JP2603521B2 - Method of manufacturing fiber body for resin reinforcement and method of manufacturing fiber reinforced resin body - Google Patents
Method of manufacturing fiber body for resin reinforcement and method of manufacturing fiber reinforced resin bodyInfo
- Publication number
- JP2603521B2 JP2603521B2 JP63196190A JP19619088A JP2603521B2 JP 2603521 B2 JP2603521 B2 JP 2603521B2 JP 63196190 A JP63196190 A JP 63196190A JP 19619088 A JP19619088 A JP 19619088A JP 2603521 B2 JP2603521 B2 JP 2603521B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- producing
- resin
- glass fiber
- reinforced resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、繊維補強樹脂体(ERP)の製造に好適に用
いられるロビングのような樹脂補強用繊維体の製造方法
並びにフィラメントワインディング法(FW法)によるFR
P、特に板ばねの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a fiber body for resin reinforcement such as roving, which is suitably used for manufacturing a fiber reinforced resin body (ERP), and a filament winding method (FW). Law) by FR
P, in particular, to a method for manufacturing a leaf spring.
[従来の技術] ロービング、ストランドのようなガラス繊維束は、ブ
ッシングから引出したガラス繊維に集束剤を附与して所
定本数集束し、ケーキ状又は円筒状に巻取るこによって
製造され、FRP用の補強繊維体として広く使用される。[Prior art] Glass fiber bundles such as rovings and strands are manufactured by applying a sizing agent to glass fibers drawn from a bushing, bundling a predetermined number of the bundles, and winding them into a cake or a cylinder. Widely used as a reinforcing fiber body.
集束剤は、FRP製造に用いられる液状熱硬化性樹脂の
種類等に応じて定められるが、液状の熱硬化性樹脂とし
てエポキシ樹脂を用いる場合、被膜形成剤としてエポキ
シ樹脂系のものが用いられることが多い。The sizing agent is determined according to the type of liquid thermosetting resin used in the production of FRP, but when using epoxy resin as the liquid thermosetting resin, an epoxy resin-based one must be used as a film forming agent. There are many.
エボキシ系樹脂を含む集束剤中にアミノシランのよう
なアミン化合物を添加することがしばしば行われる。Often, an amine compound such as aminosilane is added to a sizing agent containing an ethoxy resin.
FRPは各種の方法で製造されるが、例えば板ばねのよ
うな高強度を要する製品を製造するためにはFW法が、或
は引抜き成型法が用いられることが多い。FRP is manufactured by various methods. For example, in order to manufacture a product requiring high strength such as a leaf spring, the FW method or the drawing method is often used.
[発明が解決しようとする課題] エポキシ樹脂を含む集束剤を使用したガラス繊維束を
加熱乾燥すると、加熱により集束剤の性能が低下し易
い。[Problems to be Solved by the Invention] When a glass fiber bundle using a sizing agent containing an epoxy resin is heated and dried, the performance of the sizing agent tends to be reduced by heating.
特にこの傾向は該集束剤がアミノシランのようなアミ
ン化合物を含有する場合に著しい。アミン化合物がエポ
キシ樹脂の硬化剤として作用し、エポキシ樹脂の開環、
重合を促進するためと思われる。This tendency is particularly remarkable when the sizing agent contains an amine compound such as aminosilane. Amine compound acts as a curing agent for epoxy resin, ring opening of epoxy resin,
Probably to promote polymerization.
又この傾向は10kg以上の多量のガラス繊維束を円筒状
に巻取って乾燥した場合に著しく増大する。This tendency is remarkably increased when a large amount of glass fiber bundle of 10 kg or more is wound into a cylindrical shape and dried.
上記性能低下は大きい強度を必要としないFRPの場
合、FRP性能にさ程著しい影響を与えることはないが、
高強度FRP、特に液状の熱硬化性樹脂としてエポキシ樹
脂を使用し、FW法によって板ばねを製造する際、煮沸試
験後の強度低下並びに顕著な疲労強度の低下として認め
られる。In the case of FRP that does not require large strength, the above performance decrease does not significantly affect FRP performance,
When a leaf spring is manufactured by a FW method using a high-strength FRP, particularly an epoxy resin as a liquid thermosetting resin, it is recognized as a decrease in strength after a boiling test and a remarkable decrease in fatigue strength.
[課題を解決するための手段] 上記目的を達成するために、本発明においては、エポ
キシ系樹脂とアミン化合物とを含む集束剤をガラス繊維
に含浸させ、集束してガラス繊維束となし、このガラス
繊維束を所定形状好ましくは円筒状に巻取った後減圧下
に乾燥することによって樹脂補強用繊維体を製造し、又
フィラメントワインディング法によって繊維補強樹脂体
を製造するに際し、回転する型に巻付ける繊維体とし
て、エポキシ系樹脂とアミン化合物とを含む集束剤をガ
ラス繊維に含浸させ、集束してガラス繊維束となし、こ
のガラス繊維束を所定形状好ましくは円筒状に巻取った
後減圧下に乾燥し、ついで液状の熱硬化性樹脂を含浸せ
しめた樹脂含有繊維体を使用することによって繊維補強
樹脂体を製造する。[Means for Solving the Problems] In order to achieve the above object, in the present invention, a glass fiber is impregnated with a sizing agent containing an epoxy resin and an amine compound, and bundled to form a glass fiber bundle. The glass fiber bundle is wound into a predetermined shape, preferably a cylindrical shape, and then dried under reduced pressure to produce a fiber body for resin reinforcement, and when producing the fiber reinforcement resin body by a filament winding method, the fiber body is wound into a rotating mold. As a fiber body to be attached, a glass fiber is impregnated with a sizing agent containing an epoxy resin and an amine compound, bundled into a glass fiber bundle, and the glass fiber bundle is wound into a predetermined shape, preferably a cylindrical shape, and then subjected to reduced pressure. Then, a fiber-reinforced resin body is manufactured by using a resin-containing fiber body impregnated with a liquid thermosetting resin.
次に、本発明を更に具体的に説明する。 Next, the present invention will be described more specifically.
本発明において集束剤中に含有せしめるエポキシ樹脂
としては、ビスフェノールAジグリシジルエーテル、ビ
スフェノールFジグリシジルエーテル又はフエノールノ
ボラック型等が、又アミンとしてはγ−アミノプロピル
トリエトキシシシラン、N−βアミノエチルγ−アミノ
プロピルトリメトキシシシラン又はN−β Nビニルベ
ンジルアミノエチルγ−アミノプロピルトリエトキシシ
シラン等が適当である。In the present invention, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, phenol novolak type or the like is used as the epoxy resin to be contained in the sizing agent, and γ-aminopropyl triethoxy silane, N-β aminoethyl is used as the amine. γ-aminopropyl trimethoxy silane or N-β N vinylbenzylaminoethyl γ-aminopropyl triethoxy silane is suitable.
集束剤中に含有せしむべきエポキシ樹脂及びアミン化
合物の量は、夫々0.1〜10wt%、0.05〜2wt%好ましくは
0.5〜5wt%、0.1〜1wt%とするのが適当である。The amounts of the epoxy resin and the amine compound to be contained in the sizing agent are respectively 0.1 to 10 wt%, 0.05 to 2 wt%, preferably
It is appropriate that the content is 0.5 to 5% by weight and 0.1 to 1% by weight.
集束剤中にはエポキシ樹脂及びアミン化合物以外に高
級脂肪酸エステル、ポリエチレングリコールのような潤
滑剤、ポリエステル樹脂、ポリウレタン樹脂のような被
膜形成剤等を含有せしめることができる。In addition to the epoxy resin and the amine compound, the sizing agent may contain a lubricant such as higher fatty acid ester and polyethylene glycol, and a film forming agent such as polyester resin and polyurethane resin.
エポキシ樹脂及びアミン化合物の附与量は、ガラス繊
維に対し夫々0.05〜2wt%、0.005〜0.2wt%好ましくは
0.5〜1wt%、0.01〜0.1wt%とするのが適当である。The added amounts of the epoxy resin and the amine compound are 0.05 to 2% by weight, 0.005 to 0.2% by weight, and
It is appropriate that the content is 0.5 to 1 wt% and 0.01 to 0.1 wt%.
又ガラス繊維の集束本数は、通常100〜8,000本、好ま
しくは200〜4,000本程度である。The number of glass fibers bundled is usually about 100 to 8,000, preferably about 200 to 4,000.
ガラス繊維束は、トラバースワイヤーを用いて綾振り
しつつ回転するマンドレル上に巻取り、所謂ケーキとす
ることもできるが、ガラス繊維の1,000〜4,000本程度の
集束物を、回転するマンドレル上に円筒上に巻取って直
巻ロービングとすることもでき、本発明の効果は、直巻
ロービングの場合、就中10kg〜25kg程度の多量のガラス
繊維を巻付けた直巻ロービングとした場合顕著である。The glass fiber bundle can be wound on a rotating mandrel while traversing it using a traverse wire, and it can be a so-called cake, but a bundle of about 1,000 to 4,000 glass fibers is cylindrically placed on a rotating mandrel. It can also be wound up and made into a straight-wound roving, and the effect of the present invention is remarkable in the case of a straight-wound roving, especially when it is a straight-wound roving in which a large amount of glass fiber of about 10 kg to 25 kg is wound. .
巻取ったガラス繊維束(回巻繊維束という)を減圧下
に加熱乾燥せしめる。The wound glass fiber bundle (referred to as a wound fiber bundle) is dried by heating under reduced pressure.
減圧の程度は、500torr以下、好ましくは400〜10torr
とするのが適当である。The degree of decompression is 500 torr or less, preferably 400 to 10 torr
Is appropriate.
又減圧度を周期的に変化させるのが望ましく、特に減
圧度を10〜50torrから700〜760torrの間で変化させるの
が適当であり、乾燥所要時間を短縮することができる。It is desirable to change the degree of pressure reduction periodically, and it is particularly appropriate to change the degree of pressure reduction from 10 to 50 torr to 700 to 760 torr, which can shorten the time required for drying.
又加熱温度は、30〜90℃好ましくは40〜80℃とするの
が適当である。The heating temperature is suitably from 30 to 90 ° C, preferably from 40 to 80 ° C.
常圧で乾燥を行うと、回巻繊維体が多量の水分を含有
する乾燥の初期においては、回巻繊維体の表面から蒸発
する水分とその内部から表面に移行する水分とが等し
く、両者が所定の率に保たれる恒率乾燥が行われ、回巻
繊維体の表面温度は水の沸騰温度に保たれるが、水分の
蒸発が進行するにつれ内部から表面に移行する水分の量
が次第に減少する減率乾燥が行われるようになる。When drying at normal pressure, in the initial stage of drying when the wound fiber body contains a large amount of water, the moisture evaporating from the surface of the wound fiber body and the water moving from the inside to the surface are equal, and both are equal. The constant-rate drying is maintained at a predetermined rate, and the surface temperature of the wound fiber body is maintained at the boiling temperature of water.However, as the evaporation of water progresses, the amount of water transferred from the inside to the surface gradually increases. Decreasing loss drying is performed.
減率乾燥が行われると回巻繊維体の表面温度が次第に
上昇し、乾燥雰囲気の温度に達する。When the rate-decreasing drying is performed, the surface temperature of the wound fiber body gradually increases and reaches the temperature of the drying atmosphere.
回巻繊維体の乾燥を十分に行うためには、相当長時間
の減率乾燥を行う必要があるが、回巻繊維が大型の場
合、この減率乾燥時間が増大し、集束剤の性能低下が著
しくなる。In order to sufficiently dry the wound fiber body, it is necessary to perform the reduced-rate drying for a considerably long time. However, when the wound fiber is large, the reduced-rate drying time increases, and the performance of the sizing agent deteriorates. Becomes significant.
これに対し、本発明の減圧乾燥では、減率乾燥の時間
が極めて短く、且つ雰囲気の温度も低く保たれるので、
集束剤の性能低下が生ぜず、FRPの性能が向上するもの
と考えられる。On the other hand, in the reduced-pressure drying of the present invention, the time of the reduced-rate drying is extremely short and the temperature of the atmosphere is kept low,
It is considered that the performance of the FRP is improved without a decrease in the performance of the sizing agent.
なお、上述したガラス繊維束を使用し、FW法によって
板ばねを製造する方法は公知の技術と異なる処がないの
で詳細な説明は省略する。Note that the method of manufacturing a leaf spring by the FW method using the above-described glass fiber bundle does not differ from a known technique, and thus a detailed description is omitted.
[作 用] 減圧下で回巻繊維体の乾燥を行うことにより、減率乾
燥時間を短縮し、乾燥温度を低下させることによりエポ
キシ樹脂とアミンの反応による集束剤の性能低下を防止
し、FW法によって製造された板ばねの煮沸試験後の強度
低下、疲労による強度低下を防止する。[Operation] By drying the wound fiber body under reduced pressure, the lapse rate drying time is shortened, and by lowering the drying temperature, the performance of the sizing agent due to the reaction between the epoxy resin and the amine is prevented. Of the strength of the leaf spring manufactured by the method after the boiling test and the strength due to fatigue are prevented.
[実施例] 次の組成を有する集束剤を23μのガラス繊維に固型分
として0.5wt%附与して4,000本集束し、ストランドとし
た。[Examples] A sizing agent having the following composition was added to 23 µ glass fiber as a solid component at 0.5 wt%, and 4,000 were bundled to form strands.
集束剤の組成 乳化エポキシ樹脂(エポキシ当量 190) 4.5wt% γ−アミノプロピルトリエトキシシラン 0.5wt% 高級脂肪酸エステル 0.6wt% 酢 酸 0.2wt% このストランドを20kg円筒状に回巻し、30torrから76
0torrの間で周期的に減圧度を変化せしめつつ、115℃に
おいて23hr恒率乾燥を行うことにより水分を0.03%以下
とすることができた。Composition of sizing agent Emulsified epoxy resin (epoxy equivalent 190) 4.5wt% γ-aminopropyltriethoxysilane 0.5wt% higher fatty acid ester 0.6wt% acetic acid 0.2wt% This strand is wound into a 20kg cylindrical shape, and from 30torr to 76
The moisture was reduced to 0.03% or less by performing constant-rate drying at 115 ° C. for 23 hours while periodically changing the degree of pressure reduction between 0 torr.
このストラントに次の組成を有する樹脂組成物を含浸
せしめ、FW法により、GC70wt%の一方向強化シートを製
造した。This strand was impregnated with a resin composition having the following composition, and a one-way reinforced sheet of 70 wt% GC was manufactured by the FW method.
このシートの剪断強度は7.56kg/mm2であり、又煮沸10
0hr後の強度保持率は92%であった。Shear strength of this sheet was 7.56kg / mm 2, also boiled 10
The strength retention after 0 hr was 92%.
樹脂組成 エピコート828(商品名;油化シェル製) 100重量部 アミン系硬化剤 10重量部 [比較例] 実施例と同じ集束剤を用い、常圧において130℃で24h
r乾燥したストランドを用いて同様な実験を行った。結
果は次の通りであった。Resin composition Epicoat 828 (trade name; manufactured by Yuka Shell) 100 parts by weight Amine-based curing agent 10 parts by weight [Comparative Example] Using the same sizing agent as in the example, at 130 ° C. for 24 hours under normal pressure at normal pressure
A similar experiment was performed using dried strands. The results were as follows.
剪断強度 7.10kg/mm2 強度保持率 87% [発明の効果] 集束剤の性能低下を防止し、FW法によって得られる板
ばね等のFRPの強度を増大させ、又FRPの疲労による強度
低下を防止する。Shear strength 7.10 kg / mm 2 Strength retention rate 87% [Effect of the invention] Prevents performance degradation of the sizing agent, increases the strength of FRP such as leaf springs obtained by the FW method, and reduces the strength reduction due to FRP fatigue. To prevent.
Claims (20)
束剤をガラス繊維に含浸させ、集束してガラス繊維束と
なし、このガラス繊維束を所定形状好ましくは円筒状に
巻取った後減圧下に乾燥することを特徴とする樹脂補強
用樹脂体の製造方法。1. A glass fiber is impregnated with a sizing agent containing an epoxy resin and an amine compound into a glass fiber bundle. The glass fiber bundle is wound into a predetermined shape, preferably a cylindrical shape, and then reduced under reduced pressure. A method for producing a resin body for resin reinforcement, characterized by drying the resin body.
の樹脂補強用繊維体の製造方法。2. The method according to claim 1, wherein the degree of pressure reduction is changed periodically.
で変化させる請求項2記載の樹脂補強繊維体の製造方
法。3. The method according to claim 2, wherein the degree of reduced pressure is changed from 10 to 50 torr to 700 to 760 torr.
シジルエーテル、ビスフェノールFジグリシジルエーテ
ル又はフエノールノボラック型である請求項1,2又は3
記載の樹脂補強用繊維体の製造方法。4. The epoxy resin of claim 1, 2, or 3, wherein said epoxy resin is bisphenol A diglycidyl ether, bisphenol F diglycidyl ether or phenol novolak.
A method for producing a fibrous body for resin reinforcement according to the above.
対し0.05〜2wt%であることを特徴とする請求項1,2,3又
は4記載の樹脂補強用繊維体の製造方法。5. The method according to claim 1, wherein the amount of the epoxy resin is 0.05 to 2% by weight based on the glass fiber.
トキシシシラン、N−βアミノエチルγ−アミノプロピ
ルトリメトキシシシラン又はN−β Nビニルベンジル
アミノエチルγ−アミノプロピルトリエトキシシシラン
であることを特徴とする請求項1,2,3,4又は5記載の樹
脂補強用繊維体の製造方法。6. The amine compound is γ-aminopropyltriethoxysilane, N-βaminoethyl γ-aminopropyltrimethoxysilane or N-βN vinylbenzylaminoethyl γ-aminopropyltriethoxysilane. The method for producing a resin-reinforcing fibrous body according to claim 1, 2, 3, 4, or 5.
し0.005〜0.2wt%であることを特徴とする請求項1,2,3,
4,5又は6記載の樹脂補強用繊維体の製造方法。7. The method according to claim 1, wherein the amount of the amine compound is 0.005 to 0.2% by weight based on the glass fiber.
7. The method for producing a resin reinforcing fiber according to 4, 5, or 6.
を特徴とする請求項1,2,4,5,6又は7記載の樹脂補強用
繊維体の製造方法。8. The method according to claim 1, wherein drying is performed at a reduced pressure of 500 torr or less.
くは10〜25kgであることを特徴とする請求項1,2,3,4,5,
6,7又は8記載の樹脂補強用繊維体の製造方法。9. The winding amount of the glass fiber bundle is 5 to 25 kg, preferably 10 to 25 kg.
9. The method for producing a fibrous body for resin reinforcement according to 6, 7, or 8.
繊維補強樹脂体を製造するに際し、回転する型に巻付け
る繊維体として、エポキシ系樹脂とアミン化合物とを含
む集束剤をガラス繊維に含浸させ、集束してガラス繊維
束となし、このガラス繊維束を所定形状好ましくは円筒
状に巻取った後減圧下に乾燥し、ついで液状の熱硬化性
樹脂を含浸せしめた樹脂含有繊維体を使用することを特
徴とする繊維補強樹脂体の製造方法。10. A glass fiber impregnated with a sizing agent containing an epoxy resin and an amine compound as a fibrous body wound around a rotating mold when a fiber reinforced resin body is produced by a filament winding method, and the glass fiber is bundled. A fiber bundle is formed. The glass fiber bundle is wound into a predetermined shape, preferably a cylindrical shape, dried under reduced pressure, and then a resin-containing fiber body impregnated with a liquid thermosetting resin is used. A method for producing a fiber-reinforced resin body.
載の繊維補強樹脂体の製造方法。11. The method for producing a fiber-reinforced resin body according to claim 10, wherein the degree of pressure reduction is changed periodically.
間で変化させる請求項11記載の繊維補強樹脂体の製造方
法。12. The method for producing a fiber-reinforced resin body according to claim 11, wherein the degree of reduced pressure is changed from 10 to 50 torr to 700 to 760 torr.
徴とする請求項10,11又は12記載の繊維補強樹脂体の製
造方法。13. The method for producing a fiber reinforced resin body according to claim 10, wherein the fiber reinforced resin body is a leaf spring.
リシジルエーテル、ビスフェノールFジグリシジルエー
テル又はフエノールノボラック型である請求項10,11,12
又は13記載の繊維補強樹脂体の製造方法。14. The epoxy resin is of bisphenol A diglycidyl ether, bisphenol F diglycidyl ether or phenol novolak type.
14. A method for producing a fiber-reinforced resin body according to item 13.
対し0.05〜2wt%であることを特徴とする請求項10,11,1
2,13又は14記載の繊維補強樹脂体の製造方法。15. The method according to claim 10, wherein the amount of the epoxy resin is 0.05 to 2% by weight based on the glass fiber.
15. The method for producing a fiber-reinforced resin body according to 2, 13, or 14.
エトキシシシラン、N−βアミノエチルγ−アミノプロ
ピルトリメトキシシシラン又はN−β Nビニルベンジ
ルアミノエチルγ−アミノプロピルトリエトキシシシラ
ンであることを特徴とする請求項10,11,12,13,14又は15
記載の繊維補強樹脂体の製造方法。16. The amine compound is γ-aminopropyltriethoxysilane, N-βaminoethyl γ-aminopropyltrimethoxysilane or N-βN vinylbenzylaminoethyl γ-aminopropyltriethoxysilane. Claims 10, 11, 12, 13, 14, or 15 characterized by the following:
A method for producing the fiber-reinforced resin body according to the above.
し0.005〜0.2wt%であることを特徴とする請求項10,11,
12,13,14,15又は16記載の繊維補強樹脂体の製造方法。17. The method according to claim 10, wherein the addition amount of the amine compound is 0.005 to 0.2% by weight based on the glass fiber.
17. The method for producing a fiber-reinforced resin body according to 12, 13, 14, 15, or 16.
を特徴とする請求項10,11,12,13,14,15,16又は17記載の
繊維補強樹脂体の製造方法。18. The method for producing a fiber reinforced resin body according to claim 10, wherein the drying is performed at a reduced pressure of 500 torr or less.
ることを特徴とする請求項10,11,12,13,14,15,16,17又
は18記載の繊維補強樹脂体の製造方法。19. The method for producing a fiber-reinforced resin body according to claim 10, wherein the liquid thermosetting resin is an epoxy resin.
しくは10〜25kgであることを特徴とする請求項10,11,1
2,13,14,15,16,17,18又は19記載の繊維補強樹脂体の製
造方法。20. The winding amount of the glass fiber bundle is 5 to 25 kg, preferably 10 to 25 kg.
20. The method for producing a fiber-reinforced resin body according to 2, 13, 14, 15, 16, 17, 18 or 19.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63196190A JP2603521B2 (en) | 1988-08-08 | 1988-08-08 | Method of manufacturing fiber body for resin reinforcement and method of manufacturing fiber reinforced resin body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63196190A JP2603521B2 (en) | 1988-08-08 | 1988-08-08 | Method of manufacturing fiber body for resin reinforcement and method of manufacturing fiber reinforced resin body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0248440A JPH0248440A (en) | 1990-02-19 |
JP2603521B2 true JP2603521B2 (en) | 1997-04-23 |
Family
ID=16353690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63196190A Expired - Lifetime JP2603521B2 (en) | 1988-08-08 | 1988-08-08 | Method of manufacturing fiber body for resin reinforcement and method of manufacturing fiber reinforced resin body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2603521B2 (en) |
-
1988
- 1988-08-08 JP JP63196190A patent/JP2603521B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0248440A (en) | 1990-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3769126A (en) | Resinous-microsphere-glass fiber composite | |
US3530212A (en) | Method of making glass resin laminates | |
EP0535223B1 (en) | Process for producing tubes or pipes formed from a thermoplastic powder impregnated fiberglass roving | |
US6185962B1 (en) | Method for forming pre-impregnated fibers suitable for processing into a composite article | |
EP0841080A2 (en) | Frp racket and method for producing the same | |
US5024890A (en) | Size composition for impregnating filament strands and glass fibers coated therein | |
US5698000A (en) | Process for manufacturing sized glass strands | |
US5387468A (en) | Size composition for impregnating filament strands | |
JP2603521B2 (en) | Method of manufacturing fiber body for resin reinforcement and method of manufacturing fiber reinforced resin body | |
US4276328A (en) | Impregnation of yarns | |
EP0879803B1 (en) | Method for forming a coated fiber strand and a coated fiber strand package | |
KR20190133764A (en) | Stiffened fiber with improved stiffness | |
US6767625B2 (en) | Method for making a charge of moldable material | |
JP2006523269A (en) | Sizing formulation for phenolic resin pultrusion and method for forming the same | |
CA1214002A (en) | Method of sizing strand | |
US20110129608A1 (en) | Methods of applying matrix resins to glass fibers | |
JPH04249538A (en) | Glass-reinforced polyamide resin composition and production thereof | |
US4455400A (en) | Migratin-free size for glass fibers | |
JP2003053853A (en) | Method for molding fiber reinforced plastic | |
CN114222835A (en) | Method for producing glass direct roving and glass direct roving | |
JPH11216726A (en) | Production of filament-wound molding | |
JP4920146B2 (en) | DWR and FRP using the same | |
JP2603520B2 (en) | Method for producing glass fiber bundle and fiber reinforced resin body | |
Knight | The technique of filament winding | |
JPH09267401A (en) | Frp pipe and its production |