JP2510089B2 - Method for producing mercapto ether compound - Google Patents

Method for producing mercapto ether compound

Info

Publication number
JP2510089B2
JP2510089B2 JP19395087A JP19395087A JP2510089B2 JP 2510089 B2 JP2510089 B2 JP 2510089B2 JP 19395087 A JP19395087 A JP 19395087A JP 19395087 A JP19395087 A JP 19395087A JP 2510089 B2 JP2510089 B2 JP 2510089B2
Authority
JP
Japan
Prior art keywords
parts
thiourea
hydrogen sulfide
reaction
ether compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19395087A
Other languages
Japanese (ja)
Other versions
JPS6438058A (en
Inventor
悟志 北村
敬男 曽根
昭 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUSO MARUZEN KEMIKARU KK
Original Assignee
NITSUSO MARUZEN KEMIKARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUSO MARUZEN KEMIKARU KK filed Critical NITSUSO MARUZEN KEMIKARU KK
Priority to JP19395087A priority Critical patent/JP2510089B2/en
Publication of JPS6438058A publication Critical patent/JPS6438058A/en
Application granted granted Critical
Publication of JP2510089B2 publication Critical patent/JP2510089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はメルカプト化エーテル化合物の改良された製
造方法に関し、詳しくはハロゲン化エーテル化合物をチ
オ尿素を用いてメルカプト化するに当り、同工程中でチ
オ尿素の再生を伴うメルカプト化エーテル化合物の製造
方法に関する。
TECHNICAL FIELD The present invention relates to an improved method for producing a mercapto ether compound, and more specifically, to a mercapto conversion of a halogenated ether compound with thiourea And a method for producing a mercapto ether compound with regeneration of thiourea.

「従来技術」 ハロゲン化エーテル化合物をチオ尿素と反応させ、下
記に示すチウロニウム塩となし、 次いでアルカリ性化合物を用いて該チウロニウム塩を、
例えば水酸化ナトリウムの如き化合物を分解剤として用
いて分解しメルカプト化エーテル化合物を製造する方法
は良く知られている。しかしながら、この方法では、使
用したチオ尿素は種々の副生混合物となり、従ってこの
副生物が大量の廃棄物となるといった欠点があった。
"Prior Art" A halogenated ether compound is reacted with thiourea to form a thiuronium salt shown below, Then, the thiuronium salt is treated with an alkaline compound,
For example, a method of producing a mercapto-ether compound by decomposing a compound such as sodium hydroxide as a decomposing agent is well known. However, this method has a drawback in that the thiourea used becomes a mixture of various by-products, and this by-product becomes a large amount of waste.

従って、該分解工程中で該チウロニウム塩の分解と共
に反応によって生成する上記の如き副生物を同時にチオ
尿素に戻すことができれば、再び、該反応系にハロゲン
化エーテル化合物を加えることによって、上記の分解反
応を繰り返すことができる。
Therefore, if by-products such as those produced by the reaction with the decomposition of the thiuronium salt in the decomposition step can be returned to thiourea at the same time, the decomposition of the above-mentioned decomposition can be performed by adding a halogenated ether compound to the reaction system again. The reaction can be repeated.

以上の点を考慮し本発明者らが鋭意検討した結果、上
記の分解剤として硫化水素アンモニウム或いは反応する
ことによつて前記成分となる混合物を用いれば、チオ尿
素は繰りかえし使用出来、しかも製造されるメルカプト
化エーテル化合物の品質も劣化することがないことを見
出し本発明に到達した。
As a result of diligent studies by the present inventors in consideration of the above points, if ammonium hydrogen sulfide is used as the above decomposing agent or a mixture of the above components by reaction is used, thiourea can be repeatedly used and is produced. The inventors have found that the quality of the mercapto-ether compound does not deteriorate, and arrived at the present invention.

「問題を解決するための手段」 即ち、本発明は下記一般式[I]及び/又は[II]に
て示されるハロゲン化エーテル化合物とチオ尿素とを X(RO)mH ……[I] X(RO)nRX ……[II] (ここに、Rは炭素数2又は3からなるアルキレン基
を、Xは塩素原子又は臭素原子を、m、nは1〜4の自
然数を示す。) 反応させてチウロニウム塩となし次いで該チウロニウ
ム塩を分解してメルカプタンを製造するに際し、該分解
工程で硫化水素アンモニウム、アンモニウム塩と硫化水
素アルカリ又は硫化水素とアンモニアからなる群から選
ばれる少なくとも一種の分解剤を用いることによってチ
オ尿素の再生を伴うことを特徴とする下記一般式[II
I]又は[IV]にて示されるメルカプト化エーテル化合
物の製造方法である。
"Means for Solving the Problem" That is, in the present invention, a halogenated ether compound represented by the following general formulas [I] and / or [II] and thiourea are mixed with X (RO) mH ... [I] X (RO) nRX ... [II] (wherein R is an alkylene group having 2 or 3 carbon atoms, X is a chlorine atom or a bromine atom, and m and n are natural numbers of 1 to 4) To produce a mercaptan by decomposing the thiuronium salt and then producing a mercaptan, in the decomposing step, at least one decomposing agent selected from the group consisting of ammonium hydrogen sulfide, an ammonium salt and an alkali hydrogen sulfide, or hydrogen sulfide and ammonia is used. The following general formula [II] characterized by being accompanied by regeneration of thiourea by using
[I] or [IV] is a method for producing a mercapto ether compound.

HS(RO)mH ……[III] HS(RO)nRSH ……[IV] (ここにR、m、nは前述と同じ基を示す。) 本発明に使用される前記一般式[I]又は[II]にて
示されるハロゲン化エーテル化合物としては、例えばエ
チレンクロロヒドリン、エチレンブロモヒドリン、2−
クロロエトキシエタノール、2−ブロモエトキシエタノ
ール、1−クロロ−8−ヒドロキシ−3.6−ジオキサオ
クタン、1−ブロモ−11−ヒドロキシ−3,6,9−トリオ
キサウンデカン、1,5−ジクロロ−3−オキサペンタ
ン、1,5−ジブロモ−3−オキサペンタン、1,8−ジクロ
ロ−3,6−ジオキサオクタン、1,11−ジブロモ−3,6,9−
トリオキサウンデカン、1,14−ジクロロ−3,6,9,12−テ
トラオキサテトラデカン或いはこれらの化合物の1,2−
エチレン基の一部又は全部を1,2−プロピレン基で置換
された同類の化合物等を挙げることが出来る。
HS (RO) mH ...... [III] HS (RO) nRSH ...... [IV] (wherein R, m and n are the same groups as described above) The above-mentioned general formula [I] used in the present invention or Examples of the halogenated ether compound represented by [II] include ethylene chlorohydrin, ethylene bromohydrin, 2-
Chloroethoxyethanol, 2-bromoethoxyethanol, 1-chloro-8-hydroxy-3.6-dioxaoctane, 1-bromo-11-hydroxy-3,6,9-trioxaundecane, 1,5-dichloro-3- Oxapentane, 1,5-dibromo-3-oxapentane, 1,8-dichloro-3,6-dioxaoctane, 1,11-dibromo-3,6,9-
Trioxaundecane, 1,14-dichloro-3,6,9,12-tetraoxatetradecane or 1,2- of these compounds
Examples thereof include compounds of the same kind in which a part or all of the ethylene group is substituted with a 1,2-propylene group.

本発明方法にあっては、まずチウロニウム塩を生成さ
せる。この塩の生成方法には特に限定はなく、公知の如
何なる方法を用いてもよいが、一般にはハロゲン化エー
テル化合物とチオ尿素を前記エーテルのハロゲン原子1
モル当り1モル以上2モル以下を用いて、50〜150℃、
好ましくは80〜110℃の温度で例えば水等の溶媒中で反
応させればよい。溶媒としては他にメタノール、エタノ
ール、プロパノール、エチレングリコール等の低級アル
コール類、エチレングリコールモノメチルエーテル、ジ
オキサン、テトラヒドロフラン等のエーテル類も挙げる
ことが出来る。これらの溶媒の使用量は前記ハロゲン化
エーテル化合物に対して好ましくは1/5〜5倍重量であ
る。
In the method of the present invention, first, a thiuronium salt is produced. The method for producing this salt is not particularly limited, and any known method may be used. Generally, a halogenated ether compound and thiourea are used as the halogen atom of the ether.
Using 1 mol or more and 2 mol or less per mol, 50 to 150 ° C,
The reaction is preferably carried out in a solvent such as water at a temperature of 80 to 110 ° C. Examples of the solvent also include lower alcohols such as methanol, ethanol, propanol and ethylene glycol, and ethers such as ethylene glycol monomethyl ether, dioxane and tetrahydrofuran. The amount of these solvents used is preferably 1/5 to 5 times the weight of the halogenated ether compound.

次いで生成されたチウロニウム塩を分解するに当り、
本発明方法にあっては前述の如く、硫化水素アンモニウ
ム、アンモニウム塩と硫化水素アルカリ又は硫化水素と
アンモニアからなる群から選ばれる少なくとも一種の分
解剤を用いるが、実際のチウロニウム塩の分解には分解
剤のアンモニア成分が関与し、硫化水素がチオ尿素に由
来する副生物を再びチオ尿素に戻す効果をもたらす。即
ち、分解剤として種々提案されてはいるが、これらはチ
ウロニウム塩分解反応に添加された場合、全て全く同じ
効果をもたらすものである。
Next, in decomposing the produced thiuronium salt,
In the method of the present invention, as described above, at least one decomposing agent selected from the group consisting of ammonium hydrogen sulfide, ammonium salts and alkali hydrogen sulfide, or hydrogen sulfide and ammonia is used. The ammonia component of the agent is involved, and hydrogen sulfide has an effect of returning the by-product derived from thiourea to thiourea again. That is, although various decomposing agents have been proposed, they all bring about the same effect when added to the decomposition reaction of the thiuronium salt.

該チウロニウム塩分解を行うに当り、硫化水素アンモ
ニウムを用いる場合、該チウロニウム塩末端1モルに対
し1モル以上2モル以下の使用量でよく、又このものは
アンモニア水に等モル量の硫化水素を溶解させることに
よって容易に得られる。
When ammonium hydrogen sulfide is used for decomposing the thiuronium salt, the amount used may be 1 mol or more and 2 mol or less with respect to 1 mol of the terminal end of the thiuronium salt. It is easily obtained by dissolving.

該分解剤としてアンモニウム塩と硫化水素アルカリを
用いる場合、前記の塩としては硫酸アンモン、塩化アン
モンが好ましく用いられる。又、硫化水素アルカリとし
ては硫化水素ナトリウム、硫化水素カリウムが好ましく
用いられる。前記アンモニウム塩の使用量は該チウロニ
ウム末端1モル当り、0.05モル乃至は1.5モルが好まし
く、0.05モル未満の使用量ではチウロニウム塩の分解が
不完全となり、好ましくなく、1.5モルを超えての使用
は意味がない。又、前記チウロニウム塩末端1モルに対
する硫化水素アルカリの使用量は1モル以上2モル以下
の使用量が好ましい。
When an ammonium salt and an alkali hydrogen sulfide are used as the decomposer, ammonium sulfate and ammonium chloride are preferably used as the salt. Further, sodium hydrogen sulfide and potassium hydrogen sulfide are preferably used as the alkali hydrogen sulfide. The amount of the ammonium salt used is preferably 0.05 mol to 1.5 mol per mol of the thiuronium terminal, and the amount of less than 0.05 mol is not preferable because the decomposition of the thiuronium salt is incomplete, and the amount exceeding 1.5 mol is not preferable. meaningless. The amount of alkali hydrogen sulfide used with respect to 1 mol of the end of the thiuronium salt is preferably 1 mol or more and 2 mol or less.

更に、該分解剤として硫化水素とアンモニアを用いる
場合、まずアンモニアを反応系へ添加しチウロニウム塩
を分解した後、硫化水素を添加することが好ましい。こ
のアンモニアは水溶液或いはガス状で反応系へ添加する
ことが出来るが、この使用量は上記アンモニウム塩を用
いる場合と同様である。又、硫化水素の添加はガス状で
添加するのが容易であり、その添加量も上記硫化水素ア
ルカリの場合と同様である。
Further, when hydrogen sulfide and ammonia are used as the decomposing agent, it is preferable to first add ammonia to the reaction system to decompose the thiuronium salt and then add hydrogen sulfide. This ammonia can be added to the reaction system in the form of an aqueous solution or a gas, and the amount used is the same as in the case of using the ammonium salt. Further, it is easy to add hydrogen sulfide in a gaseous state, and the amount of hydrogen sulfide added is the same as in the case of the above-mentioned alkali hydrogen sulfide.

前述のチウロニウム塩分解即ちメルカプタン生成反応
を実施するに当り、反応温度及び分解剤の添加時の温度
は20〜80℃の範囲にあることが好ましい。20℃より低い
とチウロニウム塩の分解に長時間の反応が避けられず、
又80℃を超えた温度ではアンモア及び硫化水素が未反応
で著しく気化するが如き現象が表われ、共に好ましくな
い。
In carrying out the above-mentioned thiuronium salt decomposition, that is, the mercaptan formation reaction, the reaction temperature and the temperature at the time of adding the decomposition agent are preferably in the range of 20 to 80 ° C. If the temperature is lower than 20 ° C, the long-term reaction cannot be avoided in the decomposition of the thiuronium salt,
Further, at a temperature above 80 ° C., a phenomenon occurs in which ammo and hydrogen sulfide remarkably vaporize without reaction, both of which are not preferable.

チウロニウム塩の分解即ちメルカプタン生成反応終了
後、水層と有機層を完全に分離するためトルエンの如き
溶媒を加え、生成したメルカプタンを抽出し、硫化水素
アンモニウムの使用量が過剰であり、これが残存してい
れば鉱酸等で分解し、その後、必要ならば公知の方法、
例えば洗浄、蒸溜等の方法で精製すれば高純度のメルカ
プト化エーテル化合物が得られる。上記の溶媒をチウロ
ニウム塩分解反応の開始時からでも加えることも可能で
ある。
After the decomposition of the thiuronium salt, that is, the mercaptan formation reaction, a solvent such as toluene was added in order to completely separate the aqueous layer and the organic layer, the formed mercaptan was extracted, and the amount of ammonium hydrogen sulfide used was excessive, which remained. If necessary, decompose with mineral acid, etc., and then if necessary, known method,
For example, a high-purity mercapto-ether compound can be obtained by purifying by washing or distillation. It is also possible to add the above-mentioned solvent even at the start of the decomposition reaction of the thiuronium salt.

特に、該チウロニウム塩末端1モル当たり、アンモニ
ウム塩使用量が1モル未満の場合、溶媒をチウロニウム
塩分解反応開始時に添加すると、副生ジスルフィドの低
減など品質の向上が可能となる。
In particular, when the amount of ammonium salt used is less than 1 mol per 1 mol of the end of the thiuronium salt, the addition of a solvent at the start of the decomposition reaction of the thiuronium salt makes it possible to improve the quality such as reduction of by-product disulfide.

一方、前記水層には多量のチオ尿素が再生され存在し
ているが、同時に副生無機塩も存在している。この無機
塩をチオ尿素との溶解度の差を利用して水層から分離す
れば、上記水溶液はそのまま次の反応に使用される。
又、この水層を冷却してチオ尿素を晶出させ、これを濾
過することによって回収し、再びチウロニウム塩化反応
に使用すればよく、こうする事によって、メルカプト化
エーテルが能率良く製造することが出来る。
On the other hand, a large amount of thiourea is regenerated and present in the water layer, but at the same time, a by-product inorganic salt is also present. If this inorganic salt is separated from the aqueous layer by utilizing the difference in solubility with thiourea, the above aqueous solution is used as it is in the next reaction.
Further, this aqueous layer is cooled to crystallize thiourea, which is recovered by filtration and used again in the thiuronium chlorination reaction, whereby the mercapto ether can be efficiently produced. I can.

以上述べた如く、本発明方法を用いればメルカプト化
エーテル化合物を製造するに際し、高価なチオ尿素の使
用量を減ずることが出来るだけでなく、廃棄すべき副生
物の量を減ずることが出来る。
As described above, when the method of the present invention is used, it is possible not only to reduce the amount of expensive thiourea used in producing a mercapto-ether compound, but also to reduce the amount of by-products to be discarded.

「実施例」 以下に実施例および比較例を挙げ、本発明方法を更に
詳しく説明するが、これらに限定されるものではない。
尚、以下の記述に於いて、「部」と記すのは重量部を示
す。
"Example" Hereinafter, the method of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the invention is not limited thereto.
In the following description, "part" means "part by weight".

実施例1 1000容量部のガラス反応容器にチオ尿素215部、水235
部を入れ、攪拌・加熱した。温度が70℃に達した時点で
1,8−ジクロロ−3,6−ジオキサオクタン220部の添加を
開始し、90℃以下で1時間にわたって添加した。次い
で、100℃まで昇温させ、3時間熟成反応を続けた。反
応終了後、該容器内には無色透明な液体が存在した。
Example 1 215 parts of thiourea and 235 of water in a glass reaction vessel of 1000 parts by volume.
Parts were put, and the mixture was stirred and heated. When the temperature reaches 70 ℃
The addition of 220 parts of 1,8-dichloro-3,6-dioxaoctane was started and added at 90 ° C or lower over 1 hour. Then, the temperature was raised to 100 ° C. and the aging reaction was continued for 3 hours. After the reaction was completed, a colorless transparent liquid was present in the container.

この液を冷却後、50%硫化水素アンモニア水溶液290
部を窒素雰囲気下に、30℃にて30分で投入した後、更に
50℃まで昇温し、2時間攪拌・反応させた。次いで、こ
の液へ濃塩酸55部を加え、60℃にて30分処理して過剰の
硫化水素アンモニウムを分解させた。
After cooling this liquid, a 50% aqueous solution of hydrogen sulfide ammonia 290
Parts in a nitrogen atmosphere at 30 ° C for 30 minutes, and then
The temperature was raised to 50 ° C., and the mixture was stirred and reacted for 2 hours. Next, 55 parts of concentrated hydrochloric acid was added to this liquid, and the mixture was treated at 60 ° C. for 30 minutes to decompose excess ammonium hydrogen sulfide.

この溶液を60℃で分液し、得られた有機層を50部の水
で洗浄後単蒸留して無色透明な液体202部を得た。この
ものをガスクロマトグラフィーで分析した所、純度99.4
%の1,8−ジメルカプト−3,6−ジオキサオクタンであっ
た。
The solution was separated at 60 ° C., and the obtained organic layer was washed with 50 parts of water and subjected to simple distillation to obtain 202 parts of a colorless transparent liquid. When this product was analyzed by gas chromatography, the purity was 99.4.
% 1,8-dimercapto-3,6-dioxaoctane.

一方、残った水層の重量は796部であり、これに含ま
れる中のチオ尿素をJIS-K8635に示される方法で分析し
た所、使用したチオ尿素に対して、98.1%再生されたこ
とが判明した。
On the other hand, the weight of the remaining aqueous layer was 796 parts, and when the thiourea contained in this was analyzed by the method shown in JIS-K8635, it was found that 98.1% was regenerated with respect to the thiourea used. found.

実施例2 実施例1に示された反応後の水層をそのまま使用し、
1500容量部のガラス反応容器を使用した以外は実施例1
記載の方法をに準じて行った。但し、過剰の硫化水素ア
ンモニウムを分解した後、80℃まで加熱してから副生無
機塩類を濾過し分液した。
Example 2 The aqueous layer after the reaction shown in Example 1 was used as it is,
Example 1 except that a 1500 volume part glass reactor was used.
The method described was followed. However, after decomposing excess ammonium hydrogen sulfide, it was heated to 80 ° C. and then the by-product inorganic salts were filtered and separated.

得られた有機層を単蒸留して無色透明な溜出液207部
を得た。このもののガスクロマトグラフィーによる分析
の結果、純度98.8%の1,8−ジメルカプト−3,6−ジオキ
サオクタンであった。収率は95.4%であった。
The obtained organic layer was subjected to simple distillation to obtain 207 parts of a colorless and transparent distillate. As a result of analysis by gas chromatography, it was 1,8-dimercapto-3,6-dioxaoctane having a purity of 98.8%. The yield was 95.4%.

水層の総重量は892部であり、チオ尿素を分析した
所、96.4%が再生されていた。
The total weight of the aqueous layer was 892 parts, and when thiourea was analyzed, 96.4% was regenerated.

比較例1 1000容量部のガラス反応容器にチオ尿素215部、水235
部を入れ、攪拌・加熱した。温度が70℃に達した時点で
1,8−ジクロロ−3,6−ジオキサオクタン220部の添加を
開始し、90℃以下で1時間にわたって添加した。次い
で、100℃まで昇温させ、3時間熟成反応を続けた。反
応終了後、該容器内には無色透明な液体が存在した。
Comparative Example 1 215 parts of thiourea and 235 water in a glass reaction vessel of 1000 parts by volume.
Parts were put, and the mixture was stirred and heated. When the temperature reaches 70 ℃
The addition of 220 parts of 1,8-dichloro-3,6-dioxaoctane was started and added at 90 ° C or lower over 1 hour. Then, the temperature was raised to 100 ° C. and the aging reaction was continued for 3 hours. After the reaction was completed, a colorless transparent liquid was present in the container.

反応系を冷却後、40%水酸化ナトリウム260部を50℃
にて30分で添加し、更に同温度で30分熟成反応を行っ
た。これに濃硫酸55部を加え、60℃にて30分処理し過剰
の水酸化ナトリウムを中和した。
After cooling the reaction system, 260 parts of 40% sodium hydroxide was added at 50 ° C.
Was added for 30 minutes, and the reaction was aged for 30 minutes at the same temperature. To this, 55 parts of concentrated sulfuric acid was added and treated at 60 ° C. for 30 minutes to neutralize excess sodium hydroxide.

この溶液を60℃にて分液し、有機層を50部の水で洗浄
後、単蒸溜によって無色透明な液体186部を得た。この
液体をガスクロマトグラフィーで分析した所、純度98.5
%の1,8−ジメルカプト−3,6−ジオキサオクタンであっ
た。このものの収率は85.5%であった。
This solution was separated at 60 ° C., the organic layer was washed with 50 parts of water, and then 186 parts of a colorless transparent liquid was obtained by simple distillation. When this liquid was analyzed by gas chromatography, the purity was 98.5.
% 1,8-dimercapto-3,6-dioxaoctane. The yield of this product was 85.5%.

一方、残った水層の総重量は798部であり、この中に
はチオ尿素は含まれていなかった。
On the other hand, the total weight of the remaining aqueous layer was 798 parts, and thiourea was not contained in this.

しかし、この水層を更に10倍重量の水で稀釈したもの
のCODを測定すると31000ppmであった。
However, the COD of this aqueous layer diluted with 10 times the weight of water was 31,000 ppm.

実施例3 1000容量部のガラス反応容器にチオ尿素230部、水230
部を入れ、攪拌・加熱した。温度が80℃に達した時点で
1,5−ジクロロ−3−オキサペンタン180部の添加を開始
し、90℃以下で1時間にわたって添加した。次いで、95
℃まで昇温させ、4時間熟成反応を続けた。反応終了
後、該容器内には無色透明な液体が存在した。
Example 3 230 parts of thiourea and 230 parts of water in a glass reaction vessel of 1000 parts by volume
Parts were put, and the mixture was stirred and heated. When the temperature reaches 80 ℃
The addition of 180 parts of 1,5-dichloro-3-oxapentane was started and added at 90 ° C or lower for 1 hour. Then 95
The temperature was raised to ° C and the aging reaction was continued for 4 hours. After the reaction was completed, a colorless transparent liquid was present in the container.

この反応液を冷却後、これに硫酸アンモニウム160部
を加え、50℃にて40%硫化水素ナトリウム水溶液390部
を窒素雰囲気下で30分間で添加し、更に55℃で30分間熟
成反応させた。
After cooling this reaction liquid, 160 parts of ammonium sulfate was added thereto, 390 parts of a 40% sodium hydrogen sulfide aqueous solution was added at 50 ° C. in a nitrogen atmosphere for 30 minutes, and further an aging reaction was carried out at 55 ° C. for 30 minutes.

実施例1記載の方法に準じ、処理した所、純度99.5%
の1,5−ジメルカプト−3−オキサペンタン161部を得
た。収率は92.1%であった。
When treated according to the method described in Example 1, the purity is 99.5%.
161 parts of 1,5-dimercapto-3-oxapentane was obtained. The yield was 92.1%.

水層の総重量は1047部であり、その中にはチオ尿素が
97.9%再生されていた。
The total weight of the aqueous layer is 1047 parts, of which thiourea is
It was played 97.9%.

実施例4 実施例3に準じて得たチウロニウム塩化反応液に塩化
アンモニウム15部とトルエン180部を加え、50℃にて40
%硫化水素ナトリウム水溶液390部を窒素雰囲気下に1
時間で添加し、更に55℃で30分間熟成させた。
Example 4 15 parts of ammonium chloride and 180 parts of toluene were added to the thiuronium chlorination reaction solution obtained according to Example 3, and the mixture was added at 40 ° C. to 40%.
% Sodium hydrogen sulfide aqueous solution 390 parts under nitrogen atmosphere 1
It was added over time and aged at 55 ° C. for 30 minutes.

次いで、実施例1記載の方法に準じてこの反応液を処
理した所、純度99.2%の1,5−ジメルカプト−3−オキ
サペンタン165部が得られた。収率は94.1%であった。
Then, this reaction solution was treated according to the method described in Example 1 to obtain 165 parts of 1,5-dimercapto-3-oxapentane having a purity of 99.2%. The yield was 94.1%.

残った水層を氷水で冷却し、結晶を析出させ、これを
濾過し白色の結晶203部がえられた。これを分析した
所、含有率91.2%のチオ尿素混合物であり、回収率80.5
%、水分7.5%であった。
The remaining aqueous layer was cooled with ice water to precipitate crystals, which were filtered to obtain 203 parts of white crystals. When analyzed, it was a thiourea mixture with a content rate of 91.2% and a recovery rate of 80.5.
% And water content was 7.5%.

濾液は693部であり、これを10重量倍の水で稀釈した
水溶液のCODを測定すると5400ppmであった。
The filtrate was 693 parts, and the COD of an aqueous solution obtained by diluting this with 10 times by weight of water was 5400 ppm.

実施例5 実施例4で得られた回収チオ尿素混合物201部と新た
にチオ尿素47部を使用し、実施例4を繰り返した所、純
度99.0%の1,5−ジメルカプト−3−オキサペンタン167
部が得られた。収率は95.0%であった。
Example 5 Using 201 parts of the recovered thiourea mixture obtained in Example 4 and 47 parts of thiourea freshly, Example 4 was repeated, and 99.5% pure 1,5-dimercapto-3-oxapentane 167 was obtained.
Parts were obtained. The yield was 95.0%.

水層中には97.1%のチオ尿素が再生されており、これ
を分離結晶化させた所、白色結晶209部が得られ、これ
を分析した結果、チオ尿素が90.8%含有した混合物であ
った。回収率は82.5%であった。
In the aqueous layer, 97.1% of thiourea was regenerated, and when this was separated and crystallized, 209 parts of white crystals were obtained. As a result of analysis, it was a mixture containing 90.8% of thiourea. . The recovery rate was 82.5%.

実施例6 実施例1記載の方法で得られたチウロニウム塩溶液を
冷却後、これに28%アンモニア水160部を加え、50℃で
1時間処理した。分液後水層に硫化水素ガス88部を50℃
で1時間かけて導入した。
Example 6 The thiuronium salt solution obtained by the method described in Example 1 was cooled, 160 parts of 28% aqueous ammonia was added thereto, and the mixture was treated at 50 ° C. for 1 hour. After separation, 88 parts of hydrogen sulfide gas is added to the water layer at 50 ° C.
It took 1 hour to install.

有機層を水洗後、単蒸留し、純度99.5%の1,8−ジメ
ルカプト−3,6−ジオキサオクタン204部を得た。収率は
94.7%であった。
The organic layer was washed with water and then subjected to simple distillation to obtain 204 parts of 1,8-dimercapto-3,6-dioxaoctane having a purity of 99.5%. The yield is
It was 94.7%.

一方、水層には90.7%のチオ尿素が再生されていた。 On the other hand, 90.7% of thiourea was regenerated in the water layer.

実施例7 1000容量部のガラス反応容器にチオ尿素126部、水325
部を入れ、攪拌・加熱した。温度が80℃に達した時点で
1,8−ジクロロ−3,6−ジオキサオクタン130部の添加を
開始し、90℃以下で1時間にわたって添加した。次い
で、100℃まで昇温させ、5時間熟成反応を続けた。
Example 7 126 parts of thiourea and 325 of water in a glass reaction vessel of 1000 parts by volume.
Parts were put, and the mixture was stirred and heated. When the temperature reaches 80 ℃
The addition of 130 parts of 1,8-dichloro-3,6-dioxaoctane was started and added at 90 ° C or lower over 1 hour. Then, the temperature was raised to 100 ° C. and the aging reaction was continued for 5 hours.

得られたチウロニウム塩化反応液に塩化アンモニア8
部とトルエン130部を加え、50℃にてフレーク状の70%
硫化水素ナトリウム116部を窒素雰囲気下に1時間で添
加し、更に55℃で30分間熟成反応させた。次いで、この
液に濃塩酸35部を加え、60℃で30分間処理し、過剰の硫
化水素アンモニウムを分解させた。
Ammonia chloride was added to the obtained thiuronium chlorination reaction liquid.
And 130 parts of toluene are added, and flakes at 70% at 50 ° C.
116 parts of sodium hydrogen sulfide was added in a nitrogen atmosphere for 1 hour, and the mixture was aged at 55 ° C. for 30 minutes. Next, 35 parts of concentrated hydrochloric acid was added to this solution and treated at 60 ° C. for 30 minutes to decompose excess ammonium hydrogen sulfide.

有機層を実施例1に準じて処理し、純度99.3%の1,8
−ジメルカプト−3,6−ジオキサオクタン118部を得た。
収率は92.5%であった。
The organic layer was treated according to Example 1 to give 1,8 of 99.3% purity.
118 parts of dimercapto-3,6-dioxaoctane were obtained.
The yield was 92.5%.

一方、残った水層の重量は569部であり、この中にチ
オ尿素が97.9%再生されていた。
On the other hand, the weight of the remaining aqueous layer was 569 parts, in which thiourea was regenerated by 97.9%.

次に、この水層をそのまま使用して、前記方法に準じ
てチウロニウム塩化反応以降を繰返した。但し、チウロ
ニウム化反応では新たにチオ尿素3部を添加したが、水
は追加しなかった。又、チオール化反応時に塩化アンモ
ニウムを1部添加した。過剰の硫化水素アンモニウムを
分解した後、80℃まで加熱してから副生無機塩類を濾別
し、分液した。
Then, using this aqueous layer as it was, the thiuronium chlorination reaction and the subsequent steps were repeated according to the above method. However, in the thiuronium conversion reaction, 3 parts of thiourea was newly added, but water was not added. Also, 1 part of ammonium chloride was added during the thiolation reaction. After decomposing excess ammonium hydrogen sulfide, the mixture was heated to 80 ° C., then the by-produced inorganic salts were separated by filtration and separated.

こうして回収されたチオ尿素を用いて更に同じ方法を
2回繰返した。但し、最初の方法に比べて不足分のチオ
尿素は新たに補充した。これらの結果を第1表に示し
た。
The same procedure was repeated twice with the thiourea thus recovered. However, a shortage of thiourea was newly replenished as compared with the first method. The results are shown in Table 1.

実施例8〜13 第2表に示すハロゲン化エーテル及び分解剤を用い、
実施例1及び実施例6記載の方法を繰返し行ない、これ
らの結果を第2表に示した。
Examples 8 to 13 Using the halogenated ethers and decomposing agents shown in Table 2,
The method described in Example 1 and Example 6 was repeated, and the results are shown in Table 2.

「発明の効果」 本発明方法を用いてハロゲン化エーテル化合物からメ
ルカプト化エーテル化合物を製造すると、チオ尿素が再
生・使用出来、しかも廃棄物を大幅に低減出来るにも拘
らず、得られるメルカプト化エーテル化合物の純度及び
収率も向上する。
"Effects of the Invention" When a mercapto ether compound is produced from a halogenated ether compound by using the method of the present invention, thiourea can be regenerated and used, and waste can be significantly reduced, but the obtained mercapto ether can be obtained. The purity and yield of the compound is also improved.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記一般式[I]及び/又は[II]にて示
されるハロゲン化エーテル化合物とチオ尿素とを X(RO)mH ……[I] X(RO)nRX ……[II] (ここに、Rは炭素数2又は3からなるアルキレン基
を、Xは塩素原子又は臭素原子を、m、nは1〜4の自
然数を示す。) 反応させてチウロニウム塩となし次いで該チウロニウム
塩を分解してメルカプタンを製造するに際し、該分解工
程で硫化水素アンモニウム、アンモニウム塩と硫化水素
アルカリ又は硫化水素とアンモニアからなる群から選ば
れる少なくとも一種の分解剤を用いることによってチオ
尿素の再生を伴うことを特徴とする下記一般式[III]
又は[IV]にて示されるメルカプト化エーテル化合物の
製造方法。 HS(RO)mH ……[III] HS(RO)nRSH ……[IV] (ここにR、m、nは前述と同じ基を示す。)
1. A halogenated ether compound represented by the following general formula [I] and / or [II] and thiourea: X (RO) mH ...... [I] X (RO) nRX ...... [II] (Here, R is an alkylene group having 2 or 3 carbon atoms, X is a chlorine atom or a bromine atom, and m and n are natural numbers of 1 to 4.) The reaction is performed to form a thiuronium salt, and then the thiuronium salt. In the production of mercaptan by decomposing thiourea by using at least one decomposing agent selected from the group consisting of ammonium hydrogen sulfide, ammonium salt and alkali hydrogen sulfide, or hydrogen sulfide and ammonia in the decomposition step. The following general formula [III] characterized by
Alternatively, a method for producing the mercapto-ether compound represented by [IV]. HS (RO) mH ...... [III] HS (RO) nRSH …… [IV] (wherein R, m and n represent the same groups as described above).
【請求項2】前記分解剤中のアンモニウム塩の使用量が
該チウロニウム末端1モル当たり0.05モル乃至は1.5モ
ルである特許請求の範囲第1項記載の製造方法。
2. The method according to claim 1, wherein the amount of the ammonium salt used in the decomposing agent is 0.05 mol to 1.5 mol per 1 mol of the thiuronium terminal.
JP19395087A 1987-08-03 1987-08-03 Method for producing mercapto ether compound Expired - Lifetime JP2510089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19395087A JP2510089B2 (en) 1987-08-03 1987-08-03 Method for producing mercapto ether compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19395087A JP2510089B2 (en) 1987-08-03 1987-08-03 Method for producing mercapto ether compound

Publications (2)

Publication Number Publication Date
JPS6438058A JPS6438058A (en) 1989-02-08
JP2510089B2 true JP2510089B2 (en) 1996-06-26

Family

ID=16316455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19395087A Expired - Lifetime JP2510089B2 (en) 1987-08-03 1987-08-03 Method for producing mercapto ether compound

Country Status (1)

Country Link
JP (1) JP2510089B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2653708B2 (en) * 1990-01-31 1997-09-17 セントラル硝子株式会社 Manufacturing method of tempered glass sheet

Also Published As

Publication number Publication date
JPS6438058A (en) 1989-02-08

Similar Documents

Publication Publication Date Title
KR940008750B1 (en) Process for the preparation of 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide and for the purification thereof
US11623914B2 (en) Cyclic process for producing taurine from monoethanolamine
WO2022055782A1 (en) Cyclic process for producing taurine from monoethanolamine
JP2974540B2 (en) Purification method of fluoroalkylsulfonic acid
US11578036B2 (en) Cyclic process for producing taurine from monoethanolamine
EP0372635B1 (en) Method of preparing dialkyl and diallyl dicarbonates
JP2510089B2 (en) Method for producing mercapto ether compound
JP5756999B2 (en) Method for producing bis (perfluoroalkanesulfone) imide salt
US6060623A (en) Process for producing amine borane compound
US5166453A (en) Method for purification of ethylene compounds having fluorine-containing organic group
JPH0751526B2 (en) Method for producing hemiacetal compound
CA2278713A1 (en) Process for producing butyric ester derivatives
EA000043B1 (en) Improved process for manufacturing methylene bis-(dibutyl-dithiocarbamate) with astm colour less than 2
JP3008552B2 (en) Method for producing high quality tetrabromobisphenol A
JPH01268673A (en) Production of mercaptan compound
JPH07242633A (en) Production of 5-aminoethylaminomethyl-2-chloropyridine
JP2811851B2 (en) Method for producing tetrabromobisphenol A
KR101090539B1 (en) - - method for the synthesis of exocyclic derivatives of cycloalkyl-hydrazines and exocyclic derivatives of heterocycloalkyl-hydrazines
JPH02145561A (en) Production of polythioalklylene dimercaptans
JP2874276B2 (en) Method for producing high quality tetrabromobisphenol A
JPH01501002A (en) Synthesis of N-epoxypropyllactam
JPH11209341A (en) Production of mercaptocarboxylic acid
JPS641464B2 (en)
JP4212821B2 (en) Method for producing high-purity 4,4'-dihydroxydiphenylsulfone monoether or a derivative thereof
EP0153095A1 (en) A process for procuding 5-doxy-L-arabinose