JP2787593B2 - Evaporator - Google Patents

Evaporator

Info

Publication number
JP2787593B2
JP2787593B2 JP1140706A JP14070689A JP2787593B2 JP 2787593 B2 JP2787593 B2 JP 2787593B2 JP 1140706 A JP1140706 A JP 1140706A JP 14070689 A JP14070689 A JP 14070689A JP 2787593 B2 JP2787593 B2 JP 2787593B2
Authority
JP
Japan
Prior art keywords
liquid
evaporator
fluid passage
oxygen
liquid medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1140706A
Other languages
Japanese (ja)
Other versions
JPH037879A (en
Inventor
幾雄 藤田
吉豊 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sanso Corp
Original Assignee
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Corp filed Critical Nippon Sanso Corp
Priority to JP1140706A priority Critical patent/JP2787593B2/en
Publication of JPH037879A publication Critical patent/JPH037879A/en
Application granted granted Critical
Publication of JP2787593B2 publication Critical patent/JP2787593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、第一流体通路の液媒と第二流体通路の流体
とで熱交換を行い、第一流体通路の液媒を蒸発させる蒸
発器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to evaporation in which heat exchange is performed between a liquid medium in a first fluid passage and a fluid in a second fluid passage to evaporate the liquid medium in the first fluid passage. About the vessel.

〔従来の技術〕[Conventional technology]

従来の蒸発器の一例として、第二流体通路の流体が凝
縮する窒素ガスである、空気液化分離装置の複精留塔の
上部塔と下部塔間に連設されて用いられる液化酸素を蒸
発する凝縮蒸発器を挙げて説明する。
As an example of the conventional evaporator, the liquid in the second fluid passage is nitrogen gas, which condenses the liquefied oxygen that is used between the upper and lower towers of the double rectification column of the air liquefaction separator. A description will be given using a condensation evaporator.

例えば特開昭56−56592号公報に記載されているよう
に、垂直方向を多数の平行な仕切板により仕切り、第一
流体通路(酸素室)と第二流体通路(窒素室)の二室を
交互に隣接して積層した、いわゆるプレートフィン式熱
交換器と呼ばれているものが多く用いられている。
For example, as described in JP-A-56-56592, the vertical direction is divided by a number of parallel partition plates, and two chambers of a first fluid passage (oxygen chamber) and a second fluid passage (nitrogen chamber) are formed. A so-called plate-fin heat exchanger, which is alternately stacked adjacently, is often used.

このようなプレートフィン式凝縮蒸発器の第一流体通
路である酸素室は、内部に垂直方向に伝熱板を配設して
上下方向の蒸発流路を多数形成するとともに、該蒸発流
路の上下両端部を開口させて下端部を液化酸素の導入口
とし、上端部を酸素ガスと液化酸素の混合流の導出口と
している。この酸素室は、凝縮蒸発器全体が上部塔の底
部空間に溜まる液媒(液化酸素)中に浸漬されることに
より、液化酸素で満たされており、酸素室内の液化酸素
は、隣接する第二流体通路である窒素室に下部塔から導
入される窒素ガスと熱交換を行い、これを冷却して凝縮
することにより暖められてその一部が蒸発して酸素ガス
の気泡となり、蒸発流路を上昇する。液化酸素は、この
酸素ガス及び液化酸素の気液混合相と酸素室外の液化酸
素との密度差により酸素室内を上昇し、凝縮蒸発器の内
外に循環流を形成している。
The oxygen chamber, which is the first fluid passage of such a plate fin type condensing evaporator, has a vertically arranged heat transfer plate therein to form a large number of vertical evaporation passages, Both upper and lower ends are opened, and the lower end is used as an inlet for liquefied oxygen, and the upper end is used as an outlet for a mixed flow of oxygen gas and liquefied oxygen. The oxygen chamber is filled with liquefied oxygen by immersing the entire condensing evaporator in a liquid medium (liquefied oxygen) that accumulates in the bottom space of the upper tower. Heat exchange with nitrogen gas introduced from the lower tower into the nitrogen chamber, which is a fluid passage, is heated by cooling and condensing it, and a part of it evaporates to become bubbles of oxygen gas, and the vaporization flow path To rise. The liquefied oxygen rises in the oxygen chamber due to the density difference between the gas-liquid mixed phase of the oxygen gas and the liquefied oxygen and the liquefied oxygen outside the oxygen chamber, and forms a circulating flow inside and outside the condensing evaporator.

一方、窒素室は、四周が密閉された室内に、酸素室が
同様に垂直方向の伝熱板を配設して上下方向の凝縮流路
を多数形成しており、該凝縮流路の上下に設けられたヘ
ッダーを介して下部塔に接続されている。そして、上部
のヘッダーから下部塔上部の窒素ガスを前記凝縮流路に
下向流として導入し、該凝縮流路で前記液化酸素と熱交
換を行って凝縮した液化窒素を下部のヘッダーから導出
している。
On the other hand, in the nitrogen chamber, a vertical heat transfer plate is similarly arranged in the oxygen chamber, and a large number of vertical condensation flow paths are formed in a chamber whose four circumferences are sealed. It is connected to the lower tower via the provided header. Then, nitrogen gas in the upper part of the lower tower is introduced from the upper header into the condensation flow path as a downward flow, and liquefied nitrogen condensed by performing heat exchange with the liquefied oxygen in the condensation flow path is derived from the lower header. ing.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、このような従来の凝縮蒸発器は、その
全体を上部塔底部空間の液化酸素内に浸漬して使用する
ために、該空間に多量の液化酸素を貯液保有させなけれ
ば、凝縮蒸発器の機能を十分に発揮させることができな
かった。そのために、装置の起動時間が長くかかった
り、停止時に放出する液化酸素量が多くなり、動力費の
損失となっていた。さらに大量の液化酸素を保有するこ
とで、万一の場合に備えるための保安上の問題も大き
い。
However, such a conventional condensing evaporator is entirely immersed in liquefied oxygen in the upper column bottom space, and is used unless a large amount of liquefied oxygen is stored in the space. Function could not be fully exhibited. For this reason, the start-up time of the apparatus is long, or the amount of liquefied oxygen released at the time of stoppage is increased, resulting in a loss of power cost. Further, by holding a large amount of liquefied oxygen, there is a great security problem in preparation for an emergency.

また、凝縮蒸発器全体を液化酸素中に浸漬して用いて
いるので、液化酸素の液深により凝縮蒸発器の下部の液
化酸素の圧力が上昇し、沸点上昇を生じるため、酸素室
の下部から蒸発流路に流入する液化酸素が過冷状態とな
る。そのため、酸素室の下部では蒸発流路を上昇する液
化酸素を沸騰開始温度まで伝熱効率の低い対流伝熱によ
り加温しなければならず、該流路の伝熱効率を低下させ
るとともに、酸素室と窒素室との温度差を確保するため
に、窒素ガスの凝縮温度を高める必要があり、このため
窒素ガスの圧力、即ち下部塔の運転圧力を上昇させなけ
ればならず、原料空気の圧縮に要する動力を増加させて
いた。
In addition, since the entire condensing evaporator is immersed in liquefied oxygen, the pressure of liquefied oxygen at the lower part of the condensing evaporator rises due to the liquid depth of the liquefied oxygen, and a boiling point rises. The liquefied oxygen flowing into the evaporation flow path is in a supercooled state. Therefore, in the lower part of the oxygen chamber, liquefied oxygen rising in the evaporating flow passage must be heated to the boiling start temperature by convective heat transfer having a low heat transfer efficiency, thereby lowering the heat transfer efficiency of the flow passage, and reducing the oxygen flow in the oxygen chamber. In order to secure a temperature difference from the nitrogen chamber, it is necessary to increase the condensation temperature of the nitrogen gas. Therefore, the pressure of the nitrogen gas, that is, the operating pressure of the lower tower must be increased, which is necessary for the compression of the raw material air. The power was increasing.

さらに凝縮側の窒素室は、垂直方向の凝縮流路を窒素
ガスが凝縮しながら流下するため、該流路の下部では液
化窒素量が増加し、厚い液膜となって伝熱面の表面を覆
うので、これが熱抵抗層となり伝熱性能を低下させてい
た。
Furthermore, in the nitrogen chamber on the condensation side, nitrogen gas flows down while condensing nitrogen gas in the vertical condensation flow path, so that the amount of liquefied nitrogen increases at the lower part of the flow path, forming a thick liquid film, and the surface of the heat transfer surface becomes thicker. Since it covers, this becomes a heat resistance layer and lowers the heat transfer performance.

特に、大型の空気液化分離装置に用いる凝縮蒸発器で
は、設置場所の関係から幅方向に制約を受けて高さ方向
の寸法を大きくせざるを得ないため、前述の液化酸素の
液深による影響や、凝縮した液化窒素の液膜の影響等が
大きくなり熱交換効率が低下するとともに、凝縮蒸発器
を浸漬させるための液化酸素の必要量が大量となり、起
動時間の問題や保安上の問題も大きくなる。
In particular, in the case of a condensing evaporator used for a large-sized air liquefaction separation device, the size in the height direction must be increased due to the restriction in the width direction due to the installation location, so the influence of the liquid depth of the liquefied oxygen described above In addition, the influence of the liquid film of condensed liquefied nitrogen increases, the heat exchange efficiency decreases, and the amount of liquefied oxygen required to immerse the condensing evaporator increases, resulting in startup time problems and security problems. growing.

そこで本発明は、酸素室(第一流体通路)側の液化酸
素(液媒)の必要量を低減するとともに、液化酸素の液
深による影響を低減して、その分窒素室(第二流体通
路)間との必要温度差を低減し、さらに窒素室側の凝縮
液による伝熱性能の低下を低減させることのできる蒸発
器を提供することを目的としている。
Therefore, the present invention reduces the required amount of liquefied oxygen (liquid medium) on the side of the oxygen chamber (first fluid passage) and reduces the influence of the liquid depth of the liquefied oxygen, thereby reducing the nitrogen chamber (second fluid passage). It is an object of the present invention to provide an evaporator that can reduce a required temperature difference between the evaporator and the evaporator, and can further reduce a decrease in heat transfer performance due to a condensate in the nitrogen chamber.

〔問題点を解決するための手段〕[Means for solving the problem]

上記した目的を達成するために、本発明の凝縮蒸発器
の第1の構成は、第一流体通路の液媒と第二流体通路の
流体とで熱交換を行う蒸発器において、複数の第一流体
通路と第二流体通路とを上下方向に主として交互に積層
し、前記第一流体通路の一端に前記液媒を第一流体通路
に導入する液媒導入手段を設けるとともに他側端を開放
して液媒の導出部とし、前記第二流体通路には、その一
端側に前記流体を第二流体通路に導入する流体導入手段
を設けるとともに他端側を導出部としたことを特徴とし
ている。また、本発明の第2の構成は、前記第一流体通
路が、液媒導入側から導出側に向かって昇り勾配を有し
ていることを特徴としている。さらに、第3の構成は、
前記第一流体通路と第二流体通路は、それぞれの通路間
に配設した仕切板により仕切って画成されるとともに、
該仕切板間に波形伝熱フィンが配設されていることを特
徴としている。
In order to achieve the above object, a first configuration of a condensing evaporator of the present invention is an evaporator that performs heat exchange between a liquid medium in a first fluid passage and a fluid in a second fluid passage. The fluid passages and the second fluid passages are mainly alternately stacked in the vertical direction, and a liquid medium introduction unit for introducing the liquid medium into the first fluid passage is provided at one end of the first fluid passage, and the other end is opened. The second fluid passage is provided with a fluid introduction means for introducing the fluid into the second fluid passage at one end thereof, and the other end thereof is provided as an outlet. Further, a second configuration of the present invention is characterized in that the first fluid passage has a rising gradient from a liquid medium introduction side to a discharge side. Further, the third configuration is
The first fluid passage and the second fluid passage are partitioned and defined by a partition plate disposed between the respective passages,
Waveform heat transfer fins are arranged between the partition plates.

第4の構成は、前記液媒導入手段が、前記第一流体通
路の液媒導入端に連通する、上下多段に配設された複数
の液溜及び/又は液受と、該液溜及び/又は液受に液媒
を供給する液媒供給手段とを有し、前記液溜及び/又は
液受は上部が開放されていることを特徴としている。第
5の構成は、第4の構成において、前記液媒供給手段
が、前記上下多段に配設された液溜及び/又は液受に沿
って配設された液供給管と、該液溜及び/又は液受の側
壁に設けられて、液供給管と各液溜及び/又は液受とを
連通する液媒供給孔とを有することを特徴としており、
第6の構成は、第4の構成において、前記第一流体通路
の導出端側に連通して、該第一流体通路の導出端部から
流出する液媒を受ける上部が開放された複数の液受を上
下多段に設けるとともに、該液受に流出した液媒を前記
液溜に戻す液戻し流路を設けたことを特徴としている。
A fourth configuration is such that the liquid medium introduction means communicates with the liquid medium introduction end of the first fluid passage, and a plurality of liquid reservoirs and / or liquid receivers arranged in upper and lower stages, and the liquid reservoir and / or Alternatively, there is provided a liquid medium supply means for supplying a liquid medium to the liquid receiver, and the liquid reservoir and / or the liquid receiver are open at the top. According to a fifth configuration, in the fourth configuration, the liquid medium supply unit includes: a liquid supply pipe disposed along the liquid reservoir and / or the liquid receiver disposed in the upper and lower multi-stages; And / or a liquid medium supply hole provided on a side wall of the liquid receiver and communicating the liquid supply pipe with each of the liquid reservoirs and / or the liquid receiver.
A sixth configuration according to the fourth configuration, wherein a plurality of liquids having an open upper part that communicate with the outlet end of the first fluid passage and receive the liquid medium flowing out from the outlet end of the first fluid passage are provided. It is characterized in that the receivers are provided in multiple stages in the upper and lower parts, and a liquid return flow path for returning the liquid medium flowing out to the liquid receiver to the liquid reservoir is provided.

第7の構成は、第6の構成において、前記液戻し流路
は、管又は樋、あるいは前記第一流体通路間に、前記第
二流体通路と隣接しないように設けられた流路のいずれ
かにより形成されていることを特徴としている。
A seventh configuration is the sixth configuration, wherein the liquid return flow path is any one of a pipe or a gutter, or a flow path provided between the first fluid passages so as not to be adjacent to the second fluid passage. Characterized by the following.

第8の構成は、第4の構成の蒸発器を複数基配設する
とともに、各蒸発器の第一流体通路の導出端部から流出
する液媒を、他の蒸発器の液溜に供給して液媒を順次他
の蒸発器の第一流体通路へ循環させるように構成したこ
とを特徴としている。
In an eighth configuration, a plurality of evaporators of the fourth configuration are provided, and a liquid medium flowing out from an outlet end of the first fluid passage of each evaporator is supplied to a liquid reservoir of another evaporator. The liquid medium is sequentially circulated to the first fluid passage of another evaporator.

第9の構成は、前記蒸発器が、第1流体通路の液媒を
蒸発させるとともに、第二流体通路の流体を凝縮させる
凝縮蒸発器である。
A ninth configuration is a condensing evaporator in which the evaporator evaporates the liquid medium in the first fluid passage and condenses the fluid in the second fluid passage.

〔作 用〕(Operation)

第1の構成のごとく、蒸発させる液媒を液媒導入手段
から第一流体通路に、該液媒と熱交換させる流体を流体
導入手段から第二流体通路にそれぞれ導入することによ
り、蒸発器を液媒中に浸漬せずに運転することができ、
液媒の必要量を大幅に低減するとともに、液深による影
響を低減することができ、流体間の温度差を極限まで詰
めた小温度差及び省エネルギー型蒸発器の製作が可能と
なる。
As in the first configuration, the evaporator is formed by introducing a liquid medium to be evaporated from the liquid medium introduction unit to the first fluid passage and a fluid to be exchanged with the liquid medium from the fluid introduction unit to the second fluid passage. Can be operated without immersion in the liquid medium,
The required amount of the liquid medium can be greatly reduced, and the influence of the liquid depth can be reduced, so that it is possible to manufacture a small temperature difference and an energy-saving evaporator in which the temperature difference between the fluids is minimized.

第2の構成のごとく、第一流体通路を、液媒導入側か
ら導出側に向かって昇り勾配にすることにより、蒸発生
成したガスの気泡がその浮上力で第一流体通路内から流
出し易く、液媒の流動を促進して熱伝達率を高めること
ができる。
As in the second configuration, the first fluid passage is inclined upward from the liquid medium introduction side to the discharge side, so that bubbles of the vaporized gas easily flow out of the first fluid passage due to its floating force. In addition, the heat transfer coefficient can be enhanced by promoting the flow of the liquid medium.

第3の構成のごとく、両通路を仕切板により仕切って
画成するとともに、該仕切板間に波形伝熱フィンを配設
することにより、本発明の蒸発器を容易に製作すること
ができる。
As in the third configuration, the evaporator of the present invention can be easily manufactured by defining both passages by partitioning them with a partition plate and disposing corrugated heat transfer fins between the partition plates.

第4の構成のごとく、上下多段の液溜及び/又は液受
と液媒供給手段とで前記液媒導入手段を形成することに
より、上部を開放した各液溜及び/又は液受部分で圧力
を開放できるので、液媒の液深を蒸発器の高さに関係な
く各液溜及び/又は液受の深さとすることができる。こ
れにより、蒸発器の高さを高くして蒸発能力を増加でき
るので、蒸発器の設置面積が限定される場合に有益であ
る。
As in the fourth configuration, the liquid medium introduction means is formed by the upper and lower multistage liquid reservoirs and / or liquid receivers and the liquid medium supply means. Can be opened, so that the liquid depth of the liquid medium can be set to the depth of each liquid reservoir and / or liquid receiver regardless of the height of the evaporator. Thus, the height of the evaporator can be increased to increase the evaporating capacity, which is advantageous when the installation area of the evaporator is limited.

第5の構成のごとく、液溜及び/又は液受に沿って液
供給管を配設して両者を液媒供給孔で連通させることに
より、前記液媒供給手段を容易に形成でき、液媒供給孔
の径を調整することで、各液溜及び/又は液受への液媒
の供給量を調整することができる。
As in the fifth configuration, the liquid medium supply means can be easily formed by disposing a liquid supply pipe along the liquid reservoir and / or the liquid receiver and communicating the two with the liquid medium supply hole. By adjusting the diameter of the supply hole, the supply amount of the liquid medium to each liquid reservoir and / or liquid receiver can be adjusted.

第6の構成のごとく、第一流体通路の導入側に液溜を
有する蒸発器の第一流体通路の導出側に液受を設けると
ともに、液戻し流路を設けることにより、第一流体通路
に導入する液媒を自己循環させることができる。
As in the sixth configuration, a liquid receiver is provided on the outlet side of the first fluid passage of the evaporator having a liquid reservoir on the introduction side of the first fluid passage, and a liquid return flow passage is provided. The liquid medium to be introduced can be self-circulated.

第7の構成に示すごとく、管又は樋、あるいは前記第
一流体通路間に設けられた流路により、前記液戻し流路
を容易に形成することができる。
As shown in the seventh configuration, the liquid return flow path can be easily formed by a pipe or a gutter or a flow path provided between the first fluid passages.

第8の構成によれば、複数の蒸発器間で順次他の蒸発
器液に液媒を授受させて循環させることができる。
According to the eighth configuration, it is possible to sequentially transfer and circulate the liquid medium to another evaporator liquid between the plurality of evaporators.

第9の構成によれば、第一流体通路の液媒を蒸発させ
るとともに、第二流体通路の流体を凝縮させることによ
り凝縮蒸発器として用いることができる。
According to the ninth configuration, by evaporating the liquid medium in the first fluid passage and condensing the fluid in the second fluid passage, it can be used as a condensing evaporator.

上記第6乃至第8の構成により、蒸発器下方に流下す
る液媒量を低減できるので、例えば液化酸素ポンプ又は
サーモサイフォンリボイラーにより循環する液化酸素量
が少量で良くなり、再循環設備費及び液化酸素ポンプの
動力費を削減することができる。
According to the sixth to eighth configurations, the amount of liquid medium flowing down the evaporator can be reduced, so that the amount of liquefied oxygen circulated by, for example, a liquefied oxygen pump or a thermosiphon reboiler can be reduced, thereby reducing the cost of recirculation equipment and liquefaction. The power cost of the oxygen pump can be reduced.

〔実施例〕〔Example〕

本発明は、第二流体通路の流体を、凝縮する窒素ガス
に限定するものではないが、以下、本発明を、第一流体
通路の蒸発する液媒を酸素、第二流体通路で凝縮する流
体を窒素とした例につき、図面に基づいてさらに詳細に
説明する。尚、液の流れ方向を実線矢印、ガスの流れ方
向を破線矢印で示す。
Although the present invention does not limit the fluid in the second fluid passage to nitrogen gas to be condensed, the present invention will be described below with reference to oxygen, a fluid that evaporates in the first fluid passage, and a fluid that condenses in the second fluid passage. An example in which is represented by nitrogen will be described in more detail with reference to the drawings. The liquid flow direction is indicated by a solid arrow, and the gas flow direction is indicated by a dashed arrow.

まず、第1図乃至第4図は本発明の一実施例を示すも
ので、前述の液溜,液受及び液戻し流路を備えた凝縮蒸
発器を示すものである。
First, FIGS. 1 to 4 show an embodiment of the present invention, and show a condensing evaporator provided with the above-mentioned liquid reservoir, liquid receiving and liquid returning flow paths.

蒸発器の1種である凝縮蒸発器1は、多数の第一流体
通路(酸素室)10,10,…と、第二流体通路(窒素室)2
0,20,…とを、水平面に対して所定の傾斜を設けて上下
方向に交互に積層して形成したもので、酸素室10の勾配
の下端側11には、液化酸素LOを酸素室10内に導入する液
媒導入手段である液溜30,30,…が上下多段に設けられ、
勾配の上端側12の導出部には、酸素室10の端部から流出
する未蒸発の液化酸素LOを受ける液受31,31,…が、液溜
30と同様に上下多段に設けられている。また、窒素室20
の勾配の上端側21には、窒素ガスGNを窒素室20内に導入
する流体導入手段である入口ヘッダー40が設けられ、勾
配の下端側22には、窒素室20内で凝縮した液化窒素LNを
導出する出口ヘッダー41が設けられている。
A condensing evaporator 1 which is a kind of evaporator includes a plurality of first fluid passages (oxygen chambers) 10, 10,.
Are formed alternately in the vertical direction with a predetermined inclination with respect to the horizontal plane, and a liquefied oxygen LO is provided at the lower end 11 of the gradient of the oxygen chamber 10. Liquid reservoirs 30, 30,... As liquid medium introduction means to be introduced into the inside are provided in upper and lower multi-stages,
At the outlet on the upper end side 12 of the gradient, liquid receivers 31, 31,... For receiving unevaporated liquefied oxygen LO flowing out from the end of the oxygen chamber 10 are provided.
Like 30, it is provided in upper and lower stages. In addition, nitrogen chamber 20
At the upper end 21 of the gradient, an inlet header 40 as a fluid introduction means for introducing nitrogen gas GN into the nitrogen chamber 20 is provided, and at the lower end 22 of the gradient, liquefied nitrogen LN condensed in the nitrogen chamber 20 is provided. Is provided.

上記酸素室10と窒素室20とは、第4図に示すように、
多数の仕切板2,2,…を所定の角度で傾斜させて平行に積
層して形成されるもので、該仕切板間2,2,…にはサイド
バー3,3,…と波形伝熱フィン4,4,…が配置されて所定の
通路が形成されている。上記酸素室10は、該酸素室10の
傾斜方向に向けて波形伝熱フィン4の折目線を配置する
とともに、該波形伝熱フィン4の両側にサイドバー3,3
を配置して両側を閉塞し、傾斜方向両端を開放させた蒸
発通路13を形成している。
As shown in FIG. 4, the oxygen chamber 10 and the nitrogen chamber 20
A large number of partition plates 2, 2,... Are formed by being stacked in parallel at a predetermined angle, and between the partition plates 2, 2,. The fins 4, 4,... Are arranged to form a predetermined passage. In the oxygen chamber 10, the fold lines of the corrugated heat transfer fins 4 are arranged in the inclination direction of the oxygen chamber 10, and side bars 3, 3 are provided on both sides of the corrugated heat transfer fins 4.
Are disposed, and the evaporation passage 13 is formed with both sides closed and both ends in the inclined direction opened.

また上記窒素室20は、その四周にそれぞれサイドバー
3,3を設けて窒素室20内と凝縮蒸発器1の外部雰囲気と
を遮断しており、傾斜方向の一側に配置したサイドバー
3の傾斜方向両端を側方に開口させて前記入口ヘッダー
40と出口ヘッダー41にそれぞれ連通するガス導入口23と
液導出口24を形成している。この窒素室20の内部には、
その勾配の中央部に位置して上記酸素室10と同方向に波
形伝熱フィン4を配置した凝縮通路部25と、波形伝熱フ
ィン4を斜めに配置して上記ガス導入口23から導入され
る窒素ガスGNを凝縮通路部25に均等に分配するガス分配
部26と、同様に波形伝熱フィン4を斜めに配置して凝縮
通路部25で凝縮した液化窒素LNを集合して上記液導出口
24に導出する液集合部27とが形成されている。
The nitrogen chamber 20 has sidebars around its four circumferences.
3 and 3 are provided to shut off the inside of the nitrogen chamber 20 and the outside atmosphere of the condensing evaporator 1, and open both ends of the side bar 3 on one side of the inclined direction in the inclined direction to the side of the inlet header.
A gas inlet 23 and a liquid outlet 24 are formed to communicate with the outlet 40 and the outlet header 41, respectively. Inside this nitrogen chamber 20,
A condensing passage portion 25 in which the corrugated heat transfer fins 4 are disposed in the center of the gradient in the same direction as the oxygen chamber 10, and the corrugated heat transfer fins 4 are disposed obliquely and introduced from the gas inlet 23. And a gas distribution unit 26 for equally distributing the nitrogen gas GN to the condensing passage portion 25, and similarly, the liquefied nitrogen LN condensed in the condensing passage portion 25 by arranging the corrugated heat transfer fins 4 obliquely. Exit
A liquid collecting part 27 leading to 24 is formed.

この凝縮蒸発器1の製作は、上記仕切板2,サイドバー
3,波形伝熱フィン4等としてアルミニウムを用いれば、
従来のアルミニウム製プレートフィン式凝縮蒸発器と同
様のブレージング製造技術により容易に行うことができ
る。
This condensing evaporator 1 is manufactured by the above-mentioned partition plate 2, side bar
3, If aluminum is used for the corrugated heat transfer fins 4
It can be easily performed by the same brazing manufacturing technology as the conventional aluminum plate fin type condensing evaporator.

上記酸素室10の傾斜角度は、前記蒸発通路13の長さや
接続する液溜30の深さ等により適宜に選定されるもの
で、該酸素室10を略水平に設けることも可能であるが、
液化酸素LOの流れ方向に対して昇り勾配に設けた方が蒸
発生成した酸素ガスGOの気泡がその浮上力で酸素室10内
から一方向へ流出し易いとともに、波形伝熱フィン4に
よって形成された狭い通路においては、気泡間に液化酸
素を挟み込む状態で液化酸素LOを同伴するから、液化酸
素LOの流動を促進して熱伝達率を高めることができる。
逆に酸素室10の傾斜を必要以上に大きくすると蒸発通路
13が長くなり、必然的に液深が増大するため好ましくな
い。
The inclination angle of the oxygen chamber 10 is appropriately selected depending on the length of the evaporation passage 13, the depth of the liquid reservoir 30 to be connected, and the like, and the oxygen chamber 10 can be provided substantially horizontally.
When the liquefied oxygen LO is provided at an ascending gradient with respect to the flow direction, the bubbles of the oxygen gas GO generated by evaporation are more likely to flow out of the oxygen chamber 10 in one direction due to its buoyancy, and are formed by the corrugated heat transfer fins 4. In the narrow passage, the liquefied oxygen LO is entrained in a state where the liquefied oxygen is sandwiched between the bubbles, so that the flow of the liquefied oxygen LO can be promoted to increase the heat transfer coefficient.
Conversely, if the inclination of the oxygen chamber 10 is increased more than necessary, the evaporation passage
13 becomes longer, which inevitably increases the liquid depth, which is not preferable.

また、上端部に液化酸素が存在しなくなりドライアウ
トを生じないように傾斜角度を設定する。即ち、上記実
施例のように、酸素室10を適度な昇り勾配に形成するこ
とにより、蒸発した酸素ガスGOの気泡がその浮上力で液
化酸素LOの流動を促進して酸素室10の勾配の上端側12か
ら流出させるため、液化酸素LOの蒸発が効果的に行わ
れ、蒸発した酸素ガスGOの滞留も生じないので凝縮蒸発
器1の熱交換効率を向上させることができる。尚、酸素
室10内の液化酸素を流動させる駆動力を、主として酸素
ガスの浮上力で説明したが、酸素室10内の気液混合相と
液溜30内の液化酸素との密度差も流動を促進しているこ
とは言うまでもない。
In addition, the inclination angle is set so that liquefied oxygen does not exist at the upper end and dryout does not occur. That is, as in the above-described embodiment, by forming the oxygen chamber 10 with an appropriate rising gradient, the bubble of the evaporated oxygen gas GO promotes the flow of the liquefied oxygen LO by its buoyancy, and the gradient of the oxygen chamber 10 is reduced. Since the liquefied oxygen LO flows out from the upper end 12, the liquefied oxygen LO is effectively evaporated and the evaporated oxygen gas GO does not stay, so that the heat exchange efficiency of the condensing evaporator 1 can be improved. Although the driving force for flowing the liquefied oxygen in the oxygen chamber 10 has been mainly described by the floating force of the oxygen gas, the density difference between the gas-liquid mixed phase in the oxygen chamber 10 and the liquefied oxygen in the liquid reservoir 30 also flows. Needless to say, it promotes

さらに、上記酸素室10の傾斜角度は、該酸素室10に平
行に置かれる窒素室20における凝縮した液化窒素LNの流
れに支障の無い範囲で設定することが必要であり、窒素
室20において前記凝縮通路部25で凝縮した液化窒素LNを
可及的速やかに流下させて通路内に滞留させることのな
い勾配とすべきである。
Further, the inclination angle of the oxygen chamber 10 needs to be set within a range that does not hinder the flow of the condensed liquefied nitrogen LN in the nitrogen chamber 20 placed in parallel with the oxygen chamber 10. The gradient should be such that the liquefied nitrogen LN condensed in the condensation passage section 25 flows down as quickly as possible and does not stay in the passage.

然して、この窒素通路(凝縮通路部25)は、従来の垂
直な通路と比較して流路長を短く、かつ窒素通路の全通
路断面積を大幅に増加させることができるので、凝縮液
の膜厚を低減でき、凝縮液(液化窒素LN)の通路内の滞
留量を低減できるので、凝縮液による伝熱性能の低下を
防止できる。
However, since the nitrogen passage (condensing passage portion 25) can shorten the passage length and greatly increase the total passage cross-sectional area of the nitrogen passage as compared with the conventional vertical passage, the condensed liquid film Since the thickness can be reduced and the amount of condensate (liquefied nitrogen LN) retained in the passage can be reduced, a decrease in heat transfer performance due to the condensate can be prevented.

この観点から、本発明の蒸発器は、第一流体通路の液
媒を蒸発させるとともに、第二流体通路に凝縮性ガスを
流して凝縮を行わせるのに最適な熱交換器である。しか
し、このことが第二流体通路の流体を、凝縮するガスに
限定するものではない。
From this viewpoint, the evaporator of the present invention is an optimal heat exchanger for evaporating the liquid medium in the first fluid passage and flowing condensable gas in the second fluid passage for condensation. However, this does not limit the fluid in the second fluid passage to the condensing gas.

また、酸素室10を形成する仕切板の上下間隔は、酸素
ガスGOが液化酸素LOを同伴するのに適した幅に設定すべ
きであり、この幅が大き過ぎると酸素ガスGOの浮上力で
液化酸素LOを同伴させることが困難になる。狭い流路を
形成するために波形伝熱フィンを用いているが、波形伝
熱フィンのみに限定されるものではない。また、酸素室
10を形成する流路は、該流路内に不本意にアセチレン等
の炭化水素類の濃縮を生じた時、これが壁面に析出附着
しないように、液化酸素LOの流れによって析出物を洗い
流すために蒸発量より過剰量の液化酸素LOの循環流を形
成させるのが良い。このために流路を狭く形成し、液化
酸素循環流を促進させることが望ましい。
In addition, the vertical interval between the partition plates forming the oxygen chamber 10 should be set to a width suitable for the oxygen gas GO to accompany the liquefied oxygen LO.If the width is too large, the floating force of the oxygen gas GO may increase. It becomes difficult to entrain liquefied oxygen LO. Although a corrugated heat transfer fin is used to form a narrow flow path, it is not limited to only a corrugated heat transfer fin. Also, oxygen chamber
The flow path forming 10 is used to wash out the precipitates by the flow of liquefied oxygen LO so that when hydrocarbons such as acetylene are unintentionally concentrated in the flow paths, they do not adhere to the wall surface. It is preferable to form a circulating flow of liquefied oxygen LO in excess of the amount of evaporation. For this purpose, it is desirable to form a narrow flow passage to promote the liquefied oxygen circulation flow.

即ち、酸素室10及び窒素室20の傾斜角度や通路形状及
び長さ等は、各室における気液の流量や温度差等の各種
の条件により最適な状態に設定されるものである。
That is, the inclination angle, the passage shape, the length, and the like of the oxygen chamber 10 and the nitrogen chamber 20 are set to an optimum state according to various conditions such as the gas-liquid flow rate and the temperature difference in each chamber.

次に、前記液溜30は、一側の開口が上下数段の酸素室
10の勾配の下端側11に連通し、各液溜30に供給される液
化酸素LOを各酸素室10内に供給するもので、上部を開口
させて外部雰囲気に圧力を開放し、各液溜30内の液深を
小さくして液化酸素LOの液圧の影響を低減している。
Next, the liquid reservoir 30 has an oxygen chamber in which an opening on one side is
The liquefied oxygen LO supplied to each of the liquid reservoirs 30 is supplied to each of the oxygen chambers 10 by communicating with the lower end side 11 of the gradient of 10, and the upper part is opened to release the pressure to the external atmosphere, and each of the liquid The effect of the liquid pressure of liquefied oxygen LO is reduced by reducing the liquid depth in 30.

上記液溜30の一側には、各液溜30に液化酸素LOを供給
する液供給管32が設けられている。この液供給管32は、
液溜30側の側壁33を各液溜30の側壁と兼ねるように形成
されており、各液溜30と液供給管32は、該側壁33に穿設
された液供給孔34により連通しており、液供給管32を流
下する液化酸素LOは、この液供給孔34から液溜30内に供
給される。この液供給孔34は、液溜30の上下の配置位置
により所定の径で形成されており、各液溜30に所定量の
液化酸素LOを供給できるように形成されている。
A liquid supply pipe 32 for supplying liquefied oxygen LO to each of the liquid reservoirs 30 is provided on one side of the liquid reservoirs 30. This liquid supply pipe 32
A side wall 33 on the side of the liquid reservoir 30 is formed so as to also serve as a side wall of each of the liquid reservoirs 30. Each of the liquid reservoirs 30 and the liquid supply pipe 32 communicate with each other through a liquid supply hole 34 formed in the side wall 33. The liquefied oxygen LO flowing down the liquid supply pipe 32 is supplied from the liquid supply hole 34 into the liquid reservoir 30. The liquid supply holes 34 are formed to have a predetermined diameter depending on the positions of the upper and lower positions of the liquid reservoirs 30 so that a predetermined amount of liquefied oxygen LO can be supplied to each of the liquid reservoirs 30.

また、液化酸素LO中には、不純物である炭化水素類が
含有されており、液化酸素LOの蒸発によって次第に濃縮
されてくるので、一定量を常に排液して未濃縮の液化酸
素LOを入替え、酸素室10内を循環している液化酸素LO中
の炭化水素濃度を一定値以下に調整する必要がある。そ
のため、一定量の液化酸素LOの排液を行うとともに、各
液溜30内の液化酸素LOの量を均等にするために、各液溜
30の側壁上縁には、堰35が切欠形成されている。即ち、
前記液供給管32から蒸発量より過剰の液化酸素LOを各液
溜30に供給し、過剰の液化酸素LOを該堰35からオーバー
フローさせることにより、各液溜30内の液化酸素量を略
一定に保つとともに、炭化水素が濃縮された液化酸素と
未濃縮の液化酸素とを混合して液化酸素中の炭化水素を
希釈することで、炭化水素量を所定値以下に保つように
形成している。
In addition, the liquefied oxygen LO contains hydrocarbons as impurities, and is gradually concentrated by evaporation of the liquefied oxygen LO.Therefore, a certain amount is constantly drained to replace the unconcentrated liquefied oxygen LO. It is necessary to adjust the hydrocarbon concentration in the liquefied oxygen LO circulating in the oxygen chamber 10 to a certain value or less. Therefore, in order to drain a certain amount of liquefied oxygen LO and to equalize the amount of liquefied oxygen LO in each
At the upper edge of the side wall 30, a weir 35 is cut out. That is,
By supplying the excess liquefied oxygen LO from the liquid supply pipe 32 to the respective reservoirs 30 by evaporation, and overflowing the excess liquefied oxygen LO from the weir 35, the amount of liquefied oxygen in each reservoir 30 is substantially constant. And a mixture of liquefied oxygen in which hydrocarbons are concentrated and unconcentrated liquefied oxygen to dilute the hydrocarbons in the liquefied oxygen so that the amount of hydrocarbons is maintained at a predetermined value or less. .

一方の液受31は、上記液溜30と略同様に形成されるも
ので、一側の開口が上下数段の酸素室10の勾配の上端側
12に連通し、各酸素室10の端部から導出流下する液化酸
素LOを受けるとともに、該液受31の上部の開口から酸素
室10内で蒸発した酸素ガスGOを液化酸素LOと分離させて
凝縮蒸発器1の上方に上昇させる。
One of the liquid receivers 31 is formed substantially in the same manner as the above-mentioned liquid reservoir 30, and one side opening is on the upper end side of the gradient of the oxygen chamber 10 having several upper and lower stages.
12 and receives the liquefied oxygen LO that flows down from the end of each oxygen chamber 10 and separates the oxygen gas GO evaporated in the oxygen chamber 10 from the liquefied oxygen LO from the upper opening of the liquid receiver 31. It is raised above the condensing evaporator 1.

この液溜30と液受31は、上記のごとく上下複数の酸素
室10を一つのブロックとしてそれぞれ対応させて設けら
れており、該液溜30と液受31との間には、液戻り流路と
なる管路36が設けられている。この管路36は、液受31内
に導出流下した液化酸素LOを、液化酸素LOの液ヘッドに
より元の液溜30に戻して酸素室10に循環させるものであ
る。
The liquid reservoir 30 and the liquid receiver 31 are provided so as to correspond to the plurality of upper and lower oxygen chambers 10 as one block as described above, and a liquid return flow is provided between the liquid reservoir 30 and the liquid receiver 31. A conduit 36 serving as a path is provided. The conduit 36 is for circulating the liquefied oxygen LO that has been led out into the liquid receiver 31 and returned to the original liquid reservoir 30 by the liquid head of the liquefied oxygen LO, and circulated to the oxygen chamber 10.

このように構成された酸素室10に導入される液化酸素
LOは、前記液供給管32から液供給孔34を介して各液溜30
に供給され、それぞれの液溜30から酸素室10内に流入す
る。各酸素室10内の液化酸素LOは、仕切板2を介して隣
接する窒素室20内を流れる窒素ガスGNと熱交換を行い、
その一部が蒸発して酸素ガスGOの気泡となる。この酸素
ガスGOの気泡は、酸素室10内の液化酸素LOと共に酸素室
10を上昇後、出口端で液化酸素LOと分離して上下の液受
31,31の間から凝縮蒸発器1の上方に向かって上昇す
る。
Liquefied oxygen introduced into the oxygen chamber 10 thus configured
LO is applied to each liquid reservoir 30 from the liquid supply pipe 32 through a liquid supply hole 34.
And flows into the oxygen chamber 10 from each liquid reservoir 30. The liquefied oxygen LO in each oxygen chamber 10 exchanges heat with the nitrogen gas GN flowing in the adjacent nitrogen chamber 20 via the partition plate 2,
Some of them evaporate and become bubbles of oxygen gas GO. The bubbles of the oxygen gas GO are generated together with the liquefied oxygen LO in the oxygen chamber 10 in the oxygen chamber.
After ascending 10, liquid is separated from liquefied oxygen LO at the outlet end
It rises toward the upper part of the condensation evaporator 1 from between 31 and 31.

一方、酸素室10内で蒸発しなかった液化酸素LOは、前
記酸素ガスGOに同伴されて酸素室10の出口端から導出
し、前記液受31に流下する。この酸素室の液受31に導出
流下した液化酸素LOは、前記管路36を通って元の液溜30
内に流下し、該液溜30から再び酸素室10に導入される。
この時、一部の液化酸素LOは、前記堰35からオーバーフ
ローして下段の液溜30あるいは凝縮蒸発器1の下方に流
下する。
On the other hand, the liquefied oxygen LO that has not evaporated in the oxygen chamber 10 is drawn out from the outlet end of the oxygen chamber 10 with the oxygen gas GO and flows down to the liquid receiver 31. The liquefied oxygen LO led out to the liquid receiver 31 of the oxygen chamber 31 flows through the pipe 36 to the original liquid reservoir 30.
And is again introduced from the liquid reservoir 30 into the oxygen chamber 10.
At this time, a part of the liquefied oxygen LO overflows from the weir 35 and flows down below the lower liquid reservoir 30 or the condensing evaporator 1.

即ち、液供給管32から液溜30に供給された液化酸素LO
は、該液溜30から酸素室10に導入されて一部が蒸発しな
がら液受31に至り、該液受31から管路36を流下して元の
液溜30に戻る経路で循環し、各酸素室10で蒸発した量、
及び堰35からオーバーフローする量に見合う量の液化酸
素LOが液供給管32から液供給孔34を介して液溜30に補給
される。
That is, the liquefied oxygen LO supplied to the liquid reservoir 30 from the liquid supply pipe 32
Is introduced into the oxygen chamber 10 from the liquid reservoir 30 and reaches the liquid receiver 31 while a part thereof evaporates, and circulates in a path flowing down the pipe 36 from the liquid receiver 31 and returning to the original liquid reservoir 30, The amount evaporated in each oxygen chamber 10,
The amount of liquefied oxygen LO corresponding to the amount of overflow from the weir 35 is supplied from the liquid supply pipe 32 to the liquid reservoir 30 via the liquid supply hole 34.

一方、前記窒素室20に導入される窒素ガスGNは、前記
入口ヘッダー40に供給されて前記ガス導入口23から窒素
室20内のガス分配部26に流入し、該ガス分配部26で整流
されて凝縮通路部25に導入される。この凝縮通路部25で
前述の酸素室10内の液化酸素LOと熱交換して凝縮した液
化窒素LNは、該窒素室20の勾配により凝縮通路部25を流
下し、前記液集合部27で集合して前記液導出口24から出
口ヘッダー41に導出される。また窒素ガスGN中に含まれ
る水素やヘリウム等の非凝縮ガスGXは、出口ヘッダー41
の上部に設けられたパージノズル42から導出される。
On the other hand, the nitrogen gas GN introduced into the nitrogen chamber 20 is supplied to the inlet header 40, flows into the gas distributor 26 in the nitrogen chamber 20 from the gas inlet 23, and is rectified by the gas distributor 26. And is introduced into the condensation passage section 25. The liquefied nitrogen LN condensed by the heat exchange with the liquefied oxygen LO in the oxygen chamber 10 in the condensing passage section 25 flows down the condensing passage section 25 due to the gradient of the nitrogen chamber 20, and is collected in the liquid collecting section 27. Then, the liquid is led out from the liquid outlet 24 to the outlet header 41. The non-condensable gas GX such as hydrogen and helium contained in the nitrogen gas GN is supplied to the outlet header 41.
From the purge nozzle 42 provided at the top of the nozzle.

このように形成した凝縮蒸発器1は、液化酸素LOの圧
力を各液溜30の部分で開放できるので、従来の液化酸素
中に浸漬して用いる凝縮蒸発器に比べて、液化酸素LOの
液深による圧力上昇が少なくなり、液化酸素LOの液深に
よる影響を低減させることができ、その分流体間の温度
差を低減することができるので、最小の温度差でも熱交
換が可能であり、従来の蒸発器の温度差と比較して大幅
に低減された。
Since the pressure of the liquefied oxygen LO can be released from each of the liquid reservoirs 30 in the condensing evaporator 1 thus formed, the liquid of the liquefied oxygen LO can be compared with a conventional condensing evaporator which is immersed in liquefied oxygen. The pressure rise due to the depth is reduced, the influence of the liquid depth of the liquefied oxygen LO can be reduced, and the temperature difference between the fluids can be reduced accordingly, so that heat exchange is possible even with the minimum temperature difference, The temperature difference is greatly reduced as compared with the temperature difference of the conventional evaporator.

さらに、液受31と管路36とを設けたことにより、凝縮
蒸発器1の下方に流下する液化酸素量を低減させること
ができる。即ち、各液溜30からオーバーフローして凝縮
蒸発器1の下方に流下する液化酸素量は、酸素室10内の
液化酸素LO中に炭化水素が濃縮されるのを防止できる程
度とすればよいため、液供給管32より供給する液化酸素
LOの量は、凝縮蒸発器1内で蒸発する液化酸素量よりも
僅かに多くするだけで十分であり、この過剰分の液化酸
素LOがオーバーフローして流下するのみで炭化水素の濃
縮を防止できるので、凝縮蒸発器1の下方に流下する液
化酸素量を低減することができる。これにより、液化酸
素ポンプあるいはサーモサイフォンリボイラー等によっ
て揚上すべき液化酸素量を大幅に低減できるから、これ
らの装置を小型化でき、設備費に加えてその動力費等も
低減することができる。尚、上記揚上手段により揚液さ
れる液化酸素は、吸着器でアセチレン等の炭化水素を除
去することができる。
Further, the provision of the liquid receiver 31 and the conduit 36 makes it possible to reduce the amount of liquefied oxygen flowing down the condensation evaporator 1. That is, the amount of liquefied oxygen that overflows from each liquid reservoir 30 and flows below the condensing evaporator 1 may be set to such an extent that hydrocarbons can be prevented from being concentrated in the liquefied oxygen LO in the oxygen chamber 10. Liquefied oxygen supplied from the liquid supply pipe 32
It is sufficient that the amount of LO is slightly larger than the amount of liquefied oxygen evaporating in the condensing evaporator 1. The excess liquefied oxygen LO overflows and flows down, thereby preventing the concentration of hydrocarbons. Therefore, the amount of liquefied oxygen flowing down the condensation evaporator 1 can be reduced. As a result, the amount of liquefied oxygen to be lifted by a liquefied oxygen pump, a thermosiphon reboiler, or the like can be greatly reduced, so that these devices can be downsized, and the power cost thereof can be reduced in addition to equipment costs. The liquefied oxygen pumped by the lifting means can remove hydrocarbons such as acetylene using an adsorber.

一方の窒素室20は、凝縮蒸発器1の高さを高くしても
通路長さが長くなることがないので、凝縮した液化窒素
LNの液膜厚さの増加を防止できる。また凝縮蒸発器1の
高さを高くすることにより、窒素室全通路断面積を大幅
に増加させることができるので、伝熱性能を向上させて
熱交換効率を向上させることができるばかりでなく、液
溜30によって蒸発側の高さ制約も解消されたことと相俟
って設置面積に制限のある場合には伝熱面積を蒸発器高
さを高くして増加できるので、設置面積を低減すること
ができる。
On the other hand, the passage in the nitrogen chamber 20 does not increase even if the height of the condensing evaporator 1 is increased.
An increase in the liquid film thickness of LN can be prevented. In addition, by increasing the height of the condensing evaporator 1, the cross-sectional area of the entire passage of the nitrogen chamber can be greatly increased, so that not only the heat transfer performance can be improved and the heat exchange efficiency can be improved, but also When the installation area is limited in combination with the removal of the height restriction on the evaporation side by the liquid reservoir 30, the heat transfer area can be increased by increasing the height of the evaporator, so that the installation area is reduced. be able to.

尚、本実施例の凝縮蒸発器1においては、酸素室10及
び窒素室20を仕切板2により仕切って両室を層状に形成
したが、中空押出し型材等、その内部を一方あるいは両
者の通路とした中空部材を積層して形成することもでき
る。また、両室内に波形伝熱フィン4を配設して通路を
形成するとともに、伝熱面積の増大を図っているが、こ
のようなフィンを配設せずに両室を形成することもで
き、適当な間隔で適宜な伝熱板等を配設してもよい。さ
らに、酸素室10の通路面を多孔質層等からなる沸騰促進
伝熱面としたり、窒素室20の通路面にフルート加工等の
凝縮促進伝熱面を形成することもできる。尚、波形伝熱
フィン等を室内に配設する場合には、有孔フィン等を用
いて圧力や流量の均等化を図ることが望ましい。
In the condensing evaporator 1 of the present embodiment, the oxygen chamber 10 and the nitrogen chamber 20 are partitioned by the partition plate 2 to form both chambers in a layered form. It can also be formed by laminating the hollow members thus formed. In addition, the corrugated heat transfer fins 4 are arranged in both chambers to form a passage and the heat transfer area is increased, but both chambers can be formed without such fins. An appropriate heat transfer plate or the like may be provided at an appropriate interval. Further, the passage surface of the oxygen chamber 10 may be a boiling promoting heat transfer surface made of a porous layer or the like, or a condensation promoting heat transfer surface such as flute processing may be formed on the passage surface of the nitrogen chamber 20. When arranging corrugated heat transfer fins or the like in a room, it is desirable to equalize the pressure and the flow rate by using perforated fins or the like.

また、本実施例のごとく、酸素室10の液化酸素導入手
段として上下多段に配置した液溜30を用いることで、前
述のごとく液深の影響を低減させることができるが、高
さ寸法の低い凝縮蒸発器等、液深の影響を無視すること
ができる場合には、酸素室10への液化酸素導入手段を管
路やヘッダー等とすることもできる。
In addition, as in the present embodiment, by using the liquid reservoirs 30 arranged in upper and lower stages as the liquefied oxygen introducing means of the oxygen chamber 10, the influence of the liquid depth can be reduced as described above, but the height dimension is low. When the influence of the liquid depth can be neglected, such as in a condensing evaporator, the means for introducing liquefied oxygen into the oxygen chamber 10 can be a conduit or a header.

さらに、本実施例では、上下の各液溜30と液受31をそ
れぞれ対応させて設けているが、各液溜30と液受31の大
きさを上下方向で変えたり、液溜30と液受31をそれぞれ
別の酸素室ブロック毎に配置したり、あるいは液受31か
らの液戻し流路(管路36)を対応する液溜30より下段に
接続しても良い。さらに各液溜30への液化酸素LOの供給
は、全ての液溜30又は液受31と液供給管32とをそれぞれ
連通させる流路で接続してもよく、液供給管32を設けず
に最上段の液溜のみに液化酸素LOを供給し、液溜30ある
いは液受31から前述の堰35あるいはオーバーフロー管あ
るいは液戻し流路等により下段の液溜30あるいは液受31
に順次液化酸素LOを流下させる構造とすることもでき
る。
Further, in the present embodiment, the upper and lower liquid reservoirs 30 and the liquid receivers 31 are provided so as to correspond to each other. However, the size of each of the liquid reservoirs 30 and the liquid receivers 31 is changed in the vertical direction, and The receivers 31 may be arranged for different oxygen chamber blocks, respectively, or a liquid return flow path (pipe 36) from the liquid receiver 31 may be connected to a lower stage than the corresponding liquid reservoir 30. Further, the supply of the liquefied oxygen LO to each of the liquid reservoirs 30 may be connected by a flow path that allows each of the liquid reservoirs 30 or the liquid receiver 31 and the liquid supply pipe 32 to communicate with each other, without providing the liquid supply pipe 32. The liquefied oxygen LO is supplied only to the uppermost liquid reservoir, and the lower liquid reservoir 30 or liquid receiver 31 is supplied from the liquid reservoir 30 or liquid receiver 31 by the weir 35 or the overflow pipe or the liquid return flow path.
Alternatively, a structure in which the liquefied oxygen LO flows down sequentially may be used.

また、各液溜30への液化酸素LOの供給量の調節は、流
量調節機構を設けたり、液供給孔34の径や、堰35の位
置,大きさ、あるいは堰に代えてオーバーフロー管を用
いた場合には、該オーバーフロー管の口径,取付位置等
を調整することにより行うことができる。
Further, the supply amount of the liquefied oxygen LO to each liquid reservoir 30 is adjusted by providing a flow rate adjusting mechanism, or using an overflow pipe instead of the diameter of the liquid supply hole 34, the position and size of the weir 35, or the weir. In this case, it can be carried out by adjusting the diameter, mounting position, and the like of the overflow pipe.

さらに、前記液受31及び液戻し流路を設けずに形成す
ることもできる。このとき、凝縮蒸発器1の下方に流下
した液化酸素は、液化酸素ポンプ等の適宜な揚上手段で
揚上循環させることができ、この液化酸素を揚上するこ
となく、系外に導出して液化酸素及び/又は酸素ガスと
して回収することもできる。あるいは製品として多量の
液化酸素を採取するような装置の場合には、上記液受31
や液戻し流路等を設けずに、あるいは上下方向の一部に
設けて、流下させる液化酸素量を調整することもでき
る。
Further, it can be formed without providing the liquid receiver 31 and the liquid return flow path. At this time, the liquefied oxygen that has flowed below the condensing evaporator 1 can be lifted and circulated by a suitable lifting means such as a liquefied oxygen pump, and the liquefied oxygen is led out of the system without being lifted. Liquefied oxygen and / or oxygen gas. Alternatively, in the case of a device that collects a large amount of liquefied oxygen as a product,
It is also possible to adjust the amount of liquefied oxygen that flows down without providing a liquid return channel or the like, or by providing a part in the vertical direction.

尚、蒸発させる流体を完全に蒸発させても問題の無い
場合は、液受や液戻し流路、さらに液溜のオーバーフロ
ー用の堰等を設けずに形成しても何等差支えない。
If there is no problem even if the fluid to be evaporated is completely evaporated, there is no problem even if the fluid is formed without providing the liquid receiving and returning channels, the overflow weir of the liquid reservoir, and the like.

また、上記液戻し流路は、前述のごとく管路36で形成
することもできるが、上部が開口した樋状の流路でも形
成することができる。
Further, the liquid return flow path can be formed by the conduit 36 as described above, but can also be formed by a gutter-shaped flow path having an open upper part.

第5図及び第6図は、この液戻し流路の他の実施例を
示すもので、各液溜30及び液受31に対応するように、前
記酸素室10,10間に配置される窒素室20の一部を液戻し
流路となる液戻し室37に代えたものである。尚、以下の
説明において前記第1図乃至第4図に示す凝縮蒸発器1
と同一要素のものには同一符号を付して詳細な説明を省
略する。
FIG. 5 and FIG. 6 show another embodiment of the liquid return flow path, in which nitrogen is disposed between the oxygen chambers 10 and 10 so as to correspond to the liquid reservoirs 30 and the liquid receivers 31, respectively. A part of the chamber 20 is replaced with a liquid return chamber 37 serving as a liquid return flow path. In the following description, the condensation evaporator 1 shown in FIGS. 1 to 4 will be described.
The same elements as those described above are denoted by the same reference numerals, and detailed description thereof will be omitted.

この凝縮蒸発器1は、図に示すように、各液溜30及び
液受31の底部と接続する酸素室10の上部に隣接する通
路、即ち、前記実施例では窒素室であった通路の勾配上
下両端を、酸素室10と同様に開放して液溜30と液受31と
を連通させ、該液受31内の液化酸素LOを液溜30に戻す液
戻し室37としたものである。
As shown in the figure, the condensing evaporator 1 has a passage adjacent to the upper part of the oxygen chamber 10 connected to the bottoms of the liquid reservoirs 30 and the liquid receiver 31, that is, a gradient of the passage which was the nitrogen chamber in the above embodiment. The upper and lower ends are opened similarly to the oxygen chamber 10 to communicate the liquid reservoir 30 with the liquid receiver 31, and a liquid return chamber 37 for returning the liquefied oxygen LO in the liquid receiver 31 to the liquid reservoir 30.

この液戻し室37は、その上下を酸素室10,10に挟まれ
ているため、窒素室20と接触しないので、窒素ガスGNと
の熱交換量が少なく、液化酸素LOの蒸発量も少ない。従
って、前述のごとく酸素室10から液受31に流出する未蒸
発の液化酸素LOを、液受31と液溜30との液ヘッドの差に
より液戻し室37を流下させて液溜30に戻し、前記実施例
と同様に酸素室10を循環させることができる。尚、この
液戻し室37の内部には、液流れの抵抗となるようなもの
は配置しないことが望ましい。
Since the upper and lower portions of the liquid return chamber 37 are sandwiched between the oxygen chambers 10, 10, the liquid return chamber 37 does not contact the nitrogen chamber 20, so that the amount of heat exchange with the nitrogen gas GN is small and the amount of liquefied oxygen LO evaporated is also small. Therefore, as described above, the liquefied oxygen LO that has not evaporated and flows out of the oxygen chamber 10 to the liquid receiver 31 is returned to the liquid reservoir 30 by flowing down the liquid return chamber 37 due to the difference between the liquid head of the liquid receiver 31 and the liquid reservoir 30. The oxygen chamber 10 can be circulated in the same manner as in the above embodiment. It should be noted that it is desirable not to dispose any liquid resistance inside the liquid return chamber 37.

上記液戻し室37は、凝縮蒸発器1の製作工程におい
て、前記サイドバー3及び波形伝熱フィン4の配置を変
えるだけで酸素室10や窒素室20と同時に一体に形成する
ことができる。従って、凝縮蒸発器1の外部に配管する
ものに比べて製作工程を単純化することができ、輸送や
組立ての際の取扱い性にも優れている。
The liquid return chamber 37 can be integrally formed simultaneously with the oxygen chamber 10 and the nitrogen chamber 20 only by changing the arrangement of the side bar 3 and the corrugated heat transfer fins 4 in the process of manufacturing the condensation evaporator 1. Therefore, the manufacturing process can be simplified as compared with the case where piping is provided outside the condensing evaporator 1, and the handling property during transportation and assembly is excellent.

次に第7図は、前記実施例に示したものと同様の構成
の凝縮蒸発器1を複数基配設するとともに、隣接する凝
縮蒸発器1,1の液受31と液溜30とを一体化させた実施例
を示すものである。
Next, FIG. 7 shows a case where a plurality of condensing evaporators 1 having the same configuration as that shown in the above embodiment are provided, and the liquid receiver 31 and the liquid reservoir 30 of the adjacent condensing evaporators 1, 1 are integrated. 1 shows an embodiment of the present invention.

即ち、1つの凝縮蒸発器1の酸素室10から流下する液
化酸素LOは、該凝縮蒸発器1に隣接する凝縮蒸発器1と
の間に設けられた液受兼液溜38に流下し、隣接する凝縮
蒸発器1の酸素室10内に導入される。以下、順次各凝縮
蒸発器1の酸素室10で蒸発しなかった液化酸素LOは、上
記液受兼液溜38を介して下流側の凝縮蒸発器1の酸素室
10に導入されていく。各液受兼液溜38には、それぞれ液
供給管32から液化酸素LOが補給され、炭化水素の濃縮を
防止している。
That is, the liquefied oxygen LO flowing down from the oxygen chamber 10 of one condensing evaporator 1 flows down to the liquid receiving and liquid reservoir 38 provided between the condensing evaporator 1 and the condensing evaporator 1 and is adjacent to the condensing evaporator 1. Is introduced into the oxygen chamber 10 of the condensing evaporator 1. Hereinafter, the liquefied oxygen LO that has not been evaporated in the oxygen chamber 10 of each condensing evaporator 1 sequentially passes through the liquid receiving / reservoir 38 to the oxygen chamber of the condensing evaporator 1 on the downstream side.
10 will be introduced. Liquefied oxygen LO is supplied to the respective liquid receiving and liquid reservoirs 38 from the liquid supply pipes 32, respectively, to prevent hydrocarbon concentration.

また、複数の凝縮蒸発器1を円周状に配置して無端状
に液化酸素LOを循環させることもでき、各凝縮蒸発器1
にそれぞれ液溜30と液受31とを設けて、管路や樋等の液
供給流路で接続してもよい。さらに、2基の凝縮蒸発器
1,1の両通路の傾斜を逆方向となるように設置して液溜3
0と液受31を対応するように配置し、2基の凝縮蒸発器
1,1間で液化酸素LOを循環させることもできる。
Further, a plurality of condensing evaporators 1 can be arranged circumferentially to circulate liquefied oxygen LO endlessly.
May be provided with a liquid reservoir 30 and a liquid receiver 31, respectively, and connected by a liquid supply flow path such as a pipeline or a gutter. Two condensing evaporators
Install the reservoir 3 so that the inclination of both passages 1 and 1 are opposite.
0 and the liquid receiver 31 are arranged so as to correspond to each other, and two condensing evaporators
Liquefied oxygen LO can be circulated between 1,1.

第8図及び第9図は本発明の凝縮蒸発器1を空気液化
分離装置の複精留塔50の凝縮蒸発器に適用した実施例を
示すものである。
FIGS. 8 and 9 show an embodiment in which the condensing evaporator 1 of the present invention is applied to the condensing evaporator of a double rectification column 50 of an air liquefaction / separation apparatus.

本実施例では、上部塔51の下部空間内に4基の凝縮蒸
発器1,1を円周状に配置している。この凝縮蒸発器1
は、前記第5図及び第6図に示した液戻し室37を設けた
構造のものであって、下部塔52から上部塔51の中心部に
立設した窒素ガス供給用のマニホールド管53を中心とし
て、該マニホールド管53側に液溜30を向けて配置されて
いる。
In the present embodiment, four condensing evaporators 1 and 1 are arranged circumferentially in the lower space of the upper tower 51. This condensation evaporator 1
Has a structure in which the liquid return chamber 37 shown in FIGS. 5 and 6 is provided, and a manifold pipe 53 for supplying nitrogen gas, which is provided from the lower tower 52 to the center of the upper tower 51, is connected. As the center, the liquid reservoir 30 is arranged facing the manifold tube 53 side.

上部塔51の精留段54から流下する液化酸素LOは、液化
酸素受55から管56を介して液化酸素溜57に流下し、ここ
からさらに液供給管32を流下して液供給孔34から各液溜
30に分配される。各液溜30内の液化酸素LOは、前述のご
とくそれぞれ酸素室10内に導入されて一部が蒸発しなが
ら、気液混合流となって酸素室10内を上昇し、出口端で
未蒸発の液化酸素LOと分離して上昇し、一部が製品酸素
ガスGOとしてノズル58から導出され、残部が上部塔51の
上昇ガスとなる。また蒸発しなかった液化酸素LOは、液
受31から液戻し室37を流下して元の液溜30に戻り、液供
給管32から供給される液化酸素LOと混合して再び酸素室
10内に流入する。
The liquefied oxygen LO flowing down from the rectification stage 54 of the upper tower 51 flows down from the liquefied oxygen receiver 55 to the liquefied oxygen reservoir 57 via the pipe 56, and further flows down the liquid supply pipe 32 from the liquid supply hole 34. Each reservoir
Distributed to 30. As described above, the liquefied oxygen LO in each liquid reservoir 30 is introduced into the oxygen chamber 10 and partially evaporates, as a gas-liquid mixed flow, rises in the oxygen chamber 10 and is not evaporated at the outlet end. And rises separately from the liquefied oxygen LO, part of which is led out of the nozzle 58 as product oxygen gas GO, and the remainder becomes the rising gas in the upper tower 51. Also, the liquefied oxygen LO that has not evaporated flows down from the liquid receiver 31 through the liquid return chamber 37, returns to the original liquid reservoir 30, mixes with the liquefied oxygen LO supplied from the liquid supply pipe 32, and returns to the oxygen chamber.
Flows into 10.

上記液溜30内の液化酸素LOの一部は、前述の炭化水素
濃縮防止用の液化酸素として堰あるいはオーバーフロー
管から上部塔51の底部に流下する。この底部に流下した
液化酸素LOは、ノズル59から導出され、液化酸素ポンプ
あるいはサーモサイフォンリボイラー等の揚上手段60に
より前記液化酸素溜57に揚上されるとともに、該液化酸
素LO中に濃縮した炭化水素が吸着装置61により除去され
る。
A part of the liquefied oxygen LO in the liquid reservoir 30 flows down from the weir or the overflow pipe to the bottom of the upper tower 51 as liquefied oxygen for preventing hydrocarbon concentration. The liquefied oxygen LO that has flowed down to the bottom is taken out of the nozzle 59, is lifted into the liquefied oxygen reservoir 57 by means of a liquefied oxygen pump or a lifting means 60 such as a thermosiphon reboiler, and is concentrated in the liquefied oxygen LO. The hydrocarbons are removed by the adsorption device 61.

一方、下部塔52上部の窒素ガスGNは、前記マニホール
ド管53を上昇して連結管62から各凝縮蒸発器1,1の入口
ヘッダー40に供給され、前述のごとく各窒素室20に導入
される。窒素室20内で凝縮した液化窒素LNは、出口ヘッ
ダー41を経てノズル63から導出される。
On the other hand, the nitrogen gas GN in the upper part of the lower tower 52 rises up the manifold pipe 53, is supplied from the connecting pipe 62 to the inlet header 40 of each of the condensation evaporators 1, 1, and is introduced into each nitrogen chamber 20 as described above. . The liquefied nitrogen LN condensed in the nitrogen chamber 20 is led out of the nozzle 63 via the outlet header 41.

このように、本発明の凝縮蒸発器1を、空気液化分離
装置における液化酸素LOの蒸発と窒素ガスGNの凝縮との
熱交換に用いることにより、液化酸素LOの圧力が各液溜
30の部分で開放されるので、従来、液深が通常2メート
ルであった液化酸素中に浸漬して用いる凝縮蒸発器に比
べて、液化酸素LOの液深による圧力上昇(沸点上昇)が
少なくなり、液化酸素LOの液深による影響をほとんど無
くすことが可能となり、流体間の温度差を従来の1〜2
℃から最小0.3℃まで低減できる。
Thus, by using the condensation evaporator 1 of the present invention for heat exchange between the evaporation of the liquefied oxygen LO and the condensation of the nitrogen gas GN in the air liquefaction / separation apparatus, the pressure of the liquefied oxygen LO is reduced
Since it is opened at 30, the pressure rise (boiling point rise) due to the liquid depth of liquefied oxygen LO is smaller than that of a condensing evaporator that is immersed in liquefied oxygen, which was conventionally 2 meters deep. The effect of the liquefied oxygen LO due to the liquid depth can be almost eliminated, and the temperature difference between the fluids can be reduced by 1 to 2 times.
℃ to a minimum of 0.3 ℃.

また、上部塔51下部に大量の液化酸素LOを貯留するこ
となく装置の運転を行なえるので、装置の起動時間や保
安上の問題も容易に解決できる。
In addition, since the device can be operated without storing a large amount of liquefied oxygen LO in the lower portion of the upper tower 51, problems in starting time of the device and security can be easily solved.

さらに、凝縮した液化窒素LNの液膜の影響も低減する
ので熱交換効率が向上し、液化酸素LOの液深の影響が解
消されたことと相俟って、液化酸素LOと窒素ガスGNの温
度差を極限まで詰めた凝縮蒸発器を製作することが可能
となる。これにより、窒素ガスの凝縮温度、即ち、この
温度を決める窒素ガスGNの圧力を低減させることができ
るから、下部塔52の運転圧力を低くでき、原料空気圧縮
機の動力費も低減させることが可能となり、製品ガス等
の動力原単位を低減することができる。
Furthermore, since the effect of the liquid film of the condensed liquefied nitrogen LN is reduced, the heat exchange efficiency is improved, and the influence of the liquid depth of the liquefied oxygen LO is eliminated. It becomes possible to manufacture a condensation evaporator in which the temperature difference is reduced to the limit. As a result, the condensation temperature of the nitrogen gas, that is, the pressure of the nitrogen gas GN that determines this temperature can be reduced, so that the operating pressure of the lower tower 52 can be lowered and the power cost of the raw material air compressor can be reduced. This makes it possible to reduce the power consumption rate of product gas and the like.

加えて、液化酸素LOの液圧の影響がほとんど無いので
凝縮蒸発器1の高さ方向の形状的制限が無くなり、凝縮
蒸発器の高さを高くすることで処理能力を大幅に増加さ
せることが可能になり、設置面積の制限が低減し、大型
空気分離装置用精留塔に組込むことが容易にでき、精留
塔を上下一体構造で製作することが可能となる。また、
液化酸素ポンプ等の再循環設備費及び動力費を大幅に低
減させることができる。
In addition, since there is almost no influence of the liquid pressure of the liquefied oxygen LO, there is no limitation on the shape of the condensing evaporator 1 in the height direction, and the processing capacity can be greatly increased by increasing the height of the condensing evaporator. This makes it possible to reduce the installation area limitation, facilitate the incorporation into a rectification tower for a large-sized air separation device, and make it possible to manufacture the rectification tower in a vertically integrated structure. Also,
The cost of recirculating equipment such as a liquefied oxygen pump and the cost of power can be significantly reduced.

尚、本発明の蒸発器は、空気液化分離における液化酸
素と窒素ガスとの熱交換による蒸発と凝縮以外の、他の
液媒の蒸発と流体(凝縮する流体に限定されない)との
熱交換に用いた場合にも同様の作用効果を得ることがで
き、空気分離装置以外の他のプロセスにおける小温度差
蒸発器にも省エネルギー型蒸発器として応用可能なこと
は言うまでもない。
In addition, the evaporator of the present invention is not limited to evaporation and condensation by heat exchange between liquefied oxygen and nitrogen gas in air liquefaction separation, but also to evaporation of other liquid medium and heat exchange with a fluid (not limited to condensed fluid). It is needless to say that the same operation and effect can be obtained when used, and that it can be applied as an energy-saving evaporator to a small temperature difference evaporator in a process other than the air separation device.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の蒸発器は、第1・第2
の両流体通路を上下に積層するとともに、蒸発させる液
媒を第1の流体通路の一端から導入するように構成した
ので、蒸発器を液媒中に浸漬せずに少ない液媒量で運転
することができ、起動時間を短縮させるとともに、液深
による影響を低減することができる。また、液媒の液圧
の影響及び第2流体通路の流体が凝縮する流体である場
合は、その液膜の影響がほとんど無いので、液媒と流体
とを効率良く熱交換させることができ、蒸発器の熱交換
効率が向上し、流体間の温度差を極小に低減できる。ま
た、蒸発器の高さ方向の形状的制限が無くなり、蒸発器
高さを高くすることにより、処理能力を大幅に増加させ
ることが可能になり、設置面積を低減できる。また、本
発明の蒸発器は、一般的な仕切板と波形伝熱フィンを用
いることにより、特殊な工程や部材を必要とせずに従来
と同様の手段で容易に製作することができる。
As described above, the evaporator according to the present invention includes the first and second evaporators.
And the liquid medium to be evaporated is introduced from one end of the first fluid path, so that the evaporator is operated with a small amount of liquid medium without being immersed in the liquid medium. As a result, the startup time can be shortened and the influence of the liquid depth can be reduced. Further, when the influence of the liquid pressure of the liquid medium and the fluid in the second fluid passage are condensed fluids, there is almost no influence of the liquid film, so that the liquid medium and the fluid can be efficiently heat-exchanged, The heat exchange efficiency of the evaporator is improved, and the temperature difference between the fluids can be minimized. In addition, there is no limitation on the shape of the evaporator in the height direction, and by increasing the height of the evaporator, the processing capacity can be greatly increased, and the installation area can be reduced. Further, the evaporator of the present invention can be easily manufactured by the same means as the conventional one without using any special process or member by using a general partition plate and corrugated heat transfer fins.

さらに、第一流体通路の液媒導入手段として、上部を
開放した液溜を用いることにより、各液溜部分で圧力を
開放できるので、液媒の液深を蒸発器の高さに関係なく
各液溜の深さとすることができる。特に液溜に沿って液
供給管を配設し、液媒供給孔で連通させることにより液
媒導入手段を容易に形成でき、液媒供給孔の径を調整す
ることで、各液溜への液媒供給量を調整することができ
る。
Further, by using a liquid reservoir having an open top as the liquid medium introduction means of the first fluid passage, the pressure can be released at each liquid reservoir portion, so that the liquid depth of the liquid medium can be adjusted regardless of the height of the evaporator. It can be the depth of the reservoir. In particular, a liquid supply pipe is arranged along the liquid reservoir, and the liquid medium supply means can be easily formed by communicating with the liquid medium supply hole. The supply amount of the liquid medium can be adjusted.

また、第一流体通路に液受と液戻し流路を設けて液媒
を循環させることにより、液媒供給量を低減することが
できる。この液戻し流路は、管又は樋、あるいは前記第
一流体通路間に設けられた流路により容易に形成するこ
とができる。特に第一流体通路間に液戻し流路を設けた
場合には、蒸発器の両通路の形成と同時に液戻し流路を
形成でき、配管作業等を省略できるとともに、精留塔等
への組付け作業性も向上させることができる。さらに複
数の蒸発器の液受と液溜との間を管や樋等の液供給流路
で接続することにより、複数の蒸発器間で液媒を循環さ
せることもできる。
Further, by providing a liquid receiver and a liquid return flow path in the first fluid passage and circulating the liquid medium, the supply amount of the liquid medium can be reduced. The liquid return flow path can be easily formed by a pipe or a gutter or a flow path provided between the first fluid passages. In particular, when a liquid return flow path is provided between the first fluid passages, a liquid return flow path can be formed simultaneously with the formation of both paths of the evaporator, so that piping work and the like can be omitted, and assembly into a rectification tower or the like can be performed. The mounting workability can also be improved. Further, the liquid medium can be circulated between the plurality of evaporators by connecting the liquid receiver and the liquid reservoir of the plurality of evaporators with a liquid supply flow path such as a pipe or a gutter.

従って、本発明の蒸発器は、処理量の多い大型の空気
液化分離装置の凝縮蒸発器に特に好適なもので、装置全
体の小型化や運転動力費の低減が図れ、製品の動力原単
位を低減させることができる。
Therefore, the evaporator of the present invention is particularly suitable for a condensing evaporator of a large-scale air liquefaction / separation device having a large throughput, and can reduce the size of the entire device and reduce the operating power cost, thereby reducing the power consumption unit of the product. Can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第4図は本発明の蒸発器の一実施例を示すも
ので、第1図は凝縮蒸発器の一部切欠正面図、第2図は
同じく一部切欠右側面図、第3図は同じく一部切欠斜視
図、第4図は同じく要部の分解斜視図、第5図及び第6
図は液戻し流路の他の実施例を示すもので、第5図は凝
縮蒸発器の一部切欠正面図、第6図は同じく一部切欠右
側面図、第7図は複数の凝縮蒸発器の液受と液溜との間
を液供給流路で接続した実施例を示す一部切欠正面図、
第8図及び第9図は複精留塔に適用した実施例を示すも
ので、第8図は複精留塔の要部の断面正面図、第9図は
同じく断面平面図である。 1……凝縮蒸発器、2……仕切板、4……波形伝熱フィ
ン、10……第一流体通路(酸素室)、20……第二流体通
路(窒素室)、30……液溜、31……液受、32……液供給
管、34……液供給孔、36……管路、37……液戻し室、40
……入口ヘッダー、41……出口ヘッダー、50……複精留
塔、51……上部塔、52……下部塔、GN……窒素ガス、GO
……酸素ガス、LN……液化窒素、LO……液化酸素
1 to 4 show an embodiment of an evaporator according to the present invention. FIG. 1 is a partially cutaway front view of a condensing evaporator, FIG. FIG. 4 is a partially cutaway perspective view, FIG. 4 is an exploded perspective view of the same main part, and FIGS.
FIG. 5 shows another embodiment of the liquid return flow path. FIG. 5 is a partially cutaway front view of the condensing evaporator, FIG. 6 is also a partially cutout right side view, and FIG. Partially cutaway front view showing an embodiment in which the liquid receiver and the liquid reservoir of the container are connected by a liquid supply flow path,
8 and 9 show an embodiment applied to a double rectification column. FIG. 8 is a cross-sectional front view of a main part of the double rectification column, and FIG. 9 is a cross-sectional plan view of the same. 1 ... condensing evaporator, 2 ... partition plate, 4 ... corrugated heat transfer fin, 10 ... first fluid passage (oxygen chamber), 20 ... second fluid passage (nitrogen chamber), 30 ... liquid reservoir , 31 ... liquid receiver, 32 ... liquid supply pipe, 34 ... liquid supply hole, 36 ... conduit, 37 ... liquid return chamber, 40
…… Inlet header, 41 …… Outlet header, 50 …… Double rectification tower, 51 …… Upper tower, 52 …… Lower tower, GN …… Nitrogen gas, GO
…… Oxygen gas, LN …… Liquid nitrogen, LO …… Liquid oxygen

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−17601(JP,A) 特開 昭63−267877(JP,A) 特開 昭60−253782(JP,A) 特開 平2−97885(JP,A) 特開 平2−233985(JP,A) (58)調査した分野(Int.Cl.6,DB名) F25J 5/00 F28D 9/00 - 9/04 F28F 3/00 311 F28F 3/08 311──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-17601 (JP, A) JP-A-63-267877 (JP, A) JP-A-60-253782 (JP, A) JP-A-2- 97885 (JP, A) JP-A-2-23985 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F25J 5/00 F28D 9/00-9/04 F28F 3/00 311 F28F 3/08 311

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第一流体通路の液媒と第二流体通路の流体
とで熱交換を行う蒸発器において、複数の第一流体通路
と第二流体通路とを上下方向に主として交互に積層し、
前記第一流体通路の一端に前記液媒を第一流体通路に導
入する液媒導入手段を設けるとともに他端側を開放して
液媒の導出部とし、前記第二流体通路には、その一端側
に前記流体を第二流体通路に導入する流体導入手段を設
けるとともに他端側を導出部としたことを特徴とする蒸
発器。
In an evaporator for performing heat exchange between a liquid medium in a first fluid passage and a fluid in a second fluid passage, a plurality of first fluid passages and second fluid passages are mainly laminated alternately in the vertical direction. ,
One end of the first fluid passage is provided with a liquid medium introduction unit for introducing the liquid medium into the first fluid passage, and the other end is opened to serve as a liquid medium outlet. An evaporator characterized in that a fluid introduction means for introducing the fluid into the second fluid passage is provided on a side of the evaporator, and the other end is an outlet.
【請求項2】前記第一流体通路は、液媒導入側から導出
側に向かって昇り勾配を有していることを特徴とする請
求項1記載の蒸発器。
2. The evaporator according to claim 1, wherein the first fluid passage has a rising gradient from a liquid medium introduction side to a discharge side.
【請求項3】前記第一流体通路と第二流体通路は、それ
ぞれの通路間に配設した仕切板により仕切って画成され
るとともに、該仕切板間に波形伝熱フィンが配設されて
いることを特徴とする請求項1記載の蒸発器。
3. The method according to claim 1, wherein the first fluid passage and the second fluid passage are defined by partitions provided between the respective passages, and corrugated heat transfer fins are provided between the partitions. The evaporator according to claim 1, wherein
【請求項4】前記液媒導入手段は、前記第一流体通路の
液媒導入端に連通する、上下多段に配設された複数の液
溜及び/又は液受と、該液溜及び/又は液受に液媒を供
給する液媒供給手段とを有し、前記液溜及び/又は液受
は上部が開放されていることを特徴とする請求項1記載
の蒸発器。
4. The liquid medium introduction means includes a plurality of liquid reservoirs and / or liquid receivers, which are communicated with a liquid medium introduction end of the first fluid passage and are disposed in a plurality of upper and lower stages. 2. An evaporator according to claim 1, further comprising a liquid medium supply means for supplying a liquid medium to the liquid receiver, wherein the liquid reservoir and / or the liquid receiver are open at the top.
【請求項5】前記液媒供給手段は、前記上下多段に配設
された液溜及び/又は液受に沿って配設された液供給管
と、該液溜及び/又は液受の側壁に設けられて、液供給
管と各液溜及び/又は液受とを連通する液媒供給孔とを
有することを特徴とする請求項4記載の蒸発器。
5. The liquid medium supply means includes: a liquid supply pipe disposed along the liquid reservoir and / or the liquid receiver arranged in the upper and lower multi-stages; and a side wall of the liquid reservoir and / or the liquid receiver. 5. The evaporator according to claim 4, further comprising a liquid medium supply hole provided to communicate the liquid supply pipe with each of the liquid reservoirs and / or the liquid receivers.
【請求項6】前記第一流体通路の導出端側に連通して、
該第一流体通路の導出端部から流出する液媒を受ける上
部が開放された複数の液受を上下多段に設けるととも
に、該液受に流出した液媒を前記液溜に戻す液戻し流路
を設けたことを特徴とする請求項4記載の蒸発器。
6. The first fluid passage communicates with an outlet end of the first fluid passage,
A plurality of upper and lower liquid receivers, each having an open upper portion for receiving a liquid medium flowing out from the outlet end of the first fluid passage, and a liquid return flow path for returning the liquid medium flowing out to the liquid receiver to the liquid reservoir; The evaporator according to claim 4, further comprising:
【請求項7】前記液戻し流路は、管又は樋、あるいは前
記第一流体通路間に、前記第二流体通路と隣接しないよ
うに設けられた流路のいずれかにより形成されているこ
とを特徴とする請求項6記載の蒸発器。
7. The method according to claim 7, wherein the liquid return flow path is formed by a pipe or a gutter, or a flow path provided between the first fluid passages so as not to be adjacent to the second fluid passage. The evaporator according to claim 6, characterized in that:
【請求項8】請求項4記載の蒸発器を複数基配設すると
ともに、各蒸発器の第一流体通路の導出端部から流出す
る液媒を、他の蒸発器の液溜に供給して液媒を順次他の
蒸発器の第一流体通路へ循環させるように構成したこと
を特徴とする蒸発器。
8. An evaporator according to claim 4, wherein a plurality of evaporators are provided, and a liquid medium flowing out from an outlet end of a first fluid passage of each evaporator is supplied to a liquid reservoir of another evaporator. An evaporator characterized in that a liquid medium is sequentially circulated to a first fluid passage of another evaporator.
【請求項9】第一流体通路の液媒を蒸発させるととも
に、第二流体通路の流体を凝縮させることを特徴とする
請求項1記載の蒸発器。
9. The evaporator according to claim 1, wherein the evaporator evaporates the liquid medium in the first fluid passage and condenses the fluid in the second fluid passage.
JP1140706A 1989-06-02 1989-06-02 Evaporator Expired - Lifetime JP2787593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1140706A JP2787593B2 (en) 1989-06-02 1989-06-02 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1140706A JP2787593B2 (en) 1989-06-02 1989-06-02 Evaporator

Publications (2)

Publication Number Publication Date
JPH037879A JPH037879A (en) 1991-01-16
JP2787593B2 true JP2787593B2 (en) 1998-08-20

Family

ID=15274836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1140706A Expired - Lifetime JP2787593B2 (en) 1989-06-02 1989-06-02 Evaporator

Country Status (1)

Country Link
JP (1) JP2787593B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083340A (en) * 1997-02-28 2000-07-04 Hokuriku Electric Industry Co., Ltd. Process for manufacturing a multi-layer circuit board
DE10027139A1 (en) * 2000-05-31 2001-12-06 Linde Ag Multi-storey bathroom condenser
JP6087326B2 (en) * 2014-08-22 2017-03-01 大陽日酸株式会社 Multistage condensing evaporator
US12130081B2 (en) * 2019-01-28 2024-10-29 Taiyo Nippon Sanso Corporation Multistage liquid storage-type condenser-evaporator and nitrogen production device using the same

Also Published As

Publication number Publication date
JPH037879A (en) 1991-01-16

Similar Documents

Publication Publication Date Title
US4606745A (en) Condenser-evaporator for large air separation plant
US5222549A (en) Condenser/evaporator
JP2003535301A (en) Multi-stage condenser
US5901574A (en) Device and process for evaporating a liquid
US10408535B2 (en) Multistage bath condenser-reboiler
US4436146A (en) Shell and tube heat exchanger
EP1067347B1 (en) Downflow liquid film type condensation evaporator
JP2787593B2 (en) Evaporator
JP7382352B2 (en) Multi-stage reservoir condenser evaporator and nitrogen production equipment using multi-stage reservoir condenser evaporator
JPH0534082A (en) Condensor/evaporator
JPS63267877A (en) Condensing evaporator
JPH0788924B2 (en) Condensing evaporator
JP2787594B2 (en) Evaporator
JP2787591B2 (en) Evaporator
JP4174109B2 (en) Falling liquid film type condensation evaporator and method of using the same
JP2000111244A (en) Flowing-down liquid film type condensation evaporator
JPH02233985A (en) Condenser-evaporator
JPH0297885A (en) Condensing evaporator
JPH0789009B2 (en) Condensation evaporator and its operating method
JPH0268476A (en) Condensation vaporizer and operation thereof
JPH05280861A (en) Condensation vaporizer
JPH0268474A (en) Condensation vaporizer
JPH0789008B2 (en) Condensing evaporator
JPH0783801B2 (en) Evaporator and cryogenic separator for carbon monoxide equipped with evaporator
WO1994026376A1 (en) Evaporation plant