JP2559789B2 - Method of detecting machining error in die-sinking electric discharge machining - Google Patents

Method of detecting machining error in die-sinking electric discharge machining

Info

Publication number
JP2559789B2
JP2559789B2 JP63027511A JP2751188A JP2559789B2 JP 2559789 B2 JP2559789 B2 JP 2559789B2 JP 63027511 A JP63027511 A JP 63027511A JP 2751188 A JP2751188 A JP 2751188A JP 2559789 B2 JP2559789 B2 JP 2559789B2
Authority
JP
Japan
Prior art keywords
machining
electrode
gap
error
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63027511A
Other languages
Japanese (ja)
Other versions
JPH01205917A (en
Inventor
昭慈 今永
光明 羽田
雄 荒谷
雅一 岸
隆 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP63027511A priority Critical patent/JP2559789B2/en
Publication of JPH01205917A publication Critical patent/JPH01205917A/en
Application granted granted Critical
Publication of JP2559789B2 publication Critical patent/JP2559789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放電加工中に生じる加工間隙変化による誤
差と加工深さの誤差、また、電極消耗及び熱変形による
誤差など一連の加工誤差を検知する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention eliminates a series of machining errors such as errors due to machining gap changes and machining depth errors that occur during electrical discharge machining, and errors due to electrode wear and thermal deformation. It relates to a method of detecting.

〔従来の技術〕[Conventional technology]

形彫り放電加工機は、金型産業を中心とする種種の産
業界で広く利用されており、中でも多目的加工の制御が
可能なNC制御式放電加工機が多く普及しつつある。
The die-sinking electric discharge machine is widely used in various industries centering on the die industry, and among them, NC controlled electric discharge machines capable of controlling multipurpose machining are becoming popular.

一般にNC制御式放電加工機は第14図に示すように、放
電加工を行う機械本体とその一連の制御を行うNC制御装
置内蔵の制御電源本体とに大別させる。ベツド3にX軸
とY軸の駆動機構を内蔵したX,Yテーブル4が搭載さ
れ、かつその上部には加工槽5が配置され、その中に加
工対象製品の工作物2が取り付けられるようになつてい
る。また、Z軸の電極送り機構が内蔵されたクイル6は
支柱7によつて支持され、そのクイル先端部に電極1が
取り付けられている。8は加工液供給装置で、加工槽5
内に加工液を供給及び循環すると共に、放電加工によつ
て生じる加工生成物(加工屑や加工液の分解物など)を
適宜排出させるために、電極1と工作物2との放電加工
近傍部にも適量の加工液が供給できうようになつてい
る。一方、制御電源本体9に内蔵されたNC制御装置9a
は、任意の加工条件の設定,登録や加工電源回路9cの制
御が行えると同時に、3軸駆動制御回路9bを経由して電
極1と工作物2との位置決め制御、さらZ軸の電極送り
機構の駆動及び加工中の電極位置の制御、X軸,Y軸のテ
ーブル機構の駆動及び揺動制御など、放電加工で必要な
一連の制御を行うことができるようになつている。この
ように構成された形彫り放電加工機を使用して従来から
放電加工が行われているが、近年の産業の高度化に伴
い、高能率加工はもとにより、特に高精度加工に対する
要求が高まつている。
Generally, an NC controlled electric discharge machine is roughly divided into a machine body that performs electric discharge machining and a control power supply body with a built-in NC control device that performs a series of controls as shown in FIG. An X, Y table 4 having a built-in X-axis and Y-axis drive mechanism is mounted on the bed 3, and a processing tank 5 is arranged on the top of the bed so that the workpiece 2 of the product to be processed can be mounted therein. I'm running. The quill 6 having a built-in Z-axis electrode feed mechanism is supported by a column 7, and the electrode 1 is attached to the tip of the quill. 8 is a processing liquid supply device, and a processing tank 5
In order to supply and circulate the machining liquid inside, and to appropriately discharge machining products (machining scraps, decomposed products of machining fluid, etc.) generated by electric discharge machining, the vicinity of the electric discharge machining between the electrode 1 and the workpiece 2 Even so, an appropriate amount of working fluid can be supplied. On the other hand, the NC control device 9a built in the control power supply main body 9
Can set and register arbitrary processing conditions and control the processing power supply circuit 9c, and at the same time control the positioning of the electrode 1 and the workpiece 2 via the 3-axis drive control circuit 9b, and also the Z-axis electrode feed mechanism. Drive and control of the electrode position during machining, drive and swing control of the X-axis and Y-axis table mechanism, and a series of controls required for electrical discharge machining can be performed. Electric discharge machining has been conventionally performed using the die-sinking electric discharge machine configured as described above, but with the recent advancement of industry, there is a demand for high-efficiency machining as well as high-efficiency machining. It is high.

放電加工による成形品の加工精度は仕上げ加工工程で
大半が決まるが、加工に関する要因が多くあるため、各
因子の特性及び相互関係を十分に把握しないと効果的な
加工の高精度化を図ることができない。加工精度に関係
する要因は次表1に示すように、(1)機械的要因
(2)制御的要因(3)放電加工現象的要因(4)温度
的要因(5)その他要因に分類することができる。これ
らの要因に対して、その対策が物理的に容易なものと困
難なものとがあり、特に(3)項については放電加工特
有の現象が絡んでいるため、その対策がやつかいであ
る。
Most of the machining accuracy of a molded product by electrical discharge machining is determined by the finishing process, but there are many factors related to machining, so if you do not fully understand the characteristics and mutual relations of each factor, you can effectively improve the precision of machining. I can't. Factors related to machining accuracy are classified into (1) mechanical factors, (2) control factors, (3) electrical discharge phenomena factors, (4) temperature factors, and (5) other factors as shown in Table 1 below. Can be. Countermeasures against these factors include physically easy ones and difficult ones. In particular, regarding the item (3), the phenomenon peculiar to electric discharge machining is involved, so the countermeasures are difficult.

中でも、放電加工中に生じる加工間隙変化による加工
誤差や電極消耗による加工誤差は、高精工度加工を粗害
する大きな要因として指摘されている。さらに、放電加
工中は加工液の温度上昇が伴うため、この温度変化によ
つて生じる熱変形,熱膨脹誤差も大きな粗害要因とな
る。また、加工前に行う電極と工作物との位置決めで生
じる設定誤差も見過ごすことのできない要因の一つであ
る。このような誤差が生じる状況について、ここでは穴
加工を一つの例題にして具体的に説明する。
Among them, a machining error due to a machining gap change that occurs during electric discharge machining and a machining error due to electrode wear are pointed out as major factors that roughly impair high precision machining. Further, since the temperature of the machining liquid rises during the electric discharge machining, thermal deformation and thermal expansion error caused by this temperature change also become a major cause of rough damage. Further, the setting error caused by the positioning of the electrode and the workpiece before machining is one of the factors that cannot be overlooked. A situation in which such an error occurs will be specifically described here by taking hole drilling as an example.

第15図、及び表2,表3,表4は、加工対象品の加工仕様
に対するその加工計画と条件選定、及びこの加工工程に
応じた電極送り量と揺動半径の算出法の概要を示したも
のである。表2は穴加工例を、表3は加工計画を、表4
は電極送り量と揺動半径の算出法を示す。
FIG. 15 and Tables 2, 3, and 4 show an outline of the machining plan and condition selection for the machining specifications of the workpiece, and the calculation method of the electrode feed amount and swing radius according to this machining process. It is a thing. Table 2 is a hole drilling example, Table 3 is the drilling plan, and Table 4
Shows a method of calculating the electrode feed amount and the swing radius.

また、第16図は、第14図に示した形彫り放電加工機を
用いて実際に加工を実行するための加工動作のフローチ
ヤート例を示す。一般に放電加工は、最初の荒加工から
最終の仕上げ加工に至るまで数工程で行い、各々の加工
条件は、加工速度,加工面粗さ,電極消耗率,極間ギヤ
ツプ(加工間隙)などの緒特性が記載された加工技術デ
ータフアイルより適切な条件を選定する。言うまでもな
く、荒加工の条件は放電エネルギーが大きいので高速加
工が行え、仕上げ加工の条件では所要の加工面粗さを得
るために、その放電エネルギーが小さく低速加工とな
る。また、電極消耗の影響を抑制あるいはなくすため
に、極力電極消耗率が小さい条件が選定される。
Further, FIG. 16 shows an example of a flow chart of a machining operation for actually carrying out machining using the die-sinking electric discharge machine shown in FIG. Generally, electrical discharge machining is performed in several steps from the first rough machining to the final finishing machining, and each machining condition includes machining speed, machining surface roughness, electrode wear rate, gap between electrodes (machining gap), etc. Select appropriate conditions from the processing technology data file that describes the characteristics. Needless to say, since the discharge energy is large under the conditions of rough machining, high-speed machining can be performed, and under the conditions of finish machining, the discharge energy is small and low-speed machining is performed in order to obtain the required machined surface roughness. Further, in order to suppress or eliminate the influence of electrode consumption, the condition that the electrode consumption rate is as small as possible is selected.

深さ方向の電極送り量と半径方向の揺動量は、一般に
表4に示したように各加工条件における加工面粗さ値と
極間ギヤツプ値を加減算することによつて求められ、こ
の算出結果に基づいて各々設定される。最初の加工で
は、特に揺動(r1=0)を行う必要がないが、使用する
電極径が所定値より小さければ、その所定値に対応する
ように揺動量を加算することによつて所定の加工を行う
ことができる。
The electrode feed amount in the depth direction and the oscillating amount in the radial direction are generally obtained by adding or subtracting the machined surface roughness value and the gap gap value under each machining condition as shown in Table 4. It is set based on each. In the first machining, it is not necessary to perform the oscillation (r 1 = 0), but if the electrode diameter to be used is smaller than the predetermined value, the oscillation amount is added to correspond to the predetermined value. Can be processed.

このようにして計画した加工内容をプログラム化し
て、それをNC制御式放電加工機に入力し、また、所定形
状の電極と工作物を所定位置に設置する。そしてこの加
工準備が整つてから実際の加工運転に入り、第16図に示
したフローチヤートのように加工動作が実行される。ス
テツプKは加工工程の順位を示し、ここではK=1〜6
となる。この時の電極送り量の目標値ZKはZ1〜Z6で、最
終仕上げ加工のZ6(Zn)に到達するまで順次加工を繰り
返し行うようになつている。この時の加工穴と電極送り
量の様子を第17図に示す。図中には最終加工時の揺動半
径も示してある。深さ方向の基準面は、加工対象物に応
じて任意に設定することができるが、ここでは分りやす
く説明するため、加工穴の工作物上面としている。
The machining contents planned in this way are programmed, input to the NC-controlled electric discharge machine, and electrodes and workpieces of a predetermined shape are set at predetermined positions. Then, after the preparation for the processing is completed, the actual processing operation is started, and the processing operation is executed like the flow chart shown in FIG. Step K indicates the order of processing steps, where K = 1 to 6
Becomes At this time, the target value Z K of the electrode feed amount is Z 1 to Z 6 , and the machining is sequentially repeated until the final finishing machining Z 6 (Z n ) is reached. FIG. 17 shows the state of the processed hole and the electrode feed amount at this time. The swing radius at the time of final processing is also shown in the figure. The reference plane in the depth direction can be set arbitrarily according to the object to be machined, but here it is the workpiece upper surface of the machined hole for easy understanding.

加工前に行うこの基準面設定は、電極と工作物との接
触感知による方法が従来から利用され、ここでも同じ方
法で行つている。放電加工はこの基準面より深さ方向に
行われ、その加工の進行に追従して加工間隙をある適正
な範囲内に保つように電極位置を制御する。加工間隙を
制御する方法としては、極間の平均加工電圧を検出して
これを一定に制御する方法が簡便で従来から広く用いら
れている。この他にもいくつかの制御方法があるが、い
ずれにしても加工間隙を適正な範囲内に保つようにしな
ければ、放電現象が乱れて正常な放電加工を持続するこ
とができない。また、放電加工に悪影響を及ぼさないよ
うに加工生成物を加工間隙内から排出させることも必要
である。
This reference plane setting before machining is conventionally performed by a method of sensing contact between an electrode and a workpiece, and the same method is used here. The electric discharge machining is performed in the depth direction from the reference surface, and the electrode position is controlled so as to keep the machining gap within a certain proper range by following the progress of the machining. As a method of controlling the machining gap, a method of detecting the average machining voltage between the electrodes and controlling the average to be constant has been simple and widely used conventionally. There are several other control methods, but in any case, unless the machining gap is kept within an appropriate range, the electric discharge phenomenon is disturbed and normal electric discharge machining cannot be maintained. It is also necessary to discharge the processed product from the machining gap so as not to adversely affect the electric discharge machining.

このような方法で加工を実施した場合、最初に生じる
誤差は加工前の位置合せ誤差である。接触感知による位
置合せ設定(基準面設定)は、電極の端部に形成しやす
いバリや工作物の表面に付着したゴミ,ホコリ及び他の
介在物の影響を受けやすく、その誤差量(ΔOZ)が数μ
mから数十μmにも及ぶことがあり、正確な基準面出し
がきわめて困難である。接触感知以外の他の位置合せ方
法としては、例えば特公昭61−58255号公報に開示され
ているように、高圧電圧の印加によるコロナ放電を利用
した検知法がある。この検知法を用いれば、上記のよう
な問題点を回避することが可能であるが、通常の放電加
工電圧よりもきわめて高い1000V程度の特別な高圧電源
及び制御装置が必要になり、かつ安全性にも注意を要す
る。さらに空気中でのコロナ効果を利用することは可能
であつても、液中及び加工途中での利用はその現象が異
つてしまうので空気中と同じ取り扱いが困難である。
When processing is performed by such a method, the first error that occurs is a positioning error before processing. The alignment setting (reference plane setting) by contact sensing is easily affected by burrs that are easily formed at the end of the electrode and dust, dust and other inclusions adhering to the surface of the workpiece, and the error amount (ΔO Z ) Is a few μ
Since it may range from m to several tens of μm, accurate reference plane finding is extremely difficult. As another alignment method other than the contact detection, there is a detection method utilizing corona discharge by applying a high voltage, as disclosed in Japanese Patent Publication No. 61-58255. If this detection method is used, it is possible to avoid the above problems, but a special high-voltage power supply and control device of about 1000 V, which is much higher than the normal electric discharge machining voltage, is required, and safety is high. Also be careful. Further, although it is possible to utilize the corona effect in air, it is difficult to handle it in the same way as in air because the phenomenon is different when used in liquid and during processing.

一方、放電加工中の加工間隙は常に一定ではなく、種
々の加工条件によつて増減し、かつ加工生成物の影響に
よる放電加工現象の変化に応じて上下変動している。こ
のため、あらかじめ設定した加工間隙(GAP)値にはな
らず、この設定値との相違量が加工誤差となる。第18図
及び表5は、第16図に示した方法で加工した時のステツ
プK加工後の電極位置と間隙誤差の状況を示したもので
ある。すなわち、設定値GKに対する実際の間隙値Gaが過
大であれば(GK<Ga)、加工過多になり、反対に微小で
あれば(GK>Ga)、加工不足になってしまう。設定値と
の相違量は、放電及び加工現象に大きく左右され、数μ
mから数十μmにも及ぶことがある。
On the other hand, the machining gap during electric discharge machining is not always constant, but increases and decreases according to various machining conditions, and fluctuates up and down in accordance with a change in the electric discharge machining phenomenon due to the influence of a machining product. Therefore, the preset machining gap (GAP) value does not occur, and the amount of difference from this set value becomes the machining error. FIG. 18 and Table 5 show the state of the electrode position and the gap error after the step K processing when the method shown in FIG. 16 was used for processing. That is, if the actual gap value G a with respect to the set value G K is too large (G K <G a ), processing is excessive, and if it is very small (G K > G a ), processing is insufficient. I will end up. The amount of difference from the set value is greatly affected by electrical discharge and machining phenomena,
It may range from m to several tens of μm.

さらに、加工中は加工液の温度上昇が伴うため、この
温度変化によつて熱膨脹変形が生じる。また、低消耗条
件での加工といえども、加工中に電極が消耗する。その
時の様子を第19図及び第20図,第21図に示す。第19図に
おいて、電極1は電極固定治具6bを介してクイル6aの先
端部に、また工作物2は工作物固定治具4bを介してテー
ブル4a上にそれぞれ設置され、かつ加工液(図示せず)
中内にある。Vwは所定形状の電極1によつて所定の深さ
まで加工した時の加工体積、Vcはその時の消耗体積で、
また、Δlcはその消耗が均一と仮定した時の電極消耗長
さ、さらに、ΔLe及びΔLwは加工液の温度上昇によつて
生じる電極側及び工作物側の熱膨脹変形量をそれぞれ示
している。一方、目標の加工深さHKに到達するまでの加
工時間tとその時の温度変化ΔT、電極消耗長さΔlc
の関係は第20図,第21図のように示される。放電エネル
ギーが大きくて加工速度が速いv1の場合は、加工速度が
遅いv2の場合より短時間で目標の加工深さに達し、また
温度変化ΔT1も大きくなる。電極消耗長さはΔlc,電極
消耗率δと加工深さに比例増加し、Δlc=A・HK・δ
で示される。この値は加工寸法精度に対してマイナス
の誤差要因となる。一方、熱膨脹により変形ΔLは、温
度変化に比例して大きくなり、ΔL=(Le・ρ+Lw
ρ)ΔTで示され、加工寸法精度に対してプラスの誤
差要因となる。第22図及び表6は、第20図,第21図に示
した結果を要約したもので、電極消耗が過大であれば
(Δlc>ΔL)、加工不足となり、反対に温度変化によ
つて熱変形が過大であれば(Δlc<ΔL)、加工過多に
なつてしまう。温度変化は加工条件によつて異なるが、
放電エネルギーの大きい荒加工下では10℃以上になるこ
ともあり、これによつて生じる熱変形は数十μmにも及
び、電極消耗の値をはかるに上回る場合が少なくない。
Furthermore, since the temperature of the working fluid rises during working, thermal expansion deformation occurs due to this temperature change. Further, even in the processing under the low wear condition, the electrodes are consumed during the processing. The situation at that time is shown in FIG. 19, FIG. 20, and FIG. In FIG. 19, the electrode 1 is installed on the tip of the quill 6a via the electrode fixing jig 6b, and the workpiece 2 is installed on the table 4a via the workpiece fixing jig 4b, and the machining liquid (Fig. (Not shown)
It is inside. V w is a processing volume when the electrode 1 having a predetermined shape is processed to a predetermined depth, and V c is a consumed volume at that time,
In addition, Δl c is the electrode wear length assuming that the wear is uniform, and ΔL e and ΔL w are the thermal expansion deformation amounts on the electrode side and the workpiece side caused by the temperature rise of the working fluid, respectively. There is. On the other hand, the relationship between the processing time t until reaching the target processing depth H K , the temperature change ΔT at that time, and the electrode wear length Δl c is shown in FIGS. 20 and 21. When the discharge energy is large and the machining speed is fast v 1 , the target machining depth is reached in a shorter time than when the machining speed is slow v 2 , and the temperature change ΔT 1 also becomes large. The electrode wear length increases in proportion to Δl c , the electrode wear rate δ K and the working depth, and Δl c = A ・ H K・ δ
Indicated by K. This value causes a negative error with respect to the processing dimension accuracy. On the other hand, the thermal expansion causes the deformation ΔL to increase in proportion to the temperature change, and ΔL = (L e · ρ e + L w ·
ρ w ) ΔT, which is a positive error factor with respect to the machining dimension accuracy. Fig. 22 and Table 6 summarize the results shown in Fig. 20 and Fig. 21, and if the electrode wear is excessive (Δl c > ΔL), the processing becomes insufficient, and conversely, due to temperature change. If the thermal deformation is excessive (Δl c <ΔL), excessive machining will result. The temperature change depends on the processing conditions,
Under rough machining with a large discharge energy, the temperature may reach 10 ° C. or higher, and the thermal deformation caused by this can reach several tens of μm, often exceeding the electrode consumption value.

このように、(1)加工前に生じる位置合せ誤差
(2)加工中に生じる電極消耗による誤差(3)温度変
化による熱膨脹変形の誤差(4)加工間隙変化による誤
差などが相互に関係して、表6に示すように加工寸法精
度に影響を与えることになる。
As described above, (1) alignment error occurring before machining, (2) error due to electrode wear occurring during machining, (3) error due to thermal expansion deformation due to temperature change (4) error due to machining gap change, etc. are related to each other. As shown in Table 6, the processing dimensional accuracy will be affected.

したがつて、加工の高精度化を図るには、特にこれら
の誤差要因を各々解決する必要があり、そのための有効
度検知方法が強く望まれていた。これまでにもいくつか
の検知,検出方法及び補正制御法が提案されているが、
上記のような各誤差を正確に検知及び解消し得るような
ものは提示されていないのが現状である。
Therefore, it is necessary to solve each of these error factors in order to improve the precision of processing, and a method of detecting the effectiveness for that purpose has been strongly desired. Although several detection, detection methods and correction control methods have been proposed so far,
At present, there is no suggestion of what can accurately detect and eliminate the above errors.

加工液の温度を管理する装置として、例えば特開昭61
−86130号公報に開示されているように、予熱装置によ
つて加工液を予熱すると同時に加工機本体にも循環して
加工中の温度を一定に保つ装置がある。このような装置
を用いれば、温度変化による誤差の問題は回避すること
が可能であるが、他の誤差要因についてはまつたく解消
できない。このため、他の方法を用いなければならず、
また、上記の装置は大じかけな装置となるので機能的,
経済的な面で問題がある。
As a device for controlling the temperature of the working fluid, for example, Japanese Patent Laid-Open No. 61
As disclosed in Japanese Unexamined Patent Publication No. 86130, there is a device that preheats a working fluid by a preheating device and at the same time circulates it through the main body of the working machine to keep a constant temperature during working. By using such a device, the problem of error due to temperature change can be avoided, but other error factors cannot be solved at once. For this reason, another method must be used,
In addition, since the above device is a large-scale device, it is functional,
There are financial problems.

一方、電極消耗を検出する方法としては、例えば特開
昭55−150937号公報に開示されるいるように、放電加工
の前後に電極を電極先端検出板に対向及び微弱放電させ
てその先端位置の変化より電極消耗を検出する方法があ
る。電極消耗を検出する手段としては有望と考えられる
が、電極先端検出板が加工対象品の工作物からかなり離
れた位置に固定されているので、工作物との位置合せに
支障が生じる恐れがある。また、微弱放電を短時間行う
としているが、その時の間隙状態についてはまつたく開
示されていない。加工前と加工後の電極先端の表面状態
は異なるので、微弱放電時の間隙状態は変化しているは
ずであり、その影響を考慮しないと正確な電極の位置検
出ができず、かえつて誤差を増大させる恐れがある。温
度変化による熱変形についてはまつたく開示されていな
い。
On the other hand, as a method of detecting electrode wear, for example, as disclosed in Japanese Patent Laid-Open No. 55-150937, the electrodes are opposed to the electrode tip detection plate before and after electric discharge machining and weakly discharged to detect the tip position. There is a method of detecting the electrode consumption based on the change. It is considered to be a promising means for detecting electrode wear, but since the electrode tip detection plate is fixed at a position that is considerably distant from the workpiece to be machined, there is a possibility that it may interfere with the alignment with the workpiece. . Although the weak discharge is supposed to be performed for a short time, the state of the gap at that time is not disclosed at all. Since the surface condition of the electrode tip before and after machining is different, the gap condition at the time of weak discharge should have changed, and if the influence is not taken into account, the position of the electrode cannot be accurately detected, which causes an error. May increase. The thermal deformation due to the temperature change is not disclosed at all.

この他、加工誤差を測定及び補正する方法としては、
例えば特開昭58−160018号公報に開示されているよう
に、加工を途中で中断し、測定プローブを用いて加工深
さを実測した後、所望深さとの誤差を補正加工する方法
がある。しかし、加工直後の加工穴底部には加工生成物
があるので、その影響を受けやすく、正確な測定が困難
と考えられる。このため、その加工生成物の除去作業あ
るいは特別な除去装置が必要となり、また、上記の方法
は大じかけな測定装置が必要となるので機能的,経済的
な面で問題がある。
In addition, as a method of measuring and correcting the processing error,
For example, as disclosed in Japanese Patent Laid-Open No. 58-160018, there is a method of interrupting the processing midway, measuring the processing depth using a measuring probe, and then correcting the error from the desired depth. However, since there is a processed product at the bottom of the processed hole immediately after the processing, it is likely to be affected by the processed product, and it is considered that accurate measurement is difficult. Therefore, a work for removing the processed product or a special removing device is required, and the above-mentioned method requires a large measuring device, which is problematic in terms of function and economy.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、上記した技術課題及び従来技術の問題点に
鑑みてなされたもので、ある微小放電の間隙検出条件で
の間隙が特定な値に収束する特性を利用して、加工前の
電極と工作物との位置合せ設定を正確に行い、さらに、
放電加工中に生じる加工間隙変化による誤差を検知し、
また、電極消耗及び熱変形による誤差や加工深さ方向の
一連の加工誤差を検出する有効な方法を提供することを
目的としている。
The present invention has been made in view of the above-mentioned technical problems and problems of the prior art, and utilizes the characteristic that the gap in a gap detection condition of a certain minute discharge converges to a specific value, and Accurately set the alignment with the workpiece, and
Detects errors caused by machining gap changes that occur during electrical discharge machining,
Another object of the present invention is to provide an effective method for detecting an error due to electrode wear and thermal deformation and a series of processing errors in the processing depth direction.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、加工過程で指定したステツプの加工途中あ
るいは指定した加工後に、電極との間隙が特定値になる
間隙検出条件に切換え、微小放電を所定時間生じさせな
がら間隙を収束させた後の電極位置を検出し、この検出
結果より加工時に生じた加工間隙変化による誤差あるい
は加工深さの誤差を検知することを特徴とする。また、
本発明は、加工開始前に、所定の位置に設置した基準面
設定台あるいはその代用が可能な工作物上面の特定な位
置で、電極との間隙が特定値になる間隙検出条件で微小
放電を所定時間生じさせて、その位置検出より加工深さ
方向の基準面設定を行つた後、所定の加工を開始し、そ
の後さらに、指定したステツプの加工後に、電極を前記
基準面設定の位置に移動すると共に前記間隙検出条件に
切換え、微小放電を所定時間生じさせて間隙を収束させ
た後の電極位置を検出し、その検出値と加工開始前に設
定した値との比較結果より加工時に生じた電極消耗及び
熱変形による加工誤差を検知するようにした。また、前
記の電極消耗及び熱変形による加工誤差を検知した後、
その電極を再度加工穴に移動すると共に前記間隙検出条
件で微小放電を所定時間生じさせながら間隙を収束させ
た後の電極位置を検出して、その検出結果より加工時に
生じた加工間隙変化による誤差や加工深さ及び加工深さ
方向の加工誤差を各々検知するようにしたことを特徴と
する。さらに本発明では、荒加工から仕上げ加工まで一
連の加工を終えた後、その電極を基準面設定の位置に移
行すると共に前記間隙検出条件に切換え、加工開始前と
同様の方法により加工深さ方向の基準面の再設定を行
い、この再設定によつて電極消耗及び熱変形による誤差
を補正した後、電極を加工後の穴に再度移行すると共に
前記間隙検出条件で微小放電を所定時間生じさせながら
間隙を収束させた後の電極位置を検出し、その検出結果
より加工深さとその目標値に対する加工誤差を検知する
ようにしたことを特徴とする。
According to the present invention, the electrode after the gap is converged while the minute discharge is generated for a predetermined time while switching to the gap detection condition in which the gap with the electrode has a specific value during or after the step designated in the machining process. It is characterized in that the position is detected, and an error due to a change in the working gap or an error in the working depth caused at the time of working is detected from the detection result. Also,
According to the present invention, before the start of machining, a micro discharge is generated under a gap detection condition in which a gap with an electrode has a specific value at a specific position on a reference plane setting table installed at a predetermined position or a work surface that can be substituted for it. After generating for a predetermined time and setting the reference plane in the machining depth direction by detecting the position, start the predetermined machining, and then after moving the specified step, move the electrode to the position of the reference plane setting. At the same time, the gap detection conditions are switched to, a minute discharge is generated for a predetermined time to detect the electrode position after the gap is converged, and it is generated at the time of machining from the comparison result of the detected value and the value set before the start of machining. A processing error due to electrode wear and thermal deformation was detected. In addition, after detecting a machining error due to the above-mentioned electrode consumption and thermal deformation,
The electrode position is detected after the electrode is moved to the machining hole again and the gap is converged while the minute discharge is generated for the predetermined time under the gap detection condition. It is characterized in that each of the machining depth and the machining error in the machining depth direction is detected. Further, in the present invention, after a series of processing from roughing to finishing is completed, the electrode is moved to the position of the reference plane setting and the gap detection condition is switched, and the machining depth direction is changed by the same method as before the start of machining. After resetting the reference plane, the error due to electrode consumption and thermal deformation is corrected by this resetting, the electrode is transferred to the processed hole again, and a minute discharge is generated for the predetermined time under the gap detection condition. However, it is characterized in that the electrode position after the gap is converged is detected, and the processing error with respect to the processing depth and its target value is detected from the detection result.

本願第2請求項に係る検知方法は、形彫り放電加工機
を用いて、工作物に対して所定の位置より電極を所定の
深さ方向に送り、かつ、荒加工から仕上げ加工まで一連
の加工ステツプ値に電極送りを制御しながら工作物の加
工を行う最中に生じる加工誤差の検知方法において、加
工開始前に、所定の位置に設置した基準面設定台あるい
はその代用が可能な工作物上面の特定な位置で、電極と
の間隙が特定値になる間隙検出条件で微小放電を所定時
間生じさせて、その位置検出より加工深さ方向の基準面
設定を行つた後、所定の加工を開始し、その後さらに、
前記加工過程で指定したステツプの加工後に、電極を前
記基準面設定の位置に移動すると共に前記間隙検出条件
に切換え、微小放電を所定時間生じさせて間隙を収束さ
せた後の電極位置を検出し、その検出値と加工開始前に
設定した値との比較結果より加工時に生じた電極消耗及
び熱変形による加工誤差を検知するようにしたことを特
徴とする。
The detection method according to the second claim of the present application uses a die-sinking electric discharge machine to feed an electrode from a predetermined position to a workpiece in a predetermined depth direction, and a series of machining from rough machining to finish machining. In the method of detecting the machining error that occurs during machining of the workpiece while controlling the electrode feed to the step value, a reference plane setting table installed at a predetermined position or the upper surface of the workpiece that can be used as a substitute before machining is started. At a specific position, a minute discharge is generated for a certain period of time under the condition that the gap between the electrode and the electrode has a specific value, and after the position is detected, the reference surface in the machining depth direction is set and then the predetermined machining is started. And then,
After machining the step specified in the machining process, the electrode is moved to the position of the reference plane setting and switched to the gap detection condition, and the electrode position is detected after the minute discharge is generated for a predetermined time to converge the gap. It is characterized in that a machining error due to electrode wear and thermal deformation occurring during machining is detected based on a comparison result between the detected value and a value set before the machining is started.

本願第1請求項に係る検知方法は、形彫り放電加工機
を用いて、工作物に対して所定の位置より電極を所定の
深さ方向に送り、かつ、荒加工から仕上げ加工まで一連
の加工ステツプ順に電極送りを制御しながら工作物の加
工を行う最中に生じる加工誤差の検知方法において、加
工開始前に、所定の位置に設置した基準面設定台あるい
はその代用が可能な工作物上面の特定な位置で、電極と
の間隙が特定値になる間隙検出条件で微小放電を所定時
間生じさせ、その位置検出より加工深さ方向の基準面設
定を行つた後、所定の加工を開始し、その後さらに、前
記加工過程で指定したステツプの加工後に、電極を前記
基準面設定の位置に移動すると共に前記間隙検出条件に
切換え、微小放電を所定時間生じさせて間隙を収束させ
た後の電極位置を検出し、その検出値と加工開始前に設
定した値との比較結果より加工時に生じた電極消耗及び
熱変形による加工誤差を検知した後、その電極を再度加
工穴に移動すると共に前記間隙検出条件で微小放電を所
定時間生じさせながら間隙を収束させた後の電極位置を
検出して、その検出結果より加工時に生じた加工間隙変
化による加工誤差や加工深さ及び深さ方向の加工誤差を
各々検知するようにしたことを特徴とする。
The detection method according to the first claim of the present application uses a die-sinking electric discharge machine to feed an electrode from a predetermined position to a workpiece in a predetermined depth direction, and to perform a series of machining from rough machining to finish machining. In the method of detecting a machining error that occurs during machining of a workpiece while controlling the electrode feed in the order of steps, before starting the machining, the reference plane setting table installed at a predetermined position or the workpiece upper surface that can be substituted At a specific position, a minute discharge is generated for a predetermined time under the gap detection condition where the gap with the electrode becomes a specific value, and after setting the reference surface in the machining depth direction from that position detection, the predetermined machining is started. After that, after the step specified in the processing step is performed, the electrode is moved to the position for setting the reference surface and switched to the gap detection condition, and the electrode position after the minute discharge is generated for a predetermined time to converge the gap. Inspect Then, after detecting the machining error due to electrode wear and thermal deformation that occurred during machining from the comparison result of the detected value and the value set before machining start, move the electrode again to the machined hole and Detects the electrode position after converging the gap while generating a minute discharge for a predetermined time, and detects the machining error due to the machining gap change and the machining depth and the machining error in the depth direction that occurred during machining from the detection result. It is characterized by doing so.

本願第2請求項に係る検知方法は、形彫り放電加工機
を用いて、工作物に対して所定の位置より電極を所定の
深さ方向に送り、かつ、荒加工から仕上げ加工まで一連
の加工ステツプ順に電極送りを制御しながら工作物の加
工を行う最中に生じる加工誤差の検知方法において、加
工開始前に、所定の位置に設置した基準面設定台あるい
はその代用が可能な工作物上面の特定な位置で、電極と
の間隙が特定値になる間隙検出条件で微小放電を所定時
間生じさせ、その位置検出より加工深さ方向の基準面設
定を行つた後、所定の加工を開始して、前記荒加工から
仕上げ加工まで一連の加工を終えた後、その電極を前記
基準面設定の位置に移動すると共に前記間隙検出条件に
切換えて、前記加工開始前と同様の方法により加工深さ
方向の基準面の再設定を行い、この再設定によつて電極
消耗及び熱変形による誤差を補正した後、電極を加工後
の穴に再度移行すると共に前記間隙検出条件で微小放電
を所定時間生じさせながら間隙を収束させた後電極位置
を検出し、その検出結果より加工深さとその目標値に対
する加工誤差を検知するようにしたことを特徴とする。
The detection method according to the second claim of the present application uses a die-sinking electric discharge machine to feed an electrode from a predetermined position to a workpiece in a predetermined depth direction, and a series of machining from rough machining to finish machining. In the method of detecting a machining error that occurs during machining of a workpiece while controlling the electrode feed in the order of steps, before starting the machining, the reference plane setting table installed at a predetermined position or the workpiece upper surface that can be substituted At a specific position, a minute discharge is generated for a specified time under the condition that the gap between the electrode and the electrode has a specified value, and after the position is detected, the reference surface in the machining depth direction is set and then the specified machining is started. After finishing a series of machining from the rough machining to the finishing machining, the electrode is moved to the position of the reference plane setting and the gap detection condition is switched, and the machining depth direction is changed by the same method as before the machining is started. Re-establishment of reference plane After correcting the error due to electrode consumption and thermal deformation by this resetting, the electrode was transferred to the hole after processing again, and the gap was converged while the minute discharge was generated for the predetermined time under the gap detection condition. The feature is that the rear electrode position is detected, and the processing error with respect to the processing depth and its target value is detected from the detection result.

〔作用〕[Action]

上記したように本発明では、加工前の電極と工作物と
の位置合設定(基準面設定)を、間隙が特定値になる間
隙検出条件で所定時間微小放電させて位置検出を行うよ
うにしたので、正確な基準面設定ができ、従来の接触感
知法で生じやすい位置合せ誤差を解消することができ
る。また、本発明では、加工中に生じる加工間隙変化に
よる加工誤差を、前記間隙検出条件での間隙が特定な値
に収束する特性を利用して診断するようにしたので、そ
の誤差量を迅速、かつ正確に検知することができ、従来
技術では対応が困難であつた補正制御が容易に可能とな
る。また、加工中に生じる電極消耗による誤差と熱変形
による誤差を、上記と同様な方法で診断するようにした
ので、両者の差し引き誤差量を正確に検知することがで
き、その後の補正制御も容易に可能である。さらに、本
発明では、加工を終えた後、その電極を基準面の設定位
置と加工穴の底面位置にそれぞれ往復移行させると共に
間隙検出条件で所定時間微小放電させて、その時の電極
位置の検出結果より加工深さ及びその加工誤差を診断す
るようにしたので、従来のような特別な測定装置を使用
せずに、加工中に生じた加工間隙誤差,電極消耗誤差,
熱膨脹変形誤差など加工深さ方向の総合的な加工誤差を
迅速、かつ正確に検知することができる。これらの診断
結果に基づいて、加工誤差の補正制御が容易に可能とな
り、放電加工の高精度化を図ることができる。
As described above, in the present invention, the position setting (reference plane setting) between the electrode and the workpiece before processing is performed by performing minute discharge for a predetermined time under the gap detection condition where the gap has a specific value. Therefore, it is possible to accurately set the reference plane, and it is possible to eliminate the alignment error that is likely to occur in the conventional contact sensing method. Further, in the present invention, the processing error due to the change in the processing gap that occurs during processing is diagnosed by utilizing the characteristic that the gap in the gap detection condition converges to a specific value. In addition, it is possible to detect accurately, and it becomes possible to easily perform the correction control, which was difficult to be dealt with by the conventional technology. In addition, since the error due to electrode consumption and the error due to thermal deformation that occur during processing are diagnosed by the same method as above, it is possible to accurately detect the subtraction error amount of both and easy subsequent correction control. Is possible. Furthermore, in the present invention, after the machining is finished, the electrode is reciprocally moved to the set position of the reference surface and the bottom position of the machining hole, and a minute discharge is performed for a predetermined time under the gap detection condition, and the detection result of the electrode position at that time is obtained. Since the machining depth and its machining error are diagnosed more, the machining gap error, the electrode wear error, and
A comprehensive processing error in the processing depth direction such as a thermal expansion deformation error can be detected quickly and accurately. Based on these diagnostic results, the correction control of the machining error can be easily performed, and the precision of the electric discharge machining can be improved.

〔実施例〕〔Example〕

以下、本発明の内容を実施例で具体的に説明する。第
1図は、本発明の内容を示す加工動作のフローチヤート
例で、間隙検出条件による加工前の基準面設定、また加
工の最中に生じる電極消耗及び熱変形による誤差の検出
とその補正、さらに間隙変形による誤差を含む一連の加
工深さ方向の加工誤差を検出する方法を開示している。
また、第2〜4図は、第1図に開示した内容を各々説明
したものである。本発明では、加工前に深さ方向の基準
面設定を行うため、第2図,第3図に示したように、所
定の位置に設置した基準面出し台27で、まず、間隙が特
定な値になる間隙検出条件で微小放電を所定時間生じさ
せる。基準面出し台27の設置場所は、加工対象物の形状
に応じて適切な場所を選択し、できれば加工穴に近い所
がよい。尚、次表8は加工条件を示す。
Hereinafter, the content of the present invention will be specifically described with reference to Examples. FIG. 1 is an example of a flow chart of a machining operation showing the contents of the present invention. The reference plane is set before machining according to the gap detection condition, and the error caused by electrode wear and thermal deformation occurring during machining is detected and corrected. Further, a method for detecting a series of processing errors in the processing depth direction including an error due to gap deformation is disclosed.
Further, FIGS. 2 to 4 respectively explain the contents disclosed in FIG. In the present invention, since the reference plane in the depth direction is set before machining, as shown in FIGS. 2 and 3, the reference plane setting base 27 installed at a predetermined position first determines the gap. A minute discharge is generated for a predetermined time under the gap detection condition that has a value. As the installation place of the reference surface setting table 27, an appropriate place is selected according to the shape of the object to be processed, and if possible, a place close to the processed hole is preferable. The following Table 8 shows processing conditions.

また、基準面出し台の代用が可能であれば工作物上面
でも基準面設定を行うことができる。この図では、基準
面出し台の高さHcを0とすればよい。ここでいう間隙検
出条件とは、最良面加工を行う時のような放電エネルギ
ーがきわめて小さい条件で、かつ、印加電圧も通常の加
工条件と同一レベルでよい。所定時間(例えば20〜60
秒)微小放電させることによつて電極1との間隙が一定
(gc)となる。間隙が一定となつた地点で停止し、その
時の電極位置Zd0よりgcを差し引いた地点が基準面出し
台27の上面で、基準面(Z00=Zd0+gc=0)となる。上
記微小放電によつて加工される量は極微量で無視でき
る。また、間隙値gcはその変動幅が±2μm以下と小さ
く安定している。このようにして正確な基準面設定を行
つた後、電極を加工位置に移動して所定の加工を開始す
る。その所定の加工は従来通り(第16図参照)である
が、本発明では第1図に示したように、指定したステツ
プの加工後に深さ方向の加工誤差を診断する。その診断
方法は第4図乃至第6図及び次表9に示した手順に従つ
て行う。
Further, if the reference plane setting table can be substituted, the reference plane can be set even on the upper surface of the workpiece. In this figure, the height H c of the reference surface setting table may be set to 0. The gap detection condition here is a condition in which the discharge energy is extremely small as in the case of performing the best surface machining, and the applied voltage may be the same level as the normal machining condition. Predetermined time (eg 20-60
The gap with the electrode 1 becomes constant (g c ) by the minute discharge. It stops at the point where the gap is constant, and the point where g c is subtracted from the electrode position Z d0 at that time is the upper surface of the reference surface setting base 27, which is the reference surface (Z 00 = Z d0 + g c = 0). The amount processed by the minute discharge is negligible and can be ignored. Further, the gap value g c is stable with a small fluctuation range of ± 2 μm or less. After accurately setting the reference plane in this way, the electrode is moved to the processing position to start the predetermined processing. The predetermined machining is the same as in the past (see FIG. 16), but in the present invention, as shown in FIG. 1, the machining error in the depth direction is diagnosed after the machining of the designated step. The diagnostic method is performed according to the procedure shown in FIGS. 4 to 6 and the following Table 9.

指定した加工ステツプでの電極送り量が目標値に達し
(Za=ZK)、その加工を終えた第4図の状態から電極1
を基準面出し台27に移動後、間隙検出条件に移行して電
極の上下運動による断続的な微小放電を所定時間生じさ
せながら間隙を収束させる。その収束後の電極位置
Zd0′は第5図に示すように、加工時に生じた電極消耗
誤差Δlと温度変化よる熱変形誤差ΔLとの差だけ変化
し、Zd0′=(Δlc−ΔL)−gcとなる。したがつて、
加工前後の電極位置の変化(ΔZd0=Zd0′−Zd0)から
電極消耗と熱変形による誤差量を検知することができる
(ΔZd0=Δlc−ΔL)。また、ここで基準面を再設定
することによつて上記誤差を補正することができる。す
なわちZd0′=Zd0=−gcと再設定すれば、第6図及び表
9に示したように誤差補正される(Δlc−ΔL=Δ
ZLl)。そして、基準面再設定後の電極を再び加工穴位
置に移動及び深さ方向に送り、さらに前記間隙検出条件
に再び移行して、電極の上下運動による断続的な微小放
電を所定時間生じさせながら間隙を収束させる。間隙が
収束して一定(gc)となつた地点での電極停止位置
Zda′は、Zda+ΔZLlとなる。ΔZLlは前段階で誤差補正
した電極消耗と熱変形による誤差量に相段する。加工直
後の電極位置(Za=ZK)と、その後、前記のように間隙
が特定値に収束する間隙検出条件による微小放電後の電
極位置との相関関係から、加工時の加工間隙Gaとその設
定値GKに対する間隙誤差量ΔGを表9のように算出(Δ
G=GK−Ga=GK−(Zda−Za+gc))することができ
る。また、同様に加工時の加工深さHaはZda+ΔZLl+gc
−Hc=Za+Ga+ΔZLl−Hcとして算出され、さらに、目
標の加工深さHKに対する加工深さ誤差(ΔHK=HK−Ha
を算出することができ、ΔHK=ΔG+ΔZLl=ΔG+Δ
l−ΔLとなる。ΔHKの値がプラスの場合(HK>Ha)は
加工深さ不足であり、加工時の間隙が過小あるいは電極
消耗が過大になつていることを示している。反対にΔHK
の値がマイナスの場合(HK<Ha)には間隙が過大あるい
は熱変形が電極消耗よりも過大であることになる。この
結果に基づいて、補正加工が必要と判断されれば、その
誤差量をΔHK=ΔZKと補正して加工を再開すればよい。
加工誤差の検出時期及び回数は任意に指定できるので、
最終ステツプの仕上げ加工後の他に、中間ステツプの加
工後にも行うようにすればよい。
The electrode feed amount at the specified machining step has reached the target value (Z a = Z K ), and the machining is completed.
After moving to the reference surface setting table 27, the gap is converged while shifting to the gap detection condition and causing intermittent minute discharge due to the vertical movement of the electrode for a predetermined time. Electrode position after the convergence
Z d0 ', as shown in FIG. 5, changes by the difference between the electrode consumption error .DELTA.l and temperature changes due to thermal deformation error ΔL generated during machining, Z d0' becomes = (Δl c -ΔL) -g c . Therefore,
The amount of error due to electrode wear and thermal deformation can be detected from changes in the electrode position before and after machining (ΔZ d0 = Z d0 ′ −Z d0 ) (ΔZ d0 = Δl c −ΔL). Further, the above error can be corrected by resetting the reference plane here. That is, by resetting Z d0 ′ = Z d0 = −g c , the error is corrected as shown in FIG. 6 and Table 9 (Δl c −ΔL = Δ
Z Ll ). Then, the electrode after the resetting of the reference plane is moved again to the machining hole position and sent in the depth direction, and then the gap detection condition is re-established, and intermittent micro-discharge due to vertical movement of the electrode is generated for a predetermined time. Converge the gap. Electrode stop position at the point where the gap converges and becomes constant (g c ).
Z da ′ becomes Z da + ΔZ Ll . ΔZ Ll is further related to the amount of error due to electrode wear and thermal deformation corrected in the previous stage. Based on the correlation between the electrode position immediately after machining (Z a = Z K ), and the electrode position after micro-discharge due to the gap detection condition where the gap converges to a specific value as described above, the machining gap G a during machining And the gap error amount ΔG for the set value G K are calculated as shown in Table 9 (Δ
G = G K −G a = G K − (Z da −Z a + g c )). Similarly, the machining depth H a during machining is Z da + ΔZ Ll + g c
Is calculated as -H c = Z a + G a + ΔZ Ll -H c, further objectives of the machining process to the depth H K depth error (ΔH K = H K -H a )
Can be calculated and ΔH K = ΔG + ΔZ Ll = ΔG + Δ
It becomes 1−ΔL. When the value of ΔH K is positive (H K > H a ), it means that the working depth is insufficient and the gap during working is too small or the electrode wear is too large. On the contrary ΔH K
If the value of is negative (H K <H a ), the gap is too large or the thermal deformation is larger than the electrode wear. If it is determined that the correction processing is necessary based on this result, the error amount may be corrected to ΔH K = ΔZ K and the processing may be restarted.
Since the processing error detection timing and number of times can be specified arbitrarily,
It may be carried out after finishing the intermediate step as well as after finishing the final step.

このように本発明では、加工の最中に生じた電極消耗
及び熱変形による誤差や間隙変化による誤差等一連の加
工深さ方向の加工誤差を迅速に、かつ正確に検知及び診
断できるので、従来技術では対応が困難であつた加工誤
差の補正制御が可能となり、本発明を用いることによつ
て大幅は加工精度の向上を図ることができる。
As described above, according to the present invention, a series of machining errors in the machining depth direction, such as errors due to electrode consumption and thermal deformation that occur during machining and errors due to gap changes, can be detected and diagnosed quickly and accurately. It becomes possible to perform correction control of a processing error, which is difficult to deal with by the technology, and by using the present invention, it is possible to significantly improve the processing accuracy.

第7図及び第8図は本発明の他の実施例で、電極消耗
及び熱変形による誤差の検出及び補正方法を示す。加工
開始前に行う間隙検出条件による基準面設定は、前記の
第2図では基準面出し台を使用したが、ここではそれを
使用せずに加工位置近傍の工作物上面に直接微小放電を
生じさせて行う例を開示している。所定の加工動作と加
工時に生じた電極消耗及び熱変形による誤差を検出する
手順は、前記と同様であるが、その後の誤差補正の加工
をここでは次のステツプの加工で行うように構成してい
る。第7図に示したように、指定したステツプ加工での
電極送り量が目標値に達して(Za=ZK)その加工を終え
た後、電極を加工開始と同様の基準面出し位置に移動す
ると共に、間隙が特定値になる間隙検出条件に切換え
る。そして、第8図に示したように電極の上下運動によ
る断続的な微小放電を所定時間生じさせることにより、
加工時に生じた電極表面の凹凸及び付着物の影響を回避
でき、かつ電極と工作物表面との間隙が特定値(gc)に
収束する。収束後の電極の停止位置Zd0′は、加工前の
時(Zd0=−gc)よりも電極消耗誤差Δlcと熱変形誤差
ΔLとの差だけ変化しZd0′=(Δlc−ΔL)−gcとな
る。この結果より、加工時に生じた電極消耗及び熱変形
による誤差量(ΔZd0=Δlc−ΔL)を検知することが
できる。
7 and 8 show another embodiment of the present invention, which shows a method of detecting and correcting an error due to electrode wear and thermal deformation. For the reference plane setting based on the gap detection condition performed before the start of machining, the reference plane setting base was used in the above-mentioned FIG. 2, but here it is not used and a small electric discharge is directly generated on the upper surface of the workpiece near the machining position. The example disclosed is disclosed. The procedure for detecting a predetermined machining operation and an error due to electrode wear and thermal deformation that occur during machining is the same as that described above, but the following error correction processing is configured here to be performed in the next step. There is. As shown in Fig. 7, after the electrode feed amount in the specified step machining reaches the target value (Z a = Z K ) and the machining is finished, the electrode is moved to the same reference plane position as when machining is started. As it moves, it switches to the gap detection condition where the gap becomes a specific value. Then, as shown in FIG. 8, by causing an intermittent minute discharge due to the vertical movement of the electrodes for a predetermined time,
It is possible to avoid the effects of irregularities on the electrode surface and deposits that occur during processing, and the gap between the electrode and the workpiece surface converges to a specific value (g c ). The stop position Z d0 ′ of the electrode after convergence changes by a difference between the electrode wear error Δl c and the thermal deformation error ΔL from the time before machining (Z d0 = −g c ), and Z d0 ′ = (Δl c − ΔL) -g c . From this result, it is possible to detect the amount of error (ΔZ d0 = Δl c −ΔL) due to electrode wear and thermal deformation that occurred during processing.

尚、表10は第8図,第9図に例の諸条件をまとめたも
のである。
Table 10 summarizes various conditions of the example in FIGS. 8 and 9.

更に、基準面(Z00=Zd0+gc=0)に対する電極位置
をZd0′=Zd0=−gcと再設定することにより誤差補正
(Δl−ΔL=ΔZLl)が容易にでき、その誤差補正の
加工は、次のステツプの加工で実行される。上記の誤差
検出の時期及び回数は工作物の加工形状、大きさや加工
条件及び加工工程数に応じて任意に指定することができ
る。第16図等に示した加工計画のように、最初の荒加工
から最終の仕上げ加工までの工程数が6回(加工のステ
ツプK=1〜6,n=6)ある加工例で示すと、第7図に
おける誤差検出の時期を例えばK=1とK=n−1と指
定すれば、最初の荒加工後と最終加工前の加工後に誤差
検出が2回実行される。また、この誤差検出後の誤差補
正は、次のステツプであるK=2とK=n=6の加工で
それぞれ行われる。最終の仕上げ加工では、加工体積が
少量なので、消耗及び熱変形による誤差が極少で、その
影響がほとんどない。このようにすれば、放電エネルギ
ーが大きく、かつ加工体積も多い荒加工の過程で最も生
じやすい温度変化による熱変形誤差と電極消耗誤差を早
期に解消することができる。さらに、その後の誤差も解
消できると共に、加工終了後の加工深さが過大になる恐
れもなく、加工精度の向上を図ることができる。なお、
ここでは誤差検出を2回実行する例を示したが、その回
数をさらに増しても良いし、また、最初の検出時期を他
のステツプに指定変更できることは言うまでもない。
Further, by resetting the electrode position with respect to the reference plane (Z 00 = Z d0 + g c = 0) as Z d0 ′ = Z d0 = −g c , error correction (Δl−ΔL = ΔZ Ll ) can be easily performed. The error correction processing is executed in the next step processing. The timing and the number of times of the above-mentioned error detection can be arbitrarily designated according to the machining shape and size of the workpiece, machining conditions and the number of machining steps. As shown in the machining plan shown in FIG. 16 and the like, in a machining example in which the number of steps from the first rough machining to the final finishing machining is 6 times (machining steps K = 1 to 6, n = 6), If the timing of error detection in FIG. 7 is designated as, for example, K = 1 and K = n-1, error detection is executed twice after the first rough machining and after the final machining. Further, the error correction after the error detection is performed by the processing of K = 2 and K = n = 6, which are the next steps, respectively. In the final finishing process, since the processing volume is small, the errors due to consumption and thermal deformation are minimal, and there is almost no effect. By doing so, it is possible to quickly eliminate the thermal deformation error and the electrode wear error due to the temperature change that is most likely to occur in the rough machining process in which the discharge energy is large and the machining volume is large. Further, it is possible to eliminate the error thereafter, and it is possible to improve the processing accuracy without fear that the processing depth after processing is excessively large. In addition,
Here, an example in which the error detection is executed twice has been shown, but it goes without saying that the number of times may be further increased, and the first detection time may be designated and changed to another step.

第10図及び第11図,第12図,表11は本発明の他の実施
例で、所定の加工過程で生じる間隙変化による加工誤差
の検出及び補正方法を示す。指定したステツプの加工途
中で、まず、第11図に示したように開始時期を判別さ
せ、例えば加工中の電極送り量ZaがZK−βに達した地点
での電極位置Za値を算出する。その後、間隙が特定値gc
になる間隙検出条件に切換えて、電極の上下運動による
断続的な微小放電を所定時間生じさせながら間隙を収束
させ、収束後の電極位置を上記と同じように算出する。
電極位置は放電現象の変化に応じて時々刻々と変動して
いるので、安定な測定位置(例えばタイミング時間t1
地点)を定め、その位置での値を数回測定して平均化す
るとよい。間隙が特定値に収束するのにある程度の時間
を要するのは、この前段階での加工生成物が残留してい
るためで、それを十分に排出する必要があり、電極の上
下運動はその排出促進を図る役目をしている。収束所要
時間tcは約30〜60秒である。なお、上記の演算処理を簡
素にしたければ、第1図で記述したように所要の加工と
微少放電を各々終えた後の電極停止位置から求めるとよ
い。
FIG. 10, FIG. 11, FIG. 12, and Table 11 show another embodiment of the present invention and show a method of detecting and correcting a processing error due to a gap change occurring in a predetermined processing process. In the course process the specified step, first, to determine the start timing as shown in FIG. 11, for example, the electrode position Z a value at a point where the electrode feed amount Z a in the processing reaches the Z K-beta calculate. After that, the gap is a specific value g c
Then, the gap is converged while the intermittent minute discharge due to the vertical movement of the electrode is generated for a predetermined time, and the electrode position after the convergence is calculated in the same manner as above.
Since the electrode position fluctuates every moment according to the change of the discharge phenomenon, a stable measurement position (for example, a point at the timing time t 1 ) is determined, and the value at that position may be measured several times and averaged. . It takes some time for the gap to converge to a specific value because the machining products from the previous stage remain, and it is necessary to exhaust it sufficiently. It has a role to promote. The convergence time t c is about 30 to 60 seconds. If the above arithmetic processing is to be simplified, it may be determined from the electrode stop position after the required machining and the minute discharge are finished as described in FIG.

測定した両者の電極位置の変化量Δgc=Zd−Zaより加
工中の間隙値Gaを算出Ga=Δgd+gc)し、同時に、加工
中の深さHaも算出(Ha=Zd+gc)する。そうすれば、次
に、加工計画時の間隙値GKに対する間隙誤差量ΔGKが算
出(ΔGK=GK−Ga)でき、また、加工深さ誤差ΔHGK
同時に算出(ΔHGK=HK−β−Ha=ΔGK)できる。この
結果よりその誤差量を電極送り量に補正(ΔZGK=ΔGK
=ΔHGK)して加工を再開する。補正後の電極送り量
ZK′はZK+ΔZGKとなる。
The gap value G a during processing than measured both variation Δg c = Z d -Z a electrode position calculating G a = Δg d + g c ) and, at the same time, the depth in the machining H a is also calculated (H a = Z d + g c ). Then, next, the gap error amount ΔG K with respect to the gap value G K during the machining plan can be calculated (ΔG K = G K −G a ), and the machining depth error ΔH GK can also be calculated at the same time (ΔH GK = H K −β−H a = ΔG K ). From this result, the error amount is corrected to the electrode feed amount (ΔZ GK = ΔG K
= ΔH GK ) and restart the machining. Electrode feed amount after correction
Z K ′ becomes Z K + ΔZ GK .

このようにすることによつて加工時に生じた間隙変化
による誤差あるいは加工深さ誤差が容易に検知及び解消
できる。上記の誤差検出は、第10図に示したように最終
ステツプの加工過程の他に、中間ステツプの加工過程で
も行うように指定することができる。また、ここでは誤
差検出の開始時期をZa=ZK−βの地点(加工途中)とし
たが、Za=ZKと設定(加工後)することも可能で、電極
位置の演算処理が簡素になる。
By doing so, it is possible to easily detect and eliminate an error due to a gap change or a processing depth error that occurs during processing. The above-mentioned error detection can be designated to be performed not only in the final step machining step as shown in FIG. 10 but also in the intermediate step machining step. Further, here, the start time of error detection is set to the point of Z a = Z K −β (during processing), but it can be set to Z a = Z K (after processing), and the calculation processing of the electrode position can be performed. It will be simple.

尚、次表11は第11図,第12図の運転条件を示す。 Table 11 below shows the operating conditions shown in Figs.

最後に本発明を実施する形彫り放電加工機の全体構成
を第13図に示す。図において、電極1と工作物2に接続
された加工電源9は、NC制御装置11によつて指令された
所定の加工条件及び間隙検出条件に対応するパルス電
圧,電流を出力する。極間電圧検出回路24は、電極1と
工作物2との間で生じた放電の極間電圧を検出して、そ
の検出信号をNC制御装置11と電極送りサーボ制御回路16
に送信し、放電状態の良否を判別させる。電極1は、Z
軸のパルスサーボモータ13に連結された電極送り機構12
の先端部に設置されており、増巾器15を介して電極送り
サーボ制御回路16によつて駆動制御されている。その電
極送りサーボ制御回路16は、NC制御装置11からの指令信
号で動作すると共に各加工条件での放電状態の判別結果
に従つて電極位置を適正に制御する。この他にも、指定
された加工条件及び間隙検出条件で電極1を周期的に上
下運動させる機能を持つている。パルスサーボモータ13
に連結されたパルスエンコーダ14は、電極1の位置指令
に対するその移動位置を検出し、その検出信号が電極送
りサーボ制御回路16及びNC制御装置11にフイードバツク
される。
Finally, FIG. 13 shows the overall structure of a die-sinking electric discharge machine for carrying out the present invention. In the figure, a machining power source 9 connected to the electrode 1 and the workpiece 2 outputs a pulse voltage and a current corresponding to predetermined machining conditions and gap detection conditions instructed by the NC control device 11. The inter-electrode voltage detection circuit 24 detects the inter-electrode voltage of the discharge generated between the electrode 1 and the workpiece 2, and outputs the detection signal to the NC control device 11 and the electrode feed servo control circuit 16.
To determine whether the discharge state is good or bad. Electrode 1 is Z
Electrode feed mechanism 12 connected to the axis pulse servomotor 13
It is installed at the tip of the and is driven and controlled by the electrode feed servo control circuit 16 through the amplifier 15. The electrode feed servo control circuit 16 operates in response to a command signal from the NC control device 11 and appropriately controls the electrode position in accordance with the result of discrimination of the discharge state under each machining condition. In addition to this, it also has a function of periodically moving the electrode 1 up and down under specified processing conditions and gap detection conditions. Pulse servo motor 13
The pulse encoder 14 connected to detects the moving position of the electrode 1 with respect to the position command, and the detection signal is fed back to the electrode feed servo control circuit 16 and the NC control device 11.

X,Yテーブル4上に設定された工作物2は、X,Yテーブ
ル機構17に搭載され、かつX,Yテーブル駆動制御回路23
によつて制御される。電極1と工作物2の位置合せや工
作物2を揺動させる一連の制御指令はNC制御装置11より
送信されている。駆動用のパルスモータ18,19と移動検
出用のパルスエンコーダ20,21は、前記したZ軸と同様
な機能を持つている。加工槽5には加工液供給装置8よ
り加工液が供給及び循環(図示せず)され、同時に放電
加工近傍部にも適量の加工液が供給され、加工生成物が
加工間隙内から適宜排出できるようになつている。
The workpiece 2 set on the X, Y table 4 is mounted on the X, Y table mechanism 17, and the X, Y table drive control circuit 23.
Controlled by. A series of control commands for aligning the electrode 1 and the workpiece 2 and for swinging the workpiece 2 are transmitted from the NC controller 11. The pulse motors 18 and 19 for driving and the pulse encoders 20 and 21 for movement detection have the same functions as the Z axis. The machining fluid is supplied and circulated (not shown) from the machining fluid supply device 8 to the machining tank 5, and at the same time, an appropriate amount of the machining fluid is also supplied to the vicinity of the electric discharge machining, and the machining product can be appropriately discharged from the machining gap. It is becoming like this.

一方、誤差検出回路25は、間隙が特定値に収束する間
隙検出条件に移行前後の電極位置の変化を検出してその
検出結果より、加工時に生じた電極消耗及び熱変形によ
る誤差、また、加工間隙変化による誤差や加工深さ誤差
など一連の加工誤差を検出及び診断するもので、NC制御
装置11の指令信号と電極送りサーボ制御回路16からの信
号に従つて動作する共に、その検出及び診断結果をNC制
御装置11と誤差補正制御回路26に送信する。さらに、誤
差補正制御回路26は、前記誤差検出及び診断結果に対応
した誤差補正を設定すると同時に、電極送りの補正及び
補正加工を指示する制御信号をNC制御装置11に送る。
On the other hand, the error detection circuit 25 detects a change in the electrode position before and after the transition to the gap detection condition in which the gap converges to a specific value, and based on the detection result, an error due to electrode wear and thermal deformation that occurs during machining, and the machining It detects and diagnoses a series of machining errors such as errors due to gap changes and machining depth errors.It operates according to the command signal of the NC controller 11 and the signal from the electrode feed servo control circuit 16 and also detects and diagnoses it. The result is transmitted to the NC control device 11 and the error correction control circuit 26. Further, the error correction control circuit 26 sets an error correction corresponding to the error detection and the diagnosis result, and at the same time, sends a control signal for instructing the electrode feed correction and the correction processing to the NC control device 11.

このように構成した形彫り放電加工機を使用すること
によつて、前記した本発明の放電加工における加工誤差
の検出,診断及び補正制御が実行され、その目的を達成
することができる。
By using the die-sinking electric discharge machine configured as described above, the detection, diagnosis, and correction control of the machining error in the above-described electric discharge machining of the present invention are executed, and the object can be achieved.

上記した本発明は、実施例に示した丸穴形状に限らず
多種多用の形状及び複数列の形状の加工に対しても実施
することができ、さらに、Z軸の送りに代つてX軸又は
Y軸を送り制御しながら、横穴,横溝を加工するような
ものに対しても、軸方向の制御を変換してやれば、本発
明の適用を図ることが可能である。
The present invention described above is not limited to the round hole shape shown in the embodiment, but can be applied to a wide variety of shapes and a plurality of rows of shapes. Further, instead of the Z axis feed, the X axis or The present invention can be applied to the case where a lateral hole or a lateral groove is processed while the Y-axis is feed controlled, if the control in the axial direction is changed.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明はある微小放電の間間隙検
出条件での間隙が特定な値に収束する特性を利用して、
加工前の位置合せ設定を行い、放電加工中に生じる間隙
変化による誤差や加工深さ誤差を検知及び診断し、また
電極消耗及び熱変形に誤差を検知し、またそれを補正
し、さらにこれら一連の加工誤差も検知及び診断できる
ようにしたので、正確な基準面設定ができ、従来の接触
感知法で生じやすい誤差が解消されと同時に、従来技術
では対応が困難であつた正確な誤差補正の制御が可能と
なり、本発明を用いることによつて大幅な加工精度の向
上を図ることができる。また、本発明の検知法は簡便な
回路で迅速、かつ正確に行うことができるので、従来の
ような加工を中断しての加工誤差の測定やその手間が省
け、さらに特別な測定機器を用いる必要もなく、機能
的,経済的な効果がある。
As described above, the present invention utilizes the characteristic that the gap converges to a specific value under the gap detection condition during a certain minute discharge,
Set the alignment before machining, detect and diagnose errors due to gap changes and machining depth errors that occur during electric discharge machining, detect errors in electrode wear and thermal deformation, and correct them. Since it is also possible to detect and diagnose the processing error of, it is possible to set the accurate reference plane, eliminate the error that is likely to occur in the conventional contact sensing method, and at the same time, correct the error correction that was difficult to cope with with the conventional technology. It becomes possible to control, and by using the present invention, the working accuracy can be greatly improved. Further, since the detection method of the present invention can be performed quickly and accurately with a simple circuit, it is possible to omit the measurement of a processing error after interrupting the processing and the labor thereof, and to use a special measuring instrument. It is not necessary and has a functional and economic effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の加工誤差検出補正の一実施例を示す加
工動作のフロー図、第2図,第4図,第5図,第6図及
び第8図は夫々第1図の例に用いる電極と工作物との各
過程での移動状況を示す位置関係説明図、第3図は第2
図の移動を説明する電極動作と時間との関係図、第7図
は本発明の他の実施例を示す加工動作のフロー図、第9
図は第8図の例の電極動作の経時変化を示す特性図、第
10図及び第11図は本発明の更に他の実施例を示す加工動
作のフロー図、第12図は第11図のフローによる加工成果
の経時変化を示す特性図、第13図は本発明を実施する形
彫り放電加工機の全体構成を示す配置図、第14図は従来
型の形彫り放電加工機の斜視図、第15図は穴加工例にお
ける加工条件を定義する寸法定義説明図、第16図は従来
例による加工動作のフロー図、第17図は加工穴と電極送
り量との関係を示す加工穴近傍の拡大図、第18図は第16
図の従来法で加工した時の電極位置と間隙誤差の発生状
況の説明図、第19図は同じく従来法による加工装置の位
置関係を示す断面図、第20図は第19図の従来例による電
極消耗に起因する誤差発生状況を示す特性図、第21図は
同じく熱変形に起因する誤差発生状況を示す特性図、第
22図は第19図の従来法で加工した時の電極消耗と熱変形
の発生状況の説明図である。 1……電極、2……工作物、27……基準面出し台、28…
…加工穴。
FIG. 1 is a flow chart of a machining operation showing an embodiment of the machining error detection / correction of the present invention, and FIGS. 2, 4, 5, 6 and 8 are examples of FIG. 1 respectively. FIG. 3 is a second diagram showing the positional relationship showing the movement of the electrode to be used and the workpiece in each process.
FIG. 7 is a diagram showing the relationship between the electrode operation and time for explaining the movement of the drawing, FIG.
The figure is a characteristic diagram showing the change with time of the electrode operation in the example of FIG.
10 and 11 are flow charts of the machining operation showing still another embodiment of the present invention, FIG. 12 is a characteristic diagram showing the time-dependent change of the machining result according to the flow of FIG. 11, and FIG. A layout diagram showing the overall configuration of the die-sinking EDM machine to be implemented, FIG. 14 is a perspective view of a conventional die-sinking EDM machine, and FIG. 15 is a dimension definition explanatory diagram that defines machining conditions in a hole machining example, 16 is a flow chart of the machining operation according to the conventional example, FIG. 17 is an enlarged view of the vicinity of the machining hole showing the relationship between the machining hole and the electrode feed amount, and FIG.
FIG. 19 is an explanatory view of the electrode position and the situation of occurrence of a gap error when processed by the conventional method, FIG. 19 is a sectional view showing the positional relationship of the processing apparatus similarly by the conventional method, and FIG. 20 is the conventional example of FIG. FIG. 21 is a characteristic diagram showing an error occurrence situation caused by electrode wear, and FIG. 21 is a characteristic diagram showing an error occurrence situation caused by thermal deformation.
FIG. 22 is an explanatory diagram of the electrode wear and thermal deformation occurrence state when processed by the conventional method of FIG. 1 ... Electrode, 2 ... Workpiece, 27 ... Reference leveling stand, 28 ...
... machining holes.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 隆 神奈川県海老名市上今泉2100番地 日立 精工株式会社内 審査官 仲村 靖 (56)参考文献 特開 昭58−160018(JP,A) 特開 昭61−279429(JP,A) 特開 昭58−114821(JP,A) 特開 昭55−131440(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Ishii 2100 Kamiimaizumi, Ebina, Kanagawa Pref. Hitachi Seiko Co., Ltd. Yasushi Nakamura (56) Reference JP-A 58-160018 (JP, A) JP A 61-279429 (JP, A) JP 58-114821 (JP, A) JP 55-131440 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】型彫り放電加工機を用いて、工作物に対し
て所定の位置より電極を所定の深さ方向に送り、かつ、
荒加工から仕上げ加工まで一連の加工ステップ順に電極
送りを制御しながら工作物の加工を行う最中に生じる加
工誤差の検知方法において、加工開始前に、所定の位置
に設置した基準面設定台あるいはその代用が可能な工作
物上面の特定な位置で、電極との間隙が特定値になる間
隙検出条件で微小放電を所定時間生じさせ、その位置検
出より加工深さ方向の基準面設定を行った後、所定の加
工を開始し、その後さらに、前記加工過程で指定したス
テップの加工後に、電極を前記基準面設定の位置に移動
すると共に前記間隙検出条件に切換え、微小放電を所定
時間生じさせて間隙を収束させた後の電極位置を検出
し、その検出値と加工開始前に設定した値との比較結果
より加工時に生じた電極消耗及び熱変形による加工誤差
を検知した後、その電極を再度加工穴に移動すると共に
前記間隙検出条件で微小放電を所定時間生じさせながら
間隙を収束させた後の電極位置を検出して、その検出結
果より加工時に生じた加工間隙変化による加工誤差や加
工深さ及び深さ方向の加工誤差を各々検知するようにし
たことを特徴とする型彫り放電加工における加工誤差の
検知方法。
1. A die-sinking electric discharge machine is used to feed an electrode from a predetermined position to a workpiece in a predetermined depth direction, and
In a method of detecting a machining error that occurs during machining of a workpiece while controlling the electrode feed in a series of machining steps from rough machining to finishing machining, a reference plane setting table installed at a predetermined position before machining starts or At a specific position on the upper surface of the work that can be substituted for it, a minute discharge was generated for a predetermined time under the gap detection condition that the gap with the electrode became a specific value, and the reference plane was set in the machining depth direction from that position detection. After that, a predetermined machining is started, and after the machining of the step specified in the machining process, the electrode is moved to the position of the reference plane setting and the gap detection condition is switched to generate a minute discharge for a predetermined time. The electrode position after the gap is converged is detected, and after comparing the detected value with the value set before processing, the electrode wear and the processing error caused by thermal deformation that occur during processing are detected. The electrode position is detected after the electrode is moved to the machining hole again and the gap is converged while the minute discharge is generated for the predetermined time under the gap detection condition. A method of detecting a machining error in die-sinking electric discharge machining, characterized in that the machining error in the machining depth and the machining error in the depth direction are respectively detected.
【請求項2】型彫り放電加工機を用いて、工作物に対し
て所定の位置より電極を所定の深さ方向に送り、かつ、
荒加工から仕上げ加工まで一連の加工ステップ順に電極
送りを制御しながら工作物の加工を行う最中に生じる加
工誤差の検知方法において、加工開始前に、所定の位置
に設置した基準面設定台あるいはその代用が可能な工作
物上面の特定な位置で、電極との間隙が特定値になる間
隙検出条件で微小放電を所定時間生じさせ、その位置検
出より加工深さ方向の基準面設定を行った後、所定の加
工を開始して、前記荒加工から仕上げ加工まで一連の加
工を終えた後、その電極を前記基準面設定の位置に移動
すると共に前記間隙検出条件に切換えて、前記加工開始
前と同様の方法により加工深さ方向の基準面の再設定を
行い、この再設定によって電極消耗及び熱変形による誤
差を補正した後、電極を加工後の穴に再度移動すると共
に前記間隙検出条件で微小放電を所定時間生じさせなが
ら間隙を収束させた後電極位置を検出し、その検出結果
より加工深さとその目標値に対する加工誤差を検知する
ようにしたことを特徴とする型彫り放電加工における加
工誤差の検知方法。
2. A die-sinking electric discharge machine is used to feed an electrode from a predetermined position to a workpiece in a predetermined depth direction, and
In a method of detecting a machining error that occurs during machining of a workpiece while controlling the electrode feed in a series of machining steps from rough machining to finishing machining, a reference plane setting table installed at a predetermined position before machining starts or At a specific position on the upper surface of the work that can be substituted for it, a minute discharge was generated for a predetermined time under the gap detection condition that the gap with the electrode became a specific value, and the reference plane was set in the machining depth direction from that position detection. After that, after starting a predetermined machining and finishing a series of machining from the rough machining to the finishing machining, the electrode is moved to the position of the reference plane setting and the gap detection condition is switched to before the machining is started. By resetting the reference plane in the machining depth direction by the same method as described in (1) and correcting the error due to electrode consumption and thermal deformation by this resetting, the electrode is moved again to the hole after machining and the gap detection line In die-cutting electric discharge machining, which is characterized by detecting the electrode position after converging the gap while generating a minute electric discharge for a predetermined time and detecting the machining depth and its target value from the detection result. Method of detecting machining error.
JP63027511A 1988-02-10 1988-02-10 Method of detecting machining error in die-sinking electric discharge machining Expired - Fee Related JP2559789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63027511A JP2559789B2 (en) 1988-02-10 1988-02-10 Method of detecting machining error in die-sinking electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027511A JP2559789B2 (en) 1988-02-10 1988-02-10 Method of detecting machining error in die-sinking electric discharge machining

Publications (2)

Publication Number Publication Date
JPH01205917A JPH01205917A (en) 1989-08-18
JP2559789B2 true JP2559789B2 (en) 1996-12-04

Family

ID=12223156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027511A Expired - Fee Related JP2559789B2 (en) 1988-02-10 1988-02-10 Method of detecting machining error in die-sinking electric discharge machining

Country Status (1)

Country Link
JP (1) JP2559789B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3512577B2 (en) * 1996-10-31 2004-03-29 三菱電機株式会社 Electric discharge machining apparatus and electric discharge machining method
CN115319212B (en) * 2022-08-11 2024-08-30 北京市电加工研究所有限公司 Control circuit and method of electric spark machining equipment and electronic equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114821A (en) * 1981-12-29 1983-07-08 Fanuc Ltd Electric discharge machining
JPS58160018A (en) * 1982-03-19 1983-09-22 Mitsubishi Electric Corp Electric discharge device
JPS61279429A (en) * 1985-06-03 1986-12-10 Mitsubishi Electric Corp Electric discharge machining controller

Also Published As

Publication number Publication date
JPH01205917A (en) 1989-08-18

Similar Documents

Publication Publication Date Title
EP0352635B1 (en) Numerically controlled grinding machine
JP2942547B2 (en) Method and apparatus for correcting thermal displacement of machine tool
JP2000198047A (en) Machine tool
JP2559789B2 (en) Method of detecting machining error in die-sinking electric discharge machining
JPS63267121A (en) Wire-cut electric discharge machining device
JP2002052444A (en) Surface grinding device and work grinding method
JPH03178731A (en) Electric discharge machine
JP2667183B2 (en) Machining error correction control method in Die-sinker EDM
US7113884B1 (en) Positioning apparatus for an electrical discharge machine and a method therefor
JP7575198B2 (en) Machining method and machine tool
JPH1195821A (en) Contact detection method and device therefor
JP4678711B2 (en) Die-sinker EDM
JP2008004124A (en) Numerical control machining device
JP5084650B2 (en) Oscillation electric discharge machining method and oscillation electric discharge machining apparatus in sculpture electric discharge machining
JP3732290B2 (en) Electric discharge machining apparatus and electric discharge machining method
JP2003094250A (en) Electric discharge machining apparatus
JP2001162448A (en) Device and method for electric discharge machining
JP4157258B2 (en) Electric discharge machining apparatus and electric discharge machining method
JPH01234117A (en) Machining error correction control method in die milling spark erosion machining
EP4109188A1 (en) Machine tool, machining path generation method, and computer program
JPH0852619A (en) Device and method for electric discharge machining
JP2001038529A (en) Electric discharge machining method and device
JPH0671687B2 (en) Electric discharge machine
JPH0259239A (en) Numerically controlled machine tool with electro-discharge machine function
JP2001212757A (en) Grinding method and grinding device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees