JP2579787B2 - Manufacturing method of permanent magnet - Google Patents

Manufacturing method of permanent magnet

Info

Publication number
JP2579787B2
JP2579787B2 JP62331398A JP33139887A JP2579787B2 JP 2579787 B2 JP2579787 B2 JP 2579787B2 JP 62331398 A JP62331398 A JP 62331398A JP 33139887 A JP33139887 A JP 33139887A JP 2579787 B2 JP2579787 B2 JP 2579787B2
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
temperature
yoke
cast ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62331398A
Other languages
Japanese (ja)
Other versions
JPH01171219A (en
Inventor
利昭 山上
伸泰 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Kobe Steel Ltd
Original Assignee
Seiko Epson Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Kobe Steel Ltd filed Critical Seiko Epson Corp
Priority to JP62331398A priority Critical patent/JP2579787B2/en
Publication of JPH01171219A publication Critical patent/JPH01171219A/en
Application granted granted Critical
Publication of JP2579787B2 publication Critical patent/JP2579787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類元素と遷移金属、及びボロンを基本成
分とする永久磁石とその製造法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a permanent magnet containing a rare earth element, a transition metal, and boron as basic components, and a method for producing the same.

[従来の技術] 永久磁石は、一般家庭の各種電気製品から大型コンピ
ューターの周辺末端機器まで幅広い分野で使用されてい
る重要な電気、電子材料の一つである。最近の電気製品
の小型化、高効率化の要求にともない永久磁石も益々高
性能化が求められている。現在使用されている永久磁石
のうち代表的なものはアルニコ、ハードフェライト及び
希土類−遷移金属系磁石である。特に、希土類(以下、
Rと略す。)−遷移金属(以下、TMと略す。)系磁石で
あるR−Co系永久磁石や、R−Fe−B系永久磁石は高い
磁気性能が得られるので従来から多くの研究開発が行な
われている。
[Prior Art] Permanent magnets are one of important electric and electronic materials used in a wide range of fields from various home electric appliances to peripheral peripheral devices of large computers. With the recent demand for miniaturization and higher efficiency of electric products, permanent magnets are also required to have higher performance. Typical permanent magnets currently used are alnico, hard ferrite and rare earth-transition metal based magnets. In particular, rare earth (hereinafter,
Abbreviated as R. R-Co-based permanent magnets and R-Fe-B-based permanent magnets, which are transition metal (hereinafter abbreviated as TM) -based magnets, have high magnetic performance. I have.

従来、これらR−TM−B系永久磁石の製造法に関して
は以下の文献に示すような方法がある。
Conventionally, as a method for producing these R-TM-B-based permanent magnets, there is a method disclosed in the following literature.

(1)粉末冶金に基づく焼結による方法。(文献1、文
献2) (2)非晶質合金を製造するのに用いる急冷薄体装置
で、厚さ30μm程度の急冷薄片を作り、その薄片を樹脂
結合法で磁石にするメルトスピニング法による急冷薄片
を用いた樹脂結合法。(文献3、文献4) (3)上記(2)の方法で使用した急冷薄片を2段階の
ホットプレスで機械的配向処理を行なう方法。(文献
4、文献5) ここで、 文献1;特開昭59−46008号公報 文献2;M.Sagawa,S.Fujimura,N.Togawa,H.Yamamoto and
Y.Matuura;J.Appl.Phys.Vol.55(6)15 March 1984 p2
083 文献3;特開昭59−211549号公報 文献4;R.W.Lee;Appl.Phys.Lett.Vol.46(8)15 April
1985 p790 文献5;特開昭60−100402号公報 つぎに、上記従来法の詳細について説明する。
(1) A method based on sintering based on powder metallurgy. (References 1 and 2) (2) A quenched thin body device used to manufacture an amorphous alloy, which is made by quenching a thin piece having a thickness of about 30 μm and then using the resin bonding method to form a magnet by a melt spinning method. Resin bonding method using quenched flakes. (References 3 and 4) (3) A method in which the quenched flakes used in the method (2) are subjected to mechanical orientation treatment by a two-stage hot press. (References 4 and 5) Here, Reference 1; Japanese Unexamined Patent Publication No. 59-46008 Reference 2; M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto and
Y. Matuura; J. Appl. Phys. Vol. 55 (6) 15 March 1984 p2
083 Literature 3: JP-A-59-211549 Literature 4: RWLee; Appl. Phys. Lett. Vol. 46 (8) 15 April
1985 p790 Literature 5; JP-A-60-100402 Next, the details of the above-mentioned conventional method will be described.

(1)の焼結法では、溶解・鋳造により合金インゴッ
トを作製し粉砕する事で適当な粒度の(数μm)磁石分
を得る。磁石粉は成形助材バインダーと混練され、磁場
中でプレス成形されることで成形体ができあがる。この
成形体はアルゴン中で1100℃前後の温度で約1時間焼結
され、室温まで急冷される。その後、600℃前後の温度
で熱処理を施されることにより保磁力が向上する。
In the sintering method of (1), an alloy ingot is prepared by melting and casting, and pulverized to obtain a magnet having an appropriate particle size (several μm). The magnet powder is kneaded with a molding aid binder, and is press-molded in a magnetic field to form a compact. This compact is sintered in argon at a temperature of around 1100 ° C. for about 1 hour and quenched to room temperature. Thereafter, heat treatment is performed at a temperature of about 600 ° C. to improve the coercive force.

(2)のメルトスピニング法による急冷薄片を用いた
樹脂結合方法では、まず、急冷薄帯製造装置の最適な回
転数でR−TM−B合金の急冷薄帯を製造する。得られた
厚さ約30μmの薄帯は直径が1000Å以下の結晶の集まり
であり、脆くて割れ易く、結晶粒は等方的に分布してい
る。このため磁気的にも異方性は得られず等方的になっ
ている。この薄片を適当な大きさに粉砕し、樹脂と混
練、プレス成形する事でボンド磁石が得られる。このと
き7t/cm2程度の圧力で約85体積%の充填が可能である。
In the resin bonding method using the quenched flakes by the melt spinning method (2), first, a quenched ribbon of the R-TM-B alloy is manufactured at an optimum rotation speed of the quenched ribbon manufacturing apparatus. The obtained ribbon having a thickness of about 30 μm is a collection of crystals having a diameter of 1000 ° or less, and is brittle and easily broken, and the crystal grains are distributed isotropically. For this reason, no magnetic anisotropy is obtained and the magnetic layer is isotropic. The flakes are pulverized to an appropriate size, kneaded with a resin, and pressed to obtain a bonded magnet. At this time, about 85% by volume can be filled with a pressure of about 7 t / cm 2 .

(3)の方法は、(2)で得られた急冷薄帯あるいは
薄帯の片を真空中あるいは不活性雰囲気中、約700℃で
予備加熱したグラファイトあるいは他の耐熱用のプレス
型に入れる。該薄片が所望の温度に到達したとき1軸の
圧力が加えられる。温度圧力は特定しないが、十分な塑
性が得られる条件として725±25℃、1.4t/cm2程度が適
している。この段階では磁石の磁化容易軸は僅かにプレ
ス方向に配向しているとはいえ、全体的には等方的であ
る。2回目のホットプレスは大面積を有する型で行なわ
れる。一般的には700℃、0.7t/cm2で数秒間プレスす
る。すると磁石は最初のほぼ1/2になり磁化容易軸はプ
レス方向と平行に配向して、磁石は異方性化する。この
方法で異方性を有するR−TM−B系永久磁石が得られ
る。
In the method (3), the quenched ribbon or strip obtained in (2) is placed in graphite or another heat-resistant press mold preheated at about 700 ° C. in a vacuum or an inert atmosphere. Uniaxial pressure is applied when the flakes reach the desired temperature. Although the temperature and pressure are not specified, 725 ± 25 ° C. and about 1.4 t / cm 2 are suitable as conditions for obtaining sufficient plasticity. At this stage, the axis of easy magnetization of the magnet is oriented slightly in the pressing direction, but is isotropic as a whole. The second hot pressing is performed in a mold having a large area. Generally, pressing is performed at 700 ° C. and 0.7 t / cm 2 for several seconds. Then, the magnet becomes almost the first half, the easy axis of magnetization is oriented parallel to the pressing direction, and the magnet becomes anisotropic. By this method, an R-TM-B permanent magnet having anisotropy can be obtained.

尚、最初のメルトスピニング方で作られる急冷薄帯の
結晶粒は、それが最大の保磁力を示す時の粒径よりも小
さめにしておき、後のホットプレス中に結晶粒の粗大化
が生じて最適の粒径になるようにしておく。
The grain size of the quenched ribbon produced by the first melt spinning method should be smaller than the grain size when it shows the maximum coercive force, and the grain size will increase during subsequent hot pressing. To obtain the optimum particle size.

しかし、この方法では高温、例えば800℃以上では結
晶粒の粗大化が著しく、それによって保磁力が極端に低
下し、実用的な永久磁石にはならない。
However, in this method, at a high temperature, for example, 800 ° C. or higher, the crystal grains are remarkably coarsened, whereby the coercive force is extremely reduced, and it is not a practical permanent magnet.

[発明が解決しようとする問題点] 前述の従来技術を用いることにより、一応R−TM−B
系永久磁石は製造できるが、これらの製造方法には次の
ような欠点を有している。
[Problems to be Solved by the Invention] By using the above-mentioned conventional technology, R-TM-B
Although system-based permanent magnets can be manufactured, these manufacturing methods have the following disadvantages.

(1)の焼結法は、合金を粉末にする事が必須である
が、R−TM−B系合金は酸素に対して非常に活性であ
り、そのため粉末にするという工程を経ると表面積が増
え、酸化が激しくなり焼結体中の酸素濃度はどうしても
高くなってしまう。また、粉末を成形するときに、例え
ばステアリン酸亜鉛のような成形助材を使用しなければ
ならない。これは焼結工程で前もって取り除かれるので
はあるが、数割は磁石の中に炭素の形で残ってしまう。
この炭素はR−TM−B系磁石の磁気性能を低下させてし
まい好ましくない。
In the sintering method (1), it is essential to turn the alloy into a powder. However, the R-TM-B alloy is very active against oxygen, so that the surface area is reduced when the powder is processed. As a result, the oxidation becomes severe and the oxygen concentration in the sintered body is inevitably increased. Also, when molding the powder, a molding aid such as, for example, zinc stearate must be used. Although this is removed in advance in the sintering process, a small percentage remains in the magnet in the form of carbon.
This carbon is undesirable because it lowers the magnetic performance of the R-TM-B magnet.

成形助材を加えてプレス成形した後の成形体はグリー
ン体と言われる。これは大変脆く、ハンドリングが難し
い。従って、焼結炉にきれいに並べて入れるのは相当の
手間がかかることも大きな欠点である。
The molded body after the addition of the molding aid and press molding is called a green body. It is very brittle and difficult to handle. Therefore, it is a great disadvantage that it takes a considerable amount of time to arrange them neatly in the sintering furnace.

また、異方性の磁石を得るためには磁場中でプレス成
形しなければならず、磁場電源、コイル等の大きな装置
が必要となる。
Also, in order to obtain an anisotropic magnet, press molding must be performed in a magnetic field, and a large device such as a magnetic field power supply and a coil is required.

以上の欠点があるので、一般的に言って、R−TM−B
系の焼結磁石の製造には高価な設備が必要になるばかり
でなく、生産効率も悪くなり、磁石の製造コストが高く
なってしまう。従って、比較的原料の安いR−TM−B系
磁石の長所を生かすことが出来るとは言いがたい。
Because of the above disadvantages, generally speaking, R-TM-B
Not only expensive equipment is required for the production of sintered magnets, but also the production efficiency deteriorates and the production cost of the magnets increases. Therefore, it cannot be said that the advantages of the relatively inexpensive R-TM-B magnet can be utilized.

次に(2)ならびに(3)の方法であるが、これらの
方法は真空メルトスピニング装置を使用するが、この装
置は現在では大変生産性が悪くしかも高価である。
Next, the methods (2) and (3), which use a vacuum melt spinning apparatus, which are currently very poor in productivity and expensive.

(2)の方法は原理的に等方性であるので、低いエネ
ルギー積であり、ヒステリシスループの角形性もよくな
いので温度特性にたいしても、使用する面においても不
利である。
Since the method (2) is isotropic in principle, the energy product is low, and the squareness of the hysteresis loop is not good, so that it is disadvantageous in terms of temperature characteristics and use.

(3)の方法では異方性の磁石が得られるが、ホット
プレスを2段階に使うので、実際に量産を考えると大変
に非効率になることは否めないであろう。また、この方
法では高温、例えば800℃以上では結晶粒の粗大化が著
しく、それによって保磁力が極端に低下し、実用的な永
久磁石にはならない。
In the method (3), an anisotropic magnet can be obtained, but since hot pressing is used in two stages, it will not be denied that it will be extremely inefficient when actually considering mass production. Further, in this method, at high temperatures, for example, at 800 ° C. or higher, the crystal grains are extremely coarsened, whereby the coercive force is extremely reduced, and the magnet does not become a practical permanent magnet.

また、永久磁石はモーターや発電器、チャッキング等
に使用されるが、これらの用途を考えたとき永久磁石単
体で使用されることはまれであり、モーターや発電器、
チャッキングでは必ず軟磁性体等のヨークや常磁性体の
軸等の一緒に使用される。ところが従来の技術では磁石
は磁石単体で製造し、それにヨークもしくは軸をとりつ
けるといった方法が取られてきた。この方法では磁石を
精度よく加工しなければならず、磁石の製造過程に於い
て、大きな制約になっている。特にモーターではリング
状で使用されることが多く、このリング状磁石の内面加
工は技術的にも難しく、コストも高い。
In addition, permanent magnets are used for motors, generators, chucking, etc., but considering these applications, permanent magnets are rarely used alone, and motors, generators,
In chucking, a yoke such as a soft magnetic material and a shaft of a paramagnetic material are always used together. However, in the prior art, a method has been adopted in which a magnet is manufactured as a single magnet and a yoke or a shaft is attached thereto. In this method, the magnet must be machined with high precision, which is a great limitation in the manufacturing process of the magnet. In particular, motors are often used in a ring shape, and the inner surface processing of this ring-shaped magnet is technically difficult and costly.

本発明は以上の従来技術の欠点を解決するものであ
り、その目的とするところは溶解・鋳造することを基本
工程とし、熱間加工及び熱処理を併用することにより高
性能且つ低コストなR−TM−B系永久磁石の製造法を提
供するところにある。
The present invention solves the above-mentioned drawbacks of the prior art, and aims at melting and casting a basic process, and by using both hot working and heat treatment, a high performance and low cost R- It is an object of the present invention to provide a method for producing a TM-B permanent magnet.

[問題点を解決するための手段] 本発明は、希土類元素(但しYを含む)と遷移金属と
ボロンとを基本成分とする永久磁石の製造法において、
少なくとも、前記基本成分からなる合金を溶解、鋳造す
る第1の工程と、前記第1の工程により得られた鋳造イ
ンゴットを軟磁性体または磁石と接合して使う材料で覆
った状態で、500℃以上の温度で熱間加工し、前記鋳造
インゴットを所望の磁石形状に成形するとともに磁気的
に異方性化する第2の工程と、250℃以上の温度で熱処
理を施す第3の工程とを有することを特徴とする永久磁
石の製造法である。
[Means for Solving the Problems] The present invention relates to a method for producing a permanent magnet containing a rare earth element (including Y), a transition metal, and boron as basic components.
At least a first step of melting and casting the alloy consisting of the basic components, and a state in which the cast ingot obtained in the first step is covered with a soft magnetic material or a material to be used by being joined to a magnet at 500 ° C. Hot working at the above temperature, forming the cast ingot into a desired magnet shape and magnetically anisotropic the second step, and a third step of performing a heat treatment at a temperature of 250 ° C. or more. A method for producing a permanent magnet, comprising:

また、本発明は、希土類元素(但しYを含む)と遷移
金属とボロンとを基本成分とする永久磁石の製造法にお
いて、少なくとも、前記基本成分からなる合金を溶解
し、軟磁性体または磁石と接合して使う材料で構成され
た鋳型に鋳造する第1の工程と、前記第1の工程により
得られた鋳造インゴットを前記鋳型ごと500℃以上の温
度で熱間加工し、前記鋳造インゴットを所望の磁石形状
に成形するとともに磁気的に異方性化する第2の工程
と、250℃以上の温度で熱処理を施す第3の工程とを有
することを特徴とする永久磁石の製造法である。
Further, the present invention provides a method for producing a permanent magnet comprising a rare earth element (including Y), a transition metal and boron as basic components, wherein at least an alloy composed of the basic components is melted to form a soft magnetic material or a magnet. A first step of casting into a mold made of a material to be used for joining, and hot working the cast ingot obtained in the first step at a temperature of 500 ° C. or more together with the mold to obtain the cast ingot. And a third step of performing a heat treatment at a temperature of 250 ° C. or more at a temperature of 250 ° C. or more.

[作用] 前記のように従来のR−TM−B系永久磁石の製造方法
である焼結法、急冷法はそれぞれ粉砕による粉末管理の
困難さ、生産性の悪さ、また、磁石形状の制約といった
多きな欠点を有している。
[Operation] As described above, the sintering method and the quenching method, which are the conventional methods of manufacturing the R-TM-B-based permanent magnets, each have difficulty in powder control by pulverization, poor productivity, and restrictions on magnet shape. It has many disadvantages.

本発明者等はこれらの欠点を改良するために、バルク
状態での磁気硬化の研究に着目し、前記希土類元素と遷
移金属、及びボロンを基本成分とする磁石の組成域で、
鋳造後熱処理を施すだけで充分高い保磁力を有するこ
と、また熱間加工を施すことにより、容易に配向する事
を知見した。以下この点について説明する。
In order to improve these disadvantages, the present inventors have focused on the study of magnetic hardening in a bulk state, and in the rare earth element and transition metal, and in the composition range of a magnet containing boron as a basic component,
It has been found that it has a sufficiently high coercive force only by performing a heat treatment after casting, and that it is easily oriented by performing hot working. Hereinafter, this point will be described.

本発明の製造方法を用いた磁石も、従来技術に置ける
(1)の焼結法を用いた磁石と同様に、その初磁化曲線
はSmCo5のように急峻な立ち上がりを示す。このことか
ら保磁力機構そのものはnucleationタイプであることが
わかる。このタイプの磁石の保磁力機構は基本的には単
磁区モデルによって説明づけられ、磁石の保磁力はその
結晶粒径に大きく依存する。即ち、R−TM−B系磁石の
主相である、大きな結晶磁気異方性を有するR2TM14B化
合物相の結晶粒が大きすぎると、その結晶粒内に磁壁を
有するようになり、磁化の反転は磁壁の移動により容易
に起きて保磁力は小さくなる。一方、結晶粒がある臨界
半径以下になると結晶粒は磁壁をもたない単磁区粒子に
なり、磁化の反転は回転のみによって進行することにな
る。この磁化の回転は磁壁の移動に比べ大きなエネルギ
ーを必要とするので、大きな保磁力が得られることにな
る。即ち、充分大きな保磁力を得るためには主相である
R2TM14B化合物相の結晶粒を適切な大きなにする事が必
要である。
Also magnet using the production method of the present invention, similarly to the magnet using a sintering method in the prior art (1), the initial magnetization curve shows a steep rise as SmCo 5. This indicates that the coercive force mechanism itself is a nucleation type. The coercive force mechanism of this type of magnet is basically described by a single domain model, and the coercive force of a magnet largely depends on its crystal grain size. That is, when the crystal grains of the R 2 TM 14 B compound phase having a large crystal magnetic anisotropy, which is the main phase of the R-TM-B based magnet, are too large, they have domain walls in the crystal grains, The reversal of magnetization easily occurs due to the movement of the domain wall, and the coercive force decreases. On the other hand, when a crystal grain becomes smaller than a certain critical radius, the crystal grain becomes a single magnetic domain particle having no domain wall, and the reversal of magnetization proceeds only by rotation. Since the rotation of the magnetization requires a larger energy than the movement of the domain wall, a large coercive force can be obtained. That is, it is the main phase in order to obtain a sufficiently large coercive force.
It is necessary to make the crystal grains of the R 2 TM 14 B compound phase appropriately large.

この臨界半径はサブミクロンオーダーであるにもかか
わらず、焼結法に於ける粒径は10μm程度である。これ
は、焼結法の場合鋳造インゴットをいったん粉砕すると
いう工程を経るので、臨界半径に近い粉末を得ようとす
ると表面積が著しく増大し、焼結体に残留する酸素濃度
が増加してしまうために、臨界半径に近い粒径を持つ焼
結体は作製不能と言うことになる。逆に、nucliationタ
イプの磁石であるならば、わざわざ鋳造インゴットの粉
砕という工程を経ずとも、冷却速度の調整により、粗大
な柱状晶あるいは等軸晶の成長を抑制し、R2TM14B化合
物相の結晶粒を微細化できるならば、充分高い保磁力を
得られることになる。
Although the critical radius is on the order of submicrons, the particle size in the sintering method is about 10 μm. This is because, in the case of the sintering method, the casting ingot goes through a process of once pulverizing, so that if a powder having a critical radius is to be obtained, the surface area increases significantly, and the concentration of oxygen remaining in the sintered body increases. In addition, a sintered body having a particle size close to the critical radius cannot be produced. Conversely, if it is a nucliation type magnet, the growth rate of coarse columnar crystals or equiaxed crystals can be suppressed by adjusting the cooling rate without going through the step of grinding the cast ingot, and the R 2 TM 14 B compound If the phase crystal grains can be refined, a sufficiently high coercive force can be obtained.

本発明では組成と熱間加工を併用する事で以下のこと
を知見した。
In the present invention, the following has been found by using both the composition and hot working.

1)マクロ組織を柱状晶とすることで比較的微細な結晶
粒の鋳造合金が得られる。
1) A cast alloy having relatively fine crystal grains can be obtained by making the macrostructure into a columnar crystal.

2)この鋳造合金は面内異方性を持っている。2) This cast alloy has in-plane anisotropy.

3)この鋳造合金は熱処理を施すことでバルク状態で充
分高い保磁力が得られ、異方性の磁石の製造が可能。
3) The cast alloy is subjected to a heat treatment so that a sufficiently high coercive force is obtained in a bulk state, and an anisotropic magnet can be manufactured.

4)得られたインゴットを熱間加工することで配向度が
著しく高くなる。
4) The degree of orientation is significantly increased by hot working the obtained ingot.

以上の点により前述のような粉砕、焼結といった工程
を経る必要がなくなり、粉末管理の困難さといった生産
性の問題から解放される。
From the above points, it is not necessary to go through the above-mentioned steps such as pulverization and sintering, and it is free from productivity problems such as difficulty in powder management.

また、このR−TM−B系永久磁石の熱間加工に於いて
は、非酸化性雰囲気で行なうことが必要不可欠であり、
工業的に行なう熱間加工に於いてはシース、カプセルと
言った被覆材が必要になる。このシース及びカプセルを
製品に使用するヨークや軸の材料とし、一緒に熱間加工
あるいは鋳型にそのような材料を使用し、鋳造−熱間加
工することにより、磁石とヨークや軸が一体となった物
が製造可能となる。このことによりヨークや軸と接合す
るための内面加工といった工程が必要でなくなり、従来
技術では不可欠であった切削・研磨といった工程を著し
く軽減せしめることになる。また、HIP等する事により
ヨークとの密着製は向上する。
In the hot working of the R-TM-B permanent magnet, it is indispensable to perform it in a non-oxidizing atmosphere.
Industrially, hot working requires a coating material such as a sheath or a capsule. The magnet and yoke and shaft are integrated by hot working or using such a material for the mold together with the sheath and capsule as the material of the yoke and shaft used for the product. Can be manufactured. This eliminates the need for a step such as inner surface processing for joining with the yoke or the shaft, and significantly reduces steps such as cutting and polishing, which are indispensable in the prior art. In addition, by performing HIP or the like, the adhesion to the yoke is improved.

以下、本発明による永久磁石の好ましい組成範囲につ
いて説明する。
Hereinafter, a preferable composition range of the permanent magnet according to the present invention will be described.

希土類金属としては、Y、La、Ce、Pr、Nd、Sm、Eu、
Gd、Tb、Dy、Ho、Er、Tm、Yb、Luが候補として挙げら
れ、これらの内1種類、あるいは2種類以上を組み合わ
せて用いられる。最も高い磁気特性はPrで得られる。従
って実用的には、Pr、Pr−Nd、Ce−Pr−Nd合金等が用い
られる。遷移金属としてはFe、Co、Ni、Cu等が候補とし
て挙げられ、これらの内1種類、あるいは2種類以上を
組み合わせて用いられる。また、小量の添加元素、例え
ば重希土類のDy、Tb等や、Al、Si、Mo、Ga等は保磁力の
向上に有効である。
As rare earth metals, Y, La, Ce, Pr, Nd, Sm, Eu,
Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu are listed as candidates, and one or more of these are used in combination. The highest magnetic properties are obtained with Pr. Therefore, practically, Pr, Pr-Nd, Ce-Pr-Nd alloy and the like are used. Examples of the transition metal include Fe, Co, Ni, and Cu, and one or more of these may be used in combination. Further, a small amount of additional elements, for example, heavy rare earth elements such as Dy and Tb, Al, Si, Mo, and Ga are effective for improving the coercive force.

R−TM−B系永久磁石の主相はR2TM14B化合物相であ
る。従ってRが8原子%未満ではもはや上記化合物を形
成せず、高い磁気性能は得られない。一方、Rが30原子
%を越えると非磁性のRリッチ相が多くなり磁気特性は
著しく低下する。従ってRの範囲は8〜30原子%が適当
である。しかし、鋳造磁石とするため、好ましくは8〜
25原子%が適当である。
The main phase of the R-TM-B-based permanent magnet is an R 2 TM 14 B compound phase. Therefore, when R is less than 8 atomic%, the above compound is no longer formed, and high magnetic performance cannot be obtained. On the other hand, if R exceeds 30 atomic%, the number of non-magnetic R-rich phases increases, and the magnetic properties are significantly reduced. Therefore, the range of R is preferably 8 to 30 atomic%. However, in order to form a cast magnet, preferably 8 to
25 at% is appropriate.

BはR2TM14B化合物相を形成するための必須元素であ
り、2原子%以下では菱面体のR−TM系になるために高
い保磁力は望めない。また、28原子%を越えるとBを含
む非磁性相が多くなり、残留磁束密度は著しく低下して
くる。しかし、鋳造磁石としては好ましくはBは8原子
%以下がよく、それ以上では特殊な冷却を施さない限り
微細なR2TM14B化合物相を得ることが出来ず、適切な保
磁力が得られない。
B is an essential element for forming the R 2 TM 14 B compound phase, and a high coercive force cannot be expected at 2 atomic% or less because it becomes a rhombohedral R-TM system. On the other hand, if it exceeds 28 atomic%, the nonmagnetic phase containing B increases, and the residual magnetic flux density is remarkably reduced. However, as a cast magnet, B is preferably 8 atomic% or less, and if it is more than that, a fine R 2 TM 14 B compound phase cannot be obtained unless special cooling is performed, and an appropriate coercive force can be obtained. Absent.

Al、Ga等は保磁力増大の効果を示す。しかしながら、
AlやGaは非磁性元素であるため、その添加量を増すと残
留磁束密度が低下し、Alでは15原子%を越えると、Gaで
は6原子%を越えるとハードフェライト以下の残留磁束
密度になってしまうので希土類磁石としての目的を果た
し得ない。よってAlの添加量は15原子%以下、Gaは6原
子%以下がよい。
Al, Ga and the like show an effect of increasing the coercive force. However,
Since Al and Ga are non-magnetic elements, the residual magnetic flux density decreases as the amount of addition increases, and when Al exceeds 15 atomic%, Ga exceeds 6 atomic%, the residual magnetic flux density becomes lower than that of hard ferrite. Therefore, it cannot fulfill its purpose as a rare earth magnet. Therefore, the addition amount of Al is preferably 15 atomic% or less, and Ga is preferably 6 atomic% or less.

[実施例] 第1表に本発明で作製した合金の組成を示す。[Examples] Table 1 shows the compositions of the alloys produced by the present invention.

(実施例1) 第1表の組成となるように、希土類、遷移金属および
ボロンを秤量し、誘導加熱炉で溶解鋳造しし、第1図に
示すように鋳造インゴット1を純鉄のシース2で覆う。
これを950℃で熱増圧延を施した。加工率は約80%であ
る。その後1000℃、24時間の熱処理を施し、切削研磨を
行い第2図に示すように磁石10にヨーク20が一体となっ
たボイスコイルモーター用ヨーク一体型磁石を得た。従
来法ではヨークと磁石両方を研磨し、接着しなければな
らないが、本実施例ではそのような工程は必要でなくな
り、大幅に工程が軽減する。このヨーク一体型磁石の磁
気特性を第2表に示す。充分に実用に耐え得る磁石が得
られていることがわかる。
(Example 1) Rare earths, transition metals and boron were weighed so as to have the composition shown in Table 1, and were melted and cast in an induction heating furnace. As shown in FIG. Cover with.
This was subjected to hot-rolling at 950 ° C. The processing rate is about 80%. Thereafter, heat treatment was performed at 1000 ° C. for 24 hours, and cutting and polishing were performed to obtain a yoke-integrated magnet for a voice coil motor in which the yoke 20 was integrated with the magnet 10 as shown in FIG. In the conventional method, both the yoke and the magnet must be polished and bonded, but in the present embodiment, such a step is not required, and the number of steps is greatly reduced. Table 2 shows the magnetic properties of the yoke-integrated magnet. It can be seen that a magnet that can sufficiently withstand practical use has been obtained.

(実施例2) 第1表の組成の合金を溶解し、第3図に示すような鉄
製の鋳型3に鋳込み、冷却後上部に蓋を溶接し、950℃
に加熱し、静水圧押出を行なった。ついで熱処理及び切
削研磨を行ない、第4図に示すように磁石11にヨーク21
が一体となったモーター用ヨーク一体型磁石を得た。従
来法ではヨークと磁石両方を研磨し、接着しなければな
らないが、本実施例ではそのような工程は必要でなくな
り、特に磁石の内面研磨が必要でなくなり、大幅に工程
が軽減する。このヨーク一体型磁石の磁気特性を第3表
に示す。
(Example 2) An alloy having the composition shown in Table 1 was melted and cast into an iron mold 3 as shown in FIG.
And subjected to hydrostatic extrusion. Then, heat treatment and cutting and polishing were performed, and as shown in FIG.
Was obtained as a motor yoke integrated magnet. In the conventional method, both the yoke and the magnet must be polished and bonded. However, in the present embodiment, such a step is not required, and in particular, polishing of the inner surface of the magnet is not required, and the number of steps is greatly reduced. Table 3 shows the magnetic properties of the yoke-integrated magnet.

[発明の効果] 叙上のごとく、本発明の永久磁石の製造法によれば、
鋳造インゴットを粉砕・焼結という工程を経ることなる
熱処理を施すだけで十分な保磁力が得られ、且つ、シー
スやカプセルをヨーク等の材料とし熱間加工をすること
により、ヨーク一体型の磁石を製造することが可能とな
り、切削・研磨の工程が大幅に軽減しする。このことに
より永久磁石の生産工程を大幅に削減することができ、
永久磁石の生産性を高めるという効果を有する。
[Effects of the Invention] As described above, according to the method for manufacturing a permanent magnet of the present invention,
Sufficient coercive force can be obtained simply by subjecting the cast ingot to a heat treatment that goes through the steps of crushing and sintering, and a yoke-integrated magnet is obtained by hot working the sheath or capsule using a material such as a yoke. Can be manufactured, and the steps of cutting and polishing are greatly reduced. As a result, the production process of permanent magnets can be greatly reduced,
This has the effect of increasing the productivity of permanent magnets.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明で用いたシースの概略図である。 第2図は、本発明で作製したVCM用ヨーク一体型磁石の
概略図である。 第3図は、本発明で用いたシース兼用鋳型の断面概略図
である。 第4図は、本発明で作製したモーター用ヨーク一体型磁
石の概略図である。 符号の説明 1……鋳造インゴット 2……シース 3……鋳型 10……磁石 11……磁石 20……ヨーク 21……ヨーク
FIG. 1 is a schematic view of a sheath used in the present invention. FIG. 2 is a schematic view of a yoke-integrated magnet for VCM manufactured according to the present invention. FIG. 3 is a schematic cross-sectional view of a sheath / mold used in the present invention. FIG. 4 is a schematic view of a motor yoke-integrated magnet manufactured according to the present invention. DESCRIPTION OF SYMBOLS 1 ... Cast ingot 2 ... Sheath 3 ... Mold 10 ... Magnet 11 ... Magnet 20 ... Yoke 21 ... Yoke

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−3292(JP,A) 特開 昭54−125497(JP,A) 特開 昭62−264609(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-54-3292 (JP, A) JP-A-54-125497 (JP, A) JP-A-62-264609 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類元素(但しYを含む)と遷移金属と
ボロンとを基本成分とする永久磁石の製造法において、 少なくとも、 前記基本成分からなる合金を溶解、鋳造する第1の工程
と、 前記第1の工程により得られた鋳造インゴットを軟磁性
体または磁石と接合して使う材料で覆った状態で、500
℃以上の温度で熱間加工し、前記鋳造インゴットを所望
の磁石形状に成形するとともに磁気的に異方性化する第
2の工程と、 250℃以上の温度で熱処理を施す第3の工程とを有する
ことを特徴とする永久磁石の製造法。
1. A method for producing a permanent magnet comprising a rare earth element (including Y), a transition metal and boron as basic components, at least a first step of melting and casting an alloy composed of the basic components; In a state where the cast ingot obtained in the first step is covered with a soft magnetic material or a material to be used in combination with a magnet,
A second step of performing hot working at a temperature of not less than 100 ° C. to form the cast ingot into a desired magnet shape and magnetically anisotropy; and a third step of performing a heat treatment at a temperature of not less than 250 ° C. A method for producing a permanent magnet, comprising:
【請求項2】希土類元素(但しYを含む)と遷移金属と
ボロンとを基本成分とする永久磁石の製造法において、 少なくとも、 前記基本成分からなる合金を溶解し、軟磁性体または磁
石と接合して使う材料で構成された鋳型に鋳造する第1
の工程と、 前記第1の工程により得られた鋳造インゴットを前記鋳
型ごと500℃以上の温度で熱間加工し、前記鋳造インゴ
ットを所望の磁石形状に成形するとともに磁気的に異方
性化する第2の工程と、 250℃以上の温度で熱処理を施す第3の工程とを有する
ことを特徴とする永久磁石の製造法。
2. A method for producing a permanent magnet comprising a rare earth element (including Y), a transition metal and boron as basic components, wherein at least an alloy comprising the basic components is melted and joined to a soft magnetic material or a magnet. Casting into a mold composed of the materials used
And hot working the cast ingot obtained in the first step together with the mold at a temperature of 500 ° C. or more to form the cast ingot into a desired magnet shape and to make it magnetically anisotropic. A method for manufacturing a permanent magnet, comprising: a second step; and a third step of performing a heat treatment at a temperature of 250 ° C. or higher.
JP62331398A 1987-12-25 1987-12-25 Manufacturing method of permanent magnet Expired - Fee Related JP2579787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62331398A JP2579787B2 (en) 1987-12-25 1987-12-25 Manufacturing method of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62331398A JP2579787B2 (en) 1987-12-25 1987-12-25 Manufacturing method of permanent magnet

Publications (2)

Publication Number Publication Date
JPH01171219A JPH01171219A (en) 1989-07-06
JP2579787B2 true JP2579787B2 (en) 1997-02-12

Family

ID=18243250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62331398A Expired - Fee Related JP2579787B2 (en) 1987-12-25 1987-12-25 Manufacturing method of permanent magnet

Country Status (1)

Country Link
JP (1) JP2579787B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571244B2 (en) * 1987-12-25 1997-01-16 株式会社神戸製鋼所 Method for producing rare earth-Fe-B based magnet laminate
WO2002071424A1 (en) * 2001-03-07 2002-09-12 Shunichi Haruyama Method for manufacturing ring-shaped magnet, material for the ring-shaped magnet, and cutting resin
US9070509B2 (en) * 2007-01-11 2015-06-30 Tyco Electronics Corporation Method for manufacturing a planar electronic device having a magnetic component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543292A (en) * 1977-06-08 1979-01-11 Seiko Epson Corp Powder shaped magnet
JPS54125497A (en) * 1978-03-23 1979-09-28 Seiko Epson Corp Member equipped with powder molding magnet and method for manufacturing the same
JPS62264609A (en) * 1986-05-13 1987-11-17 Seiko Epson Corp Manufacture of cylindrical rare-earth magnet
JP2571244B2 (en) * 1987-12-25 1997-01-16 株式会社神戸製鋼所 Method for producing rare earth-Fe-B based magnet laminate

Also Published As

Publication number Publication date
JPH01171219A (en) 1989-07-06

Similar Documents

Publication Publication Date Title
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
JP2579787B2 (en) Manufacturing method of permanent magnet
JP2530185B2 (en) Manufacturing method of permanent magnet
JPH01171209A (en) Manufacture of permanent magnet
JP2725004B2 (en) Manufacturing method of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2746111B2 (en) Alloy for permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2611221B2 (en) Manufacturing method of permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2893705B2 (en) Manufacturing method of permanent magnet
JPH04143221A (en) Production of permanent magnet
JPH05135976A (en) Manufacture of permanent magnet
JP2631380B2 (en) Rare earth-iron permanent magnet manufacturing method
JP2573865B2 (en) Manufacturing method of permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH03249125A (en) Production of permanent magnet
JPS63213317A (en) Rare earth iron permanent magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPH05135920A (en) Manufacture of permanent magnet
JPS63107009A (en) Manufacture of permanent magnet
JPH05315170A (en) Manufacture of permanent magnet
JPH01171218A (en) Manufacture of permanent magnet
JPS63286514A (en) Manufacture of permanent magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees