JP2640828B2 - Method for removing native oxide film on semiconductor substrate surface - Google Patents
Method for removing native oxide film on semiconductor substrate surfaceInfo
- Publication number
- JP2640828B2 JP2640828B2 JP63162092A JP16209288A JP2640828B2 JP 2640828 B2 JP2640828 B2 JP 2640828B2 JP 63162092 A JP63162092 A JP 63162092A JP 16209288 A JP16209288 A JP 16209288A JP 2640828 B2 JP2640828 B2 JP 2640828B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- oxide film
- substrate
- carbon monoxide
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
Description
【発明の詳細な説明】 〔概要〕 半導体基板表面の自然酸化膜の除去方法に関し、 半導体に損傷や特性の劣化を与えることなく自然酸化
膜を除去することを目的とし、 半導体基板の光エッチングにおいて、一酸化炭素、一
酸化窒素のいずれかのガスを塩素ガスに加えた減圧雰囲
気中に半導体基板を一定時間置いて紫外光照射によるエ
ッチングを行い、該半導体基板上に形成された自然酸化
膜を除去することを特徴とする半導体基板表面の自然酸
化膜の除去方法から構成する。DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for removing a native oxide film on the surface of a semiconductor substrate, which aims at removing the native oxide film without damaging the semiconductor or deteriorating its characteristics. , Carbon monoxide, nitrogen monoxide gas was added to chlorine gas, the semiconductor substrate was placed in a reduced pressure atmosphere for a certain period of time and etched by ultraviolet light irradiation, and the natural oxide film formed on the semiconductor substrate was removed. The method comprises a method of removing a natural oxide film on the surface of a semiconductor substrate, which is characterized by being removed.
本発明は、半導体基板の処理に関するもので、さらに
詳しくは半導体基板表面の自然酸化膜の除去方法に関す
る。The present invention relates to processing of a semiconductor substrate, and more particularly, to a method of removing a native oxide film on the surface of a semiconductor substrate.
半導体表面、特にシリコン表面に形成された自然酸化
膜を乾式(ドライエッチング)で除去する方法として、
従来は水素ガス、フッ素系ガス及び塩素ガスのそれぞれ
の雰囲気中で行っていた。As a method of removing a natural oxide film formed on a semiconductor surface, particularly a silicon surface by dry (dry etching),
Conventionally, it has been performed in each atmosphere of hydrogen gas, fluorine-based gas and chlorine gas.
水素ガスを用いる方法では、還元H2雰囲気中で、約10
00℃の高温にさらすことにより、自然酸化膜を除去する
ようにしているが、この方法ではウェハを直接高温にさ
らすため、熱拡散によりウェハ内の不純物濃度分布の鋭
さがぼやけ、しかも高温によって半導体回路構造にスト
レスや損傷を与えることが問題となっている。In the method using hydrogen gas, in a reducing atmosphere of H 2 to about 10
The native oxide film is removed by exposing the wafer to a high temperature of 00 ° C. However, in this method, the wafer is directly exposed to the high temperature, and the sharpness of the impurity concentration distribution in the wafer is blurred by thermal diffusion, and the semiconductor is exposed to the high temperature. The problem is that the circuit structure is stressed or damaged.
これに対してフッ素系ガスを用いる方法では、低温下
で自然酸化膜を除去することができるが、この方法で
は、除去すべき表面の自然酸化膜のみならず、ゲート材
や素子分離用の熱酸化膜をもエッチングしてしまう。さ
らには、反応室が石英の場合に、この石英をもエッチン
グしてしまい、塵が発生するといった不都合がある。On the other hand, a method using a fluorine-based gas can remove a natural oxide film at a low temperature. However, in this method, not only a natural oxide film on the surface to be removed but also a gate material and a heat for element isolation are removed. The oxide film is also etched. Furthermore, when the reaction chamber is made of quartz, there is a disadvantage that the quartz is also etched and dust is generated.
また、塩素ガスを用いる方法でも、低温下で自然酸化
膜を除去することができ、しかもこの方法では石英エッ
チングすることはないが、この方法によれば自然酸化膜
は完全に除去されずに半導体基板表面上に残留し、シリ
コン基板だけが表面から次第にエッチングされるという
現象が生じる。自然酸化膜が残留する原理については明
確ではないが、第5図に示すように、自然酸化膜が一
瞬、気相に脱離するが、電気陰性度の関係で再び基板表
面に付着し、結合する一方、塩素(Cl)とシリコン(S
i)が結合して、SiCl4となって基板から抜け出るためと
考えられる。In addition, even with the method using chlorine gas, the natural oxide film can be removed at a low temperature and the quartz etching is not performed by this method. However, according to this method, the natural oxide film is not completely removed and the semiconductor is not removed. A phenomenon occurs in which only the silicon substrate remains on the substrate surface and only the silicon substrate is gradually etched from the surface. Although the principle of the natural oxide film remaining is not clear, as shown in FIG. 5, the natural oxide film is instantaneously desorbed to the gas phase, but adheres to the substrate surface again due to electronegativity, and is bonded. While chlorine (Cl) and silicon (S
It is considered that i) is bonded to form SiCl 4 and escape from the substrate.
このように、従来技術では、半導体基板表面に形成さ
れた自然酸化膜の除去に伴い、半導体が損傷を受けて特
性が劣化したり、自然酸化膜を充分除去することができ
ないという問題がある。As described above, in the related art, there is a problem that the semiconductor is damaged, the characteristics are deteriorated, and the natural oxide film cannot be sufficiently removed with the removal of the natural oxide film formed on the surface of the semiconductor substrate.
本発明は、このような問題に鑑みてなされたものであ
って、半導体に損傷や特性の劣化を与えることなく自然
酸化膜に除去することを目的とする。The present invention has been made in view of such a problem, and has as its object to remove a natural oxide film without damaging a semiconductor or deteriorating characteristics.
上記した課題は、半導体基板の光エッチングにおい
て、一酸化炭素、一酸化窒素のいずれかのガスを塩素ガ
スに加えた減圧雰囲気中に該半導体基板を一定時間置い
て紫外光照射によるエッチングを行い、該半導体基板上
に形成された自然酸化膜を除去することを特徴とする半
導体基板表面の自然酸化膜の除去方法によって解決す
る。The above-described problem is that in photoetching a semiconductor substrate, the semiconductor substrate is etched by ultraviolet light irradiation by placing the semiconductor substrate in a reduced-pressure atmosphere obtained by adding any one of carbon monoxide and nitrogen monoxide to chlorine gas for a predetermined time, The problem is solved by a method for removing a native oxide film on the surface of a semiconductor substrate, which comprises removing a native oxide film formed on the semiconductor substrate.
本発明は、このような方法を用いるため、減圧雰囲気
中で光エネルギーを受けて活性化した塩素ガスCl*によ
り半導体基板表面上の酸素ラジカルO*を基板表面から
脱離させ、かつ、減圧雰囲気中のCO,NO等とこの酸化ラ
ジカルO*とを反応させ、CO+O*→CO2、NO+O*→N
O2等に変化させることにより、基板から離脱した酸素ラ
ジカルO*をその表面に残留させることなく完全に除去
することが可能になる。Since the present invention uses such a method, oxygen radicals O * on the surface of the semiconductor substrate are desorbed from the substrate surface by chlorine gas Cl * activated by receiving light energy in a reduced pressure atmosphere. The reaction of the oxidized radical O * with CO, NO, etc. in the inside is performed, and CO + O * → CO 2 , NO + O * → N
By changing to O 2 or the like, it becomes possible to completely remove oxygen radicals O * released from the substrate without remaining on the surface.
(a)第1の実施例 第1図は、本発明の実施例に用いる装置の概要図であ
り、反応装置1の石英チャンバ2内に設けた載置台3の
上にシリコン基板4を置き、チャンバ2内を真空ポンプ
Pで引いて減圧しながら、載置台3をヒータ5で加熱す
る一方、塩素ガス(Cl2)と一酸化炭素ガス(CO)をチ
ャンバ2内へ流し、光源6から出た紫外光をチャンバ2
上部に透過させてシリコン基板4に照射するように構成
されている。(A) First Embodiment FIG. 1 is a schematic view of an apparatus used in an embodiment of the present invention, in which a silicon substrate 4 is placed on a mounting table 3 provided in a quartz chamber 2 of a reaction apparatus 1. While the inside of the chamber 2 is depressurized by the vacuum pump P, the mounting table 3 is heated by the heater 5, while chlorine gas (Cl 2 ) and carbon monoxide gas (CO) are flowed into the chamber 2 and emitted from the light source 6. UV light in chamber 2
It is configured to transmit light to the upper part and irradiate the silicon substrate 4.
この反応装置1内において、塩素(Cl2)は紫外光下
でラジカルCl*となり、基板4上のSiO2膜4aの酸素を離
脱させる。また、チャンバ2内の一酸化炭素ガス(CO)
は、Cl*により基板表面から遊離した酸素ラジカルO*
を捕らえて二酸化炭素(CO2)となる。この場合、わず
かに基板4のシリコンが離脱する。In the reactor 1, chlorine (Cl 2 ) becomes a radical Cl * under ultraviolet light, and releases oxygen from the SiO 2 film 4a on the substrate 4. Also, carbon monoxide gas (CO) in the chamber 2
Is an oxygen radical O liberated from the substrate surface by Cl * *
And become carbon dioxide (CO 2 ). In this case, the silicon of the substrate 4 is slightly separated.
さらに上記した実施例を具体的に説明すると、チャン
バ2内を10〜20Torrに減圧し、載置台3を100〜500℃に
加熱し、チャンバ2内に高純度の塩素ガスを10〜100cc/
minの流量で加え、同時に一酸化炭素ガスを0.1〜20cc/2
minの流量で流す。この状態において、200〜400nmの波
長の紫外光を10〜100mW/cm2の強度で基板に垂直に照射
する。この状態を1〜2分間保持する。More specifically, the above-described embodiment will be described. The pressure in the chamber 2 is reduced to 10 to 20 Torr, the mounting table 3 is heated to 100 to 500 ° C., and high-purity chlorine gas is supplied in the chamber 2 to 10 to 100 cc / cm 2.
min, and simultaneously add carbon monoxide gas at 0.1-20cc / 2
Flow at min flow rate. In this state, the substrate is irradiated vertically with ultraviolet light having a wavelength of 200 to 400 nm at an intensity of 10 to 100 mW / cm 2 . This state is maintained for 1-2 minutes.
第2図(a)〜(c)は、以上の条件におけるシリコ
ン基板表面の状態の変化の様子を示した断面図であっ
て、上記した方法によると、塩素ガスは紫外光下で塩素
ラジカルCl*となり(第2図(a))、これがシリコン
基板4表面に自然酸化膜(SiO2膜)4aを形成しているO
を表面から離脱させて酸素ラジカルO*とし、次に一酸
化炭素(CO)と反応してCO2となるために(第2図
(b))、脱離した酸素ラジカルO*が再びシリコン基
板4表面に戻ることがなくなる。基板4の表面から酸素
O*が脱離した後は、シリコン基板4のシリコン(Si)
がCl*と反応してSiCl4となって気化し、エッチングさ
れていくことになる。2 (a) to 2 (c) are cross-sectional views showing changes in the state of the silicon substrate surface under the above conditions. According to the above-described method, chlorine gas is converted into chlorine radical Cl under ultraviolet light. * (FIG. 2 (a)), which forms a native oxide film (SiO 2 film) 4a on the surface of the silicon substrate 4.
It was allowed to leave from the surface to an oxygen radical O *, then in order to become CO 2 reacts with carbon monoxide (CO) (FIG. 2 (b)), desorbed oxygen radicals O * again silicon substrate 4 No return to the surface. After the oxygen O * is desorbed from the surface of the substrate 4, the silicon (Si) of the silicon substrate 4
Reacts with Cl * to vaporize into SiCl 4 and be etched.
第3図は、オージェ電子エネルギーに対するシリコン
基板表面のスペクトルを示す特性図で、本発明の処理を
行ってエッチングを行った場合(第3図(a))は、従
来の塩素のみの場合(同図(b))と比較すると、SiO2
膜4aに由来する波形が完全に消失することが、実験的に
確認された。FIG. 3 is a characteristic diagram showing a spectrum of the silicon substrate surface with respect to Auger electron energy. In the case where etching is performed by performing the treatment of the present invention (FIG. 3A), the case of the conventional chlorine only (FIG. compared to FIG. (b)), SiO 2
It was experimentally confirmed that the waveform derived from the film 4a completely disappeared.
第4図は、光・時間に対するエッチングの深さで、従
来のような塩素ガス(Cl2)のみの場合は一定の割合で
深くなる。これは、第5図に示すように一旦遊離した酸
素ラジカルO*は電気陰性度の関係で再び表面でSiの結
合するためであると考えられる。FIG. 4 shows the etching depth with respect to light and time. The depth of etching is constant at a certain rate when only chlorine gas (Cl 2 ) is used. It is considered that this is because the oxygen radical O * once released again bonds with Si on the surface due to electronegativity as shown in FIG.
これに対し、Cl2にCOを加えた場合に、光時間軸上TL
の点まではエッチングが低速で進行し、その後急速に進
行する(第4図実線I)。これは、TLの点までは基板4
表面の自然酸化膜がエッチングされ、それ以降は基板4
のSiがエッチングされるための考えられる。On the other hand, when CO is added to Cl 2 , T L on the optical time axis
The etching progresses at a low speed up to the point, and then progresses rapidly (solid line I in FIG. 4). This is the substrate 4 up to the point TL
The natural oxide film on the surface is etched, and thereafter the substrate 4
Possible for Si to be etched.
(b)第2の実施例 本発明の第2の実施例は、第1実施例と同じ条件の下
で、塩素ガスと一酸化炭素ガスを加えた減圧雰囲気中で
シリコン基板4表面上の自然酸化膜4aを除去するもので
あるが、第1の実施例との相違点は、塩素ガスと一酸化
炭素ガス(CO)を同時に加えて1〜5分経過後、一酸化
炭素ガスの供給を先に止める一方、塩素ガスをしばらく
送り続けるようにするものである。(B) Second Embodiment The second embodiment of the present invention is based on the natural condition on the surface of the silicon substrate 4 in a reduced pressure atmosphere containing chlorine gas and carbon monoxide gas under the same conditions as the first embodiment. Although the oxide film 4a is removed, the difference from the first embodiment is that chlorine gas and carbon monoxide gas (CO) are added simultaneously, and after 1 to 5 minutes have elapsed, the supply of carbon monoxide gas is stopped. While stopping first, the chlorine gas is continuously sent for a while.
このように一酸化炭素ガスと塩素ガスの供給、停止を
個々に調整したのは次のような理由による。即ち、一酸
化炭素と塩素を同時に減圧雰囲気中に導入して第1実施
例と同様に光エッチング処理を行った後に一酸化炭素と
塩素の供給を同時に停止させると、一酸化炭素吸着によ
るカーボン汚染が生じる原因になるからである。一酸化
炭素ガスの供給を停止した後に塩素ガスを暫く流し続け
れば、塩素によりシリコン基板4表面がエッチングされ
るとともに、シリコン基板4表面に吸着された一酸化炭
素も塩素ガスと一緒に外部に排出され、除去されること
になる。このように、シリコン基板4表面での一酸化炭
素の吸着を阻止することにより、一酸化炭素が炭化物と
なってシリコン基板4表面を汚染するといったカーボン
汚染が防止される。The supply and stop of the carbon monoxide gas and the chlorine gas are individually adjusted for the following reasons. That is, if the supply of carbon monoxide and chlorine is stopped at the same time after the photoetching treatment is performed in the same manner as in the first embodiment by simultaneously introducing carbon monoxide and chlorine into the reduced-pressure atmosphere, carbon contamination due to carbon monoxide adsorption will occur. This is because it causes the occurrence of. If the chlorine gas continues to flow for a while after the supply of the carbon monoxide gas is stopped, the surface of the silicon substrate 4 is etched by chlorine, and the carbon monoxide adsorbed on the surface of the silicon substrate 4 is also discharged to the outside together with the chlorine gas. Will be removed. As described above, by preventing the adsorption of carbon monoxide on the surface of the silicon substrate 4, carbon contamination such as carbon monoxide becoming a carbide and contaminating the surface of the silicon substrate 4 is prevented.
(c)その他の実施例 以上は、一酸化炭素のみ説明したが、一酸化窒素(N
O)や不飽和酸素化合物ガスを用いても同様の結果が得
られる。(C) Other Examples Although only carbon monoxide has been described above, nitric oxide (N
Similar results can be obtained by using O) or an unsaturated oxygen compound gas.
この場合、一酸化窒素(NO)は基板4表面のOと結合
して、二酸化窒素(NO2)となり、SiO2膜4aを除去する
ことができる。In this case, nitric oxide (NO) combines with O on the surface of the substrate 4 to become nitrogen dioxide (NO 2 ), and the SiO 2 film 4a can be removed.
以上述べたように、本発明は、半導体基板の光エッチ
ングにおいて、一酸化炭素、一酸化窒素のような不飽和
酸素化合物ガスを塩素ガスの減圧雰囲気中に加えたもの
で、塩素ラジカルにより離脱した半導体基板表面の酸素
ラジカルが捉えられて二酸化炭素等となり、基板表面上
の自然酸化膜を完全に除去することができ、しかも、半
導体に損傷や特性の劣化を与えることがない。As described above, in the present invention, in the photoetching of a semiconductor substrate, carbon monoxide, an unsaturated oxygen compound gas such as nitric oxide is added to a reduced pressure atmosphere of chlorine gas, and the gas is separated by chlorine radicals. Oxygen radicals on the surface of the semiconductor substrate are captured and become carbon dioxide and the like, and a natural oxide film on the surface of the substrate can be completely removed, and further, there is no damage or deterioration of characteristics of the semiconductor.
また、このような工程の最後に塩素のみを加えた減圧
雰囲気中で光エッチングを行えば、基板表面がより良好
な状態となる。Further, if photoetching is performed in a reduced pressure atmosphere containing only chlorine at the end of such a process, the substrate surface will be in a better state.
第1図は、本発明に用いる装置の一例を示す概要図、 第2図は、本発明により半導体基板表面の変化を示す基
板断面図、 第3図は、本発明と従来の方法による基板表面のスペク
トル図、 第4図は、光・時間に対するエッチング深さの特性図、 第5図は、従来の方法による基板表面の状態を示す断面
図である。 (符号の説明) 1……反応装置、 2……チャンバ、 4……基板、 4a……SiO2膜、 5……ヒータ、 6……光源。FIG. 1 is a schematic view showing an example of an apparatus used in the present invention, FIG. 2 is a cross-sectional view showing a change in the surface of a semiconductor substrate according to the present invention, and FIG. FIG. 4 is a characteristic diagram of the etching depth with respect to light and time, and FIG. 5 is a cross-sectional view showing the state of the substrate surface according to the conventional method. (Description of symbols) 1 ...... reactor, 2 ...... chamber, 4 ...... substrate, 4a ...... SiO 2 film, 5 ...... heater, 6 ...... source.
Claims (2)
ガスに加えた減圧雰囲気中に半導体基板を一定時間置い
て紫外光照射によるエッチングを行い、該半導体基板上
に形成された自然酸化膜を除去することを特徴とする半
導体基板表面の自然酸化膜の除去方法。A semiconductor substrate is placed in a reduced-pressure atmosphere in which either carbon monoxide or nitric oxide is added to chlorine gas for a certain period of time to perform etching by irradiation with ultraviolet light, and the natural oxidation formed on the semiconductor substrate is performed. A method for removing a native oxide film on a surface of a semiconductor substrate, comprising removing the film.
ガスに添加した減圧雰囲気中に半導体基板を一定時間置
いて紫外光照射によるエッチングを行い、最後に、前記
一酸化炭素、前記一酸化窒素の添加を停止して前記減圧
雰囲気を塩素ガスの雰囲気とすることにより、前記半導
体基板上に形成された自然酸化膜を除去することを特徴
とする半導体基板表面の自然酸化膜の除去方法。2. A semiconductor substrate is placed in a reduced-pressure atmosphere in which one of carbon monoxide and nitric oxide is added to chlorine gas for a predetermined period of time to perform etching by irradiation with ultraviolet light. Removing the natural oxide film formed on the semiconductor substrate by stopping the addition of nitrogen oxide and setting the reduced pressure atmosphere to a chlorine gas atmosphere. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63162092A JP2640828B2 (en) | 1988-06-28 | 1988-06-28 | Method for removing native oxide film on semiconductor substrate surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63162092A JP2640828B2 (en) | 1988-06-28 | 1988-06-28 | Method for removing native oxide film on semiconductor substrate surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0210726A JPH0210726A (en) | 1990-01-16 |
JP2640828B2 true JP2640828B2 (en) | 1997-08-13 |
Family
ID=15747922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63162092A Expired - Lifetime JP2640828B2 (en) | 1988-06-28 | 1988-06-28 | Method for removing native oxide film on semiconductor substrate surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2640828B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR910010516A (en) * | 1989-11-15 | 1991-06-29 | 아오이 죠이치 | Semiconductor memory device |
WO1992022084A1 (en) * | 1991-05-21 | 1992-12-10 | Advantage Production Technology, Inc. | Organic preclean for improving vapor phase wafer etch uniformity |
JP4654458B2 (en) * | 2004-12-24 | 2011-03-23 | リコープリンティングシステムズ株式会社 | Silicon member anodic bonding method, ink jet head manufacturing method using the same, ink jet head and ink jet recording apparatus using the same |
JP5546994B2 (en) * | 2010-08-17 | 2014-07-09 | 東京エレクトロン株式会社 | Processing method of processing object, processing apparatus, thin film forming method, thin film forming apparatus, and program |
WO2023250363A1 (en) * | 2022-06-21 | 2023-12-28 | Nutech Ventures | Titanium alloy powder reconditioning for 3d additive manufacturing |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0738380B2 (en) * | 1985-06-28 | 1995-04-26 | 日本電気株式会社 | Surface treatment method |
-
1988
- 1988-06-28 JP JP63162092A patent/JP2640828B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0210726A (en) | 1990-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5709754A (en) | Method and apparatus for removing photoresist using UV and ozone/oxygen mixture | |
US4940505A (en) | Method for growing single crystalline silicon with intermediate bonding agent and combined thermal and photolytic activation | |
US5725677A (en) | Dry cleaning process for cleaning a surface | |
JPS59100539A (en) | Method for producing semiconductor device | |
KR940016544A (en) | Manufacturing Method of Semiconductor Substrate and Manufacturing Method of Solid State Imaging Device | |
KR100500908B1 (en) | Uv/halogen treatment for dry oxide etching | |
US3506508A (en) | Use of gas etching under vacuum pressure for purifying silicon | |
JP2640828B2 (en) | Method for removing native oxide film on semiconductor substrate surface | |
JPH1131691A (en) | Method for forming thermal oxidized film for silicon carbide semiconductor device | |
JPH0496226A (en) | Manufacture of semiconductor device | |
JP3150509B2 (en) | Organic matter removal method and apparatus for using the method | |
JPS62136827A (en) | Manufacture of semiconductor device | |
JPH03116727A (en) | Manufacture of semiconductor device | |
JPH0536653A (en) | Substrate surface treatment method | |
JP2004015048A (en) | Method of oxidizing silicon wafer at low temperature and apparatus thereof | |
JP2634051B2 (en) | Thin film growth method | |
KR970006216B1 (en) | Field oxidation film forming method of semiconductor device | |
JPS61240635A (en) | Dry etching method | |
JPH0521403A (en) | Manufacture of semiconductor device | |
JPS62139335A (en) | Surface cleaning process | |
JP2871460B2 (en) | Silicon etching method | |
JPH0738380B2 (en) | Surface treatment method | |
JPS6074441A (en) | Surface treatment of semiconductor layer | |
JPH11224872A (en) | Surface treatment method for silicon | |
JPS63160324A (en) | Molecular beam epitaxial crystal growth |