paraxial theory -1 / f w becomes longitudinal, it made it to be shared by the fourth lens and the fifth lens. Here, when the positive power of the fourth lens is increased, the negative power of the fifth lens is increased accordingly, and the generation of higher-order aberrations becomes excessive. Conversely, when the positive power of the fourth lens is weakened, the ability to correct the aberration generated in the fifth lens is lost. Therefore the fourth
The power distribution between the lens and the fifth lens is important, and it is preferable to satisfy the condition (5).
条件(5)の下限を越えると特に非点収差が悪化する
うえ第4レンズ,第5レンズ共に偏心がききやすくな
り、上限を越えると非点収差,コマ収差が悪化し、いず
れも好ましくない。If the lower limit of the condition (5) is exceeded, especially the astigmatism will worsen, and the decentering of both the fourth lens and the fifth lens will tend to be more pronounced.
条件(6)は、第5レンズの物体側の面の曲率半径を
規定する条件である。Condition (6) is a condition for defining the radius of curvature of the object-side surface of the fifth lens.
本発明のズームレンズは、収差補正をするにあたっ
て、広角側での軸外収差と望遠側での球面収差,コマ収
差をいかにうまくバランスさせるかが問題となり、これ
をバランスさせるために設けたものが条件(6)であ
る。In the zoom lens of the present invention, when correcting aberrations, it is important to balance off-axis aberrations on the wide-angle side with spherical aberrations and coma on the telephoto side. Condition (6).
条件(6)の下限を越えると特に広角端での非点収差
が悪化し、条件を越えると望遠端での球面収差,コマ収
差が悪化し好ましくない。When the value exceeds the lower limit of the condition (6), astigmatism particularly at the wide-angle end deteriorates. When the value exceeds the condition, spherical aberration and coma at the telephoto end deteriorate, which is not preferable.
本発明のズームレンズは、以上述べたような構成にす
ることによって5枚のレンズすべてをプラスチック化す
ることも可能である。5枚全部をプラスチックレンズに
した場合、非常に低コストで軽量である反面、温度や湿
度の影響を受けやすい。つまり温度や湿度が変化するこ
とによってレンズの屈折率や形状が変化しピントずれを
生ずる。このことは、あらかじめ設定されたところまで
レンズを駆動することによってピント合わせを行なう方
式のコンパクトカメラではピントが合わないことになり
好ましくない。しかし例えば特開昭62−111223号公報に
示されたようにオートフォーカス機構と組合わせて補正
することも出来るので致命的ではない。With the zoom lens according to the present invention, all five lenses can be made of plastic by adopting the above-described configuration. If all five lenses are made of plastic lenses, they are very low cost and lightweight, but are susceptible to temperature and humidity. In other words, a change in temperature or humidity changes the refractive index or shape of the lens, resulting in defocus. This is not preferable because a compact camera of a type in which focusing is performed by driving a lens to a preset position does not achieve focusing. However, the correction can be made in combination with an autofocus mechanism as shown in, for example, JP-A-62-111223, so that it is not fatal.
本発明のレンズ系において、1,2枚のガラスレンズを
用いる場合、次の条件(7),(8)を満足することが
望ましい。When one or two glass lenses are used in the lens system of the present invention, it is desirable to satisfy the following conditions (7) and (8).
(7) ni<1.75 (8) νi>45 ただしni,νiは夫々第iレンズの屈折率およびアッ
ベ数である。(7) n i <1.75 (8) v i > 45 where n i and v i are the refractive index and Abbe number of the ith lens, respectively.
条件(7)の範囲を越えると、ペッツバール和が負の
大きな値をとるようになり、像面正が悪化するので好ま
しくない。また条件(8)の範囲を越えると色収差が過
大になり好ましくない。Exceeding the range of the condition (7) is not preferable because the Petzval sum takes a large negative value and the image surface is deteriorated. When the value exceeds the range of the condition (8), chromatic aberration becomes excessively large, which is not preferable.
本発明レンズ系で、5枚のうち1,2枚をガラスレンズ
におきかえた場合、このレンズの適切な選択によって温
度,湿度の影響を非常に小さくすることが出来る。しか
し3枚以上のレンズをガラスレンズにすると低コスト,
軽量化のメリットが少なくなる。When one or two of the five lenses are replaced with glass lenses in the lens system of the present invention, the effects of temperature and humidity can be made very small by appropriate selection of this lens. However, if three or more lenses are glass lenses, low cost,
The benefits of weight reduction are reduced.
本発明のズームレンズは、先に述べたように第1群と
第2群の間の間隔を変化させて変倍することを基本にし
ている。しかし変倍の際に各群でのレンズ間隔を微小に
変化させることによってさらに良好に収差補正を行なう
ことが出来る。これは収差補正上の自由度が増えるため
で特に非点収差等を良好に補正し得る。As described above, the zoom lens of the present invention is based on changing the distance between the first group and the second group to change the magnification. However, aberrations can be more favorably corrected by changing the lens interval in each group minutely during zooming. This is because the degree of freedom in aberration correction is increased, and particularly, astigmatism and the like can be favorably corrected.
又本発明のズームレンズにおけるフォーカシングは、
通常第1群全体を繰り出して行なうが第2群を移動させ
て行なうことも可能である。Focusing in the zoom lens of the present invention is as follows.
Normally, the whole operation is performed by extending the first group, but it is also possible to perform the operation by moving the second group.
[実施例] 次に本発明のズームレンズの各実施例を示す。EXAMPLES Next, examples of the zoom lens of the present invention will be described.
実施例1 f=36.05〜67.9、F/3.64〜F/5.2 最大像高 21.6、広角端望遠比 1.28 r1=20.9531 d1=3.0000 n1=1.49216 ν1=57.50 r2=69.4838 d2=2.0000 r3=−21.4411 d3=4.0129 n2=1.58362 ν2=30.37 r4=145.2381 d4=3.0820 r5=21.2730 d5=4.2000 n3=1.49216 ν3=57.50 r6=−18.0087(非球面) d6=1.0000 r7=∽(絞り) d7=D1(可変) r8=−30.5685(非球面) d8=2.6000 n4=1.49216 ν4=57.50 r9=−22.8150 d9=5.2513 r10=−9.7569 d10=2.0000 n5=1.49216 ν5=57.50 r11=−72.1631 非球面係数 (第6面) P=0.8842、A2=0、A4=0.67468×10-4 A6=−0.51333×10-8、A8=0.19994×10-8 (第8面) P=1.9017、A2=0、A4=0.66594×10-4 A6=0.20332×10-8、A8=0.64631×10-8 f 36.05 50 67.9 D1 11.854 6.112 2.200 (ΣΔxI)/fW=1.0×10-3 (ΣΔxII)/h=1.3×10-2 f5/f4=−0.141、fW/r10=−3.69 実施例2 f=36.05〜67.9、F/3.64〜F/6.9 最大像高 21.6、広角端望遠比 1.22 r1=21.1119 d1=3.0000 n1=1.65844 ν1=50.86 r2=39.3452 d2=2.0000 r3=−17.7024 d3=30.3041 n2=1.58362 ν2=30.37 r4=211.2865 d4=D1(可変) r5=21.9567 d5=3.4000 n3=1.49216 ν3=57.50 r6=−15.1014(非球面) d6=1.0000 r7=∽(絞り) d7=D2(可変) r8=−26.6032(非球面) d8=2.6000 n4=1.49216 ν4=57.50 r9=−20.7714 d9=4.9909 r10=−9.5334 d10=2.0000 n5=1.49216 ν5=57.50 r11=−42.7519 非球面係数 (第6面) P=0.4066、A2=0、A4=0.75646×10-4 A6=−0.17438×10-6、A8=0.26160×10-8 (第8面) P=1.4686、A2=0、A4=0.85086×10-4 A6=−0.36793×10-7、A8=0.91682×10-8 f 36.05 50 67.9 D1 1.862 2.504 2.222 D2 12.960 6.143 2.000 (ΣΔxI)/fW=1.7×10-3 (ΣΔxII)/h=1.3×10-2 f5/f4=−0.152、fW/r10=−3.78 実施例3 f=36.05〜67.9、F/3.64〜F/5.2 最大像高 21.6、広角端望遠比 1.20 r1=15.1724 d1=3.6000 n1=1.49216 ν1=57.50 r2=66.7752 d2=1.7000 r3=−27.2601 d3=2.9431 n2=1.71736 ν2=29.51 r4=68.5097 d4=3.4436 r5=27.8714 d5=3.4000 n3=1.51742 ν3=52.41 r6=−18.1090(非球面) d6=1.0000 r7=∽(絞り) d7=D1(可変) r8=−30.1386 d8=3.0000 n4=1.49216 ν4=57.50 r9=−17.5805(非球面) d9=D2(可変) r10=−9.2526 d10=2.0000 n5=1.49216 ν5=57.50 r11=−189.5103 非球面係数 (第6面) P=−3.2018、A2=0 A4=−0.14123×10-4 A6=−0.18344×10-6、A8=0.21423×10-8 (第9面) P=2.22519、A2=0、A4=−0.67556×10-4 A6=−0.67061×10-6、A8=−0.20258×10-7 f 36.05 50 67.9 D1 10.871 5.372 2.200 D2 4.803 4.457 3.900 (ΣΔxI)/fW=8.0×10-4 (ΣΔxII)/h=1.5×10-2 f5/f4=−0.250、fW/r10=−3.90 実施例4 f=36.05〜67.9、F/3.64〜F/7.0 最大像高 21.6、広角端望遠比 1.23 r1=19.2603 d1=3.0000 n1=1.49216 ν1=50.50 r2=53.0583 d2=D1(可変) r3=−19.0163 d3=4.0043 n2=1.58362 ν2=30.37 r4=169.8082 d4=D2(可変) r5=22.1427 d5=3.4000 n3=1.49216 ν3=57.50 r6=−16.1589(非球面) d6=1.0000 r7=∽(絞り) d7=D3(可変) r8=−33.3918(非球面) d8=2.6000 n4=1.49216 ν4=57.50 r9=−22.8566 d9=D4(可変) r10=−9.7414 d10=2.0000 n5=1.49216 ν5=57.50 r11=−80.5917(非球面) 非球面係数 (第6面) P=0.5168、A2=0、A4=−0.72823×10-4 A6=−0.25576×10-6、A8=0.40774×10-8 (第8面) P=0.8762、A2=0、A4=0.71911×10-4 A6=−0.96400×10-6、A8=0.83133×10-8 (第11面) P=11.2777、A2=0、 A4=−0.21558×10-6 A6=−0.35885×10-7、A8=0.18755×10-9 f 36.05 50 67.9 D1 2.096 1.700 1.851 D2 1.906 2.916 2.629 D3 12.472 6.209 2.200 D4 4.900 4.811 4.946 (ΣΔxI)/fW=1.5×10-3 (ΣΔxII)/h=1.4×10-2 f5/f4=−0.167、fW/r10=−3.70 上記データーにおいて、r1,r2,…はレンズ各面の曲率
半径、d1,d2,…は各レンズの肉厚および空気間隔、n1,n
2,…は各レンズの屈折率、ν1,ν2,…は各レンズのアッ
ベ数である。Example 1 f = 36.05 to 67.9, F / 3.64 to F / 5.2 Maximum image height 21.6, telephoto ratio at wide-angle end 1.28 r 1 = 20.9531 d 1 = 3.0000 n 1 = 1.49216 ν 1 = 57.50 r 2 = 69.4838 d 2 = 2.0000 r 3 = -21.4411 d 3 = 4.0129 n 2 = 1.58362 ν 2 = 30.37 r 4 = 145.2381 d 4 = 3.0820 r 5 = 21.2730 d 5 = 4.2000 n 3 = 1.49216 ν 3 = 57.50 r 6 = -18.0087 ( aspherical) d 6 = 1.0000 r 7 = ∽ (aperture) d 7 = D 1 (variable) r 8 = -30.5685 (aspherical surface) d 8 = 2.6000 n 4 = 1.49216 ν 4 = 57.50 r 9 = -22.8150 d 9 = 5.2513 r 10 = -9.7569 d 10 = 2.0000 n 5 = 1.49216 ν 5 = 57.50 r 11 = -72.1631 aspherical coefficients (sixth surface) P = 0.8842, A 2 = 0, A 4 = 0.67468 × 10 -4 A 6 = - 0.51333 × 10 -8 , A 8 = 0.19994 × 10 -8 (8th surface) P = 1.9017, A 2 = 0, A 4 = 0.66594 × 10 -4 A 6 = 0.20332 × 10 -8 , A 8 = 0.64631 × 10 -8 f 36.05 50 67.9 D 1 11.854 6.112 2.200 (ΣΔx I ) / f W = 1.0 × 10 -3 (ΣΔx II ) /h=1.3×10 -2 f 5 / f 4 = −0.141, f W / r 10 = −3.69 Example 2 f = 36.05 to 67.9, F / 3.64 to F / 6.9 Maximum image height 21.6, Telephoto ratio at wide-angle end 1.22 r 1 = 21.1119 d 1 = 3.0000 n 1 = 1.65844 v 1 = 50.86 r 2 = 39.3452 d 2 = 2.0000 r 3 = -17.7024 d 3 = 30.3041 n 2 = 1.58362 ν 2 = 30.37 r 4 = 211.2865 d 4 = D 1 (variable) r 5 = 21.9567 d 5 = 3.4000 n 3 = 1.49216 ν 3 = 57.50 r 6 = -15.1014 (aspherical surface) d 6 = 1.0000 r 7 = ∽ (aperture) d 7 = D 2 (variable) r 8 = −26.6032 (aspherical surface) d 8 = 2.6000 n 4 = 1.49216 ν 4 = 57.50 r 9 = -20.7714 d 9 = 4.9909 r 10 = -9.5334 d 10 = 2.0000 n 5 = 1.49216 ν 5 = 57.50 r 11 = -42.7519 aspherical coefficients (sixth surface) P = 0.4066, A 2 = 0, A 4 = 0.75646 × 10 −4 A 6 = −0.17438 × 10 −6 , A 8 = 0.26160 × 10 −8 (8th surface) P = 1.4686, A 2 = 0, A 4 = 0.85086 × 10 −4 A 6 = −0.36793 × 10 -7 , A 8 = 0.91682 × 10 -8 f 36.05 50 67.9 D 1 1.862 2.504 2.222 D 2 12.960 6.143 2.000 (ΣΔx I ) / f W = 1.7 × 10 -3 (ΣΔ x II) /h=1.3×10 -2 f 5 / f 4 = -0.152, f W / r 10 = -3.78 Example 3 f = 36.05~67.9, F / 3.64~F / 5.2 maximum image height 21.6, wide Edge telephoto ratio 1.20 r 1 = 15.1724 d 1 = 3.6000 n 1 = 1.49216 ν 1 = 57.50 r 2 = 66.7752 d 2 = 1.7000 r 3 = -27.2601 d 3 = 2.9431 n 2 = 1.71736 ν 2 = 29.51 r 4 = 68.5097 d 4 = 3.4436 r 5 = 27.8714 d 5 = 3.4000 n 3 = 1.51742 ν 3 = 52.41 r 6 = -18.1090 ( aspherical) d 6 = 1.0000 r 7 = ∽ ( stop) d 7 = D 1 (variable) r 8 = −30.1386 d 8 = 3.0000 n 4 = 1.49216 ν 4 = 57.50 r 9 = −17.5805 (aspherical surface) d 9 = D 2 (variable) r 10 = −9.2526 d 10 = 2.0000 n 5 = 1.49216 ν 5 = 57.50 r 11 = −189.5103 Aspheric coefficient (Sixth surface) P = −3.2018, A 2 = 0 A 4 = −0.14123 × 10 −4 A 6 = −0.18344 × 10 −6 , A 8 = 0.21423 × 10 −8 (No. 9 Surface) P = 2.22519, A 2 = 0, A 4 = −0.67556 × 10 −4 A 6 = −0.67061 × 10 −6 , A 8 = −0.20258 × 10 −7 f 36.05 50 67.9 D 1 10.871 5.372 2.200 D 2 4.803 4.457 3.900 (ΣΔx I ) / f W = 8.0 × 10 -4 (ΣΔx II ) /h=1.5×10 -2 f 5 / f 4 = −0.250, f W / r 10 = −3.90 Example 4 f = 36.05-67.9, F / 3.64-F / 7.0 Maximum image height 21.6, Telephoto ratio at wide-angle end 1.23 r 1 = 19.2603 d 1 = 3.0000 n 1 = 1.49216 ν 1 = 50.50 r 2 = 53.0583 d 2 = D 1 (variable ) R 3 = -19.0163 d 3 = 4.0043 n 2 = 1.58362 ν 2 = 30.37 r 4 = 169.8082 d 4 = D 2 (variable) r 5 = 22.1427 d 5 = 3.4000 n 3 = 1.49216 ν 3 = 57.50 r 6 = − 16.1589 (aspheric surface) d 6 = 1.0000 r 7 = ∽ (aperture) d 7 = D 3 (variable) r 8 = -33.3918 (aspheric surface) d 8 = 2.6000 n 4 = 1.49216 ν 4 = 57.50 r 9 = -22.8566 d 9 = D 4 (variable) r 10 = −9.7414 d 10 = 2.0000 n 5 = 1.49216 ν 5 = 57.50 r 11 = −80.5917 (aspherical surface) Aspherical surface coefficient (Sixth surface) P = 0.5168, A 2 = 0 , A 4 = −0.72823 × 10 −4 A 6 = −0.25576 × 10 −6 , A 8 = 0.40774 × 10 −8 (8th surface) P = 0.762, A 2 = 0, A 4 = 0.71911 × 10 −4 A 6 = -0.96400 x 10 -6 , A 8 = 0.83133 x 10 -8 (Surface 11) P = 11.2777, A 2 = 0, A 4 = -0.21558 x 10 -6 A 6 = -0.35885 x 10 -7 , A 8 = 0.18755 × 10 -9 f 36.05 50 67.9 D 1 2.096 1.700 1.851 D 2 1.906 2.916 2.629 D 3 12.472 6.209 2.200 D 4 4.900 4.811 4.946 (ΣΔx I ) / f W = 1.5 × 10 -3 (ΣΔx II ) / h = 1.4 × 10 -2 f 5 / f 4 = −0.167, f W / r 10 = −3.70 In the above data, r 1 , r 2 ,... are the radii of curvature of each lens surface, d 1 , d 2 ,. Is the wall thickness and air space of each lens, n 1 , n
2, ... is the refractive index of each lens, [nu 1, [nu 2, ... is the Abbe number of each lens.
実施例1は、第1図に示すレンズ構成であって、変倍
の際第1群と第2群の間隔のみ変化させる。レンズは全
部プラスチックレンズを用いており、第2レンズのみポ
リカーボネートでその他はすべてアクリルである。非球
面は第3レンズの像側の面と第4レンズの物体側の面に
用いている。The first embodiment has the lens configuration shown in FIG. 1, and changes only the distance between the first and second units during zooming. The lenses are all plastic lenses, only the second lens is polycarbonate, and all others are acrylic. The aspheric surface is used for the image-side surface of the third lens and the object-side surface of the fourth lens.
第2レンズに用いているポリカーボネートは、通常の
ガラスに比べて異常分散性が強く、d−線の屈折率とア
ッベ数から各波長の屈折率を算出するヘルツベルガーの
式が成立たない。そこで参考のために主要4波長の屈折
率を示すと次の通りである。The polycarbonate used for the second lens has a higher anomalous dispersion than ordinary glass, and the Hertzberger equation for calculating the refractive index of each wavelength from the d-line refractive index and Abbe number does not hold. For reference, the refractive indices of the four main wavelengths are as follows.
nd=1.58362 nc=1.57809 nF=1.59731 ng=1.60888 次にプラスチックレンズを用いた時の温度、湿度の影
響について述べる。n d = 1.58362 n c = 1.57809 n F = 1.59731 ng = 1.60888 Next, the effects of temperature and humidity when using a plastic lens will be described.
プラスチックレンズは、温度と湿度の変化により屈折
率と形状が変化し、それによってピントずれが起こる。
このピントずれは形状の変化よりも屈折率の変化による
方が大である。しかしそれによるピントずれは、正レン
ズと負レンズの適切な組合わせによって十分補正出来
る。The refractive index and shape of a plastic lens change due to changes in temperature and humidity, thereby causing defocus.
This defocus is greater due to a change in the refractive index than a change in the shape. However, the resulting defocus can be sufficiently corrected by an appropriate combination of a positive lens and a negative lens.
プラスチックの屈折率は、温度変化によりおよそ−10
-4/℃変化する。例えば温度が±30℃変化すると屈折率
はおよそ0.003変化する。実施例1のレンズ系におい
て、温度が±30℃変化して屈折率が0.003変化した時
のピント移動量を計算すると±0.3mm(広角端)〜±0.8
mm(望遠端)である。この値は湿度による影響を含めて
も実用上問題のない値である。The refractive index of plastic is approximately -10
-4 / ° C. For example, if the temperature changes by ± 30 ° C., the refractive index changes by about 0.003. In the lens system of Example 1, when the focus shift amount when the temperature changes by ± 30 ° C. and the refractive index changes by 0.003 is calculated, the focus shift amount is from ± 0.3 mm (wide angle end) to ± 0.8 mm.
mm (telephoto end). This value is a value that does not cause any practical problem even if the influence of humidity is included.
この実施例1の無限遠物体に対する広角端,中間焦点
距離,望遠端での収差状況は夫々第5図,第6図,第7
図に示す通りである。また第2群を移動させてレンズ前
面より2mの物体にピントを合わせたときの広角端,中間
焦点距離,望遠端での収差状況は、夫々第8図,第9
図,第10図に示す通りである。The aberrations of the first embodiment at the wide-angle end, the intermediate focal length, and the telephoto end with respect to an object at infinity are shown in FIGS. 5, 6, and 7, respectively.
As shown in the figure. FIGS. 8 and 9 show aberrations at the wide-angle end, the intermediate focal length, and the telephoto end, respectively, when the second unit is moved to focus on an object 2 m from the front surface of the lens.
As shown in FIG.
実施例2は、第2図に示すレンズ構成のレンズ系で、
変倍の際は第1群と第2群の間隔を変化させるとともに
1群中の第2レンズと第3レンズの間隔も僅かに変化さ
せる。この実施例は、第1レンズのみガラスレンズであ
とはすべてプラスチックレンズである。非球面は第3レ
ンズの像側の面と第4レンズの物体側の面に用いてい
る。Example 2 is a lens system having a lens configuration shown in FIG.
At the time of zooming, the distance between the first lens unit and the second lens unit is changed, and the distance between the second lens and the third lens in one lens unit is also slightly changed. In this embodiment, only the first lens is a glass lens and all are plastic lenses. The aspheric surface is used for the image-side surface of the third lens and the object-side surface of the fourth lens.
この実施例の温度,湿度の影響を実施例1と同様に計
算するとピント移動量は±0.2mm(広角端)〜±0.4mm
(望遠端)である。これは実施例1の約半分で、第1レ
ンズをガラスレンズにしたことによる効果である。When the effects of temperature and humidity in this embodiment are calculated in the same manner as in Embodiment 1, the focus shift amount is ± 0.2 mm (wide-angle end) to ± 0.4 mm.
(Telephoto end). This is an effect of using the glass lens as the first lens in about half of the first embodiment.
この実施例の無限遠物体に対する広角端,中間焦点距
離,望遠端での収差状況は、夫々第11図,第12図,第13
図に示す通りである。The aberrations at the wide-angle end, the intermediate focal length, and the telephoto end of an object at infinity in this embodiment are shown in FIGS. 11, 12, and 13, respectively.
As shown in the figure.
実施例3は、第3図に示すレンズ構成のレンズ系で、
変倍の際は、第1群と第2群の間隔を変化させるととも
に第4レンズと第5レンズの間隔を僅かに変化させる。
この実施例は、第2レンズと第3レンズがガラスレンズ
で、残りのレンズは、プラスチックレンズである。又非
球面は、第3レンズの像側の面と第4レンズの像側の面
に用いている。Example 3 is a lens system having a lens configuration shown in FIG.
At the time of zooming, the distance between the first lens unit and the second lens unit is changed, and the distance between the fourth lens and the fifth lens is slightly changed.
In this embodiment, the second lens and the third lens are glass lenses, and the remaining lenses are plastic lenses. The aspheric surface is used for the image side surface of the third lens and the image side surface of the fourth lens.
この実施例の温度,湿度の影響を同じ方法で計算する
とピント移動量は、±0.2mm(広角端)〜±0.4mm(望遠
端)となり実施例2と同程度でピント移動量が小であ
る。これもガラスレンズを用いたことによるものであ
る。When the effects of temperature and humidity in this embodiment are calculated by the same method, the focus shift amount is ± 0.2 mm (wide-angle end) to ± 0.4 mm (telephoto end), which is almost the same as that of the second embodiment and the focus shift amount is small. . This is also due to the use of a glass lens.
また、この実施例は、レンズ系の全長が非常に短く、
広角端で43.26mmで望遠比に換算すると1.20である。In this embodiment, the total length of the lens system is very short,
When converted to a telephoto ratio at the wide-angle end of 43.26 mm, it is 1.20.
この実施例の無限遠物体に対する広角端.中間焦点距
離,望遠端における収差状況は、夫々第14図,第15図,
第16図に示す通りである。Wide-angle end for an object at infinity in this embodiment. The aberrations at the intermediate focal length and telephoto end are shown in Figs.
This is as shown in FIG.
実施例4は、第4図に示すレンズ構成のレンズ系で、
変倍の際は、第1群と第2群の間隔を変化させるととも
にそれ以外の各レンズの間もすべて微小量変化させるも
のである。この実施例はすべてのレンズがプラスチック
レンズである。又非球面は、第3レンズの像側の面,第
4レンズの物体側の面,第5レンズの像側の面に用いて
いる。Example 4 is a lens system having a lens configuration shown in FIG.
At the time of zooming, the distance between the first lens unit and the second lens unit is changed, and all other lenses are also changed by a small amount. In this embodiment, all lenses are plastic lenses. The aspherical surface is used for the image side surface of the third lens, the object side surface of the fourth lens, and the image side surface of the fifth lens.
この実施例の温度,湿度の影響は実施例1と同程度で
ある。The effects of temperature and humidity of this embodiment are almost the same as those of the first embodiment.
この実施例の無限遠物体に対する広角端,中間焦点距
離,望遠端での収差状況は、夫々第17図,第18図,第19
図に示す通りである。The aberrations at the wide-angle end, the intermediate focal length, and the telephoto end of an object at infinity in this embodiment are shown in FIGS. 17, 18, and 19, respectively.
As shown in the figure.
上記各実施例で用いる非球面の形状は、光軸との交点
を原点として光軸方向にx軸、光軸に垂直な方向にy軸
をとる時次の式にて表わされるものである。The shape of the aspherical surface used in each of the above embodiments is represented by the following equation when the x-axis is taken in the optical axis direction and the y-axis is taken in a direction perpendicular to the optical axis with the intersection point with the optical axis taken as the origin.
ただしCは基準球面の曲率、P,A2iは係数である。 Here, C is the curvature of the reference spherical surface, and P and A 2i are coefficients.
[発明の効果] 本発明のズームレンズは、ズーム比が2程度で、レン
ズ枚数が5枚で極めて少なくしかもプラスチックレンズ
を多く用いた小型軽量で低コストのレンズ系で、更に光
学性能も極めて良好である。[Effects of the Invention] The zoom lens of the present invention is a small, lightweight, low-cost lens system having a zoom ratio of about 2, the number of lenses is extremely small and five, and many plastic lenses are used, and the optical performance is also extremely good. It is.
第1図乃至第4図は本発明の実施例1乃至実施例4の断
面図、第5図乃至第10図は実施例1の収差曲線図、第11
図乃至第13図は実施例2の収差曲線図、第14図乃至第16
図は実施例3の収差曲線図、第17図乃至第19図は実施例
4の収差曲線図である。1 to 4 are sectional views of Examples 1 to 4 of the present invention, FIGS. 5 to 10 are aberration curve diagrams of Example 1, and FIGS.
FIG. 13 to FIG. 13 are aberration curve diagrams of the second embodiment, and FIG. 14 to FIG.
FIG. 17 is an aberration curve diagram of the third embodiment, and FIGS. 17 to 19 are aberration curve diagrams of the fourth embodiment.
Claims (2)
ンズの第1レンズと物体側に凹面を向けた負レンズの第
2レンズと両凸レンズの第3レンズよりなり全体として
正の屈折力を持つ第1群と、物体側に凹面を向けた正メ
ニスカスレンズの第4レンズと物体側に凹面を向けた負
レンズの第5レンズよりなり全体として負の屈折力を持
つ第2群よりなり、第1群と第2群の間隔を変化させて
ズーミングを行なうレンズ系において、前記第1レンズ
乃至前記第5レンズのすべてのレンズが均質レンズであ
り、それらのうち少なくとも3枚のレンズがプラスチッ
クであり、前記第1群と前記第2群との間に絞りを有
し、および各群に少なくとも1面の非球面を有し、特に
前記第3レンズに非球面を有することを特徴とするズー
ムレンズ。1. A positive refraction comprising a first lens of a positive lens having a convex surface facing the object side in order from the object side, a second lens of a negative lens having a concave surface facing the object side, and a third lens of a biconvex lens. A first group having a positive power, a fourth lens of a positive meniscus lens having a concave surface facing the object side, and a fifth lens of a negative lens having a concave surface facing the object side. In a lens system that performs zooming by changing the distance between the first and second groups, all of the first to fifth lenses are homogeneous lenses, and at least three of the lenses are uniform. Plastic, having a stop between the first group and the second group, and having at least one aspheric surface in each group, and particularly having an aspheric surface in the third lens. Zoom lens.
非球面を有することを特徴とする請求項1のズームレン
ズ。2. The zoom lens according to claim 1, wherein a surface of said first group closest to said stop has an aspheric surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63166788A JP2901066B2 (en) | 1988-07-06 | 1988-07-06 | Zoom lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63166788A JP2901066B2 (en) | 1988-07-06 | 1988-07-06 | Zoom lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0218511A JPH0218511A (en) | 1990-01-22 |
JP2901066B2 true JP2901066B2 (en) | 1999-06-02 |
Family
ID=15837687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63166788A Expired - Fee Related JP2901066B2 (en) | 1988-07-06 | 1988-07-06 | Zoom lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2901066B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2388634A1 (en) | 2010-05-17 | 2011-11-23 | Fujifilm Corporation | Variable magnification optical system and imaging apparatus |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5327290A (en) * | 1989-10-13 | 1994-07-05 | Minolta Camera Kabushiki Kaisha | Compact size zoom lens system |
US5283693A (en) * | 1990-06-13 | 1994-02-01 | Minolta Camera Kabushiki Kaisha | Compact zoom lens system |
JPH07306361A (en) * | 1994-05-11 | 1995-11-21 | Canon Inc | Compact zoom lens |
KR100426164B1 (en) * | 1996-10-18 | 2004-07-05 | 삼성테크윈 주식회사 | Compact zoom lens using plastic lens is comprised |
JP3645096B2 (en) | 1998-07-21 | 2005-05-11 | オリンパス株式会社 | Imaging lens |
JP3435364B2 (en) * | 1998-12-24 | 2003-08-11 | ペンタックス株式会社 | Zoom lens system |
KR100959687B1 (en) * | 2008-03-21 | 2010-05-26 | 주식회사 코렌 | Photographic lens optical system |
TWI522646B (en) | 2015-04-29 | 2016-02-21 | 大立光電股份有限公司 | Imaging lens system, image capturing device and electronic device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57201213A (en) * | 1981-06-04 | 1982-12-09 | Canon Inc | Microminiature zoom lens |
JP2569302B2 (en) * | 1985-05-13 | 1997-01-08 | キヤノン株式会社 | Compact zoom lens |
JPS61148414A (en) * | 1984-12-21 | 1986-07-07 | Canon Inc | Compact zoom lens |
JPS61295524A (en) * | 1985-06-25 | 1986-12-26 | Canon Inc | Variable focal length lens |
JPH077147B2 (en) * | 1985-12-12 | 1995-01-30 | キヤノン株式会社 | Small zoom lens |
JP2628633B2 (en) * | 1986-04-25 | 1997-07-09 | オリンパス光学工業株式会社 | Compact zoom lens |
-
1988
- 1988-07-06 JP JP63166788A patent/JP2901066B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2388634A1 (en) | 2010-05-17 | 2011-11-23 | Fujifilm Corporation | Variable magnification optical system and imaging apparatus |
US8300322B2 (en) | 2010-05-17 | 2012-10-30 | Fujifilm Corporation | Variable magnification optical system and imaging apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0218511A (en) | 1990-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3253405B2 (en) | Two-group zoom lens | |
US7158315B2 (en) | Zoom lens system | |
JP2628633B2 (en) | Compact zoom lens | |
JPH083580B2 (en) | Compact high-magnification zoom lens | |
JPH10221601A (en) | Zoom lens | |
JPH11295598A (en) | Zoom lens using diffraction optical element | |
JP3365835B2 (en) | Compact 3-group zoom lens | |
JP3204703B2 (en) | Zoom lens | |
US5623371A (en) | Macro lens system | |
JPH07253542A (en) | Zoom lens | |
JP3018723B2 (en) | Zoom lens | |
JP3365837B2 (en) | Focusing method of 3-group zoom lens | |
JPH09152549A (en) | Zoom lens | |
JP2901066B2 (en) | Zoom lens | |
JP3486457B2 (en) | High magnification zoom lens including wide angle range | |
JP3331011B2 (en) | Small two-group zoom lens | |
JP3369598B2 (en) | Zoom lens | |
JP3414552B2 (en) | Zoom lens | |
JP3331223B2 (en) | Small two-group zoom lens | |
JP3678522B2 (en) | Camera with zoom lens | |
JP2546293B2 (en) | Small zoom lens | |
JP3268824B2 (en) | Small two-group zoom lens | |
JPH06130298A (en) | Compact zoom lens | |
JP2579215B2 (en) | Zoom lens | |
JP3506796B2 (en) | Real image type zoom finder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |