JP2511461B2 - Method for manufacturing semiconductor substrate - Google Patents
Method for manufacturing semiconductor substrateInfo
- Publication number
- JP2511461B2 JP2511461B2 JP15204287A JP15204287A JP2511461B2 JP 2511461 B2 JP2511461 B2 JP 2511461B2 JP 15204287 A JP15204287 A JP 15204287A JP 15204287 A JP15204287 A JP 15204287A JP 2511461 B2 JP2511461 B2 JP 2511461B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- layer
- oxide film
- semiconductor substrate
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Local Oxidation Of Silicon (AREA)
- Element Separation (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、絶縁体上に良質の半導体単結晶薄膜を形成
して成るいわゆるSOI(Silicon on Insulator)基板等
の半導体基板の製造方法に関する。The present invention relates to a method for manufacturing a semiconductor substrate such as a so-called SOI (Silicon on Insulator) substrate formed by forming a good-quality semiconductor single crystal thin film on an insulator.
〔従来の技術及び発明が解決しようとする問題点〕 従来、SOI基板を得るための手段の一つに、SIMOX法即
ち酸素イオンの大量注入により埋め込み絶縁層を形成す
る方法がある。SIMOX法は量産性に優れ、得られるSOI基
板の均一性も優れているという特長を有しているが、表
面シリコン層(SOI層)の結晶性やそれと絶縁層との界
面の電気特性(界面に沿って漏洩電流が流れない特性が
望ましい。)は必ずしも良好ではないという問題があっ
た。それは以下の理由による。[Problems to be Solved by Conventional Techniques and Inventions] Conventionally, as one of means for obtaining an SOI substrate, there is a SIMOX method, that is, a method of forming a buried insulating layer by a large amount of implantation of oxygen ions. The SIMOX method has the advantages of excellent mass productivity and excellent uniformity of the obtained SOI substrate. However, the crystallinity of the surface silicon layer (SOI layer) and the electrical characteristics of the interface between it and the insulating layer (interface The characteristic that leakage current does not flow along is desirable) is not always good. The reason is as follows.
SIMOX法では、十分な深さに埋め込み絶縁層を形成す
る必要から、第3図に示した如く通常酸素イオンのビー
ム1を800keV以上の高エネルギーに加速して打ち込む。
この時、上部単結晶シリコン層は、突入イオンにより著
しく損傷をうける。損傷の程度は、表面近くでは比較的
軽度であるが、突入イオンが停止する程度の深さ即ちチ
ャンネリングが阻止される程度の深さにおいて特に著し
い。従って、埋め込み絶縁層2と表面シリコン層3の境
界近辺には特に電気的に活性な結晶欠陥が多数生じる。
これらの損傷或は欠陥は後の熱処理によって一部回復す
ることはできるが、この境界近辺での結晶性や電気特性
は、既存のシリコン基板の結晶性やシリコン−酸化膜界
面の電気特性に比べれば、著しく劣るものでしかなかっ
た。これは、主として、損傷を回復するための原子再配
置を単なる熱処理によって熱的に促進させるには1000度
を上回る高温を必要とするのに対し、そのような高温下
ではイオン照射により非晶質化したシリコン層の内部で
結晶核の生成が盛んになり、結果的にランダムな結晶粒
が成長してしまうという状況に起因している。In the SIMOX method, since it is necessary to form a buried insulating layer at a sufficient depth, a beam 1 of normal oxygen ions is accelerated and implanted at a high energy of 800 keV or more as shown in FIG.
At this time, the upper single crystal silicon layer is significantly damaged by the rush ions. The degree of damage is relatively mild near the surface, but it is particularly remarkable at a depth at which rush ions are stopped or at a depth at which channeling is blocked. Therefore, many electrically active crystal defects are generated near the boundary between the buried insulating layer 2 and the surface silicon layer 3.
Although some of these damages or defects can be recovered by the subsequent heat treatment, the crystallinity and electrical characteristics near this boundary are inferior to those of existing silicon substrates and the electrical characteristics of the silicon-oxide film interface. For example, it was extremely inferior. This is because it requires a high temperature of more than 1000 degrees Celsius in order to thermally promote atomic rearrangement for repairing damage by a simple heat treatment, whereas under such a high temperature, ion irradiation causes an amorphous state. This is due to the fact that crystal nuclei are actively generated inside the converted silicon layer, and as a result, random crystal grains grow.
このため、従来のSIMOX法によるSOI基板は、高集積,
高信頼性を要求される集積回路を形成するための基板と
しては不十分であった。Therefore, the conventional SIMOX SOI substrate has high integration,
It has been insufficient as a substrate for forming an integrated circuit that requires high reliability.
本発明は、上記問題点に鑑み、表面シリコン層(SOI
層)が優れた結晶性を示し且つそれと絶縁層との界面が
良好な電気特性を有しているSOI基板等の半導体基板の
製造方法を提供することを目的とする。In view of the above problems, the present invention is directed to a surface silicon layer (SOI
It is an object of the present invention to provide a method for manufacturing a semiconductor substrate such as an SOI substrate in which a layer) has excellent crystallinity and an interface between the layer and the insulating layer has good electric characteristics.
本発明による半導体基板の製造方法は、単結晶シリコ
ン基板に酸素イオンを注入して埋め込み酸化シリコン層
を形成した後、これを熱処理することにより成る半導体
基板の製造方法において、その熱処理時に、基板と表面
シリコン層間に外部より電界を印加することにより埋め
込み酸化シリコン層の電界内移動を誘起して、埋め込み
酸化シリコン層の埋め込み深さを変化させるようにした
ことを特徴としている。A method of manufacturing a semiconductor substrate according to the present invention is a method of manufacturing a semiconductor substrate, which comprises implanting oxygen ions into a single crystal silicon substrate to form a buried silicon oxide layer, and then heat treating the buried silicon oxide layer. It is characterized in that an electric field is applied from the outside between the surface silicon layers to induce movement in the electric field of the embedded silicon oxide layer to change the embedded depth of the embedded silicon oxide layer.
即ち、本発明による半導体基板の製造方法は、酸化シ
リコン層のシリコン内での移動の過程、及びそれに伴う
結晶質シリコンの非晶質化の過程、そして移動酸化膜後
方での固相エピタキシャル成長の過程の三点に大別され
る。まず、シリコン内での酸化シリコン層の移動の機構
について説明する。従来より知られているように、高温
においてはシリコン酸化膜には酸素イオンを電荷担体と
するイオン伝導性が生じる。即ち、シリコン酸化膜に印
加された電界は酸素イオンの移動を誘起する。シリコン
中で酸素イオンが移動するということは、SiO2の組成を
もった領域が移動することに他ならない。即ち、高温下
では、電界を印加することによって、第1図に示した如
く、シリコン中の埋め込み酸化シリコン膜aを移動させ
ることができる。That is, the method of manufacturing a semiconductor substrate according to the present invention includes a process of migrating a silicon oxide layer in silicon, a process of amorphization of crystalline silicon accompanying it, and a process of solid phase epitaxial growth behind a moving oxide film. It is roughly divided into three points. First, the mechanism of movement of the silicon oxide layer in silicon will be described. As is conventionally known, at high temperatures, the silicon oxide film has ionic conductivity with oxygen ions as charge carriers. That is, the electric field applied to the silicon oxide film induces the movement of oxygen ions. The movement of oxygen ions in silicon is nothing but the movement of the region having the composition of SiO 2 . That is, at high temperature, the embedded silicon oxide film a in silicon can be moved by applying an electric field, as shown in FIG.
このことを利用して、本発明による半導体基板の製造
方法においては、まず、第2図(A)に示した如き埋め
込み酸化膜4の形成に引き続く熱処理工程において、第
2図(B)に示した如く、埋め込み酸化膜4を基板表面
に向って移動させることにより、イオン照射による損傷
のより少ない浅い領域の表面シリコン層5と埋め込み酸
化膜4とが界面を形成するようにすることができる。Utilizing this fact, in the method of manufacturing a semiconductor substrate according to the present invention, first, in the heat treatment step following the formation of the buried oxide film 4 as shown in FIG. 2A, the process shown in FIG. As described above, by moving the buried oxide film 4 toward the substrate surface, it is possible to form an interface between the surface silicon layer 5 and the buried oxide film 4 in a shallow region which is less damaged by ion irradiation.
ここで、シリコン中のSiO2組成の領域はシリコンの結
晶構造をとりえず、SiO2のガラス構造をとっている。従
って、電界の印加により酸化膜4が移動し、新たにSiO2
組成となった領域は、単結晶,多結晶に拘らずシリコン
の結晶性を失う。即ち、埋め込み酸化膜4を表面に向っ
て移動させることにより新たに酸化した領域のシリコン
結晶を非晶質化できるという今一つの効用がある。Here, the region of SiO 2 composition in silicon does not have the crystal structure of silicon but has the glass structure of SiO 2 . Therefore, the oxide film 4 is moved by the application of the electric field and new SiO 2 is added.
The composition region loses the crystallinity of silicon regardless of whether it is a single crystal or a polycrystal. That is, there is another advantage that the silicon oxide in the newly oxidized region can be made amorphous by moving the buried oxide film 4 toward the surface.
一方、電界の印加によって埋め込み酸化膜4が移動す
ると、移動方向に対して後方の界面には、非晶質化した
シリコンが出現する。しかし、系が十分に高温にあれ
ば、熱運動による原子再配置が直ちにおこり、出現した
非晶質シリコンは、隣接する単結晶シリコン層を種とし
て再結晶化する。即ち、第1図に示した如く、移動する
酸化膜aの後方界面ではシリコンの固相エピキタルシャ
ル成長域bが生まれて結晶質となる。On the other hand, when the buried oxide film 4 moves due to the application of an electric field, amorphized silicon appears at the interface behind the moving direction. However, if the system is at a sufficiently high temperature, atomic rearrangement occurs immediately due to thermal motion, and the amorphous silicon that appears recrystallizes using the adjacent single crystal silicon layer as a seed. That is, as shown in FIG. 1, at the rear interface of the moving oxide film a, a solid phase epitaxial growth region b of silicon is created and becomes crystalline.
更に、このことを利用し、本発明による半導体基板の
製造方法では、上述の非晶質化工程に引き続き、第2図
(C)に示した如く、非晶質化工程とは逆方向の電界を
印加することにより、今度は埋め込み酸化膜4の埋め込
み深さを増大させつつ、移動方向に対して後方(基板表
面側)に出現するシリコン層を順次再結晶化する。Further, by utilizing this fact, in the method for manufacturing a semiconductor substrate according to the present invention, as shown in FIG. Is applied to increase the burying depth of the buried oxide film 4 and sequentially recrystallize the silicon layer appearing behind (the substrate surface side) with respect to the moving direction.
このように、本発明方法では、再結晶化しようとする
シリコン層は予め強制的に一旦非晶質化されており、尚
且つ常に良質な単結晶シリコン層に隣接していることに
なる。このことは、結晶核の突発的発生によるランダム
な結晶粒の成長が起こり難いことを意味する。従って、
熱処理後の表面シリコン層(SOI層)5の結晶性及びそ
れと埋め込み酸化膜4との界面の電気特性は優秀なもの
となる。As described above, in the method of the present invention, the silicon layer to be recrystallized is forcibly once made amorphous beforehand, and is always adjacent to the good quality single crystal silicon layer. This means that it is difficult for random crystal grains to grow due to the sudden generation of crystal nuclei. Therefore,
The crystallinity of the surface silicon layer (SOI layer) 5 after the heat treatment and the electrical characteristics of the interface between it and the buried oxide film 4 are excellent.
次に、実施例について説明する。 Next, examples will be described.
実施例1 n型単結晶シリコン基板上に基板温度800度にて、800
KeV,150mAの酸素イオンビームを注入し、埋め込み絶縁
層を形成した。約60分間で埋め込み深さ5000Å,厚さ60
00Åの埋め込み酸化膜が成形された。次に、アルゴン雰
囲気中で1200度の温度において、基板の上下に接して設
けられた白金電極若しくはSi電極より、100Vの電圧を印
加し埋め込み酸化膜を上方に移動させた。この時、印加
電圧の極性は、基板に対してSOI層側が正となるように
した。そして、約2時間の電圧印加処理中にSOI層の厚
さは、約3000Åに減少し、SOI層/埋め込み酸化膜界面
の界面準位密度は通常の平方cm当り10の15乗から10の13
乗に減少した。このあと、SOI層表面にシリコン単結晶
のエピキタルシャル成長を行って減少したSOI層の膜厚
を回復した。Example 1 On an n-type single crystal silicon substrate at a substrate temperature of 800 degrees, 800
KeV, 150 mA oxygen ion beam was injected to form a buried insulating layer. Embedding depth 5000 Å, thickness 60 in about 60 minutes
A 00Å buried oxide film was formed. Next, at a temperature of 1200 ° C. in an argon atmosphere, a voltage of 100 V was applied from the platinum electrode or Si electrode provided in contact with the upper and lower sides of the substrate to move the buried oxide film upward. At this time, the polarity of the applied voltage was set to be positive on the SOI layer side with respect to the substrate. The thickness of the SOI layer was reduced to about 3000Å during the voltage application process for about 2 hours, and the interface state density of the SOI layer / buried oxide film interface was 10 15 to 10 13 per normal square cm.
It has decreased to the power of two. After that, epitaxial growth of a silicon single crystal was performed on the surface of the SOI layer to recover the reduced thickness of the SOI layer.
実施例2 実施例1の手順に従い、埋め込み酸化膜を形成した
後、上述の極性の外部電圧を印加し、次いで、印加電圧
の極性を反転し今度は、埋め込み酸化膜を下方に移動さ
せた。同じく、2時間の電圧印加処理によってSOI層は
元の厚さを回復した。又、SOI層/埋め込み酸化膜界面
の界面準位密度は、更に平方cm当り10の11乗台まで減少
した。Example 2 According to the procedure of Example 1, the buried oxide film was formed, and then the external voltage having the above-mentioned polarity was applied, and then the polarity of the applied voltage was reversed to move the buried oxide film downward. Similarly, the SOI layer was restored to its original thickness by the voltage application treatment for 2 hours. Further, the interface state density at the SOI layer / buried oxide film interface was further reduced to the 10th to 11th power per square cm.
上述の如く、本発明による半導体基板の製造方法によ
れば、半導体基板のSOI層の結晶性及びそれと酸化シリ
コン層との界面の電気特性が優秀になるという極めて重
要な利点がある。As described above, the method of manufacturing a semiconductor substrate according to the present invention has a very important advantage that the crystallinity of the SOI layer of the semiconductor substrate and the electrical characteristics of the interface between the SOI layer and the silicon oxide layer are excellent.
第1図はシリコン基板中をシリコン酸化膜が移動する仕
組みを示す図、第2図(A),(B),(C)は本発明
による半導体基板の製造方法の各工程を示す図、第3図
は酸素イオンの大量照射により単結晶シリコン基板が損
傷を受ける様子を示す図である。 1……イオンビーム、4……埋め込み酸化膜、5……表
面シリコン層。FIG. 1 is a diagram showing a mechanism of movement of a silicon oxide film in a silicon substrate, and FIGS. 2 (A), (B) and (C) are diagrams showing respective steps of a method for manufacturing a semiconductor substrate according to the present invention. FIG. 3 is a diagram showing how a single crystal silicon substrate is damaged by a large amount of oxygen ion irradiation. 1 ... Ion beam, 4 ... Buried oxide film, 5 ... Surface silicon layer.
Claims (1)
て埋め込み酸化シリコン層を形成した後、これを熱処理
することにより成る半導体基板の製造方法において、そ
の熱処理時に、基板と表面シリコン層間に外部より電界
を印加することにより埋め込み酸化シリコン層の電界内
移動を誘起して、埋め込み酸化シリコン層の埋め込み深
さを変化させるようにしたことを特徴とする半導体基板
の製造方法。1. A method for manufacturing a semiconductor substrate, which comprises implanting oxygen ions into a single crystal silicon substrate to form a buried silicon oxide layer, and then heat treating the buried silicon oxide layer. A method for manufacturing a semiconductor substrate, characterized in that a more electric field is applied to induce movement in the electric field of the embedded silicon oxide layer to change the embedded depth of the embedded silicon oxide layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15204287A JP2511461B2 (en) | 1987-06-18 | 1987-06-18 | Method for manufacturing semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15204287A JP2511461B2 (en) | 1987-06-18 | 1987-06-18 | Method for manufacturing semiconductor substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63316469A JPS63316469A (en) | 1988-12-23 |
JP2511461B2 true JP2511461B2 (en) | 1996-06-26 |
Family
ID=15531788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15204287A Expired - Lifetime JP2511461B2 (en) | 1987-06-18 | 1987-06-18 | Method for manufacturing semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2511461B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3211233B2 (en) * | 1998-08-31 | 2001-09-25 | 日本電気株式会社 | SOI substrate and manufacturing method thereof |
CN105297140B (en) * | 2015-09-10 | 2019-10-25 | 上海超硅半导体有限公司 | Silicon wafer and annealing method |
-
1987
- 1987-06-18 JP JP15204287A patent/JP2511461B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63316469A (en) | 1988-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6537886B2 (en) | Ultra-shallow semiconductor junction formation | |
US5436175A (en) | Shallow SIMOX processing method using molecular ion implantation | |
JP5133908B2 (en) | Method for fabricating a structure comprising at least one thin layer of amorphous material obtained on a support substrate by epitaxy, and the structure obtained by the method | |
EP0125260A1 (en) | Solid phase epitaxy and regrowth process with controlled defect density profiling for heteroepitaxial semiconductor on insulator composite substrates. | |
JPH11145436A (en) | Laminated soi substrate and manufacture thereof | |
KR100664000B1 (en) | Production method for simox substrate and simox substrate | |
JP2511461B2 (en) | Method for manufacturing semiconductor substrate | |
JPH0770481B2 (en) | Method for forming silicon semiconductor layer | |
JPH04264724A (en) | Manufacture of semiconductor substrate | |
US6551898B1 (en) | Creation of a polarizable layer in the buried oxide of silicon-on-insulator substrates for the fabrication of non-volatile memory | |
EP0703608B1 (en) | Method for forming buried oxide layers within silicon wafers | |
JPH05299345A (en) | Substrate for electronic element and its manufacture | |
JPS643046B2 (en) | ||
JP4609026B2 (en) | Manufacturing method of SOI wafer | |
JPS62239520A (en) | Formation of soi film | |
JP2664416B2 (en) | Method for manufacturing semiconductor device | |
McMahon | Formation of silicon-on-insulator layers by electron beam recrystallization | |
JPH0412629B2 (en) | ||
JP3404547B2 (en) | Crystalline thin film deposition method | |
JPS62132344A (en) | Manufacture of silicon substrate for integrated circuit | |
JP2762103B2 (en) | Method for forming SOI film | |
JP3384439B2 (en) | Method for manufacturing semiconductor device | |
JP2526494B2 (en) | Insulation separation method | |
JP2541456B2 (en) | Microstructure fabrication method | |
US20040029325A1 (en) | Method for making a soi semiconductor substrate with thin active semiconductor layer |