JP2024146326A - Gas flow rate adjustment mechanism - Google Patents
Gas flow rate adjustment mechanism Download PDFInfo
- Publication number
- JP2024146326A JP2024146326A JP2023059153A JP2023059153A JP2024146326A JP 2024146326 A JP2024146326 A JP 2024146326A JP 2023059153 A JP2023059153 A JP 2023059153A JP 2023059153 A JP2023059153 A JP 2023059153A JP 2024146326 A JP2024146326 A JP 2024146326A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- pipe
- flow rate
- main flow
- flow path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005259 measurement Methods 0.000 claims abstract description 48
- 239000012530 fluid Substances 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 description 93
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
【課題】熱伝導式のセンサでは、配管のガス流量が多くなると、センサの測定素子の温度低下が大きくなり、適切な測定ができないことが問題となっていた。【解決手段】測定対象気体の物理量を測定する測定部と、測定対象気体が流れる本体流路管と、本体流路管から分岐し測定部へ測定対象流体を導入する導入管と、導入管内から本体流路管内にかけて設置され、導入管と平行する上下方向に可動できる様にして、本体流路管の流路断面の流路面積を増減させ、測定部へ導入される測定対象流体の流量を制御する気体導入量制御板とからなる気体流量調整機構を提供する。【選択図】図1B[Problem] With a thermal conduction type sensor, when the gas flow rate in the piping increases, the temperature drop of the sensor's measuring element becomes large, making it difficult to perform proper measurements. [Solution] A gas flow rate adjustment mechanism is provided, which comprises a measuring section that measures the physical quantity of the gas to be measured, a main flow path pipe through which the gas to be measured flows, an introduction pipe that branches off from the main flow path pipe and introduces the fluid to be measured into the measuring section, and a gas introduction amount control plate that is installed from inside the introduction pipe to inside the main flow path pipe and can move in the vertical direction parallel to the introduction pipe to increase or decrease the flow area of the flow path cross section of the main flow path pipe, thereby controlling the flow rate of the fluid to be measured introduced into the measuring section. [Selected Figure] Figure 1B
Description
本発明は、熱伝導式センサへの気体流量を調整する機構に関する。 The present invention relates to a mechanism for adjusting the gas flow rate to a thermal conductivity sensor.
熱伝導を利用したセンサは、加熱した検知素子の近傍を流れる気体により、検知素子に生じた温度変化を計測することで、測定を行う。近年の半導体加工技術を利用したマイクロマシニング技術を利用することにより検知素子の小型化が可能になり、ガスセンサや湿度センサに利用されている。 Sensors that use thermal conduction perform measurements by measuring the temperature change caused by a heated sensing element when gas flows near the sensing element. In recent years, micromachining technology that uses semiconductor processing techniques has made it possible to miniaturize sensing elements, and these sensors are used in gas sensors and humidity sensors.
例えば、特開2008-233057(特許文献1)には、真空度、気体や液体の流量などの物理量を計測するための高感度、高精度、計測範囲拡大ができるような熱伝導型センサとこれを用いた熱伝導型計測装置が示されている。 For example, JP 2008-233057 A (Patent Document 1) discloses a thermal conduction sensor that has high sensitivity, high accuracy, and an expanded measurement range for measuring physical quantities such as the degree of vacuum and the flow rate of gas or liquid, and a thermal conduction measurement device that uses the sensor.
熱伝導式センサでは、小型化した検知素子が採用されていることより、検知素子の近傍を流れる気体の流量が設計の想定より多くなると、検知素子の温度変化が大きくなり、正確な測定ができなくなる問題点があった。例えば、熱伝導式ガスセンサは、水素などの可燃性の気体を検出するために使われることが多く、熱伝導式ガスセンサの近傍では、気体が自然拡散状態で存在することが望ましい。 Thermal conduction sensors use miniaturized detection elements, so when the flow rate of gas flowing near the detection element is greater than expected in the design, the temperature change in the detection element becomes large, making accurate measurements impossible. For example, thermal conduction gas sensors are often used to detect flammable gases such as hydrogen, and it is desirable for the gas to exist in a natural diffusion state near the thermal conduction gas sensor.
そこで、配管から熱伝導式センサへの流れる気体流量を調節することで、熱伝導式センサを適切に動作できるようにする機構が必要となる。 Therefore, a mechanism is needed to adjust the gas flow rate from the piping to the thermal conductivity sensor so that the thermal conductivity sensor can operate properly.
上記目的を達成するため、本発明の請求項1に記載された気体流量調整機構は、測定対象気体の物理量を測定する測定部と、測定対象気体が流れる本体流路管と、本体流路管から分岐し測定部へ測定対象流体を導入する導入管と、導入管内から本体流路管内にかけて設置され、導入管と平行する上下方向に可動し、本体流路管の流路断面の流路面積を増減させ、測定部へ導入される測定対象流体の流量を制御する気体導入量制御板と、からなることを特徴とする。
In order to achieve the above object, the gas flow rate adjustment mechanism described in
本発明の請求項2に記載された、気体流量調整機構は、一部が可動することで本体流路管の流路面積を増減させることを特徴とする。
The gas flow rate adjustment mechanism described in
本発明の請求項3に記載された、気体流量調整機構は、本体流路管内の流体の圧損を減らすための流路孔を有することを特徴とする。 The gas flow rate adjustment mechanism described in claim 3 of the present invention is characterized by having a flow path hole for reducing pressure loss of the fluid in the main flow path pipe.
本発明により、配管に大流量の気体が流れていても、その気体に関する物理量を測定する熱伝導式センサを設計値通りに動作させることを可能とする気体流量調整機構を提供する。 The present invention provides a gas flow rate adjustment mechanism that enables a thermal conduction sensor that measures a physical quantity related to a gas to operate according to its design value, even when a large flow rate of gas is flowing through a pipe.
以下に、図を用いて本発明の実施の形態を説明する。なお、本発明はこれら実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲において、種々なる態様で実施しうる。 Below, embodiments of the present invention are explained using the drawings. Note that the present invention is not limited to these embodiments, and can be implemented in various forms without departing from the spirit of the present invention.
本実施例では、熱伝導式ガスセンサで配管内の気体を分析する実施形態について説明する。本実施例においては、配管からの気体は図の左側方向から導入され、センサを経由して、右側方向に配管から出て行く構成で説明する。 In this embodiment, we will explain an embodiment in which a thermal conduction gas sensor is used to analyze gas in a pipe. In this embodiment, we will explain a configuration in which gas is introduced from the pipe from the left side of the figure, passes through the sensor, and leaves the pipe to the right side.
図1Aは本実施例の側面図である。具体的には、本体流路管内および導入管で気体が流れる方向に平行な面から見たときの概念図になる。ガスセンサやガスセンサの制御基板などを有する測定部101、配管から流れてきた気体を測定部101へ導入する測定気体導入管と、測定部101を通過した気体が導出される測定気体導出管を有する導入管102、配管から流れてきた気体が気体導入管から測定部へ向かう気体と、測定部に向かわずに通過する気体に分岐する本体流路管103、配管からの気体が入る導入口104、本体流路管103と測定部を通過した気体の両方が、配管へ戻る導出口105がある。なお、導入口104と導出口105は、配管と直接接続してもよいし、バイパス管を介して接続してもどちらでもよい。
Figure 1A is a side view of this embodiment. Specifically, it is a conceptual diagram when viewed from a plane parallel to the direction in which gas flows in the main flow path pipe and the inlet pipe. There are a
測定部101と導入管102、導入管102と本体流路管103、本体流路管と導入口104,導出口105は、継ぎ手などを介して、密閉性を確保した状態で接続される。
The
図1Bは図1Aの一部を断面にして、内部構造を示した概念図である。具体的には、測定部、導入管、本体流路管の中央の断面になっている。図1Aと同じ符号は同じ物を示している。導入口104から入ってきた気体は、気体導入量制御板106により流れを阻害され、測定気体導入口107に向かう。測定気体導入口に107に入った気体は測定室108へ入る。測定室108には、センサ109があり、センサを通過した気体は、測定気体導出管110を通り、導出口105より本体流路管102へ戻る構成となっている。
Figure 1B is a conceptual diagram showing the internal structure by cutting a part of Figure 1A. Specifically, it is a cross section of the center of the measurement section, the introduction tube, and the main flow tube. The same symbols as in Figure 1A indicate the same things. The gas entering from the
図2は、本発明の気体導入量制御板の効果をシミュレーションした結果で、条件は「各配管を、φ3/4”T字継手に接続した際、図中下から上に、1L/minの空気を導入」である。 Figure 2 shows the results of a simulation of the effect of the gas introduction amount control plate of the present invention, under the condition that "when each pipe is connected to a φ3/4" T-shaped joint, 1 L/min of air is introduced from the bottom to the top in the figure."
表の上段は、気体導入量制御板の状態を表している。図1Bで、aの方向から気体導入制御板106を見ている状態となる。表の下段は、導入管に設けられた測定気体導入管と測定気体導出管を示している。図1Bで、bの方向から導入管102を見た状態となる。図1と同様に、気体は図の左側から入り、測定気体導入管から測定部へ向かい、測定部を通過した気体が、測定気体導出管からでて、図の右側から配管へ向かうので、左側が測定気体導入管で、右側が測定気体導出管となる。(A)は気体導入量制御板がない状態。(B)から(D)は矩形状の気体導入量制御板を測定気体導入管と測定気体導出管の間に設け、気体導入量制御板の幅を変えた状態。図2中の点線は、気体導入量制御板を示している。
The upper part of the table shows the state of the gas introduction amount control plate. In FIG. 1B, the gas
測定気体導入管、測定気体導出管の内部の色が濃いほど、気体導入量制御板の内部の色が濃いほど、管内を流れる気体の流速が大きいことを示す。(A)のように、気体導入量制御板がないと流速がほとんど生じない。(B)、(C)、(D)と気体導入量制御板の幅が大きくなるほど、測定気体導入管へ向かう気体の流速が高くなる。流速が高くなることで、より多くの気体が測定気体導入管へ流れる。 The darker the color inside the measurement gas inlet tube and measurement gas outlet tube, and the darker the color inside the gas introduction amount control plate, the greater the flow rate of the gas inside the tube. As in (A), without the gas introduction amount control plate, there is almost no flow rate. As the width of the gas introduction amount control plate increases in (B), (C), and (D), the flow rate of gas toward the measurement gas inlet tube increases. The higher the flow rate, the more gas flows into the measurement gas inlet tube.
図3は、気体導入量制御板の変形例を示している。図1Bでaの方向から気体導入制御板106を見ている状態となる。いずれの図においても、斜線入りの円が本体流路管で気体が通過する領域を表している。白くなっている部分は、気体導入量制御板で流れが阻害される領域となる。気体導入量制御板は固定部301と変化部302の組み合わせで構成される。点線部分は、変化部302が動いたことで、図1Bのaの方向から見えなくなっている部分を示す。(A)は固定部の中に、矩形の開口部が設けられており、矩形の開口部を変化部の矩形の板を動かすことで、流れを阻害する領域の大きさを調整する。(A-1)は開口部を最も大きくした状態、(A-2)は開口部を閉じた状態を表している。(B)は、固定部が真ん中にあり、その両側を変化部となり、流れを阻害する領域の面積を調節する。(B-1)は、流れを阻害する領域を最大にした状態、(B-2)は流れを阻害する領域を最小にした状態を示す。(C)は、(A)に対して、開口部を円形にした構成、(D)は(A)に対して、変化部の板の形状を台形にした構成を示す。本発明においては、熱伝導式センサに必要な流量の気体を測定部に流すことを目的にしているので、本体流路管においても配管を完全にふさぐことがないように気体導入量制御板を構成する。そのため、(D)のような構成も適用できる。
Figure 3 shows a modified example of the gas introduction amount control plate. The gas
このように気体導入量制御板を可動させることで、本体流路管の断面積を変化させることが可能になり、導入管への気体流量を調整できるようになる。なお、本発明では、配管の直径や気体の流量などに基づき、適切な測定値が出るよう気体導入量制御板を調整し、センサの動作中に気体導入量制御板の設定を変更しない。そうすることで、センサ使用中に、異常な測定値が発生したときに、異常であることを検出できる。 By moving the gas introduction amount control plate in this way, it is possible to change the cross-sectional area of the main flow path pipe, and adjust the gas flow rate to the introduction pipe. In the present invention, the gas introduction amount control plate is adjusted so that appropriate measurement values are obtained based on the diameter of the pipe and the gas flow rate, and the settings of the gas introduction amount control plate are not changed while the sensor is in operation. In this way, if an abnormal measurement value occurs while the sensor is in use, it is possible to detect the abnormality.
図4は、配管に対する測定部の取り付け方の変形例である。図1と同様に、気体が流れる方向に対して垂直の方向から見た図になる。気体の流れる方向は図中の矢印で示した。測定部401、導入管402,気体導入量制御板403、本体流路管404を簡易的に図示している。配管内の気体は、図の左から右に流れるのは、他の実施例と同様である。(A)は測定部401を本体流路管に対して斜めに配置することで、測定部を設置するスペースが少ない場合に有効である。また、気体導入量制御板の先端部を曲げて、配管に対して垂直に近づけることで、気体導入量制御板がまっすぐな場合よりも気体の流れを阻害する効果が高められる。(B)は測定部を本体流路管に対して下方に配置したもので、測定対象の気体の密度が高い場合に有効である。
FIG. 4 shows a modified example of the method of attaching the measuring part to the pipe. As in FIG. 1, the figure is viewed from a direction perpendicular to the direction of gas flow. The direction of gas flow is indicated by the arrow in the figure. The
測定部101
導入管102
本体流路管103
導入口104
導出口105
気体導入量制御板106
測定気体導入口107
測定室108
センサ109
測定気体導出管110
Main body
Gas introduction
Measurement
Claims (3)
測定対象気体が流れる本体流路管と、
本体流路管から分岐し測定部へ測定対象流体を導入する導入管と、
導入管内から本体流路管内にかけて設置され、導入管と平行する上下方向に可動し、本体流路管の流路断面の流路面積を増減させ、測定部へ導入される測定対象流体の流量を制御する気体導入量制御板と、
からなる気体流量調整機構。 A measurement unit that measures a physical quantity of a measurement target gas;
a main flow passage pipe through which a gas to be measured flows;
an introduction pipe that branches off from the main flow path pipe and introduces the fluid to be measured into the measurement section;
a gas introduction amount control plate that is installed from inside the introduction pipe to inside the main flow passage pipe and moves in a vertical direction parallel to the introduction pipe to increase or decrease the flow passage area of the flow passage cross section of the main flow passage pipe and control the flow rate of the measurement target fluid introduced into the measurement section;
A gas flow rate adjustment mechanism consisting of:
3. The gas flow rate adjusting mechanism according to claim 1, wherein the gas introduction amount control panel has a flow passage hole for reducing a pressure loss of a fluid in a main flow passage pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023059153A JP2024146326A (en) | 2023-03-31 | 2023-03-31 | Gas flow rate adjustment mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023059153A JP2024146326A (en) | 2023-03-31 | 2023-03-31 | Gas flow rate adjustment mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024146326A true JP2024146326A (en) | 2024-10-15 |
Family
ID=93057014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023059153A Pending JP2024146326A (en) | 2023-03-31 | 2023-03-31 | Gas flow rate adjustment mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024146326A (en) |
-
2023
- 2023-03-31 JP JP2023059153A patent/JP2024146326A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100418684B1 (en) | Differential pressure type fluid mass flow controller for controlling flow gases used in semiconductor device fabrication | |
KR101444964B1 (en) | Flow controller, flow measuring device testing method, flow controller testing system, and semiconductor manufacturing apparatus | |
US6892745B2 (en) | Flow control valve with integral sensor and controller and related method | |
KR101428826B1 (en) | Flow rate ratio control device | |
WO2018070464A1 (en) | Fluid control device | |
TWI534577B (en) | Pressure flow control device | |
US8255175B2 (en) | Flow meter | |
KR20100090202A (en) | Differential-pressure flowmeter and flow-rate controller | |
JP2004157719A (en) | Mass-flow controller | |
KR101749936B1 (en) | On-off Structure of Flow Control Valve used for Mass Flow Controller | |
US20240160230A1 (en) | Flow rate control device | |
CN107427765B (en) | Pressure dew point control purge air conditioning unit | |
JP2024146326A (en) | Gas flow rate adjustment mechanism | |
JP3416127B2 (en) | Purge type vortex flowmeter | |
JP2024146332A (en) | Gas flow rate adjustment mechanism | |
KR100418683B1 (en) | Differential pressure type fluid mass flow controller for controlling flow gases used in semiconductor device fabrication | |
US20050229976A1 (en) | Adjustable rinse flow in semiconductor processing | |
KR100203598B1 (en) | Pressure property measuring apparatus for expansion valve | |
JP4950545B2 (en) | Back pressure control device | |
CN113390480A (en) | Flow rate measuring device | |
JPH0325724B2 (en) | ||
EP1783574B1 (en) | Fluid flow controller | |
JP5202465B2 (en) | Flow control device | |
RU2262662C2 (en) | Air-operated device for measuring linear sizes | |
JP3297507B2 (en) | Flow measurement device |