JP2806511B2 - Manufacturing method of sintered alloy - Google Patents
Manufacturing method of sintered alloyInfo
- Publication number
- JP2806511B2 JP2806511B2 JP3176221A JP17622191A JP2806511B2 JP 2806511 B2 JP2806511 B2 JP 2806511B2 JP 3176221 A JP3176221 A JP 3176221A JP 17622191 A JP17622191 A JP 17622191A JP 2806511 B2 JP2806511 B2 JP 2806511B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alloy
- alumina
- sintered body
- hardness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、刃物、あるいは、ギ
ア、シャフトなどの耐磨耗性を必要とする部品に適用出
来る合金系焼結体の製法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alloy-based sintered body which can be applied to a part requiring wear resistance, such as a blade, a gear, a shaft, and the like.
【0002】[0002]
【従来の技術】従来、このような用途には、セラミック
材料あるいは合金材料が用いられていた。 セラミック材料の使用 原料用セラミック粉末と有機バインダーとを混合し、射
出成形あるいは直圧成形により所定の形状に成形し、熱
処理でバインダーを飛ばした後、焼結させたセラミック
焼結品がある。このようにして製造された焼結品は、硬
度がHv=2000以上と硬いが、靱性がないため、欠
けたり、割れたりし易いという欠点があった。2. Description of the Related Art Conventionally, ceramic materials or alloy materials have been used for such applications. Use of Ceramic Material There is a ceramic sintered product in which a ceramic powder for a raw material and an organic binder are mixed, molded into a predetermined shape by injection molding or direct pressure molding, the binder is removed by heat treatment, and then sintered. The sintered product manufactured in this way has a hardness of Hv = 2000 or more, but has a drawback that it is liable to chip or crack due to lack of toughness.
【0003】 合金材料を使用する場合、一方、超硬
材料として賞用される金属材料は、靱性は優れている反
面、表面硬度(Hv=1100程度)がセラミック焼結
品の表面硬度(Hv=2000以上)と比べ相当に低
く、耐磨耗性が十分とは言い難い。そこで、金属の表面
に耐磨耗性を有する皮膜を形成し複合化によって、耐磨
耗性を向上させる試みもなされている。具体的に言う
と、例えばスパッタ法やCVD法などの方法で、金属表
面にTiNやZrN等の膜を形成するのである。この場
合、金属の表面に形成された皮膜と金属の間には、異質
材料を複合化した場合に固有的に形成される境界面が存
在するために相互の密着強度が小さいという問題や、皮
膜の厚みを十分に厚くすることが現実的に難しく膜厚に
制限が加わるため十分な耐磨耗性を確保することができ
ないという問題がある。[0003] On the other hand, when an alloy material is used, a metal material that is awarded as a super-hard material has excellent toughness, but has a surface hardness (Hv = about 1100) of a ceramic sintered product. 2000 or more), and it is difficult to say that the abrasion resistance is sufficient. Therefore, an attempt has been made to improve the wear resistance by forming a film having wear resistance on the surface of the metal and forming a composite. Specifically, a film such as TiN or ZrN is formed on the metal surface by a method such as a sputtering method or a CVD method. In this case, the interface between the metal and the film formed on the surface of the metal has a boundary surface that is inherently formed when a heterogeneous material is compounded. It is practically difficult to make the thickness sufficiently thick, and there is a problem that a sufficient abrasion resistance cannot be ensured because the thickness is limited.
【0004】[0004]
【発明が解決しようとする課題】この発明は、上記の事
情に鑑み、表面硬度が大きく、耐磨耗性に優れ、しか
も、欠けや割れが生じ難い合金系焼結体を得ることがで
きるとともに量産化適性を有する方法を提供することを
課題とする。SUMMARY OF THE INVENTION In view of the above circumstances, the present invention can provide an alloy-based sintered body having a large surface hardness, excellent abrasion resistance, and hardly causing chipping or cracking. It is an object to provide a method having suitability for mass production.
【0005】[0005]
【課題を解決するための手段】前記課題を解決するた
め、この発明の合金系焼結体の製法では、Cr:20〜
35重量%、Ni:2〜25重量%、Al:2〜8重量
%、Ti:0.5重量%以下、Zr、Y、Hf、Ce、
La、NdおよびGdのうちのいずれか1種又は2種以
上:0.05〜1.0重量%、Fe:残部からなるフェ
ライト合金(以下、「Alを含むフェライト合金」と呼
ぶ)粉末を所定の形状に成型した成形体を非酸化性雰囲
気中で1250〜1400℃の温度で加熱することによ
り焼結し、酸化性ガス雰囲気中で熱処理することにより
表面にアルミナ成分を析出させるようにする。前記「A
lを含むフェライト合金」として、Tiを含まないもの
を用いることもできる。 Means for Solving the Problems In order to solve the above problems, in the method for producing an alloy-based sintered body of the present invention, Cr: 20 to
35% by weight , Ni: 2 to 25% by weight, Al: 2 to 8% by weight, Ti: 0.5% by weight or less, Zr, Y, Hf, Ce,
One or more of La, Nd and Gd: 0.05 to 1.0% by weight, Fe: A ferrite alloy (hereinafter referred to as “Al-containing ferrite alloy”) powder composed of the balance is prescribed. Is sintered at a temperature of 1250 to 1400 ° C. in a non-oxidizing atmosphere by heating, and then heat-treated in an oxidizing gas atmosphere to precipitate an alumina component on the surface. "A
ferrite alloy containing l, not containing Ti
Can also be used.
【0006】非酸化性雰囲気としては、不活性ガス雰囲
気、あるいは、還元性ガス雰囲気、さらには、真空雰囲
気が挙げられる。非酸化性雰囲気での焼結の際の熱処理
温度を1250〜1400℃の温度範囲とする。この温
度範囲を外れると適用できる成形圧力範囲が狭くなった
りする等の制限を受ける不都合がある。[0006] As non-oxidizing atmosphere, inert gas atmosphere or, - reducing gas atmosphere, and further include vacuum atmosphere. The heat treatment temperature during sintering in a non-oxidizing atmosphere is set to a temperature range of 1250 to 1400 ° C. If the temperature is out of this range, the applicable molding pressure range may be narrowed.
【0007】Alを含むフェライト合金としては、Fe
−Cr−Al系合金やFe−Cr−Ni−Al系合金等
がある。これらの合金の母材の硬度は、その合金を構成
する金属元素の種類や含有量の多少によりHv=200
以下であったり、Hv=300以上であったり、その値
は異なる。Fe−Cr−Al系合金は概して靱性を満た
しても、硬度がHv=200以下であるので、硬度が要
求される用途(例えば、ギアやシャフトの如き機構部
品)には適していない。As a ferrite alloy containing Al, Fe
-Cr-Al-based alloys and Fe-Cr-Ni-Al-based alloys. The hardness of the base material of these alloys depends on the type and content of the metal elements constituting the alloy, and Hv = 200.
Hv = 300 or more, or the value is different. Even though Fe-Cr-Al alloys generally satisfy toughness, their hardness is Hv = 200 or less, and therefore they are not suitable for applications requiring hardness (for example, mechanical parts such as gears and shafts).
【0008】したがって、用途に応じてAlを含むフェ
ライト合金の種類は選択される。Hv=300以上の硬
度が要求される用途にはFe−Cr−Ni−Al系合金
が適し、特に、その組成がCr:20〜35重量%:N
i:2〜25重量%、Al:2〜8重量%、Ti:0.
5重量%以下、Zr、Y、Hf、Ce、La、Ndおよ
びGdのうちのいずれか1種又は2種以上:0.05〜
1.0重量%、Fe:残部からなるFe−Cr−Ni−
Al系フェライト合金が最適である。刃物、あるいは、
ギア、シャフトなどの耐磨耗性を必要とする機械部品用
として適した焼結品が得やすい。 Therefore, the type of the ferrite alloy containing Al is selected according to the application. For applications requiring a hardness of Hv = 300 or more, an Fe-Cr-Ni-Al-based alloy is suitable. In particular, the composition is Cr: 20 to 35% by weight: N
i: 2 to 25% by weight, Al: 2 to 8% by weight, Ti: 0.
5% by weight or less, any one or more of Zr, Y, Hf, Ce, La, Nd and Gd: 0.05 to
1.0% by weight, Fe: Fe-Cr-Ni-
Al-based ferrite alloys are most suitable. Knife, or
It is easy to obtain sintered products suitable for machine parts requiring wear resistance such as gears and shafts .
【0009】以下、この発明を、より具体的に説明す
る。まず、例えば、Cr:20〜35重量%:Ni:2
〜25重量%、Al:2〜8重量%、Ti:0.5重量
%以下、Zr、Y、Hf、Ce、La、NdおよびGd
のうちのいずれか1種又は2種以上:0.05〜1.0
重量%、残部が実質的にFeという配合割合で全成分を
溶解し、例えば、アトマイズ法により微粉化したり、機
械的粉砕法で合金を微粉化したりすることで、Alを含
むフェライト合金粉末を得る。Hereinafter, the present invention will be described more specifically. First, for example, Cr: 20 to 35% by weight: Ni: 2
-25% by weight, Al: 2-8% by weight, Ti: 0.5% by weight or less, Zr, Y, Hf, Ce, La, Nd and Gd
Any one or more of them: 0.05 to 1.0
The ferrite alloy powder containing Al is obtained by dissolving all the components in a mixing ratio of substantially wt%, and the balance being substantially Fe, and pulverizing the alloy by, for example, an atomizing method or pulverizing the alloy by a mechanical pulverizing method. .
【0010】このようにして得たAlを含むフェライト
合金粉末を有機のバインダーと混合し、射出成形あるい
は直圧成形などの方法で金型によって所定形状に成型
(賦形)して成形体とする。この成形体は用途に応じた
製品、部品の形状に賦形された物であり、次工程で研削
の如き加工が施されるインゴットの如き母材とは異なる
ものである。有機のバインダーの一例を示しておくと、
ポリビニルアルコール(PVA)、エチレングリコール
等の有機化合物が挙げられる。The Al-containing ferrite alloy powder thus obtained is mixed with an organic binder, and molded (formed) into a predetermined shape using a mold by a method such as injection molding or direct pressure molding to obtain a molded body. . This compact is a product shaped into the shape of a product or part according to the application, and is different from a base material such as an ingot that is subjected to processing such as grinding in the next step. As an example of an organic binder,
Organic compounds such as polyvinyl alcohol (PVA) and ethylene glycol are exemplified.
【0011】成型時の圧力は、この発明の場合、400
MPa程度の低い圧力の適用もあり、通常、400〜1
000MPa程度、あるいは、450〜600MPa程
度の範囲から選ばれる。ただ、成型時の圧力が400M
Pa未満だと寸法精度等が出難い等の傾向がみられる。
つぎに、この成形体を、非酸化性雰囲気において熱処理
することにより焼結させる。熱処理は、1250〜14
00℃(好ましくは1300〜1400℃)で行う。こ
の熱処理温度範囲であれば、液相を生じることなく十分
な硬度(Hv=300程度)や抗張力100kg/mm
以上とすることができ、機構部品としても十分な強度の
母材たりえるものが得られる。In the case of the present invention, the pressure during molding is 400
There is also application of pressure as low as about MPa, usually 400 to 1
It is selected from the range of about 000 MPa or about 450 to 600 MPa. However, the pressure during molding is 400M
If it is less than Pa, there is a tendency that dimensional accuracy and the like are difficult to appear.
Next, this compact is sintered by heat treatment in a non-oxidizing atmosphere. Heat treatment is 1250-14
It is performed at 00 ° C (preferably 1300 to 1400 ° C). Within this heat treatment temperature range, sufficient hardness (Hv = about 300) and tensile strength of 100 kg / mm without forming a liquid phase.
As a result, a base material having sufficient strength can be obtained as a mechanical component.
【0012】非酸化性雰囲気で熱処理を行う理由は、酸
化が生じると焼結が進まず合金としての靱性を確保する
ことができないからである。不活性ガス雰囲気の場合、
例えば、アルゴン、ヘリウムなどの不活性ガスが用いら
れる。還元性ガス雰囲気の場合、例えば、水素ガスなど
が用いられる。このようにして得られた焼結体は、母材
がセラミックとは異なり、フェライト合金粉末の焼結体
であるから、アルミナ析出前では、割れや欠けを生ずる
ことなく、研削、研磨などの機械加工あるいは放電加工
が容易に出来るという利点がある。したがって、要すれ
ばアルミナ析出前に機械加工や放電加工を施すことがで
きる。The reason for performing the heat treatment in a non-oxidizing atmosphere is that if oxidation occurs, sintering does not proceed and the toughness of the alloy cannot be secured. In the case of an inert gas atmosphere,
For example, an inert gas such as argon or helium is used. In the case of a reducing gas atmosphere, for example, hydrogen gas or the like is used. Since the sintered body obtained in this way is a sintered body of a ferrite alloy powder, unlike the base material of ceramic, before alumina deposition, there is no cracking or chipping, and a machine such as grinding and polishing is used. There is an advantage that machining or electric discharge machining can be easily performed. Therefore, if necessary, machining or electric discharge machining can be performed before the deposition of alumina.
【0013】従来のセラミック材料の場合、焼結に伴う
20%前後の収縮のため、寸法精度が出難くいのである
が、加工は困難であるため、後加工で寸法精度を上げる
ことが難しい。超硬材料の場合も、切削、研削などの後
加工が容易ではなく、やはり寸法精度が出難い。いずれ
の場合も、精度を要求されるところに用いるには適して
いないのである。In the case of a conventional ceramic material, it is difficult to obtain dimensional accuracy due to shrinkage of about 20% due to sintering. However, since processing is difficult, it is difficult to increase dimensional accuracy in post-processing. Even in the case of a cemented carbide material, post-processing such as cutting and grinding is not easy, and dimensional accuracy is also difficult to obtain. In any case, it is not suitable for use where precision is required.
【0014】しかし、この発明の場合、上のように、ア
ルミナ析出前では、割れや欠けを生ずることなく、研
削、研磨などの機械加工あるいは放電加工で寸法精度を
上げることができる。そのため、この発明は、寸法精度
を要求されるところにも十分に適用できる。次に、この
焼結体を、例えば、大気又は酸素ガス等の酸化性ガス雰
囲気中において、例えば、1000℃を超す温度で熱処
理を行い、表面にアルミナ(酸化アルミニウム)成分を
析出させる。この熱処理で、例えば、アルミナを主成分
とする表面層(アルミナ皮膜)付のFe−Cr−Ni−
Al合金系焼結品が出来上がる。However, in the case of the present invention, as described above, the dimensional accuracy can be increased by machining such as grinding and polishing or electric discharge machining without causing cracks or chips before the deposition of alumina. Therefore, the present invention can be sufficiently applied to places where dimensional accuracy is required. Next, the sintered body is subjected to a heat treatment at, for example, a temperature exceeding 1000 ° C. in an atmosphere or an oxidizing gas atmosphere such as an oxygen gas to deposit an alumina (aluminum oxide) component on the surface. By this heat treatment, for example, Fe—Cr—Ni— with a surface layer (alumina film) containing alumina as a main component is used.
An Al alloy sintered product is completed.
【0015】ここで、焼結体を構成する合金の表面に析
出される成分をアルミナに限定するのは、酸化性ガス雰
囲気中で熱処理すると、容易にAl元素が酸化され硬度
の高いアルミナからなるセラミックを生成することがで
きるからである。このようにして得られた合金系焼結体
は、アルミナを主成分とする表面層を有するため表面硬
度は大きくなり、かつ焼結体の内部を充たす母材が合金
であるため靱性に優れる。その上、金属表面にスパッタ
法やCVD法などによりセラミックの皮膜を形成した場
合には、皮膜と金属の母材とに境界面が形成されるので
皮膜と母材との密着強度が小さく、更に皮膜層の膜厚が
制限されるため充分な耐磨耗性が得られないのに対し、
この発明によるアルミナを主成分とする表面層は母材中
にアルミナの根が張っているため母材との密着強度が大
きく、しかも、この表面層の厚さは10〜50μmに高
めることも出来る。さらには、成型、焼結の工程により
目的とする形状に賦形し、効率の悪い切削などの加工を
要さずに製造することが可能であり、この場合には、工
業的生産に要求される経済性、大量生産効果も顕著であ
ると言える。つまり、量産適性があるのである。Here, the reason why the component deposited on the surface of the alloy constituting the sintered body is limited to alumina is that when heat treatment is performed in an oxidizing gas atmosphere, the Al element is easily oxidized and the alumina is made of high hardness. This is because ceramic can be generated. The alloy-based sintered body thus obtained has a surface layer containing alumina as a main component and thus has a high surface hardness, and has excellent toughness because the base material that fills the inside of the sintered body is an alloy. In addition, when a ceramic film is formed on a metal surface by a sputtering method, a CVD method, or the like, an interface is formed between the film and the metal base material, so that the adhesion strength between the film and the base material is small, and furthermore, While sufficient abrasion resistance cannot be obtained because the thickness of the coating layer is limited,
The surface layer comprising alumina as a main component according to the present invention has high adhesion strength to the base material because the roots of alumina are stretched in the base material, and the thickness of this surface layer can be increased to 10 to 50 μm. . Furthermore, it can be formed into the desired shape by the steps of molding and sintering, and can be manufactured without processing such as inefficient cutting. In this case, it is required for industrial production. Economic efficiency and the effect of mass production are also remarkable. In other words, it is suitable for mass production.
【0016】この発明の方法が適用できる物品として
は、以下のようなものが挙げられる。 〔家庭用に使われる刃物〕電気カミソリの刃、バリカン
(特に小石などの噛み込みの可能性のあるペット用バリ
カンや庭園用の庭木バリカン)の刃、草刈機や料理用ミ
キサー、カッターなどの刃、小刀、ハサミ、日曜大工用
ノコギリ刃など。Articles to which the method of the present invention can be applied include the following. [Cutters for household use] Electric razor blades, hair clippers (especially pet clippers and garden tree clippers that can bite pebbles, etc.), mowers, cooking mixers, cutters and other blades , Knives, scissors, do-it-yourself saw blades, etc.
【0017】〔業務用に使われる刃物〕各種帯ノコ刃、
回転刃、バイト、ダイスなどの工具類、混練機のスクリ
ューなど。 〔耐磨耗性部品〕電動ドリルの刃、ドリルチャック部
品、ギア、回転軸、軸受けなど。[Cutters used for business] Various band saw blades,
Tools such as rotary blades, cutting tools, dies, and screws for kneading machines. [Abrasion resistant parts] Electric drill blades, drill chuck parts, gears, rotating shafts, bearings, etc.
【0018】[0018]
【作用】この発明の製法で得られた合金系焼結体におい
ては、表面層を形成するアルミナ成分が内部を充たす合
金の中に根を張って形成されるため表面層と合金との密
着力を大きくする作用をし、表面にアルミナが析出する
ことは表面硬度を高くする作用をし、また焼結体の内部
を充たす合金は焼結体の靱性を高くする作用をする。In the alloy-based sintered body obtained by the method of the present invention, the alumina component forming the surface layer is formed in the alloy that fills the interior, so that the adhesive strength between the surface layer and the alloy is increased. The precipitation of alumina on the surface has the effect of increasing the surface hardness, and the alloy filling the inside of the sintered body has the effect of increasing the toughness of the sintered body.
【0019】そして、目的とする形状に成型、焼結工程
によることは、工業的生産に要求される経済性、大量生
産性を向上させるため、量産適性が出てくる。また、焼
結後であってアルミナ析出前の合金焼結体には、欠けや
割れなどを生じずに所定形状に正確に見合うように加工
が施せるため、寸法精度の向上を図ることができるた
め、精度を要求される場合にも適用可能である。Forming and sintering to a desired shape improves the economical efficiency and mass productivity required for industrial production, so that mass production suitability is obtained. In addition, the sintered alloy before sintering and before the precipitation of alumina can be processed to exactly match a predetermined shape without causing chipping or cracking, so that dimensional accuracy can be improved. Also, the present invention can be applied to a case where precision is required.
【0020】[0020]
【実施例】以下、この発明の実施例を説明する。この発
明は、下記の実施例に限らない。 −実施例1− Cr:24重量%、Ni:4重量%、Al:3.5重量
%、Zr:0.05重量%、残部:Feの組成の合金を
高周波溶解炉で溶解した。出来たインゴットを1〜2m
mの厚みに圧延し、得られた板を2〜3mm角のチップ
状に切断した後、粉砕し50メッシュ以下のフェライト
合金粉末にした。Embodiments of the present invention will be described below. The present invention is not limited to the following embodiments. -Example 1- An alloy having a composition of 24 wt% of Cr, 4 wt% of Ni, 3.5 wt% of Al, 0.05 wt% of Zr, and the balance of Fe was melted in a high frequency melting furnace. 1-2m of ingot made
m, and the obtained plate was cut into chips having a size of 2 to 3 mm and then pulverized to obtain a ferrite alloy powder having a size of 50 mesh or less.
【0021】この粉末にバインダーとしてPVAを混合
しスラリー状にした後、周りに突条を平行に並べたギア
を成型するキャビティにこれを充填し直圧成型で焼結前
のギアを成型した。成形体であるこの生のギアをアルゴ
ンガス雰囲気中で1250℃、5時間の焼結をし、焼結
体を得た。次に大気中で1150℃、10時間の加熱を
して、表面にアルミナを析出させた結果、表面が灰色を
した目的物であるギアを得た。After mixing PVA as a binder with this powder to form a slurry, the powder was filled in a cavity for molding a gear in which ridges were arranged in parallel, and a gear before sintering was molded by direct pressure molding. The green gear as a molded body was sintered at 1250 ° C. for 5 hours in an argon gas atmosphere to obtain a sintered body. Next, heating was performed at 1150 ° C. for 10 hours in the air to deposit alumina on the surface, and as a result, a gear having a gray surface was obtained.
【0022】表1に、このアルミナを析出させた焼結体
の表面硬度および内部の合金の硬度(母材硬度として示
す)並びに表面のアルミナ成分の含有率を示す。なお、
電子顕微鏡で表面層の断面を観察したところ、アルミナ
は表面から内部に進行するにしたがって針条の突起が内
部の合金に突き刺さったような状態であることを確認し
た。Table 1 shows the surface hardness of the sintered body on which the alumina was precipitated, the hardness of the internal alloy (shown as base material hardness), and the content of the alumina component on the surface. In addition,
When the cross section of the surface layer was observed with an electron microscope, it was confirmed that as the alumina progressed from the surface to the inside, the protrusion of the needle stuck into the internal alloy.
【0023】−実施例2− Cr:30重量%、Ni:21重量%、Al:6重量
%、Ti:0.5重量%、Zr:0.2重量%、残部:
Feの組成の合金を高周波溶解炉で溶解し、出来たイン
ゴットをアトマイズ法によりフェライト合金粉末にした
後、実施例1と同じ方法で成型、焼結、熱処理を行っ
た。Example 2 Cr: 30% by weight, Ni: 21% by weight, Al: 6% by weight, Ti: 0.5% by weight, Zr: 0.2% by weight, balance:
An alloy having a composition of Fe was melted in a high-frequency melting furnace, and the resulting ingot was turned into a ferrite alloy powder by an atomizing method. Then, molding, sintering, and heat treatment were performed in the same manner as in Example 1.
【0024】表1に得られた焼結体の表面硬度および合
金の硬度(母材硬度として示す)並びに表面のアルミナ
成分の含有率を示す。なお、電子顕微鏡で表面層の断面
を観察したところ、アルミナは表面から内部に進行する
にしたがって針状の突起が内部の合金に突き刺さったよ
うな状態であることを確認した。 −実施例3− Cr:26重量%、Ni:21重量%、Al:6.5重
量%、Zr:0.2重量%、残部:Feの組成の合金を
高周波溶解炉で溶解し、出来たインゴットをアトマイズ
法によりフェライト合金粉末にした後、実施例1と同じ
方法で焼結前のギアを成型した。成形体であるこの生の
ギアを水素ガス雰囲気中で1350℃、5時間の焼結を
し、焼結体を得た。次に大気中で1150℃、10時間
の加熱をして、表面にアルミナを析出させた結果、表面
が灰色をした目的物であるギアを得た。Table 1 shows the surface hardness of the obtained sintered body, the hardness of the alloy (shown as base material hardness), and the content of the alumina component on the surface. In addition, when the cross section of the surface layer was observed with an electron microscope, it was confirmed that alumina was in a state where needle-like projections pierced the alloy inside as the alumina progressed from the surface to the inside. -Example 3-An alloy having a composition of 26% by weight of Cr, 21% by weight of Ni, 6.5% by weight of Al, 0.2% by weight of Zr, and the balance: Fe was melted in a high-frequency melting furnace, and was formed. After turning the ingot into a ferrite alloy powder by an atomizing method, a gear before sintering was molded in the same manner as in Example 1. The green gear, which was a molded body, was sintered at 1350 ° C. for 5 hours in a hydrogen gas atmosphere to obtain a sintered body. Next, heating was performed at 1150 ° C. for 10 hours in the air to deposit alumina on the surface, and as a result, a gear having a gray surface was obtained.
【0025】表1に、このアルミナを析出させた焼結体
の表面硬度および内部の合金の硬度(母材硬度として示
す)並びに表面のアルミナ成分の含有率を示す。なお、
電子顕微鏡で表面層の断面を観察したところ、アルミナ
は表面から内部に進行するにしたがって針条の突起が内
部の合金に突き刺さったような状態であることを確認し
た。Table 1 shows the surface hardness of the sintered body on which the alumina was precipitated, the hardness of the internal alloy (shown as base material hardness), and the content of the alumina component on the surface. In addition,
When the cross section of the surface layer was observed with an electron microscope, it was confirmed that as the alumina progressed from the surface to the inside, the protrusion of the needle stuck into the internal alloy.
【0026】−参考例1、2− 超硬金属材料であるSKH5とセラミック材料であるア
ルミナについての硬度(この場合は表面硬度と母材硬度
は等しい)を表1にそれぞれ参考例1、2として併記す
る。Reference Examples 1 and 2 Table 1 shows the hardness (in this case, the surface hardness is equal to the base material hardness) of SKH5 which is a hard metal material and alumina which is a ceramic material, as Reference Examples 1 and 2, respectively. I will write it together.
【0027】[0027]
【表1】 [Table 1]
【0028】−実施例4− Cr:32重量%、Ni:21重量%、Al:6.5重
量%、Zr:0.8重量%、残部:Feという割合で溶
解し、アトマイズ法により微粉化しFe−Cr−Ni−
Al系フェライト合金粉末を得た。このようにして得た
合金粉末とバインダー用のPVAとを混ぜ合わせ、45
0MPaの圧力で成型した。ついで、成形体を真空中に
おいて、1350℃、3時間の熱処理をすることにより
焼結させた後、研削加工し所定の形状に正確に合わせ
た。次に、大気中において、1150℃、20時間の熱
処理および1250℃、30分の熱処理を施しアルミナ
皮膜の形成を行い、空冷してFe−Cr−Ni−Al系
焼結品(合金系焼結体)を得た。Example 4 Cr: 32% by weight, Ni: 21% by weight, Al: 6.5% by weight, Zr: 0.8% by weight, balance: Fe, and then pulverized by atomizing. Fe-Cr-Ni-
An Al-based ferrite alloy powder was obtained. The alloy powder thus obtained and PVA for a binder were mixed, and 45
It was molded at a pressure of 0 MPa. Next, the formed body was sintered by performing a heat treatment at 1350 ° C. for 3 hours in a vacuum, followed by grinding to precisely match a predetermined shape. Next, a heat treatment is performed in the atmosphere at 1150 ° C. for 20 hours and a heat treatment at 1250 ° C. for 30 minutes to form an alumina film, and air-cooled to cool the Fe—Cr—Ni—Al-based sintered product (alloy-based sintered product). Body).
【0029】−実施例5− 成形圧力が600MPaである他は、実施例4と同様に
して、Fe−Cr−Ni−Al系焼結品を得た。 −実施例6− Cr:24重量%、Ni:4重量%、Al:3.5重量
%、Zr:0.05重量%、残部が実質的にFeという
割合で高周波溶解炉で溶解するようにして、合金インゴ
ットを得た。このインゴットを1〜2mmの厚みまで圧
延し、この板を2〜3mm角のチップ状に細断した後、
機械的に粉砕し、50メッシュ以下のFe−Cr−Ni
−Al系フェライト合金粉末を得た。Example 5 An Fe—Cr—Ni—Al sintered product was obtained in the same manner as in Example 4 except that the molding pressure was 600 MPa. Example 6 Cr: 24% by weight, Ni: 4% by weight, Al: 3.5% by weight, Zr: 0.05% by weight, and the balance being substantially Fe was melted in a high frequency melting furnace. Thus, an alloy ingot was obtained. This ingot is rolled to a thickness of 1 to 2 mm, and the plate is cut into chips of 2 to 3 mm square.
Mechanically pulverized, Fe-Cr-Ni of 50 mesh or less
-An Al-based ferrite alloy powder was obtained.
【0030】このようにして得た合金粉末とバインダー
用のPVAとを混ぜ合わせ、1000MPaの範囲の適
当な圧力で成形した。ついで、成形体をアルゴンガス雰
囲気において、1300℃、5時間の熱処理をすること
により焼結させた後、研削加工し所定の形状に正確に合
わせた。次に、大気中において、1150℃、20時間
の熱処理および1250℃、30分の熱処理を施しアル
ミナ皮膜の形成を行い、空冷してFe−Cr−Ni−A
l系焼結品を得た。The alloy powder thus obtained and PVA for a binder were mixed and molded under a suitable pressure in the range of 1000 MPa. Next, the molded body was sintered by performing a heat treatment at 1300 ° C. for 5 hours in an argon gas atmosphere, and then ground and accurately adjusted to a predetermined shape. Next, a heat treatment is performed in air at 1150 ° C. for 20 hours and a heat treatment at 1250 ° C. for 30 minutes to form an alumina film, and air-cooled to form Fe—Cr—Ni—A.
An 1-type sintered product was obtained.
【0031】−実施例7− Cr:35重量%、Ni:21重量%、Al:7重量
%、Zr:0.4重量%、残部が実質的にFeという割
合で高周波溶解炉で溶解し、アトマイズ法により微粉化
しFe−Cr−Ni−Al系フェライト合金粉末を得
た。このようにして得た合金粉末とバインダー用のPV
Aとを混ぜ合わせ、700MPaの範囲の適当な圧力で
成形した。ついで、成形体を真空中において、1350
℃、4時間の熱処理をすることにより焼結させた後、研
削加工し所定の形状に合わせた。次に、大気中におい
て、1150℃、20時間の熱処理および1250℃、
30分の熱処理を施しアルミナ皮膜の形成を行い、空冷
してFe−Cr−Ni−Al系焼結品を得た。Example 7 Cr: 35% by weight, Ni: 21% by weight, Al: 7% by weight, Zr: 0.4% by weight, and the balance substantially consisting of Fe was melted in a high frequency melting furnace. It was pulverized by an atomizing method to obtain an Fe-Cr-Ni-Al ferrite alloy powder. The alloy powder thus obtained and PV for binder
A was mixed and molded at an appropriate pressure in the range of 700 MPa. Next, the compact is placed in a vacuum at 1350
After sintering by heat treatment at 4 ° C. for 4 hours, it was ground and adjusted to a predetermined shape. Next, in air, heat treatment at 1150 ° C. for 20 hours and 1250 ° C.
A heat treatment was performed for 30 minutes to form an alumina film, and the resultant was air-cooled to obtain a Fe-Cr-Ni-Al-based sintered product.
【0032】−実施例8− 成形圧力が900MPaであり、焼結のための熱処理温
度が1300℃である他は、実施例7と同様にして、F
e−Cr−Ni−Al系焼結品を得た。 −実施例9− 実施例4で使用した合金粉末を分級し、30μm以下と
した合金粉末と、約10重量%のパラフィンワックス、
ステアリン酸を主成分としたバインダーとを混練し、1
50℃で所定の形状に射出成形した。得られた成形体
を、真空中、400℃で50時間保持して脱脂した。脱
脂した成形体を、真空中、1350℃に3時間保持して
焼結させた後、炉中に酸素ガスを送給て、1250℃で
30分保持して、表面にアルミナ皮膜を析出させ、Fe
−Cr−Ni−Al系焼結品を得た。Example 8 The procedure of Example 7 was repeated except that the molding pressure was 900 MPa and the heat treatment temperature for sintering was 1300 ° C.
An e-Cr-Ni-Al-based sintered product was obtained. -Example 9-The alloy powder used in Example 4 was classified to have an average particle size of 30 µm or less, and about 10% by weight of paraffin wax.
Knead with a binder containing stearic acid as a main component,
Injection molding was performed at 50 ° C. into a predetermined shape. The obtained molded body was degreased while being kept at 400 ° C. for 50 hours in a vacuum. The degreased molded body was sintered in vacuum at 1350 ° C. for 3 hours, and then oxygen gas was fed into the furnace and held at 1250 ° C. for 30 minutes to deposit an alumina film on the surface. Fe
-A Cr-Ni-Al based sintered product was obtained.
【0033】−実施例10− 実施例9と同様にして得た射出成形体を、アルゴンガス
雰囲気中、500℃で50時間保持して脱脂した。脱脂
した成形体を、アルゴンガス雰囲気中、1350℃に3
時間保持して焼結させた後、炉内ガスを酸素ガスに置換
し、1250℃で30分保持して、表面にアルミナ皮膜
を析出させ、Fe−Cr−Ni−Al系焼結品を得た。Example 10 An injection-molded product obtained in the same manner as in Example 9 was degreased by holding it at 500 ° C. for 50 hours in an argon gas atmosphere. The degreased molded body is heated to 1350 ° C. in an argon gas atmosphere at 3350 ° C.
After sintering for a time, the gas in the furnace was replaced with oxygen gas, and the temperature was maintained at 1250 ° C. for 30 minutes to deposit an alumina film on the surface to obtain a Fe—Cr—Ni—Al-based sintered product. Was.
【0034】−実施例11− 実施例7で使用した合金粉末を分級し、30μm以下と
した合金粉末を用いた他は、実施例9と同様にして、F
e−Cr−Ni−Al系焼結品を得た。実施例4〜11
の焼結品のアルミナ皮膜状態、母材硬度および寸法精度
を調べた。調べた結果を、表2に示す。表2において、
寸法精度のデータ欄の○は5%未満の寸法誤差に収まっ
ていることを示す。Example 11 The same procedure as in Example 9 was carried out except that the alloy powder used in Example 7 was classified and an alloy powder having a size of 30 μm or less was used.
An e-Cr-Ni-Al-based sintered product was obtained. Examples 4 to 11
The state of the alumina film, the base material hardness and the dimensional accuracy of the sintered product of Example 1 were examined. The results are shown in Table 2. In Table 2,
○ in the data column of the dimensional accuracy indicates that the dimensional error is less than 5%.
【0035】[0035]
【表2】 [Table 2]
【0036】表2の結果から、実施例4〜11の焼結品
は、寸法精度がよくて表面硬度が大きく、丈夫であるこ
とがよく分かる。なお、図1は実施例4のアルミナ皮膜
付Fe−Cr−Ni−Al系焼結品の表面付近の金属組
織をあらわす光学顕微鏡写真(倍率700倍)である。
図1の写真では、略下半を占める黒の斑点のある白地部
分が母材であり、その上方の黒地の層がアルミナ皮膜で
あり、さらにその上方の黒地層は保護Ni膜である。図
2は実施例4のアルミナ皮膜付Fe−Cr−Ni−Al
系焼結品の内部の金属組織をあらわす光学顕微鏡写真
(倍率700倍)である。図3は、実施例4の焼結品の
表面付近の金属組織の大略を模式的にあらわしたもので
ある。そして、図1、2の母材部分では、図2にみるよ
うに、黒色部は空洞、灰色部はNiAl相、白色部はフ
ェライト相である。また、図3は、母材3の表面にアル
ミナ皮膜2が形成され、アルミナ皮膜2の上には保護N
i膜3のある構成を図示するものである。From the results shown in Table 2, it can be seen that the sintered products of Examples 4 to 11 have good dimensional accuracy, high surface hardness, and are strong. FIG. 1 is an optical microscope photograph (700 times magnification) showing the metal structure near the surface of the Fe—Cr—Ni—Al sintered product with an alumina film of Example 4.
In the photograph of FIG. 1, the white portion with black spots, which occupies substantially the lower half, is the base material, the black layer above it is the alumina film, and the black layer above it is the protective Ni film. FIG. 2 is an Fe—Cr—Ni—Al with an alumina coating of Example 4.
It is an optical microscope photograph (700 times magnification) showing the metal structure inside a system sintered product. FIG. 3 schematically shows the outline of the metal structure near the surface of the sintered product of Example 4. In the base material portion of FIGS. 1 and 2, as shown in FIG. 2, the black portion is a cavity, the gray portion is a NiAl phase, and the white portion is a ferrite phase. FIG. 3 shows that an alumina film 2 is formed on the surface of a base material 3 and a protective N
3 illustrates a certain configuration of the i-film 3.
【0037】また、実施例4において、焼結のための処
理温度を1200℃とした場合は、母材硬度が十分なも
のになり難い傾向がみられた。そして、実施例6におい
て、成形圧力を350MPaとした他は全く同様にして
Fe−Cr−Ni−Al系焼結品を得たが、寸法精度
(誤差が5%を越える)、母材硬度およびアルミナ皮膜
状態は、いずれも実施例6よりもかなり劣る傾向がみら
れた。In Example 4, when the treatment temperature for sintering was 1200 ° C., the base material hardness tended to be insufficient. Then, in Example 6, an Fe-Cr-Ni-Al-based sintered product was obtained in exactly the same manner except that the molding pressure was 350 MPa, but the dimensional accuracy (error exceeded 5%), the base material hardness and The alumina film states tended to be considerably inferior to those of Example 6.
【0038】[0038]
【発明の効果】以上に述べたように、この発明は、表面
の硬度が高く、かつ欠けや割れが生じにくい耐磨耗性に
優れる有用な合金系焼結体を得ることができ、しかも、
量産適性があるため、非常に有用である。特に、前記の
ような特定の組成のAlを含むフェライト合金粉末を用
い、前記した特定の温度条件で焼結させることにより、
機構部品などのように表面硬度と母材硬度が共に必要な
用途に適する合金系焼結体が確実に得られるという利点
がある。As described above, according to the present invention, it is possible to obtain a useful alloy-based sintered body having a high surface hardness and excellent abrasion resistance which is not easily chipped or cracked.
Very useful because of its suitability for mass production. In particular,
By using a ferrite alloy powder containing Al having a specific composition as described above, by sintering under the specific temperature conditions described above ,
There is an advantage that an alloy-based sintered body suitable for applications requiring both surface hardness and base material hardness, such as mechanical parts, can be reliably obtained.
【図1】実施例4の焼結品の表面付近の金属組織をあら
わす光学顕微鏡写真(倍率700倍)である。FIG. 1 is an optical micrograph (× 700) showing a metal structure near the surface of a sintered product of Example 4.
【図2】実施例4の焼結品の内部の金属組織をあらわす
光学顕微鏡写真(倍率700倍)である。FIG. 2 is an optical micrograph (× 700) showing a metal structure inside a sintered product of Example 4.
【図3】実施例4の焼結品の表面付近の金属組織の概略
をあらわす説明図である。FIG. 3 is an explanatory view schematically showing a metal structure near the surface of a sintered product of Example 4.
1 保護Ni膜 2 アルミナ皮膜 3 母材 1 Protective Ni film 2 Alumina film 3 Base material
フロントページの続き (72)発明者 濱田 糾 大阪府門真市大字門真1048番地松下電工 株式会社内 (72)発明者 児島 肇 大阪府門真市大字門真1048番地松下電工 株式会社内 (72)発明者 棚橋 正雄 大阪府門真市大字門真1048番地松下電工 株式会社内 (56)参考文献 特開 昭50−17307(JP,A) 特開 平2−270904(JP,A)Continuing on the front page (72) Inventor: Tadashi Hamada, Kazuma, Kazuma, Osaka 1048, Matsushita Electric Works, Ltd. Masao 1048 Kazuma Kadoma, Kadoma City, Osaka Pref. Matsushita Electric Works, Ltd.
Claims (5)
5重量%、Al:2〜8重量%、Ti:0.5重量%以
下、Zr、Y、Hf、Ce、La、NdおよびGdのう
ちのいずれか1種又は2種以上:0.05〜1.0重量
%、Fe:残部からなるフェライト合金粉末を所定の形
状に成型した成形体を非酸化性雰囲気中で1250〜1
400℃の温度で加熱することにより焼結し、酸化性ガ
ス雰囲気中で熱処理することにより表面にアルミナ成分
を析出させることを特徴とする合金系焼結体の製法。1. Cr: 20-35% by weight , Ni: 2-2
5% by weight, Al: 2 to 8% by weight, Ti: 0.5% by weight or less, any one or more of Zr, Y, Hf, Ce, La, Nd and Gd: 0.05 to A ferrite alloy powder consisting of 1.0% by weight, Fe: balance is molded into a predetermined shape in a non-oxidizing atmosphere at 1250-1%.
A method for producing an alloy-based sintered body, comprising sintering by heating at a temperature of 400 ° C. and heat-treating in an oxidizing gas atmosphere to precipitate an alumina component on the surface.
5重量%、Al:2〜8重量%、Zr、Y、Hf、C
e、La、NdおよびGdのうちのいずれか1種又は2
種以上:0.05〜1.0重量%、Fe:残部からなる
フェライト合金粉末を所定の形状に成型した成形体を非
酸化性雰囲気中で1250〜1400℃の温度で加熱す
ることにより焼結し、酸化性ガス雰囲気中で熱処理する
ことにより表面にアルミナ成分を析出させることを特徴
とする合金系焼結体の製法。 2. Cr: 20 to 35% by weight, Ni: 2-2.
5% by weight, Al: 2 to 8% by weight, Zr, Y, Hf, C
any one or two of e, La, Nd and Gd
Species or more: 0.05 to 1.0% by weight, Fe: the balance
A molded body made by molding ferrite alloy powder into a predetermined shape
Heat at a temperature of 1250-1400 ° C in an oxidizing atmosphere
And heat treatment in an oxidizing gas atmosphere
Feature to precipitate alumina component on the surface
A method for producing an alloy-based sintered body.
る請求項1または2に記載の合金系焼結体の製法。3. The method for producing an alloy-based sintered body according to claim 1, wherein the non-oxidizing atmosphere is an inert gas atmosphere.
る請求項1または2に記載の合金系焼結体の製法。4. The method for producing an alloy-based sintered body according to claim 1, wherein the non-oxidizing atmosphere is a reducing gas atmosphere.
項1または2に記載の合金系焼結体の製法。5. The method for producing an alloy-based sintered body according to claim 1, wherein the non-oxidizing atmosphere is a vacuum atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3176221A JP2806511B2 (en) | 1990-07-31 | 1991-06-19 | Manufacturing method of sintered alloy |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20357890 | 1990-07-31 | ||
JP41430590 | 1990-12-25 | ||
JP2-414305 | 1990-12-25 | ||
JP2-203578 | 1990-12-25 | ||
JP3176221A JP2806511B2 (en) | 1990-07-31 | 1991-06-19 | Manufacturing method of sintered alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH055106A JPH055106A (en) | 1993-01-14 |
JP2806511B2 true JP2806511B2 (en) | 1998-09-30 |
Family
ID=27324221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3176221A Expired - Fee Related JP2806511B2 (en) | 1990-07-31 | 1991-06-19 | Manufacturing method of sintered alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2806511B2 (en) |
Families Citing this family (379)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6193717B1 (en) | 1997-10-16 | 2001-02-27 | Asahi Kogaku Kogyo Kabushiki Kaisha | Treating instrument for endoscope |
AU2001249933B2 (en) | 2001-04-06 | 2006-06-08 | Covidien Ag | Vessel sealer and divider with non-conductive stop members |
US7101371B2 (en) | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
US7197363B2 (en) | 2002-04-16 | 2007-03-27 | Vivant Medical, Inc. | Microwave antenna having a curved configuration |
WO2004103156A2 (en) | 2003-05-15 | 2004-12-02 | Sherwood Services Ag | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
US7156846B2 (en) | 2003-06-13 | 2007-01-02 | Sherwood Services Ag | Vessel sealer and divider for use with small trocars and cannulas |
USD956973S1 (en) | 2003-06-13 | 2022-07-05 | Covidien Ag | Movable handle for endoscopic vessel sealer and divider |
US9848938B2 (en) | 2003-11-13 | 2017-12-26 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US7367976B2 (en) | 2003-11-17 | 2008-05-06 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7442193B2 (en) | 2003-11-20 | 2008-10-28 | Covidien Ag | Electrically conductive/insulative over-shoe for tissue fusion |
JP4727575B2 (en) | 2004-06-15 | 2011-07-20 | オリンパス株式会社 | Energy treatment tool |
US7628791B2 (en) | 2005-08-19 | 2009-12-08 | Covidien Ag | Single action tissue sealer |
US8298232B2 (en) | 2006-01-24 | 2012-10-30 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider for large tissue structures |
US7766910B2 (en) | 2006-01-24 | 2010-08-03 | Tyco Healthcare Group Lp | Vessel sealer and divider for large tissue structures |
US7776037B2 (en) | 2006-07-07 | 2010-08-17 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
US8211099B2 (en) | 2007-01-31 | 2012-07-03 | Tyco Healthcare Group Lp | Thermal feedback systems and methods of using the same |
WO2008134471A1 (en) | 2007-04-26 | 2008-11-06 | Tyco Healthcare Group Lp | Apparatus and method for measuring pressure between jaw members |
US9622813B2 (en) | 2007-11-01 | 2017-04-18 | Covidien Lp | Method for volume determination and geometric reconstruction |
US7713076B2 (en) | 2007-11-27 | 2010-05-11 | Vivant Medical, Inc. | Floating connector for microwave surgical device |
US8192444B2 (en) | 2008-01-16 | 2012-06-05 | Tyco Healthcare Group Lp | Uterine sealer |
US7642451B2 (en) | 2008-01-23 | 2010-01-05 | Vivant Medical, Inc. | Thermally tuned coaxial cable for microwave antennas |
US8945111B2 (en) | 2008-01-23 | 2015-02-03 | Covidien Lp | Choked dielectric loaded tip dipole microwave antenna |
WO2009099960A1 (en) | 2008-01-31 | 2009-08-13 | Tyco Healthcare Group, Lp | Polyp removal device and method of use |
US8353902B2 (en) | 2008-01-31 | 2013-01-15 | Vivant Medical, Inc. | Articulating ablation device and method |
US8221418B2 (en) | 2008-02-07 | 2012-07-17 | Tyco Healthcare Group Lp | Endoscopic instrument for tissue identification |
US8382792B2 (en) | 2008-02-14 | 2013-02-26 | Covidien Lp | End effector assembly for electrosurgical device |
US8623276B2 (en) | 2008-02-15 | 2014-01-07 | Covidien Lp | Method and system for sterilizing an electrosurgical instrument |
US9192427B2 (en) | 2008-03-11 | 2015-11-24 | Covidien Lp | Bipolar cutting end effector |
US9949794B2 (en) | 2008-03-27 | 2018-04-24 | Covidien Lp | Microwave ablation devices including expandable antennas and methods of use |
US9198723B2 (en) | 2008-03-31 | 2015-12-01 | Covidien Lp | Re-hydration antenna for ablation |
US8357158B2 (en) | 2008-04-22 | 2013-01-22 | Covidien Lp | Jaw closure detection system |
US9271796B2 (en) | 2008-06-09 | 2016-03-01 | Covidien Lp | Ablation needle guide |
US9603652B2 (en) | 2008-08-21 | 2017-03-28 | Covidien Lp | Electrosurgical instrument including a sensor |
US8211098B2 (en) | 2008-08-25 | 2012-07-03 | Vivant Medical, Inc. | Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material |
US8251987B2 (en) | 2008-08-28 | 2012-08-28 | Vivant Medical, Inc. | Microwave antenna |
US8394086B2 (en) | 2008-09-03 | 2013-03-12 | Vivant Medical, Inc. | Microwave shielding apparatus |
US20100069903A1 (en) | 2008-09-18 | 2010-03-18 | Tyco Healthcare Group Lp | Vessel Sealing Instrument With Cutting Mechanism |
US8512328B2 (en) | 2008-10-13 | 2013-08-20 | Covidien Lp | Antenna assemblies for medical applications |
US9375272B2 (en) | 2008-10-13 | 2016-06-28 | Covidien Lp | Antenna assemblies for medical applications |
US9113624B2 (en) | 2008-10-15 | 2015-08-25 | Covidien Lp | System and method for perfusing biological organs |
US9113924B2 (en) | 2008-10-17 | 2015-08-25 | Covidien Lp | Choked dielectric loaded tip dipole microwave antenna |
US8197479B2 (en) | 2008-12-10 | 2012-06-12 | Tyco Healthcare Group Lp | Vessel sealer and divider |
US8114122B2 (en) | 2009-01-13 | 2012-02-14 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8282634B2 (en) | 2009-01-14 | 2012-10-09 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8632539B2 (en) | 2009-01-14 | 2014-01-21 | Covidien Lp | Vessel sealer and divider |
US8632564B2 (en) | 2009-01-14 | 2014-01-21 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8202270B2 (en) | 2009-02-20 | 2012-06-19 | Vivant Medical, Inc. | Leaky-wave antennas for medical applications |
US8197473B2 (en) | 2009-02-20 | 2012-06-12 | Vivant Medical, Inc. | Leaky-wave antennas for medical applications |
US8118808B2 (en) | 2009-03-10 | 2012-02-21 | Vivant Medical, Inc. | Cooled dielectrically buffered microwave dipole antenna |
US8226650B2 (en) | 2009-03-26 | 2012-07-24 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an endoscopic electrosurgical procedure |
US9277969B2 (en) | 2009-04-01 | 2016-03-08 | Covidien Lp | Microwave ablation system with user-controlled ablation size and method of use |
US8251994B2 (en) | 2009-04-07 | 2012-08-28 | Tyco Healthcare Group Lp | Vessel sealer and divider with blade deployment alarm |
US10045819B2 (en) | 2009-04-14 | 2018-08-14 | Covidien Lp | Frequency identification for microwave ablation probes |
US8216227B2 (en) | 2009-05-06 | 2012-07-10 | Vivant Medical, Inc. | Power-stage antenna integrated system with junction member |
US8463396B2 (en) | 2009-05-06 | 2013-06-11 | Covidien LLP | Power-stage antenna integrated system with high-strength shaft |
US8187273B2 (en) | 2009-05-07 | 2012-05-29 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8246615B2 (en) | 2009-05-19 | 2012-08-21 | Vivant Medical, Inc. | Tissue impedance measurement using a secondary frequency |
US8292881B2 (en) | 2009-05-27 | 2012-10-23 | Vivant Medical, Inc. | Narrow gauge high strength choked wet tip microwave ablation antenna |
US8235981B2 (en) | 2009-06-02 | 2012-08-07 | Vivant Medical, Inc. | Electrosurgical devices with directional radiation pattern |
US8334812B2 (en) | 2009-06-19 | 2012-12-18 | Vivant Medical, Inc. | Microwave ablation antenna radiation detector |
US8552915B2 (en) | 2009-06-19 | 2013-10-08 | Covidien Lp | Microwave ablation antenna radiation detector |
US8246618B2 (en) | 2009-07-08 | 2012-08-21 | Tyco Healthcare Group Lp | Electrosurgical jaws with offset knife |
US8343150B2 (en) | 2009-07-15 | 2013-01-01 | Covidien Lp | Mechanical cycling of seal pressure coupled with energy for tissue fusion |
US7863984B1 (en) | 2009-07-17 | 2011-01-04 | Vivant Medical, Inc. | High efficiency microwave amplifier |
US8968358B2 (en) | 2009-08-05 | 2015-03-03 | Covidien Lp | Blunt tissue dissection surgical instrument jaw designs |
US8328799B2 (en) | 2009-08-05 | 2012-12-11 | Vivant Medical, Inc. | Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure |
US8679115B2 (en) | 2009-08-19 | 2014-03-25 | Covidien Lp | Electrical cutting and vessel sealing jaw members |
US10828100B2 (en) | 2009-08-25 | 2020-11-10 | Covidien Lp | Microwave ablation with tissue temperature monitoring |
US8287536B2 (en) | 2009-08-26 | 2012-10-16 | Tyco Healthcare Group Lp | Cutting assembly for surgical instruments |
US8357159B2 (en) | 2009-09-03 | 2013-01-22 | Covidien Lp | Open vessel sealing instrument with pivot assembly |
US8162965B2 (en) | 2009-09-09 | 2012-04-24 | Tyco Healthcare Group Lp | Low profile cutting assembly with a return spring |
US8069553B2 (en) | 2009-09-09 | 2011-12-06 | Vivant Medical, Inc. | Method for constructing a dipole antenna |
US8568412B2 (en) | 2009-09-09 | 2013-10-29 | Covidien Lp | Apparatus and method of controlling cutting blade travel through the use of etched features |
US8133254B2 (en) | 2009-09-18 | 2012-03-13 | Tyco Healthcare Group Lp | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
US9375273B2 (en) | 2009-09-18 | 2016-06-28 | Covidien Lp | System and method for checking high power microwave ablation system status on startup |
US9095359B2 (en) | 2009-09-18 | 2015-08-04 | Covidien Lp | Tissue ablation system with energy distribution |
US8394087B2 (en) | 2009-09-24 | 2013-03-12 | Vivant Medical, Inc. | Optical detection of interrupted fluid flow to ablation probe |
US8112871B2 (en) | 2009-09-28 | 2012-02-14 | Tyco Healthcare Group Lp | Method for manufacturing electrosurgical seal plates |
US8282632B2 (en) | 2009-09-28 | 2012-10-09 | Vivant Medical, Inc. | Feedpoint optimization for microwave ablation dipole antenna with integrated tip |
US8266783B2 (en) | 2009-09-28 | 2012-09-18 | Tyco Healthcare Group Lp | Method and system for manufacturing electrosurgical seal plates |
US8906007B2 (en) | 2009-09-28 | 2014-12-09 | Covidien Lp | Electrosurgical devices, directional reflector assemblies coupleable thereto, and electrosurgical systems including same |
US8545493B2 (en) | 2009-09-29 | 2013-10-01 | Covidien Lp | Flow rate monitor for fluid cooled microwave ablation probe |
US9113926B2 (en) | 2009-09-29 | 2015-08-25 | Covidien Lp | Management of voltage standing wave ratio at skin surface during microwave ablation |
US8876814B2 (en) | 2009-09-29 | 2014-11-04 | Covidien Lp | Fluid cooled choke dielectric and coaxial cable dielectric |
US8568398B2 (en) | 2009-09-29 | 2013-10-29 | Covidien Lp | Flow rate monitor for fluid cooled microwave ablation probe |
US9820806B2 (en) | 2009-09-29 | 2017-11-21 | Covidien Lp | Switch assembly for electrosurgical instrument |
US8323310B2 (en) | 2009-09-29 | 2012-12-04 | Covidien Lp | Vessel sealing jaw with offset sealing surface |
US8292886B2 (en) | 2009-10-06 | 2012-10-23 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8512371B2 (en) | 2009-10-06 | 2013-08-20 | Covidien Lp | Jaw, blade and gap manufacturing for surgical instruments with small jaws |
US8343151B2 (en) | 2009-10-09 | 2013-01-01 | Covidien Lp | Vessel sealer and divider with captured cutting element |
US8568401B2 (en) | 2009-10-27 | 2013-10-29 | Covidien Lp | System for monitoring ablation size |
US8382750B2 (en) | 2009-10-28 | 2013-02-26 | Vivant Medical, Inc. | System and method for monitoring ablation size |
US8388647B2 (en) | 2009-10-28 | 2013-03-05 | Covidien Lp | Apparatus for tissue sealing |
US8430871B2 (en) | 2009-10-28 | 2013-04-30 | Covidien Lp | System and method for monitoring ablation size |
US9060798B2 (en) | 2009-11-16 | 2015-06-23 | Covidien Lp | Surgical forceps capable of adjusting sealing pressure based on vessel size |
US8469953B2 (en) | 2009-11-16 | 2013-06-25 | Covidien Lp | Twin sealing chamber hub |
US8394092B2 (en) | 2009-11-17 | 2013-03-12 | Vivant Medical, Inc. | Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same |
US8882759B2 (en) | 2009-12-18 | 2014-11-11 | Covidien Lp | Microwave ablation system with dielectric temperature probe |
US8480671B2 (en) | 2010-01-22 | 2013-07-09 | Covidien Lp | Compact jaw including split pivot pin |
US8764744B2 (en) | 2010-01-25 | 2014-07-01 | Covidien Lp | System for monitoring ablation size |
US8556929B2 (en) | 2010-01-29 | 2013-10-15 | Covidien Lp | Surgical forceps capable of adjusting seal plate width based on vessel size |
US9113927B2 (en) | 2010-01-29 | 2015-08-25 | Covidien Lp | Apparatus and methods of use for treating blood vessels |
US8313486B2 (en) | 2010-01-29 | 2012-11-20 | Vivant Medical, Inc. | System and method for performing an electrosurgical procedure using an ablation device with an integrated imaging device |
US9585709B2 (en) | 2010-02-05 | 2017-03-07 | Covidien Lp | Square wave for vessel sealing |
US8491579B2 (en) | 2010-02-05 | 2013-07-23 | Covidien Lp | Electrosurgical devices with choke shorted to biological tissue |
US8968288B2 (en) | 2010-02-19 | 2015-03-03 | Covidien Lp | Ablation devices with dual operating frequencies, systems including same, and methods of adjusting ablation volume using same |
US8568404B2 (en) | 2010-02-19 | 2013-10-29 | Covidien Lp | Bipolar electrode probe for ablation monitoring |
US8617153B2 (en) | 2010-02-26 | 2013-12-31 | Covidien Lp | Tunable microwave ablation probe |
US20110213353A1 (en) | 2010-02-26 | 2011-09-01 | Lee Anthony C | Tissue Ablation System With Internal And External Radiation Sources |
US8808288B2 (en) | 2010-03-08 | 2014-08-19 | Covidien Lp | Surgical forceps including belt blade reverser mechanism |
US8672923B2 (en) | 2010-03-11 | 2014-03-18 | Covidien Lp | Automated probe placement device |
US8740898B2 (en) | 2010-03-22 | 2014-06-03 | Covidien Lp | Surgical forceps |
US9028474B2 (en) | 2010-03-25 | 2015-05-12 | Covidien Lp | Microwave surface coagulator with retractable blade |
US8425511B2 (en) | 2010-03-26 | 2013-04-23 | Covidien Lp | Clamp and scissor forceps |
US8409188B2 (en) | 2010-03-26 | 2013-04-02 | Covidien Lp | Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same |
US10039601B2 (en) | 2010-03-26 | 2018-08-07 | Covidien Lp | Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same |
US8961504B2 (en) | 2010-04-09 | 2015-02-24 | Covidien Lp | Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue |
US8597295B2 (en) | 2010-04-12 | 2013-12-03 | Covidien Lp | Surgical instrument with non-contact electrical coupling |
US8623018B2 (en) | 2010-04-13 | 2014-01-07 | Covidien Lp | Sealing plate temperature control |
US8568397B2 (en) | 2010-04-28 | 2013-10-29 | Covidien Lp | Induction sealing |
US20110270251A1 (en) | 2010-04-29 | 2011-11-03 | Tyco Healthcare Group Lp | Insulated Sealing Plate |
US8439913B2 (en) | 2010-04-29 | 2013-05-14 | Covidien Lp | Pressure sensing sealing plate |
US9867664B2 (en) | 2010-05-03 | 2018-01-16 | Covidien Lp | System and method of deploying an antenna assembly |
US8968359B2 (en) | 2010-05-04 | 2015-03-03 | Covidien Lp | Surgical forceps |
US10265118B2 (en) | 2010-05-04 | 2019-04-23 | Covidien Lp | Pinion blade drive mechanism for a laparoscopic vessel dissector |
US9561076B2 (en) | 2010-05-11 | 2017-02-07 | Covidien Lp | Electrosurgical devices with balun structure for air exposure of antenna radiating section and method of directing energy to tissue using same |
US9192436B2 (en) | 2010-05-25 | 2015-11-24 | Covidien Lp | Flow rate verification monitor for fluid-cooled microwave ablation probe |
US11278345B2 (en) | 2010-05-25 | 2022-03-22 | Covidien Lp | Accurate jaw closure force in a catheter based instrument |
US8652127B2 (en) | 2010-05-26 | 2014-02-18 | Covidien Lp | System and method for chemically cooling an ablation antenna |
US8430877B2 (en) | 2010-06-02 | 2013-04-30 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8540749B2 (en) | 2010-06-02 | 2013-09-24 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8585736B2 (en) | 2010-06-02 | 2013-11-19 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8491624B2 (en) | 2010-06-02 | 2013-07-23 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8409246B2 (en) | 2010-06-02 | 2013-04-02 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8469991B2 (en) | 2010-06-02 | 2013-06-25 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US9028495B2 (en) | 2010-06-23 | 2015-05-12 | Covidien Lp | Surgical instrument with a separable coaxial joint |
US8512336B2 (en) | 2010-07-08 | 2013-08-20 | Covidien Lp | Optimal geometries for creating current densities in a bipolar electrode configuration |
US8974449B2 (en) | 2010-07-16 | 2015-03-10 | Covidien Lp | Dual antenna assembly with user-controlled phase shifting |
US10588684B2 (en) | 2010-07-19 | 2020-03-17 | Covidien Lp | Hydraulic conductivity monitoring to initiate tissue division |
US8888775B2 (en) | 2010-08-10 | 2014-11-18 | Covidien Lp | Surgical forceps including shape memory cutter |
US8298233B2 (en) | 2010-08-20 | 2012-10-30 | Tyco Healthcare Group Lp | Surgical instrument configured for use with interchangeable hand grips |
US8652135B2 (en) | 2010-08-23 | 2014-02-18 | Covidien Lp | Surgical forceps |
US8814864B2 (en) | 2010-08-23 | 2014-08-26 | Covidien Lp | Method of manufacturing tissue sealing electrodes |
US8663222B2 (en) | 2010-09-07 | 2014-03-04 | Covidien Lp | Dynamic and static bipolar electrical sealing and cutting device |
US8734445B2 (en) | 2010-09-07 | 2014-05-27 | Covidien Lp | Electrosurgical instrument with sealing and dissection modes and related methods of use |
US9498278B2 (en) | 2010-09-08 | 2016-11-22 | Covidien Lp | Asymmetrical electrodes for bipolar vessel sealing |
US8945144B2 (en) | 2010-09-08 | 2015-02-03 | Covidien Lp | Microwave spacers and method of use |
US9005200B2 (en) | 2010-09-30 | 2015-04-14 | Covidien Lp | Vessel sealing instrument |
US9017372B2 (en) | 2010-10-01 | 2015-04-28 | Covidien Lp | Blade deployment mechanisms for surgical forceps |
US9655672B2 (en) | 2010-10-04 | 2017-05-23 | Covidien Lp | Vessel sealing instrument |
US8906018B2 (en) | 2010-10-18 | 2014-12-09 | Covidien Lp | Surgical forceps |
US8840639B2 (en) | 2010-10-29 | 2014-09-23 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US9119647B2 (en) | 2010-11-12 | 2015-09-01 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US9028484B2 (en) | 2010-11-16 | 2015-05-12 | Covidien Lp | Fingertip electrosurgical instruments for use in hand-assisted surgery and systems including same |
US8685021B2 (en) | 2010-11-17 | 2014-04-01 | Covidien Lp | Method and apparatus for vascular tissue sealing with active cooling of jaws at the end of the sealing cycle |
US8932293B2 (en) | 2010-11-17 | 2015-01-13 | Covidien Lp | Method and apparatus for vascular tissue sealing with reduced energy consumption |
US9333002B2 (en) | 2010-11-19 | 2016-05-10 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8784418B2 (en) | 2010-11-29 | 2014-07-22 | Covidien Lp | Endoscopic surgical forceps |
US9044253B2 (en) | 2010-12-23 | 2015-06-02 | Covidien Lp | Microwave field-detecting needle assemblies, methods of manufacturing same, methods of adjusting an ablation field radiating into tissue using same, and systems including same |
US9770294B2 (en) | 2011-01-05 | 2017-09-26 | Covidien Lp | Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same |
US9017319B2 (en) | 2011-01-05 | 2015-04-28 | Covidien Lp | Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same |
US9011421B2 (en) | 2011-01-05 | 2015-04-21 | Covidien Lp | Energy-delivery devices with flexible fluid-cooled shaft, inflow/outflow junctions suitable for use with same, and systems including same |
US9113940B2 (en) | 2011-01-14 | 2015-08-25 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
US8945175B2 (en) | 2011-01-14 | 2015-02-03 | Covidien Lp | Latch mechanism for surgical instruments |
US8603134B2 (en) | 2011-01-14 | 2013-12-10 | Covidien Lp | Latch mechanism for surgical instruments |
US8974450B2 (en) | 2011-02-03 | 2015-03-10 | Covidien Lp | System and method for ablation procedure monitoring using electrodes |
US9028476B2 (en) | 2011-02-03 | 2015-05-12 | Covidien Lp | Dual antenna microwave resection and ablation device, system and method of use |
US9017370B2 (en) | 2011-02-17 | 2015-04-28 | Covidien Lp | Vessel sealer and divider with captured cutting element |
US8968316B2 (en) | 2011-02-18 | 2015-03-03 | Covidien Lp | Apparatus with multiple channel selective cutting |
US10413349B2 (en) | 2011-03-04 | 2019-09-17 | Covidien Lp | System and methods for identifying tissue and vessels |
US10335230B2 (en) | 2011-03-09 | 2019-07-02 | Covidien Lp | Systems for thermal-feedback-controlled rate of fluid flow to fluid-cooled antenna assembly and methods of directing energy to tissue using same |
US8968305B2 (en) | 2011-03-28 | 2015-03-03 | Covidien Lp | Surgical forceps with external cutter |
US9381059B2 (en) | 2011-04-05 | 2016-07-05 | Covidien Lp | Electrically-insulative hinge for electrosurgical jaw assembly, bipolar forceps including same, and methods of jaw-assembly alignment using fastened electrically-insulative hinge |
AU2012364792A1 (en) | 2011-04-08 | 2013-11-21 | Covidien Lp | Flexible microwave catheters for natural or artificial lumens |
US9198724B2 (en) | 2011-04-08 | 2015-12-01 | Covidien Lp | Microwave tissue dissection and coagulation |
US8568408B2 (en) | 2011-04-21 | 2013-10-29 | Covidien Lp | Surgical forceps |
US8939972B2 (en) | 2011-05-06 | 2015-01-27 | Covidien Lp | Surgical forceps |
US8900232B2 (en) | 2011-05-06 | 2014-12-02 | Covidien Lp | Bifurcated shaft for surgical instrument |
US10117705B2 (en) | 2011-05-16 | 2018-11-06 | Covidien Lp | Optical recognition of tissue and vessels |
US8685009B2 (en) | 2011-05-16 | 2014-04-01 | Covidien Lp | Thread-like knife for tissue cutting |
US9265568B2 (en) | 2011-05-16 | 2016-02-23 | Coviden Lp | Destruction of vessel walls for energy-based vessel sealing enhancement |
US8852185B2 (en) | 2011-05-19 | 2014-10-07 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8968283B2 (en) | 2011-05-19 | 2015-03-03 | Covidien Lp | Ultrasound device for precise tissue sealing and blade-less cutting |
US9161807B2 (en) | 2011-05-23 | 2015-10-20 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8992413B2 (en) | 2011-05-31 | 2015-03-31 | Covidien Lp | Modified wet tip antenna design |
US8702749B2 (en) | 2011-06-09 | 2014-04-22 | Covidien Lp | Lever latch assemblies for vessel sealer and divider |
US9615877B2 (en) | 2011-06-17 | 2017-04-11 | Covidien Lp | Tissue sealing forceps |
US9039704B2 (en) | 2011-06-22 | 2015-05-26 | Covidien Lp | Forceps |
US9039732B2 (en) | 2011-07-11 | 2015-05-26 | Covidien Lp | Surgical forceps |
US8745840B2 (en) | 2011-07-11 | 2014-06-10 | Covidien Lp | Surgical forceps and method of manufacturing thereof |
US8628557B2 (en) | 2011-07-11 | 2014-01-14 | Covidien Lp | Surgical forceps |
US9844384B2 (en) | 2011-07-11 | 2017-12-19 | Covidien Lp | Stand alone energy-based tissue clips |
US8888771B2 (en) | 2011-07-15 | 2014-11-18 | Covidien Lp | Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same |
US8702737B2 (en) | 2011-08-08 | 2014-04-22 | Covidien Lp | Surgical forceps |
US8870860B2 (en) | 2011-08-09 | 2014-10-28 | Covidien Lp | Microwave antenna having a coaxial cable with an adjustable outer conductor configuration |
US8968306B2 (en) | 2011-08-09 | 2015-03-03 | Covidien Lp | Surgical forceps |
US8852186B2 (en) | 2011-08-09 | 2014-10-07 | Covidien Lp | Microwave sensing for tissue sealing |
US8968317B2 (en) | 2011-08-18 | 2015-03-03 | Covidien Lp | Surgical forceps |
US9113909B2 (en) | 2011-09-01 | 2015-08-25 | Covidien Lp | Surgical vessel sealer and divider |
US8679098B2 (en) | 2011-09-13 | 2014-03-25 | Covidien Lp | Rotation knobs for surgical instruments |
US9636169B2 (en) | 2011-09-19 | 2017-05-02 | Covidien Lp | Electrosurgical instrument |
US8961515B2 (en) | 2011-09-28 | 2015-02-24 | Covidien Lp | Electrosurgical instrument |
US9486220B2 (en) | 2011-09-28 | 2016-11-08 | Covidien Lp | Surgical tissue occluding device |
US9668806B2 (en) | 2011-09-29 | 2017-06-06 | Covidien Lp | Surgical forceps including a removable stop member |
US9060780B2 (en) | 2011-09-29 | 2015-06-23 | Covidien Lp | Methods of manufacturing shafts for surgical instruments |
US8756785B2 (en) | 2011-09-29 | 2014-06-24 | Covidien Lp | Surgical instrument shafts and methods of manufacturing shafts for surgical instruments |
US8864795B2 (en) | 2011-10-03 | 2014-10-21 | Covidien Lp | Surgical forceps |
US9492221B2 (en) | 2011-10-20 | 2016-11-15 | Covidien Lp | Dissection scissors on surgical device |
US9265565B2 (en) | 2011-11-29 | 2016-02-23 | Covidien Lp | Open vessel sealing instrument and method of manufacturing the same |
US9113899B2 (en) | 2011-11-29 | 2015-08-25 | Covidien Lp | Coupling mechanisms for surgical instruments |
US8968310B2 (en) | 2011-11-30 | 2015-03-03 | Covidien Lp | Electrosurgical instrument with a knife blade lockout mechanism |
US9259268B2 (en) | 2011-12-06 | 2016-02-16 | Covidien Lp | Vessel sealing using microwave energy |
US8864753B2 (en) | 2011-12-13 | 2014-10-21 | Covidien Lp | Surgical Forceps Connected to Treatment Light Source |
US9375274B2 (en) | 2012-01-05 | 2016-06-28 | Covidien Lp | Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment |
US9113930B2 (en) | 2012-01-05 | 2015-08-25 | Covidien Lp | Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment |
US9119648B2 (en) | 2012-01-06 | 2015-09-01 | Covidien Lp | System and method for treating tissue using an expandable antenna |
US9113931B2 (en) | 2012-01-06 | 2015-08-25 | Covidien Lp | System and method for treating tissue using an expandable antenna |
US9023035B2 (en) | 2012-01-06 | 2015-05-05 | Covidien Lp | Monopolar pencil with integrated bipolar/ligasure tweezers |
US9113897B2 (en) | 2012-01-23 | 2015-08-25 | Covidien Lp | Partitioned surgical instrument |
US10076383B2 (en) | 2012-01-25 | 2018-09-18 | Covidien Lp | Electrosurgical device having a multiplexer |
US8968360B2 (en) | 2012-01-25 | 2015-03-03 | Covidien Lp | Surgical instrument with resilient driving member and related methods of use |
US9693816B2 (en) | 2012-01-30 | 2017-07-04 | Covidien Lp | Electrosurgical apparatus with integrated energy sensing at tissue site |
US8747434B2 (en) | 2012-02-20 | 2014-06-10 | Covidien Lp | Knife deployment mechanisms for surgical forceps |
US8887373B2 (en) | 2012-02-24 | 2014-11-18 | Covidien Lp | Vessel sealing instrument with reduced thermal spread and method of manufacture therefor |
US8961514B2 (en) | 2012-03-06 | 2015-02-24 | Covidien Lp | Articulating surgical apparatus |
US8752264B2 (en) | 2012-03-06 | 2014-06-17 | Covidien Lp | Surgical tissue sealer |
US8968298B2 (en) | 2012-03-15 | 2015-03-03 | Covidien Lp | Electrosurgical instrument |
US9375282B2 (en) | 2012-03-26 | 2016-06-28 | Covidien Lp | Light energy sealing, cutting and sensing surgical device |
US9265569B2 (en) | 2012-03-29 | 2016-02-23 | Covidien Lp | Method of manufacturing an electrosurgical forceps |
US10966780B2 (en) | 2012-04-17 | 2021-04-06 | Covidien Lp | Electrosurgical instrument having a coated electrode |
US9364278B2 (en) | 2012-04-30 | 2016-06-14 | Covidien Lp | Limited reuse ablation needles and ablation devices for use therewith |
US9943359B2 (en) | 2012-04-30 | 2018-04-17 | Covidien Lp | Limited reuse ablation needles and ablation devices for use therewith |
US10130416B2 (en) | 2012-04-30 | 2018-11-20 | Covidien Lp | Limited reuse ablation needles and ablation devices for use therewith |
US9713493B2 (en) | 2012-04-30 | 2017-07-25 | Covidien Lp | Method of switching energy modality on a cordless RF device |
US9820765B2 (en) | 2012-05-01 | 2017-11-21 | Covidien Lp | Surgical instrument with stamped double-flange jaws |
US8920461B2 (en) | 2012-05-01 | 2014-12-30 | Covidien Lp | Surgical forceps with bifurcated flanged jaw components |
US9668807B2 (en) | 2012-05-01 | 2017-06-06 | Covidien Lp | Simplified spring load mechanism for delivering shaft force of a surgical instrument |
US8968311B2 (en) | 2012-05-01 | 2015-03-03 | Covidien Lp | Surgical instrument with stamped double-flag jaws and actuation mechanism |
US8920410B2 (en) | 2012-05-04 | 2014-12-30 | Covidien Lp | Peripheral switching device for microwave energy platforms |
US9375258B2 (en) | 2012-05-08 | 2016-06-28 | Covidien Lp | Surgical forceps |
US9113901B2 (en) | 2012-05-14 | 2015-08-25 | Covidien Lp | Modular surgical instrument with contained electrical or mechanical systems |
US8906008B2 (en) | 2012-05-22 | 2014-12-09 | Covidien Lp | Electrosurgical instrument |
US9192432B2 (en) | 2012-05-29 | 2015-11-24 | Covidien Lp | Lever latch assemblies for surgical improvements |
US8968313B2 (en) | 2012-06-12 | 2015-03-03 | Covidien Lp | Electrosurgical instrument with a knife blade stop |
AU2013278080B2 (en) | 2012-06-22 | 2017-05-11 | Covidien Lp | Microwave thermometry for microwave ablation systems |
US9510891B2 (en) | 2012-06-26 | 2016-12-06 | Covidien Lp | Surgical instruments with structures to provide access for cleaning |
US9011436B2 (en) | 2012-06-26 | 2015-04-21 | Covidien Lp | Double-length jaw system for electrosurgical instrument |
US9770255B2 (en) | 2012-06-26 | 2017-09-26 | Covidien Lp | One-piece handle assembly |
US9066681B2 (en) | 2012-06-26 | 2015-06-30 | Covidien Lp | Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue |
US9039691B2 (en) | 2012-06-29 | 2015-05-26 | Covidien Lp | Surgical forceps |
US9901398B2 (en) | 2012-06-29 | 2018-02-27 | Covidien Lp | Microwave antenna probes |
US10368945B2 (en) | 2012-07-17 | 2019-08-06 | Covidien Lp | Surgical instrument for energy-based tissue treatment |
US8939975B2 (en) | 2012-07-17 | 2015-01-27 | Covidien Lp | Gap control via overmold teeth and hard stops |
US9833285B2 (en) | 2012-07-17 | 2017-12-05 | Covidien Lp | Optical sealing device with cutting ability |
US9301798B2 (en) | 2012-07-19 | 2016-04-05 | Covidien Lp | Surgical forceps including reposable end effector assemblies |
US9259269B2 (en) | 2012-08-07 | 2016-02-16 | Covidien Lp | Microwave ablation catheter and method of utilizing the same |
US9636168B2 (en) | 2012-08-09 | 2017-05-02 | Covidien Lp | Electrosurgical instrument including nested knife assembly |
US9433461B2 (en) | 2012-09-07 | 2016-09-06 | Covidien Lp | Instruments, systems, and methods for sealing tissue structures |
US9439711B2 (en) | 2012-10-02 | 2016-09-13 | Covidien Lp | Medical devices for thermally treating tissue |
US9370392B2 (en) | 2012-10-02 | 2016-06-21 | Covidien Lp | Heat-sensitive optical probes |
US9662165B2 (en) | 2012-10-02 | 2017-05-30 | Covidien Lp | Device and method for heat-sensitive agent application |
US9687290B2 (en) | 2012-10-02 | 2017-06-27 | Covidien Lp | Energy-based medical devices |
US9743975B2 (en) | 2012-10-02 | 2017-08-29 | Covidien Lp | Thermal ablation probe for a medical device |
US9522033B2 (en) | 2012-10-02 | 2016-12-20 | Covidien Lp | Devices and methods for optical detection of tissue contact |
US9668802B2 (en) | 2012-10-02 | 2017-06-06 | Covidien Lp | Devices and methods for optical detection of tissue contact |
US9526564B2 (en) | 2012-10-08 | 2016-12-27 | Covidien Lp | Electric stapler device |
US9681908B2 (en) | 2012-10-08 | 2017-06-20 | Covidien Lp | Jaw assemblies for electrosurgical instruments and methods of manufacturing jaw assemblies |
US9549749B2 (en) | 2012-10-08 | 2017-01-24 | Covidien Lp | Surgical forceps |
US9375259B2 (en) | 2012-10-24 | 2016-06-28 | Covidien Lp | Electrosurgical instrument including an adhesive applicator assembly |
US9572529B2 (en) | 2012-10-31 | 2017-02-21 | Covidien Lp | Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing |
US10206583B2 (en) | 2012-10-31 | 2019-02-19 | Covidien Lp | Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing |
US10772674B2 (en) | 2012-11-15 | 2020-09-15 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9375205B2 (en) | 2012-11-15 | 2016-06-28 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9498281B2 (en) | 2012-11-27 | 2016-11-22 | Covidien Lp | Surgical apparatus |
US9901399B2 (en) | 2012-12-17 | 2018-02-27 | Covidien Lp | Ablation probe with tissue sensing configuration |
US9375256B2 (en) | 2013-02-05 | 2016-06-28 | Covidien Lp | Electrosurgical forceps |
US10265119B2 (en) | 2013-02-15 | 2019-04-23 | Covidien Lp | Electrosurgical forceps |
US9713491B2 (en) | 2013-02-19 | 2017-07-25 | Covidien Lp | Method for manufacturing an electrode assembly configured for use with an electrosurigcal instrument |
US9655673B2 (en) | 2013-03-11 | 2017-05-23 | Covidien Lp | Surgical instrument |
US9456863B2 (en) | 2013-03-11 | 2016-10-04 | Covidien Lp | Surgical instrument with switch activation control |
US10070916B2 (en) | 2013-03-11 | 2018-09-11 | Covidien Lp | Surgical instrument with system and method for springing open jaw members |
US9877775B2 (en) | 2013-03-12 | 2018-01-30 | Covidien Lp | Electrosurgical instrument with a knife blade stop |
CN105073052B (en) | 2013-03-29 | 2017-09-01 | 柯惠有限合伙公司 | The coaxial microwave ablation applicator of descending manner and its manufacture method |
US9622810B2 (en) | 2013-05-10 | 2017-04-18 | Covidien Lp | Surgical forceps |
EP3003177B1 (en) | 2013-05-31 | 2021-03-10 | Covidien LP | Surgical device with an end-effector assembly for monitoring of tissue during a surgical procedure |
US9649151B2 (en) | 2013-05-31 | 2017-05-16 | Covidien Lp | End effector assemblies and methods of manufacturing end effector assemblies for treating and/or cutting tissue |
EP3030176B1 (en) | 2013-08-07 | 2022-09-28 | Covidien LP | Bipolar surgical instrument with tissue stop |
US10966779B2 (en) | 2013-08-07 | 2021-04-06 | Covidien Lp | Bipolar surgical instrument |
US9962221B2 (en) | 2013-08-07 | 2018-05-08 | Covidien Lp | Bipolar surgical instrument |
CN105451670B (en) | 2013-08-07 | 2018-09-04 | 柯惠有限合伙公司 | Surgery forceps |
CA2918484C (en) | 2013-08-07 | 2020-08-25 | Covidien Lp | Bipolar surgical instrument |
US10405874B2 (en) | 2013-08-13 | 2019-09-10 | Covidien Lp | Surgical instrument |
US9814844B2 (en) | 2013-08-27 | 2017-11-14 | Covidien Lp | Drug-delivery cannula assembly |
US10201265B2 (en) | 2013-09-06 | 2019-02-12 | Covidien Lp | Microwave ablation catheter, handle, and system |
AU2014317930B2 (en) | 2013-09-06 | 2018-11-08 | Covidien Lp | Microwave ablation catheter, handle, and system |
US9943357B2 (en) | 2013-09-16 | 2018-04-17 | Covidien Lp | Split electrode for use in a bipolar electrosurgical instrument |
US9445865B2 (en) | 2013-09-16 | 2016-09-20 | Covidien Lp | Electrosurgical instrument with end-effector assembly including electrically-conductive, tissue-engaging surfaces and switchable bipolar electrodes |
US9717548B2 (en) | 2013-09-24 | 2017-08-01 | Covidien Lp | Electrode for use in a bipolar electrosurgical instrument |
US10610289B2 (en) | 2013-09-25 | 2020-04-07 | Covidien Lp | Devices, systems, and methods for grasping, treating, and dividing tissue |
US10231772B2 (en) | 2013-09-25 | 2019-03-19 | Covidien Lp | Wire retention unit for a surgical instrument |
US10631914B2 (en) | 2013-09-30 | 2020-04-28 | Covidien Lp | Bipolar electrosurgical instrument with movable electrode and related systems and methods |
US9642671B2 (en) | 2013-09-30 | 2017-05-09 | Covidien Lp | Limited-use medical device |
US9974601B2 (en) | 2013-11-19 | 2018-05-22 | Covidien Lp | Vessel sealing instrument with suction system |
US10231776B2 (en) | 2014-01-29 | 2019-03-19 | Covidien Lp | Tissue sealing instrument with tissue-dissecting electrode |
US10130413B2 (en) | 2014-02-11 | 2018-11-20 | Covidien Lp | Temperature-sensing electrically-conductive tissue-contacting plate and methods of manufacturing same |
US11090109B2 (en) | 2014-02-11 | 2021-08-17 | Covidien Lp | Temperature-sensing electrically-conductive tissue-contacting plate configured for use in an electrosurgical jaw member, electrosurgical system including same, and methods of controlling vessel sealing using same |
US10058377B2 (en) | 2014-04-02 | 2018-08-28 | Covidien Lp | Electrosurgical devices including transverse electrode configurations |
US10278768B2 (en) | 2014-04-02 | 2019-05-07 | Covidien Lp | Electrosurgical devices including transverse electrode configurations |
US9687295B2 (en) | 2014-04-17 | 2017-06-27 | Covidien Lp | Methods of manufacturing a pair of jaw members of an end-effector assembly for a surgical instrument |
US20150324317A1 (en) | 2014-05-07 | 2015-11-12 | Covidien Lp | Authentication and information system for reusable surgical instruments |
US20160038224A1 (en) | 2014-08-11 | 2016-02-11 | Covidien Lp | Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures |
US10045812B2 (en) | 2014-08-11 | 2018-08-14 | Covidien Lp | Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures |
US10624697B2 (en) | 2014-08-26 | 2020-04-21 | Covidien Lp | Microwave ablation system |
US10660694B2 (en) | 2014-08-27 | 2020-05-26 | Covidien Lp | Vessel sealing instrument and switch assemblies thereof |
US10820939B2 (en) | 2014-09-15 | 2020-11-03 | Covidien Lp | Vessel-sealing device including force-balance interface and electrosurgical system including same |
US10080606B2 (en) | 2014-09-17 | 2018-09-25 | Covidien Lp | Method of forming a member of an end effector |
US10080605B2 (en) | 2014-09-17 | 2018-09-25 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9987077B2 (en) | 2014-09-17 | 2018-06-05 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
US9918785B2 (en) | 2014-09-17 | 2018-03-20 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9931158B2 (en) | 2014-09-17 | 2018-04-03 | Covidien Lp | Deployment mechanisms for surgical instruments |
US9987076B2 (en) | 2014-09-17 | 2018-06-05 | Covidien Lp | Multi-function surgical instruments |
US10258360B2 (en) | 2014-09-25 | 2019-04-16 | Covidien Lp | Surgical instruments |
US10813685B2 (en) | 2014-09-25 | 2020-10-27 | Covidien Lp | Single-handed operable surgical instrument including loop electrode with integrated pad electrode |
US10813691B2 (en) | 2014-10-01 | 2020-10-27 | Covidien Lp | Miniaturized microwave ablation assembly |
US10463422B2 (en) | 2014-12-18 | 2019-11-05 | Covidien Lp | Surgical instrument with stopper assembly |
US10080600B2 (en) | 2015-01-21 | 2018-09-25 | Covidien Lp | Monopolar electrode with suction ability for CABG surgery |
US10172612B2 (en) | 2015-01-21 | 2019-01-08 | Covidien Lp | Surgical instruments with force applier and methods of use |
US10653476B2 (en) | 2015-03-12 | 2020-05-19 | Covidien Lp | Mapping vessels for resecting body tissue |
US10206736B2 (en) | 2015-03-13 | 2019-02-19 | Covidien Lp | Surgical forceps with scalpel functionality |
US10758257B2 (en) | 2015-04-24 | 2020-09-01 | Covidien Lp | Vessel sealing device with fine dissection function |
WO2016169038A1 (en) | 2015-04-24 | 2016-10-27 | Covidien Lp | Multifunctional vessel sealing and divider device |
US9848935B2 (en) | 2015-05-27 | 2017-12-26 | Covidien Lp | Surgical instruments including components and features facilitating the assembly and manufacturing thereof |
US9956022B2 (en) | 2015-05-27 | 2018-05-01 | Covidien Lp | Surgical forceps and methods of manufacturing the same |
US10226269B2 (en) | 2015-05-27 | 2019-03-12 | Covidien Lp | Surgical forceps |
US10441340B2 (en) | 2015-05-27 | 2019-10-15 | Covidien Lp | Surgical forceps |
US9974602B2 (en) | 2015-05-27 | 2018-05-22 | Covidien Lp | Surgical instruments and devices and methods facilitating the manufacture of the same |
US10722293B2 (en) | 2015-05-29 | 2020-07-28 | Covidien Lp | Surgical device with an end effector assembly and system for monitoring of tissue before and after a surgical procedure |
US10213221B2 (en) | 2015-10-28 | 2019-02-26 | Covidien Lp | Surgical instruments including cam surfaces |
US10154877B2 (en) | 2015-11-04 | 2018-12-18 | Covidien Lp | Endoscopic surgical instrument |
US10213250B2 (en) | 2015-11-05 | 2019-02-26 | Covidien Lp | Deployment and safety mechanisms for surgical instruments |
US10172672B2 (en) | 2016-01-11 | 2019-01-08 | Covidien Lp | Jaw force control for electrosurgical forceps |
US10426543B2 (en) | 2016-01-23 | 2019-10-01 | Covidien Lp | Knife trigger for vessel sealer |
US10695123B2 (en) | 2016-01-29 | 2020-06-30 | Covidien Lp | Surgical instrument with sensor |
US10537381B2 (en) | 2016-02-26 | 2020-01-21 | Covidien Lp | Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly |
USD819815S1 (en) | 2016-03-09 | 2018-06-05 | Covidien Lp | L-shaped blade trigger for an electrosurgical instrument |
US10517665B2 (en) | 2016-07-14 | 2019-12-31 | Covidien Lp | Devices and methods for tissue sealing and mechanical clipping |
US10856933B2 (en) | 2016-08-02 | 2020-12-08 | Covidien Lp | Surgical instrument housing incorporating a channel and methods of manufacturing the same |
US11000332B2 (en) | 2016-08-02 | 2021-05-11 | Covidien Lp | Ablation cable assemblies having a large diameter coaxial feed cable reduced to a small diameter at intended site |
US11065053B2 (en) | 2016-08-02 | 2021-07-20 | Covidien Lp | Ablation cable assemblies and a method of manufacturing the same |
US11197715B2 (en) | 2016-08-02 | 2021-12-14 | Covidien Lp | Ablation cable assemblies and a method of manufacturing the same |
US10376309B2 (en) | 2016-08-02 | 2019-08-13 | Covidien Lp | Ablation cable assemblies and a method of manufacturing the same |
US10682154B2 (en) | 2016-08-02 | 2020-06-16 | Covidien Lp | Cutting mechanisms for surgical end effector assemblies, instruments, and systems |
US10631887B2 (en) | 2016-08-15 | 2020-04-28 | Covidien Lp | Electrosurgical forceps for video assisted thoracoscopic surgery and other surgical procedures |
US10441305B2 (en) | 2016-08-18 | 2019-10-15 | Covidien Lp | Surgical forceps |
US10772642B2 (en) | 2016-08-18 | 2020-09-15 | Covidien Lp | Surgical forceps |
US10918407B2 (en) | 2016-11-08 | 2021-02-16 | Covidien Lp | Surgical instrument for grasping, treating, and/or dividing tissue |
US11207091B2 (en) | 2016-11-08 | 2021-12-28 | Covidien Lp | Surgical instrument for grasping, treating, and/or dividing tissue |
US10814128B2 (en) | 2016-11-21 | 2020-10-27 | Covidien Lp | Electroporation catheter |
US10813695B2 (en) | 2017-01-27 | 2020-10-27 | Covidien Lp | Reflectors for optical-based vessel sealing |
US11229480B2 (en) | 2017-02-02 | 2022-01-25 | Covidien Lp | Latching mechanism for in-line activated electrosurgical device |
US10881445B2 (en) | 2017-02-09 | 2021-01-05 | Covidien Lp | Adapters, systems incorporating the same, and methods for providing an electrosurgical forceps with clip-applying functionality |
US11540872B2 (en) | 2017-03-13 | 2023-01-03 | Covidien Lp | Electrosurgical instrument with trigger driven cutting function |
US10973567B2 (en) | 2017-05-12 | 2021-04-13 | Covidien Lp | Electrosurgical forceps for grasping, treating, and/or dividing tissue |
US11172980B2 (en) | 2017-05-12 | 2021-11-16 | Covidien Lp | Electrosurgical forceps for grasping, treating, and/or dividing tissue |
US11166759B2 (en) | 2017-05-16 | 2021-11-09 | Covidien Lp | Surgical forceps |
USD843574S1 (en) | 2017-06-08 | 2019-03-19 | Covidien Lp | Knife for open vessel sealer |
USD854149S1 (en) | 2017-06-08 | 2019-07-16 | Covidien Lp | End effector for open vessel sealer |
USD854684S1 (en) | 2017-06-08 | 2019-07-23 | Covidien Lp | Open vessel sealer with mechanical cutter |
USD859658S1 (en) | 2017-06-16 | 2019-09-10 | Covidien Lp | Vessel sealer for tonsillectomy |
US10716619B2 (en) | 2017-06-19 | 2020-07-21 | Covidien Lp | Microwave and radiofrequency energy-transmitting tissue ablation systems |
US11160600B2 (en) | 2018-03-01 | 2021-11-02 | Covidien Lp | Monopolar return electrode grasper with return electrode monitoring |
US11109930B2 (en) | 2018-06-08 | 2021-09-07 | Covidien Lp | Enhanced haptic feedback system |
US11612403B2 (en) | 2018-10-03 | 2023-03-28 | Covidien Lp | Multi-function surgical transection instrument |
WO2020146483A1 (en) | 2019-01-09 | 2020-07-16 | Covidien Lp | Electrosurgical fallopian tube sealing devices with suction and methods of use thereof |
US11523861B2 (en) | 2019-03-22 | 2022-12-13 | Covidien Lp | Methods for manufacturing a jaw assembly for an electrosurgical forceps |
US11490917B2 (en) | 2019-03-29 | 2022-11-08 | Covidien Lp | Drive rod and knife blade for an articulating surgical instrument |
US11490916B2 (en) | 2019-03-29 | 2022-11-08 | Covidien Lp | Engagement features and methods for attaching a drive rod to a knife blade in an articulating surgical instrument |
US11607267B2 (en) | 2019-06-10 | 2023-03-21 | Covidien Lp | Electrosurgical forceps |
US11622804B2 (en) | 2020-03-16 | 2023-04-11 | Covidien Lp | Forceps with linear trigger mechanism |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5228086B2 (en) * | 1973-06-21 | 1977-07-25 | ||
US5011529A (en) * | 1989-03-14 | 1991-04-30 | Corning Incorporated | Cured surfaces and a process of curing |
-
1991
- 1991-06-19 JP JP3176221A patent/JP2806511B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH055106A (en) | 1993-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2806511B2 (en) | Manufacturing method of sintered alloy | |
KR960008726B1 (en) | Method for production of high-pressure phase sintered article of boron nitride for use in cutting tool and sintered article produced thereby | |
JPWO2017191744A1 (en) | Cemented carbide and cutting tools | |
JP2019031742A (en) | Cermet, cutting tool and manufacturing method of cermet | |
JP5559575B2 (en) | Cermet and coated cermet | |
CN1497053A (en) | Hard alloy and W-based complex carbide powder used as raw material | |
JP2011190529A (en) | Hard-coating-coated member and tool, and target | |
US5403628A (en) | Process for producing a coated hard-metal cutting body | |
JP5971616B2 (en) | Hard material, manufacturing method of hard material, cutting tool and friction stir welding tool | |
JPH01246361A (en) | Diamond-coated sintered alloy having excellent release resistance and its production | |
JP5835306B2 (en) | Cemented carbide and surface-coated cutting tool using the same | |
JPH0196084A (en) | Surface-coated cubic boron nitride-based material sintered under superhigh pressure to be used for cutting tool | |
JPH0292868A (en) | High-strength sintered material of boron nitride-base of cubic system | |
JP2980301B2 (en) | Manufacturing method of ferrite alloy sintered body | |
JPH01212767A (en) | Highly wear-resistant polycrystalline diamond tool and its production | |
US5156805A (en) | Process of preparing a ferritic alloy with a wear-resistive alumina scale | |
JP3359481B2 (en) | Cermet for cutting tools | |
JPH0271906A (en) | Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance | |
JPS644989B2 (en) | ||
JP2805969B2 (en) | Aluminum oxide based ceramics with high toughness and high strength | |
JPH10168537A (en) | Coated cermet for cutting tool | |
JP6459106B1 (en) | Cemented carbide and cutting tools | |
JP7170965B2 (en) | Cemented Carbide and Coated Cemented Carbide | |
JPS6050745B2 (en) | Method for producing aluminum oxide-based ceramic with high toughness and hardness | |
JP2023066450A (en) | Cutting tool and processing method of laminated shaped body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |