JP2021144002A - Flow measurement device - Google Patents

Flow measurement device Download PDF

Info

Publication number
JP2021144002A
JP2021144002A JP2020044479A JP2020044479A JP2021144002A JP 2021144002 A JP2021144002 A JP 2021144002A JP 2020044479 A JP2020044479 A JP 2020044479A JP 2020044479 A JP2020044479 A JP 2020044479A JP 2021144002 A JP2021144002 A JP 2021144002A
Authority
JP
Japan
Prior art keywords
flow rate
flow path
flow
detection unit
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020044479A
Other languages
Japanese (ja)
Other versions
JP7487500B2 (en
Inventor
秀之 中尾
Hideyuki Nakao
秀之 中尾
誠 亀井
Makoto Kamei
誠 亀井
克行 山本
Katsuyuki Yamamoto
克行 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2020044479A priority Critical patent/JP7487500B2/en
Priority to CN202110170864.8A priority patent/CN113390480A/en
Priority to DE102021103501.5A priority patent/DE102021103501A1/en
Publication of JP2021144002A publication Critical patent/JP2021144002A/en
Application granted granted Critical
Publication of JP7487500B2 publication Critical patent/JP7487500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/6888Thermoelectric elements, e.g. thermocouples, thermopiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/001Means for regulating or setting the meter for a predetermined quantity
    • G01F15/002Means for regulating or setting the meter for a predetermined quantity for gases

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

To provide a new and compact flow measurement device which has a simple configuration and high sensitivity in measurement of a flow rate of fluid.SOLUTION: A flow measurement device includes: a main channel in which fluid circulates; and a diversion channel which diverges from and rejoins the main channel so that the fluid for measurement circulates. In the diversion channel, a high-flow channel has a high-flow measurement chip for measuring a flow rate of the high-flow fluid, and a low-flow channel has a wider channel section compared to the high-flow channel and a low-flow measurement chip for measuring a flow rate of the lower-flow fluid than in the high-flow measurement chip. The two channels are parallelly provided therein.SELECTED DRAWING: Figure 8

Description

本発明は、流量計測装置に関する。 The present invention relates to a flow rate measuring device.

従来、主流路と、一対の分流孔を介して主流路と連通する分流路と、分流路を流れる流体の流量を検出するための流れセンサと、流れセンサによって検出される流体の流量と主流路を流れる流体の流量との分流比を設定するために、分流路に配置される分流比設定部材と、流れセンサによって検出された流量、及び分流比に基づいて、主流路を流れる流体の流量を算出する算出回路と、を備えた分流式流量計が提案されていた(例えば、特許文献1)。 Conventionally, a main flow path, a branch flow rate communicating with the main flow path through a pair of diversion holes, a flow sensor for detecting the flow rate of the fluid flowing through the branch flow path, and a fluid flow rate and the main flow path detected by the flow sensor. In order to set the flow rate of the fluid flowing through the main flow path, the flow rate of the fluid flowing through the main flow path is determined based on the flow rate and the flow rate detected by the flow rate sensor and the flow rate dividing member arranged in the branch flow path. A diversion type flow meter including a calculation circuit for calculating has been proposed (for example, Patent Document 1).

また、大流量計測用流路と、大流量計測用流路の下流側に直列に設けられ、大流量計測用流路よりも断面積の小さい小流量計測用流路とを形成している配管を有し、大流量計測用流路と小流量計測用流路にはそれぞれ複数の流量センサが設けられており、小流量域では小流量計測用流路における流速センサの出力に基づき、大流量域では大流量計測用流路における流速センサの出力に基づき流量が算出される流量計も提案されていた(例えば、特許文献2)。 In addition, a pipe that is provided in series on the downstream side of the large flow rate measurement flow path and the small flow rate measurement flow path that has a smaller cross-sectional area than the large flow rate measurement flow path. The large flow rate measurement flow path and the small flow rate measurement flow rate are each provided with a plurality of flow rate sensors. In the region, a flow meter that calculates the flow rate based on the output of the flow velocity sensor in the large flow rate measurement flow path has also been proposed (for example, Patent Document 2).

特開2010−151785号公報JP-A-2010-151785 特開平09−068448号公報Japanese Unexamined Patent Publication No. 09-068448

上記のような流量計においては、小型で簡素なシステムを備えていること、及び高流量の流体から低流量の流体まで、ワイドレンジにおける流量の計測が可能であることが求められる。 The flow meter as described above is required to have a small and simple system and to be able to measure the flow rate in a wide range from a high flow rate fluid to a low flow rate fluid.

システムを小型化及び簡素化するため、主流路と、主流路から分岐するとともに主流路に再度合流する分流路を備えたバイパス構造を流量計に適用する技術が知られている。 In order to miniaturize and simplify the system, there is known a technique of applying a bypass structure having a main flow path and a branch flow path that branches from the main flow path and rejoins the main flow path to a flow meter.

しかし、高流量の流体を測定する場合には、特に熱式のフローセンサでは、流量とセンサ出力の直線性が悪化する場合があり、低流量の流体を測定する場合には、バイパス構造を流量計に適用すると、圧力損失が小さくなり、分流路に対して分流されにくく、感度が確保できない場合がある。 However, when measuring a high flow rate fluid, especially in a thermal flow sensor, the linearity between the flow rate and the sensor output may deteriorate, and when measuring a low flow rate fluid, the bypass structure is flowed. When applied to a meter, the pressure loss becomes small, it is difficult for the flow to be diverted to the divergence channel, and sensitivity may not be ensured.

そこで、分流路をさらに分岐し、高流量用流路と、高流量用流路と比較して流路断面積が広い低流量用流路が並列した構成を流量計に適用することを図る。高流量域と低流量域のそれぞれに専用の流路を持たせることで、計測レンジが広い流量計を実現することを目的とする。 Therefore, the branch flow rate is further branched, and a configuration in which a high flow rate flow rate and a low flow rate flow rate having a wider cross-sectional area than the high flow rate flow rate are arranged in parallel is applied to the flow meter. The purpose is to realize a flow meter with a wide measurement range by providing dedicated flow paths for each of the high flow rate region and the low flow rate region.

また、本発明では、システムの小型化と簡素化、及びワイドレンジにおける流体の流量の計測の実現に加え、分流路中にガス種計測用流路を適用することで、流体の種類を特定し、特定した流体の熱伝導率といった物性値と流量が良好な相関性を持っている3チップ流量計測装置を提供することを最終的な目的とする。 Further, in the present invention, in addition to the miniaturization and simplification of the system and the realization of the measurement of the flow rate of the fluid in a wide range, the type of the fluid is specified by applying the flow rate for measuring the gas type in the branch flow path. The ultimate purpose is to provide a three-chip flow rate measuring device having a good correlation between the physical property values such as the thermal conductivity of the specified fluid and the flow rate.

ここで、本発明における流量計は、分流路において、高流量用流路に配置された高流量計測チップ、及び低流量用流路に配置された低流量計測チップ、及びガス種計測用流路に配置されたガス種計測用チップの3種類の計測チップが含まれる3チップ流量計測装置としてもよい。 Here, the flow meter in the present invention has a high flow rate measuring chip arranged in a high flow rate flow path, a low flow rate measuring chip arranged in a low flow rate flow rate, and a gas type measurement flow path in the branch flow rate. It may be a three-chip flow rate measuring device including three types of measuring chips of the gas type measuring chip arranged in.

上記の課題を解決するための本発明は、
流体が流通する主流路と、前記主流路から分岐するとともに前記主流路に再度合流し計測用の流体を流通させる分流路と、を備える流量計測装置であって、
前記分流路においては、高流量の流体の流量を計測する高流量計測チップが配置された高流量用流路と、前記高流量用流路と比較して流路断面積が広く、前記高流量計測チップより低流量の流体の流量を計測する低流量計測チップが配置された低流量用流路とが並列して形成されることを特徴とする、
流量計測装置である。
本発明によれば、1つの装置に主流路と分流路の2つの流路を形成することで、システム
の小型化及び簡素化が可能となり、また、分流路において、高流量域と低流量域のそれぞれに専用の流路を持たせることで、計測レンジが広い流量計測装置の実現が可能となる。
The present invention for solving the above problems
A flow rate measuring device including a main flow path through which a fluid flows and a branch flow path that branches from the main flow path and rejoins the main flow path to flow a fluid for measurement.
In the branch flow rate, the high flow rate flow rate in which the high flow rate measuring chip for measuring the flow rate of the high flow rate fluid is arranged and the flow rate cross-sectional area are wider than those of the high flow rate flow rate, and the high flow rate It is characterized in that a low flow rate flow path in which a low flow rate measurement chip for measuring the flow rate of a fluid having a lower flow rate than the measurement chip is arranged is formed in parallel.
It is a flow measuring device.
According to the present invention, by forming two flow paths, a main flow path and a branch flow rate, in one device, it is possible to miniaturize and simplify the system, and in the branch flow rate, a high flow rate region and a low flow rate region. By providing each of the above with a dedicated flow path, it is possible to realize a flow rate measuring device having a wide measurement range.

また、本発明においては、前記分流路が途中で分岐されることで、前記高流量用流路と前記低流量用流路が形成される、流量計測装置としてもよい。これによれば、主流路から分流路に分流した流体の流量の計測値を、分流路において、高流量計測チップ、または低流量計測チップによって出力することが可能となる。 Further, in the present invention, the flow rate measuring device may be used in which the high flow rate flow path and the low flow rate flow rate are formed by branching the branch flow path in the middle. According to this, it is possible to output the measured value of the flow rate of the fluid diverted from the main flow path to the branch flow rate by the high flow rate measurement chip or the low flow rate measurement chip in the branch flow rate.

また、本発明においては、前記分流路は、独立した2つの流路を有し、前記高流量用流路と、前記低流量用流路は、互いに独立して前記主流路から分岐した流路である、流量計測装置としてもよい。これによれば、主流路から直接、高流量用流路と低流量用流路への分流比を調整することが可能であり、分流路中で層流を実現させやすい。 Further, in the present invention, the branch flow rate has two independent flow paths, and the high flow rate flow rate and the low flow rate flow rate are independent of each other and branched from the main flow rate. It may be a flow rate measuring device. According to this, it is possible to adjust the divergence ratio from the main flow path directly to the high flow rate flow rate and the low flow rate flow rate, and it is easy to realize laminar flow in the divergence flow rate.

また、本発明においては、前記分流路には、前記分流路中を流れる流体の種類を特定するガス種計測用チップが配置されたガス種計測用流路がさらに形成され、前記ガス種計測用流路は、前記高流量用流路と前記低流量用流路を連通させるように形成されることを特徴とする、流量計測装置としてもよい。これによれば、分流路中を流れる流体の種類を特定することで、特定した流体の熱伝導率といった物性値と流量との間の相関性をとらえることが可能となる。 Further, in the present invention, the branch flow rate is further formed with a gas type measurement flow path in which a gas type measurement chip for specifying the type of fluid flowing in the branch flow path is arranged, and is used for gas type measurement. The flow path may be a flow rate measuring device characterized in that the high flow rate flow path and the low flow rate flow path are formed so as to communicate with each other. According to this, by specifying the type of fluid flowing in the shunt flow path, it is possible to grasp the correlation between the physical property value such as the thermal conductivity of the specified fluid and the flow rate.

また、本発明においては、前記ガス種計測用流路は、前記高流量用流路と前記低流量用流路とを、各々の流路の途中において連通するように形成されることを特徴とする、流量計測装置としてもよい。これによれば、流体の種類を特定した後に、流体の流量の計測を行うことが可能となる。 Further, in the present invention, the gas type measurement flow path is formed so that the high flow rate flow rate and the low flow rate flow rate communicate with each other in the middle of each flow rate. It may be used as a flow rate measuring device. According to this, it is possible to measure the flow rate of the fluid after specifying the type of the fluid.

また、本発明においては、前記低流量計測チップによる計測値と所定の閾値とを比較する比較部をさらに備え、前記比較部において前記計測値が前記閾値以上と判定された場合には、前記高流量計測チップによる計測値が出力され、前記比較部において前記計測値が前記閾値未満と判定された場合には、前記低流量計測チップによる計測値が出力されることを特徴とする、流量計測装置としてもよい。これによれば、閾値を基準として、流体の流量を、高流量計測チップ、または低流量計測チップから出力することで、より正確な出力値を得ることが可能となる。 Further, in the present invention, a comparison unit for comparing the measured value by the low flow rate measuring chip with a predetermined threshold value is further provided, and when the comparison unit determines that the measured value is equal to or higher than the threshold value, the high value is obtained. A flow rate measuring device characterized in that a measured value by a flow rate measuring chip is output, and when the comparison unit determines that the measured value is less than the threshold value, the measured value by the low flow rate measuring chip is output. May be. According to this, it is possible to obtain a more accurate output value by outputting the flow rate of the fluid from the high flow rate measuring chip or the low flow rate measuring chip with reference to the threshold value.

また、本発明においては、前記高流量用流路と前記低流量用流路の流路断面積の比は、1:3であることを特徴とする、流量計測装置としてもよい。これによれば、高流量の流
体から低流量の流体まで、ワイドレンジにおける流量の計測が可能となる。
Further, in the present invention, the flow rate measuring device may be characterized in that the ratio of the flow path cross-sectional area of the high flow rate flow path and the low flow rate flow path is 1: 3. According to this, it is possible to measure the flow rate in a wide range from the high flow rate fluid to the low flow rate fluid.

流量計測装置において、流体が流通する主流路に分流路を付加したバイパス構造を形成することによる小型化と簡素化、及び分流路をさらに分岐させ、高流量用流路と低流量用流路とを形成し、ワイドレンジにおける流量の計測を可能とする新規の技術を提供できるようになる。 In the flow rate measuring device, miniaturization and simplification are achieved by forming a bypass structure in which a branch flow path is added to the main flow path through which the fluid flows, and the branch flow rate is further branched to form a high flow rate flow path and a low flow rate flow path. It will be possible to provide a new technology that enables the measurement of flow rate in a wide range.

実施形態に係る流量測定装置の一例を示す分解斜視図である。It is an exploded perspective view which shows an example of the flow rate measuring apparatus which concerns on embodiment. 流量測定装置の一例を示す透視図である。It is a perspective view which shows an example of the flow rate measuring apparatus. 副流路部を示す平面図である。It is a top view which shows the subchannel part. センサ素子の一例を示す斜視図である。It is a perspective view which shows an example of a sensor element. センサ素子の仕組みを説明するための断面図である。It is sectional drawing for demonstrating the mechanism of a sensor element. 流量検出部の概略構成を示す平面図である。It is a top view which shows the schematic structure of the flow rate detection part. 物性値検出部の概略構成を示す平面図である。It is a top view which shows the schematic structure of the physical characteristic value detection part. 分流路の概略構成を示す模式的な平面図である。It is a schematic plan view which shows the schematic structure of a branch flow path. 流量計測時の機能構成を示すブロック図である。It is a block diagram which shows the functional structure at the time of flow rate measurement. 流量値の計測から出力までを示すフローである。It is a flow showing from the measurement of the flow rate value to the output. 閾値を基準とした、高流量計測チップ、または低流量計測チップにおける流量の計測値と出力値の関係を示すグラフである。It is a graph which shows the relationship between the measured value of the flow rate and the output value in a high flow rate measuring chip or a low flow rate measuring chip with reference to a threshold value. 主流路から分岐した高流量用分流路と低流量用分流路、及びガス種計測用分流路を有し、高流量用分流路と低流量用分流路が互いに独立している分流路の概略構成を示す模式的な平面図である。Schematic configuration of a high-flow rate branch, a low-flow rate branch, and a gas type measurement branch, and the high-flow and low-flow rate branches are independent of each other. It is a schematic plan view which shows.

〔適用例〕
本適用例においては、バイパス構造を3チップ流量計測装置に適用した場合について説明する。本適用例に係る3チップ流量計測装置は流体が流通するバイパス構造を備えており、バイパス構造は主流路と、主流路から分岐するとともに主流路に再度合流する分流路の2つの流路を有する。さらに分流路は、流路断面積が異なる2つの流路に分岐している。
[Application example]
In this application example, a case where the bypass structure is applied to the 3-chip flow rate measuring device will be described. The three-chip flow rate measuring device according to this application example has a bypass structure through which a fluid flows, and the bypass structure has two flow paths, a main flow path and a branch flow path that branches from the main flow path and rejoins the main flow path. .. Further, the branch flow path is branched into two flow paths having different flow path cross-sectional areas.

流路断面積が異なる2つの流路は分流路中に並列して形成されており、高流量用流路には高流量の流体の流量を測定する高流量計測チップが配置されており、高流量用流路と比較して流路断面積が広い低流量用流路には低流量の流体の流量を測定する低流量計測チップが配置されている。 Two flow paths with different flow path cross-sectional areas are formed in parallel in the branch flow rate, and a high flow rate measuring chip for measuring the flow rate of a high flow rate fluid is arranged in the high flow rate flow rate, and the flow rate is high. A low flow rate measuring chip for measuring the flow rate of a low flow rate fluid is arranged in a low flow rate flow path having a wider flow path cross-sectional area than the flow rate flow path.

また、分流路中にはガス種計測用流路が形成されており、流体の種類は、ガス種計測用流路中に配置されたガス種計測用チップによって特定される。ここで、同条件下においても流体の種類によって物性値に差があるため、流体の種類の特定は必要不可欠である。ガス種計測用流路は、高流量用流路と低流量用流路とを、各々の流路の途中において連通するように形成されている。 Further, a gas type measurement flow path is formed in the branch flow path, and the type of fluid is specified by a gas type measurement chip arranged in the gas type measurement flow path. Here, even under the same conditions, the physical property values differ depending on the type of fluid, so it is indispensable to specify the type of fluid. The gas type measurement flow path is formed so that the high flow rate flow rate and the low flow rate flow rate communicate with each other in the middle of each flow rate.

ガス種計測用チップによって流体の種類を特定した後、低流量計測チップから流体の流量を計測する。3チップ流量計測装置は、低流量計測チップの流量計測値と所定の閾値とを比較する比較部を備えており、比較部において、流量計測値が閾値以上と判定された場合は、高流量計測チップによる計測値が出力され、流量計測値が閾値未満と判定された場合は、低流量計測チップによる計測値が出力される。 After specifying the type of fluid with the gas type measurement chip, the flow rate of the fluid is measured from the low flow rate measurement chip. The 3-chip flow rate measuring device is provided with a comparison unit that compares the flow rate measurement value of the low flow rate measurement chip with a predetermined threshold, and when the comparison unit determines that the flow rate measurement value is equal to or higher than the threshold value, high flow rate measurement is performed. The measured value by the chip is output, and when it is determined that the flow rate measured value is less than the threshold value, the measured value by the low flow rate measuring chip is output.

〔実施例1〕
以下、本発明の実施形態に係る3チップ流量計測装置について、図面を用いて説明する。なお、以下の実施形態においては、本発明を3チップ流量計測装置に適用した例について説明するが、本発明は、2チップ流量計測装置など、他の流量計測装置に適用しても構わない。以下に示す実施形態は、3チップ流量計測装置の一例であり、本発明に係る3チップ流量計測装置は、以下の構成には限定されない。
[Example 1]
Hereinafter, the three-chip flow rate measuring device according to the embodiment of the present invention will be described with reference to the drawings. In the following embodiments, an example in which the present invention is applied to a 3-chip flow rate measuring device will be described, but the present invention may be applied to another flow rate measuring device such as a 2-chip flow measuring device. The embodiment shown below is an example of a three-chip flow rate measuring device, and the three-chip flow measuring device according to the present invention is not limited to the following configuration.

<装置構成>
図1は、本実施形態の前提となる流量計測装置1の一例を示す分解斜視図であり、図2は、流量計測装置1の一例を示す透視図である。
<Device configuration>
FIG. 1 is an exploded perspective view showing an example of a flow rate measuring device 1 which is a premise of the present embodiment, and FIG. 2 is a perspective view showing an example of a flow rate measuring device 1.

流量計測装置1は、例えばガスメータや燃焼機器、自動車等の内燃機関、燃料電池、その他医療等の産業機器、組込機器に組み込まれ、流路を通過する気体の流量を測定する。なお、図1及び図2の破線の矢印は、流体の流れる方向を例示している。 The flow rate measuring device 1 is incorporated in, for example, a gas meter, a combustion device, an internal combustion engine such as an automobile, a fuel cell, other industrial devices such as medical care, or an embedded device, and measures the flow rate of gas passing through a flow path. The broken line arrows in FIGS. 1 and 2 exemplify the direction in which the fluid flows.

図2に示すように、本実施形態では、流量計測装置1は主流路2から分岐した分流路3の内部に設けられる。また、流量計測装置1は、流量検出部11と、物性値検出部12とを備える。流量検出部11及び物性値検出部12は、マイクロヒータによって形成される加熱部とサーモパイルによって形成される温度検出部とを含む熱式のフローセンサである。 As shown in FIG. 2, in the present embodiment, the flow rate measuring device 1 is provided inside the branch flow path 3 branched from the main flow path 2. Further, the flow rate measuring device 1 includes a flow rate detecting unit 11 and a physical characteristic value detecting unit 12. The flow rate detection unit 11 and the physical characteristic value detection unit 12 are thermal flow sensors including a heating unit formed by a microheater and a temperature detection unit formed by a thermopile.

図1及び図2に示すように、本実施形態に係る流量計測装置1は、主流路2と、分流路3と、シール4と、回路基板5と、カバー6とを備えている。 As shown in FIGS. 1 and 2, the flow rate measuring device 1 according to the present embodiment includes a main flow path 2, a branch flow path 3, a seal 4, a circuit board 5, and a cover 6.

主流路2は、長手方向に貫通した管状部材である。主流路2の内周面には、測定対象流体の流れ方向に対して、上流側に流入口(第1流入口)34Aが形成され、下流側に流出口(第1流出口)35Aが形成されている。例えば主流路2の軸方向の長さは約50mmであり、内周面の直径(主流路2の内径)は約20mmであり、主流路2の外径は約24mmであるが、このような例には限定されない。 The main flow path 2 is a tubular member penetrating in the longitudinal direction. On the inner peripheral surface of the main flow path 2, an inflow port (first inflow port) 34A is formed on the upstream side and an outflow port (first outflow port) 35A is formed on the downstream side with respect to the flow direction of the fluid to be measured. Has been done. For example, the axial length of the main flow path 2 is about 50 mm, the diameter of the inner peripheral surface (inner diameter of the main flow path 2) is about 20 mm, and the outer diameter of the main flow path 2 is about 24 mm. Not limited to the example.

分流路3は、主流路2の上に設けられており、主流路2から分岐するとともに主流路2に再度合流するバイパス構造として構築されている。分流路3は、一端が流入口34Aに連通し、他端が流出口35Aに連通している。流量計測装置1では、分流路3は、流入用流路34と、物性値検出用流路32と、流量検出用流路33と、流出用流路35とから構成されている。 The branch flow path 3 is provided on the main flow path 2, and is constructed as a bypass structure that branches from the main flow path 2 and rejoins the main flow path 2. One end of the branch flow path 3 communicates with the inflow port 34A, and the other end communicates with the outflow port 35A. In the flow rate measuring device 1, the branch flow path 3 is composed of an inflow flow path 34, a physical property value detection flow path 32, a flow rate detection flow rate 33, and an outflow flow path 35.

流入用流路34は、主流路2を流れる測定対象流体を流入させ、物性値検出用流路32及び流量検出用流路33に分流させるための流路である。流入用流路34は、主流路2と垂直な方向に、分流路3を貫通して形成されており、一端が流入口34Aに連通し、他端は主流路2の上面で開口して物性値検出用流路32及び流量検出用流路33に連通している。これにより、主流路2を流れる測定対象流体の一部を、流入用流路34を介して物性値検出用流路32及び流量検出用流路33に分流させることができる。 The inflow flow path 34 is a flow path for allowing the fluid to be measured flowing through the main flow path 2 to flow into the flow rate detection flow path 32 and the flow rate detection flow path 33. The inflow flow path 34 is formed so as to penetrate the branch flow path 3 in a direction perpendicular to the main flow path 2, one end communicating with the inflow port 34A, and the other end opening at the upper surface of the main flow path 2 to have physical characteristics. It communicates with the value detection flow path 32 and the flow rate detection flow path 33. As a result, a part of the fluid to be measured flowing through the main flow path 2 can be divided into the physical characteristic value detection flow path 32 and the flow rate detection flow path 33 via the inflow flow path 34.

物性値検出用流路32は、分流路3の上面に形成された、主流路2と平行な方向に延在する、縦断面が略コ字型の流路である。物性値検出用流路32は、長手方向(主流路2と平行な方向)に延在する部分に、測定対象流体の物性値を検出するための物性値検出部12が配置されている。 The physical property value detection flow path 32 is a flow path having a substantially U-shaped vertical cross section, which is formed on the upper surface of the branch flow path 3 and extends in a direction parallel to the main flow path 2. The physical characteristic value detecting unit 12 for detecting the physical characteristic value of the fluid to be measured is arranged in a portion extending in the longitudinal direction (direction parallel to the main flow path 2) of the physical characteristic value detecting flow path 32.

物性値検出用流路32の一端は、流入用流路34を介して流入口34Aに連通しており、他端は、流出用流路35を介して流出口35Aに連通している。 One end of the physical property value detection flow path 32 communicates with the inflow port 34A via the inflow flow path 34, and the other end communicates with the outflow port 35A via the outflow flow path 35.

流量検出用流路33は、分流路3の上面に形成された、主流路2と平行な方向に延在する、縦断面が略コの字型の流路である。流量検出用流路33は、長手方向(主流路2と平行な方向)に延在する部分に、測定対象流体の流量を検出するための流量検出部11が配置された流量検出用流路33を有している。 The flow rate detection flow path 33 is a flow path having a substantially U-shaped vertical cross section, which is formed on the upper surface of the branch flow path 3 and extends in a direction parallel to the main flow path 2. The flow rate detection flow path 33 is a flow rate detection flow path 33 in which a flow rate detection unit 11 for detecting the flow rate of the fluid to be measured is arranged in a portion extending in the longitudinal direction (direction parallel to the main flow rate 2). have.

流量検出用流路33の一端は、流入用流路34を介して流入口34Aに連通しており、他端は、流出用流路35を介して流出口35Aに連通している。なお、物性値検出部12及び流量検出部11は、回路基板5に実装された状態で物性値検出用流路32または流量検出用流路33に配置される。 One end of the flow rate detection flow path 33 communicates with the inflow port 34A via the inflow flow path 34, and the other end communicates with the outflow port 35A via the outflow flow path 35. The physical characteristic value detection unit 12 and the flow rate detection unit 11 are arranged in the physical characteristic value detection flow path 32 or the flow rate detection flow path 33 in a state of being mounted on the circuit board 5.

流出用流路35は、物性値検出用流路32及び流量検出用流路33を通過した測定対象流体を、主流路2に流出させるための流路である。流出用流路35は、主流路2と垂直な方向に、分流路3を貫通して形成されており、一端が流出口35Aに連通し、他端は主流路2の上面で開口して、物性値検出用流路32及び流量検出用流路33に連通している。これにより、物性値検出用流路32及び流量検出用流路33を通過した測定対象流体を、流出用流路35を介して、主流路2に流出させることができる。 The outflow flow path 35 is a flow path for causing the fluid to be measured that has passed through the physical property value detection flow path 32 and the flow rate detection flow path 33 to flow out to the main flow path 2. The outflow flow path 35 is formed so as to penetrate the branch flow path 3 in a direction perpendicular to the main flow path 2, one end communicating with the outflow port 35A, and the other end opening at the upper surface of the main flow path 2. It communicates with the physical property value detection flow path 32 and the flow rate detection flow path 33. As a result, the fluid to be measured that has passed through the physical property value detection flow path 32 and the flow rate detection flow path 33 can flow out to the main flow path 2 via the outflow flow path 35.

このように、同じ流入口34Aから流入させた測定対象流体を、物性値検出用流路32及び流量検出用流路33に分流させることで、物性値検出部12及び流量検出部11は、温度、密度などの条件が等しい測定対象流体に基づいて物性値または流量を検出することができる。したがって、流量計測装置1の測定精度を向上させることができる。 In this way, the fluid to be measured that has flowed in from the same inflow port 34A is divided into the physical characteristic value detection flow path 32 and the flow rate detection flow path 33, so that the physical property value detection unit 12 and the flow rate detection unit 11 have a temperature. It is possible to detect the physical characteristic value or the flow rate based on the fluid to be measured under the same conditions such as density and density. Therefore, the measurement accuracy of the flow rate measuring device 1 can be improved.

なお、流量計測装置1では、分流路3にシール4を嵌め込んだ後、回路基板5が配置され、さらにカバー6によって回路基板5を分流路3に固定することで、分流路3の内部の気密性を確保している。 In the flow rate measuring device 1, the circuit board 5 is arranged after the seal 4 is fitted into the branch flow path 3, and the circuit board 5 is further fixed to the branch flow path 3 by the cover 6 to form the inside of the branch flow path 3. Airtightness is ensured.

図3は、図1に示されるような、本実施例の前提となる流量計測装置1における分流路3を示す平面図である。図3に示されるように、物性値検出用流路32は、略コの字型の一端が流入用流路34に連通し、他端が流出用流路35に連通している。同様に、流量検出用流路33は、略コの字型の一端が流入用流路34に連通し、他端が流出用流路35に連通している。 FIG. 3 is a plan view showing a branch flow path 3 in the flow rate measuring device 1 which is a premise of this embodiment as shown in FIG. As shown in FIG. 3, in the physical property value detection flow path 32, one end of a substantially U-shape communicates with the inflow flow path 34, and the other end communicates with the outflow flow path 35. Similarly, in the flow rate detection flow path 33, one end of a substantially U-shape communicates with the inflow flow path 34, and the other end communicates with the outflow flow path 35.

また、物性値検出用流路32と流量検出用流路33との両端部も互いに連通しており、物性値検出用流路32及び流量検出用流路33は、分流路3の上面において矩形状の流路を構成している。 Further, both ends of the physical property value detection flow path 32 and the flow rate detection flow path 33 are also in communication with each other, and the physical property value detection flow path 32 and the flow rate detection flow path 33 are rectangular on the upper surface of the branch flow path 3. It constitutes a shaped flow path.

流量計測装置1では、物性値検出用流路32において物性値検出部12を含む部分、及び流量検出用流路33において流量検出部11を含む部分は、何れも分流路3の上面と垂直な方向(法線方向)から見たときの形状が正方形であり、流入用流路34と流出用流路35とを結ぶ直線に対して対称となる位置にそれぞれ形成されている。 In the flow rate measuring device 1, the portion of the physical property value detecting flow path 32 including the physical property value detecting unit 12 and the portion of the flow rate detecting flow path 33 including the flow rate detecting unit 11 are both perpendicular to the upper surface of the branch flow path 3. The shape when viewed from the direction (normal direction) is square, and each is formed at a position symmetrical with respect to the straight line connecting the inflow flow path 34 and the outflow flow path 35.

また、矢印P及びQは、物性値検出用流路32及び流量検出用流路33に分流する測定対象流体の流量を表す。本実施形態では、物性値検出用流路32には流量Pの測定対象流体が分流され、流量検出用流路33には流量Qの測定対象流体が流れるように、物性値検出用流路32及び流量検出用流路33の幅が設定されている。 Further, arrows P and Q represent the flow rates of the fluid to be measured that are divided into the physical property value detection flow path 32 and the flow rate detection flow path 33. In the present embodiment, the physical property value detection flow path 32 is such that the fluid to be measured at the flow rate P is diverted into the flow rate detection flow path 32 and the measurement target fluid at the flow rate Q flows through the flow rate detection flow path 33. And the width of the flow rate detection flow path 33 is set.

この流量P及び流量Qの値は、主流路2を流れる測定対象流体の流量によって変動するものであるが、通常の使用態様において、流量Pは物性値検出部12の検出レンジ内の値となり、流量Qは流量検出部11の検出レンジ内の値となるように、物性値検出用流路3
2及び流量検出用流路33の幅がそれぞれ設定されている。物性値検出用流路32及び流量検出用流路33の幅は例示であり、図3の例には限定されない。
The values of the flow rate P and the flow rate Q vary depending on the flow rate of the fluid to be measured flowing through the main flow path 2, but in the normal usage mode, the flow rate P is a value within the detection range of the physical property value detection unit 12. The flow rate Q is a value within the detection range of the flow rate detection unit 11, and the flow rate 3 for detecting the physical property value.
The widths of 2 and the flow rate detection flow path 33 are set respectively. The widths of the physical property value detection flow path 32 and the flow rate detection flow path 33 are examples, and are not limited to the example of FIG.

このように、流量計測装置1では、物性値検出用流路32及び流量検出用流路33に分流する測定対象流体の流量を、それぞれの幅を調整することで個別に制御することが可能である。このため、物性値検出部12の検出レンジに応じて物性値検出用流路32を流れる測定対象流体の流量を制御し、流量検出部11の検出レンジに応じて流量検出用流路33を流れる測定対象流体の流量を制御することができる。 In this way, in the flow rate measuring device 1, it is possible to individually control the flow rate of the fluid to be measured, which is divided into the physical property value detecting flow path 32 and the flow rate detecting flow path 33, by adjusting the widths of each. be. Therefore, the flow rate of the fluid to be measured flowing through the physical property value detection flow path 32 is controlled according to the detection range of the physical property value detection unit 12, and flows through the flow rate detection flow path 33 according to the detection range of the flow rate detection unit 11. The flow rate of the fluid to be measured can be controlled.

したがって、物性値検出部12は、固有の検出レンジに応じた最適な流量で、測定対象流体の物性値を検出することができるので、物性値検出部12の検出精度を高めることができる。 Therefore, the physical characteristic value detecting unit 12 can detect the physical characteristic value of the fluid to be measured at the optimum flow rate according to the unique detection range, so that the detection accuracy of the physical characteristic value detecting unit 12 can be improved.

同様に、流量検出部11は、固有の検出レンジに応じた最適な流量で、測定対象流体の流量を検出することができるので、流量検出部11の検出精度を高めることができる。 Similarly, since the flow rate detection unit 11 can detect the flow rate of the fluid to be measured at the optimum flow rate according to the unique detection range, the detection accuracy of the flow rate detection unit 11 can be improved.

物性値検出用流路32及び流量検出用流路33は、何れも略コ字型に形成された構成には限定されない。すなわち、物性値検出用流路32及び流量検出用流路33は、物性値検出用流路32及び流量検出用流路33を通過する測定対象流体の流量が制御可能な幅に設定されていれば、他の形状を採用するようにしてもよい。 The physical property value detection flow path 32 and the flow rate detection flow path 33 are not limited to a substantially U-shaped structure. That is, the physical property value detection flow path 32 and the flow rate detection flow path 33 are set to a width in which the flow rate of the fluid to be measured passing through the physical property value detection flow path 32 and the flow rate detection flow path 33 can be controlled. For example, other shapes may be adopted.

また、本実施形態では、物性値検出用流路32において物性値検出部12を含む部分、及び流量検出用流路33において流量検出部11を含む部分の形状を正方形としているが、本発明はこれに限定されない。物性値検出用流路32及び流量検出用流路33の形状は、物性値検出部12または流量検出部11が配置可能であればよく、配置される物性値検出部12及び流量検出部11の形状に応じて決定される。 Further, in the present embodiment, the shape of the portion including the physical characteristic value detection unit 12 in the physical characteristic value detection flow path 32 and the portion including the flow rate detection unit 11 in the flow rate detection flow path 33 are square, but the present invention has a square shape. Not limited to this. The shape of the physical property value detection flow path 32 and the flow rate detection flow path 33 may be such that the physical property value detection unit 12 or the flow rate detection unit 11 can be arranged, and the physical property value detection unit 12 and the flow rate detection unit 11 are arranged. Determined according to the shape.

したがって、例えば、物性値検出用流路32の幅よりも、物性値検出部12のサイズが小さい場合には、物性値検出用流路32において物性値検出部12を含む部分の幅を物性値検出部12の幅に一致させてもよい。この場合、物性値検出用流路32の長手方向に延在する部分は、直線形状に形成されることとなる。なお、流量検出用流路33についても同様である。 Therefore, for example, when the size of the physical property value detection unit 12 is smaller than the width of the physical characteristic value detection flow path 32, the width of the portion of the physical property value detection flow path 32 including the physical characteristic value detection unit 12 is set as the physical characteristic value. It may match the width of the detection unit 12. In this case, the portion extending in the longitudinal direction of the physical property value detecting flow path 32 is formed in a linear shape. The same applies to the flow rate detection flow path 33.

図4は、流量検出部及び物性値検出部に用いられるセンサ素子の一例を示す斜視図である。また、図5は、センサ素子の仕組みを説明するための断面図である。センサ素子100は、マイクロヒータ(加熱部)101と、マイクロヒータ101を挟んで対称に設けられたサーモパイル(温度検出部)102とを備える。これらの上下には絶縁薄膜が形成され、シリコン基板上に設けられている。マイクロヒータ101は、例えばポリシリコンで形成された抵抗である。 FIG. 4 is a perspective view showing an example of a sensor element used in the flow rate detection unit and the physical characteristic value detection unit. Further, FIG. 5 is a cross-sectional view for explaining the mechanism of the sensor element. The sensor element 100 includes a microheater (heating unit) 101 and a thermopile (temperature detection unit) 102 symmetrically provided with the microheater 101 interposed therebetween. Insulating thin films are formed above and below these, and are provided on a silicon substrate. The microheater 101 is, for example, a resistor made of polysilicon.

また、マイクロヒータ101、及びサーモパイル102の下方のシリコン基板には、凹部であるキャビティエリア103が設けられている。キャビティエリア103は、ポリシリコンから成るフレーム104に囲まれている。マイクロヒータ101からの発熱は、キャビティエリア103に放出されるため、シリコン基板中への発熱の拡散は抑制される。 Further, the silicon substrate below the microheater 101 and the thermopile 102 is provided with a cavity area 103 which is a recess. The cavity area 103 is surrounded by a frame 104 made of polysilicon. Since the heat generated from the microheater 101 is discharged to the cavity area 103, the diffusion of the heat generated into the silicon substrate is suppressed.

また、フレーム104は熱容量が大きく、温まりにくいため、フレーム104上にある冷接点の温度はほとんど上昇せず、温接点との温度差をより正確に検知することが可能となる。 Further, since the frame 104 has a large heat capacity and is difficult to heat, the temperature of the cold contact on the frame 104 hardly rises, and the temperature difference from the hot contact can be detected more accurately.

図5は、破線の楕円によって、マイクロヒータ101が発熱した場合の温度分布を模式
的に示している。なお、破線が太いほど温度が高いものとする。空気の流れがない場合、図5の上段(1)に示すようにマイクロヒータ101の両側の温度分布はほぼ均等になる。一方、例えば図5の下段(2)において破線の矢印で示す方向に空気が流れた場合、周囲の空気が移動するため、マイクロヒータ101の風上側よりも風下側の方が、温度は高くなる。センサ素子は、このようなヒータ熱の分布の偏りを利用して、流量を示す値を出力する。
FIG. 5 schematically shows the temperature distribution when the microheater 101 generates heat by the broken line ellipse. The thicker the broken line, the higher the temperature. When there is no air flow, the temperature distribution on both sides of the microheater 101 becomes almost uniform as shown in the upper part (1) of FIG. On the other hand, for example, when air flows in the direction indicated by the broken line arrow in the lower part (2) of FIG. 5, the temperature is higher on the leeward side than on the leeward side of the microheater 101 because the surrounding air moves. .. The sensor element outputs a value indicating the flow rate by utilizing such a bias of the heater heat distribution.

センサ素子の出力電圧ΔVは、例えば次のような式(1)で表される。

Figure 2021144002

なお、Tはマイクロヒータ101の温度、Tはサーモパイル102の外側に設けられる周囲温度センサが測定した温度、Vは流速の平均値、Aとbは所定の定数である。 The output voltage ΔV of the sensor element is represented by, for example, the following equation (1).
Figure 2021144002

Incidentally, T h is the temperature of the micro-heater 101, T a is the temperature at which ambient temperature sensor provided outside of the thermopile 102 is measured, V f is the mean value of the flow velocity, A and b are predetermined constants.

<流量検出部及び物性値検出部>
図6は、図1に示した流量検出部11の概略構成を示す平面図であり、図7は、図1に示した物性値検出部12の概略構成を示す平面図である。流量計測装置1では、物性値検出用流路32と流量検出用流路33とは、長手方向に延在する流路の幅がそれぞれ異なっており、物性値検出用流路32において物性値検出部12を含む部分の幅は、流量検出用流路33において流量検出部11を含む部分の幅よりも狭くなっている。これにより、流量計測装置1では、物性値検出用流路32及び流量検出用流路33に分流される測定対象流体の流量を、それぞれ個別に制御している。
<Flow rate detection unit and physical property value detection unit>
FIG. 6 is a plan view showing a schematic configuration of the flow rate detection unit 11 shown in FIG. 1, and FIG. 7 is a plan view showing a schematic configuration of the physical characteristic value detection unit 12 shown in FIG. In the flow rate measuring device 1, the width of the flow path extending in the longitudinal direction is different between the physical property value detection flow path 32 and the flow rate detection flow path 33, and the physical property value detection flow path 32 detects the physical property value. The width of the portion including the portion 12 is narrower than the width of the portion including the flow rate detection unit 11 in the flow rate detection flow path 33. As a result, the flow rate measuring device 1 individually controls the flow rates of the fluids to be measured that are divided into the physical property value detecting flow path 32 and the flow rate detecting flow path 33.

図6に示すように、流量検出部11は、測定対象流体の温度を検出する第1サーモパイル(流量検出部内第1温度検出部)111及び第2サーモパイル(流量検出部内第2温度検出部)112と、測定対象流体を加熱するマイクロヒータ113とを備えている。マイクロヒータ113と、流量検出部内第1温度検出部111及び流量検出部内第2温度検出部112とは、流量検出部11内において、測定対象流体の流れ方向Pに沿って並んで配置されている。 As shown in FIG. 6, the flow rate detection unit 11 includes a first thermopile (first temperature detection unit in the flow rate detection unit) 111 and a second thermopile (second temperature detection unit in the flow rate detection unit) 112 that detect the temperature of the fluid to be measured. And a microheater 113 for heating the fluid to be measured. The microheater 113, the first temperature detection unit 111 in the flow rate detection unit, and the second temperature detection unit 112 in the flow rate detection unit are arranged side by side in the flow rate detection unit 11 along the flow direction P of the fluid to be measured. ..

また、マイクロヒータ113、流量検出部内第1温度検出部111及び流量検出部内第2温度検出部112の形状は、平面視においてそれぞれ略矩形であり、各々の長手方向は測定対象流体の流れ方向Pと直交する。 Further, the shapes of the microheater 113, the first temperature detection unit 111 in the flow rate detection unit, and the second temperature detection unit 112 in the flow rate detection unit are substantially rectangular in a plan view, and their longitudinal directions are the flow directions P of the fluid to be measured. Orthogonal to.

流量検出部内第1温度検出部111及び流量検出部内第2温度検出部112は、マイクロヒータ113の上流側に流量検出部内第1温度検出部111が配置され、下流側に流量検出部内第2温度検出部112が配置されて、マイクロヒータ113を挟んで対称な位置の温度を検出する。 In the first temperature detection unit 111 in the flow rate detection unit and the second temperature detection unit 112 in the flow rate detection unit, the first temperature detection unit 111 in the flow rate detection unit is arranged on the upstream side of the microheater 113, and the second temperature in the flow rate detection unit is on the downstream side. The detection unit 112 is arranged to detect the temperature at symmetrical positions with the microheater 113 in between.

流量計測装置1では、物性値検出部12及び流量検出部11に、実質的に同一構造のセンサが用いられており、測定対象流体の流れ方向に対する配置角度を90度異ならせて配置されている。これにより、同一構造のセンサを物性値検出部12または流量検出部11として機能させることが可能となるため、流量計測装置1の製造コストを低減することができる。 In the flow rate measuring device 1, sensors having substantially the same structure are used in the physical property value detecting unit 12 and the flow rate detecting unit 11, and the sensors are arranged at different angles of 90 degrees with respect to the flow direction of the fluid to be measured. .. As a result, the sensor having the same structure can function as the physical characteristic value detecting unit 12 or the flow rate detecting unit 11, so that the manufacturing cost of the flow rate measuring device 1 can be reduced.

一方、図7に示すように、物性値検出部12は、測定対象流体の温度を検出する第1サーモパイル(物性値検出部内第1温度検出部)121及び第2サーモパイル(物性値検出部内第2温度検出部)122と、測定対象流体を加熱するマイクロヒータ(物性値検出部内加熱部)123とを備えている。物性値検出部内加熱部123と、物性値検出部内第1
温度検出部121及び物性値検出部内第2温度検出部122とは、物性値検出部12内において、測定対象流体の流れ方向Qと直交する方向に並んで配置されている。
On the other hand, as shown in FIG. 7, the physical property value detection unit 12 has a first thermopile (first temperature detection unit in the physical property value detection unit) 121 and a second thermopile (second in the physical characteristic value detection unit) that detect the temperature of the fluid to be measured. A temperature detection unit) 122 and a microheater (heating unit in the physical property value detection unit) 123 for heating the fluid to be measured are provided. The heating unit 123 in the physical characteristic value detection unit and the first in the physical characteristic value detection unit
The temperature detection unit 121 and the second temperature detection unit 122 in the physical property value detection unit are arranged side by side in the physical property value detection unit 12 in a direction orthogonal to the flow direction Q of the fluid to be measured.

また、物性値検出部内加熱部123、物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122の形状は、平面視においてそれぞれ略矩形であり、各々の長手方向は測定対象流体の流れ方向Qに沿っている。 Further, the shapes of the heating unit 123 in the physical characteristic value detection unit, the first temperature detection unit 121 in the physical characteristic value detection unit, and the second temperature detection unit 122 in the physical characteristic value detection unit are substantially rectangular in a plan view, and the longitudinal directions of each are measured. It is along the flow direction Q of the target fluid.

また、物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122は、物性値検出部内加熱部123を挟んで左右対称に配置されており、物性値検出部内加熱部123の両側の対称な位置の温度を検出する。したがって、物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122の測定値はほぼ同一であり、いずれか一方の値を採用するようにしてもよいし、両者の平均値を算出するようにしてもよい。 Further, the first temperature detection unit 121 in the physical property value detection unit and the second temperature detection unit 122 in the physical property value detection unit are arranged symmetrically with the heating unit 123 in the physical characteristic value detection unit interposed therebetween, and the heating unit 123 in the physical characteristic value detection unit. Detects the temperature at symmetrical positions on both sides of. Therefore, the measured values of the first temperature detection unit 121 in the physical property value detection unit and the second temperature detection unit 122 in the physical characteristic value detection unit are substantially the same, and one of the values may be adopted, or the average of both may be adopted. The value may be calculated.

ここで、測定対象流体の流れによって温度分布は下流側に偏るため、流れ方向と直交する方向の温度分布の変化は、測定対象流体の流れ方向の温度分布の変化に比べて小さい。このため、物性値検出部内第1温度検出部121と、物性値検出部内加熱部123と、物性値検出部内第2温度検出部122とを、この順で測定対象流体の流れ方向と直交する方向に並べて配置することにより、温度分布の変化による物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122の出力特性の変化を低減することができる。 Here, since the temperature distribution is biased to the downstream side due to the flow of the fluid to be measured, the change in the temperature distribution in the direction orthogonal to the flow direction is smaller than the change in the temperature distribution in the flow direction of the fluid to be measured. Therefore, the first temperature detection unit 121 in the physical property value detection unit, the heating unit 123 in the physical property value detection unit, and the second temperature detection unit 122 in the physical property value detection unit are in this order in a direction orthogonal to the flow direction of the fluid to be measured. By arranging them side by side, it is possible to reduce changes in the output characteristics of the first temperature detection unit 121 in the physical property value detection unit and the second temperature detection unit 122 in the physical property value detection unit due to changes in the temperature distribution.

したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部12による検出精度を向上させることができる。 Therefore, the influence of the change in the temperature distribution due to the flow of the fluid to be measured can be reduced, and the detection accuracy by the physical property value detecting unit 12 can be improved.

また、物性値検出部内加熱部123の長手方向が測定対象流体の流れ方向に沿って配置されているため、物性値検出部内加熱部123は測定対象流体の流れ方向に亘って広範囲に測定対象流体を加熱することが可能となる。このため、測定対象流体の流れによって温度分布が下流側に偏った場合であっても、物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122の出力特性の変化を低減することができる。 Further, since the longitudinal direction of the heating unit 123 in the physical property value detection unit is arranged along the flow direction of the fluid to be measured, the heating unit 123 in the physical property value detection unit has a wide range of the fluid to be measured over the flow direction of the fluid to be measured. Can be heated. Therefore, even if the temperature distribution is biased to the downstream side due to the flow of the fluid to be measured, the output characteristics of the first temperature detection unit 121 in the physical property value detection unit and the second temperature detection unit 122 in the physical property value detection unit can be changed. Can be reduced.

したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部12による検出精度を向上させることができる。 Therefore, the influence of the change in the temperature distribution due to the flow of the fluid to be measured can be reduced, the influence of the change in the temperature distribution due to the flow of the fluid to be measured can be reduced, and the detection accuracy by the physical property value detecting unit 12 can be improved. ..

さらに、物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122の長手方向が測定対象流体の流れ方向に沿って配置されているため、物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122は測定対象流体の流れ方向に亘って広範囲に温度を検出することが可能となる。このため、測定対象流体の流れによって温度分布が下流側に偏った場合であっても物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122の出力特性の変化を低減することができる。 Further, since the longitudinal directions of the first temperature detection unit 121 in the physical property value detection unit and the second temperature detection unit 122 in the physical characteristic value detection unit are arranged along the flow direction of the fluid to be measured, the first temperature detection in the physical characteristic value detection unit is performed. The unit 121 and the second temperature detection unit 122 in the physical characteristic value detection unit can detect the temperature in a wide range over the flow direction of the fluid to be measured. Therefore, even when the temperature distribution is biased to the downstream side due to the flow of the fluid to be measured, the change in the output characteristics of the first temperature detection unit 121 in the physical property value detection unit and the second temperature detection unit 122 in the physical property value detection unit is reduced. can do.

したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部12による検出精度を向上させることができる。 Therefore, the influence of the change in the temperature distribution due to the flow of the fluid to be measured can be reduced, and the detection accuracy by the physical property value detecting unit 12 can be improved.

次に本実施例に係る流量測定装置について、分流路3の特長を含めて説明する。熱式の流量計測装置1では、主流路2に分流路3が付加したバイパス構造が構築されていることで、高流量の流体は、分流路3に対して過剰に分流し、低流量の流体は、分流路3に対して分流されにくくなるため、流量の計測は困難である。そこで、本実施例においては、流量の計測レンジを広域にすることを目指し、分流路3において、流量検出部11の一ヶ所
で流量を測定する代わりに、高流量域と低流量域のそれぞれに専用の流路を持たせ、それぞれの流路で流量を計測することとした。
Next, the flow rate measuring device according to this embodiment will be described including the features of the branch flow path 3. In the thermal flow rate measuring device 1, a bypass structure in which the branch flow rate 3 is added to the main flow path 2 is constructed, so that the high flow rate fluid is excessively divided with respect to the branch flow rate 3 and the low flow rate fluid. Is difficult to measure the flow rate because it is difficult to divide the flow into the branch flow path 3. Therefore, in this embodiment, aiming at widening the measurement range of the flow rate, instead of measuring the flow rate at one place of the flow rate detection unit 11 in the branch flow rate 3, the flow rate is divided into a high flow rate region and a low flow rate region, respectively. It was decided to have a dedicated flow path and measure the flow rate in each flow path.

また、本実施例においては、分流路中を流れる流体の熱伝導率といった物性値と流量との間の相関性をとらえるため、流体の種類を特定するシステムを取り入れることとした。なお、以下の説明では、高流量計測チップ7、及び低流量計測チップ8、及びガス種計測用チップ9は、上記の説明における流量検出部11、及び物性値検出部12と同等のセンサである。 Further, in this embodiment, in order to grasp the correlation between the physical property value such as the thermal conductivity of the fluid flowing in the shunt flow path and the flow rate, it was decided to adopt a system for specifying the type of fluid. In the following description, the high flow rate measurement chip 7, the low flow rate measurement chip 8, and the gas type measurement chip 9 are sensors equivalent to the flow rate detection unit 11 and the physical property value detection unit 12 in the above description. ..

<機能構成>
図8は、分流路3の概略構成を示す模式的な平面図である。分流路3は、流入口34Aと流出口35Aを基に主流路2と連結している。分流路3はさらに分岐され、高流量の流体の流量を測定する高流量計測チップ7が配置された高流量用流路71と、高流量用流路71と比較して流路断面積が広く、高流量計測チップ7より低流量の流体の流量を測定する低流量計測チップ8が配置された低流量用流路81とが並列して形成されている。ここで、高流量用流路71と低流量用流路81の流路断面積の比は、例えば1:3であってもよい。
<Functional configuration>
FIG. 8 is a schematic plan view showing a schematic configuration of the branch flow path 3. The branch flow path 3 is connected to the main flow path 2 based on the inflow port 34A and the outflow port 35A. The branch flow path 3 is further branched, and the flow rate cross-sectional area is wider than that of the high flow rate flow rate 71 in which the high flow rate measuring chip 7 for measuring the flow rate of the high flow rate fluid is arranged and the high flow rate flow rate 71. The low flow rate measuring chip 8 for measuring the flow rate of the fluid having a lower flow rate than the high flow rate measuring chip 7 is arranged in parallel with the low flow rate flow rate 81. Here, the ratio of the flow path cross-sectional areas of the high flow rate flow path 71 and the low flow rate flow path 81 may be, for example, 1: 3.

高流量用流路71と低流量用流路81は、分流路3が主流路2に再度合流する合流点の上流側において合流している。また、分流路3には、分流路3中を流れる流体の種類を特定するガス種計測用チップ9が配置されたガス種計測用流路91が、高流量用流路71と低流量用流路81を連通させるように形成されている。ここで、本実施例においては、分流路3において、高流量計測チップ7、及び低流量計測チップ8、及びガス種計測用チップ9の3種類の計測チップが含まれる3チップ流量計測装置を例示している。 The high flow rate channel 71 and the low flow rate channel 81 merge on the upstream side of the confluence point where the branch channel 3 rejoins the main flow rate 2. Further, in the branch flow path 3, a gas type measurement flow path 91 in which a gas type measurement chip 9 for specifying the type of fluid flowing in the branch flow path 3 is arranged is provided as a high flow rate flow rate flow rate 71 and a low flow rate flow rate flow rate. It is formed so as to communicate the road 81. Here, in this embodiment, a three-chip flow rate measuring device including three types of measuring chips, a high flow rate measuring chip 7, a low flow rate measuring chip 8, and a gas type measuring chip 9, is exemplified in the branch flow path 3. doing.

図9は、流量計測時の機能構成を示すブロック図である。流量計測装置1は、Micro Controller Unit(MCU)13、及びAnalog−to−Digital Converter(ADC)14を備えている。なお、図6に示した流量検出部内第1温度検出部111と、流量検出部内第2温度検出部112と、マイクロヒータ113、及び図7に示した物性値検出部内第1温度検出部121と、物性値検出部内第2温度検出部122と、物性値検出部内加熱部123は、図示を省略している。 FIG. 9 is a block diagram showing a functional configuration at the time of flow rate measurement. The flow rate measuring device 1 includes a MicroControl Unit (MCU) 13 and an Analog-to-Digital Converter (ADC) 14. The first temperature detection unit 111 in the flow rate detection unit, the second temperature detection unit 112 in the flow rate detection unit, the microheater 113, and the first temperature detection unit 121 in the physical characteristic value detection unit shown in FIG. The second temperature detection unit 122 in the physical property value detection unit and the heating unit 123 in the physical property value detection unit are not shown.

流量検出部11は、流量検出部内第1温度検出部111及び流量検出部内第2温度検出部112から出力された温度検出信号に基づいて、測定対象流体の流量を示す値を検出する。 The flow rate detection unit 11 detects a value indicating the flow rate of the fluid to be measured based on the temperature detection signals output from the first temperature detection unit 111 in the flow rate detection unit and the second temperature detection unit 112 in the flow rate detection unit.

具体的には、流量検出部11は、流量検出部内第1温度検出部111から出力された温度検出信号と流量検出部内第2温度検出部112から出力された温度検出信号との差分を算出し、差分に基づいて測定対象流体の流量を示す値を求める。そして、流量検出部11は、ADC14を介してMCU13に流量を示す値を出力する。 Specifically, the flow rate detection unit 11 calculates the difference between the temperature detection signal output from the first temperature detection unit 111 in the flow rate detection unit and the temperature detection signal output from the second temperature detection unit 112 in the flow rate detection unit. , Obtain a value indicating the flow rate of the fluid to be measured based on the difference. Then, the flow rate detection unit 11 outputs a value indicating the flow rate to the MCU 13 via the ADC 14.

物性値検出部12は、物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122から出力された温度検出信号の平均値を求める。 The physical characteristic value detection unit 12 obtains the average value of the temperature detection signals output from the first temperature detection unit 121 in the physical characteristic value detection unit and the second temperature detection unit 122 in the physical characteristic value detection unit.

また、図7に示した物性値検出部内加熱部123は、例えば制御部13による制御に応じて温度を変更する。これにより、物性値検出部内第1温度検出部121及び物性値検出部内第2温度検出部122は、物性値検出部内加熱部123の温度変化の前後における出力値を求めることができる。物性値検出部12は、ADC14を介してMCU13に取得した出力値を出力する。 Further, the heating unit 123 in the physical characteristic value detection unit shown in FIG. 7 changes the temperature according to, for example, control by the control unit 13. As a result, the first temperature detection unit 121 in the physical property value detection unit and the second temperature detection unit 122 in the physical characteristic value detection unit can obtain the output value before and after the temperature change of the heating unit 123 in the physical characteristic value detection unit. The physical characteristic value detection unit 12 outputs the output value acquired to the MCU 13 via the ADC 14.

ここで、流量検出部11は、高流量計測チップ7、及び低流量計測チップ8から流量を検出し、物性値検出部12は、ガス種計測用チップ9から物性値を検出する。 Here, the flow rate detecting unit 11 detects the flow rate from the high flow rate measuring chip 7 and the low flow rate measuring chip 8, and the physical characteristic value detecting unit 12 detects the physical characteristic value from the gas type measuring chip 9.

図10は、流量値の計測から出力までを示すフローである。測定対象流体について、ガス種計測用チップ9によるガス種検知計測(S101)を経た後、低流量計測チップ8による低流量計測(S102)、次いで高流量計測チップ7による高流量計測(S103)が実施される。 FIG. 10 is a flow showing from the measurement of the flow rate value to the output. The fluid to be measured is subjected to gas type detection measurement (S101) by the gas type measurement chip 9, low flow rate measurement (S102) by the low flow rate measurement chip 8, and then high flow rate measurement (S103) by the high flow rate measurement chip 7. Will be implemented.

分流路3は、低流量計測チップ8による計測値と所定の閾値とを比較する比較部を有しており、比較部において、低流量計測チップ8からの出力が、閾値以上であるか閾値未満であるかの判定(S104)が実施される。ここで、出力が閾値以上と判定された場合は、高流量計測チップ7からの流量値算出(S105)が実施され、閾値未満と判定された場合は、低流量計測チップ8からの流量値算出(S106)が実施される。 The branch flow path 3 has a comparison unit for comparing the value measured by the low flow rate measuring chip 8 with a predetermined threshold value, and in the comparison unit, the output from the low flow rate measuring chip 8 is equal to or more than the threshold value or less than the threshold value. (S104) is carried out. Here, if the output is determined to be equal to or higher than the threshold value, the flow rate value is calculated (S105) from the high flow rate measuring chip 7, and if it is determined to be less than the threshold value, the flow rate value is calculated from the low flow rate measuring chip 8. (S106) is carried out.

図11は、閾値を基準とした、高流量計測チップ7、または低流量計測チップ8における流量の計測値と出力値の関係を示すグラフである。図11に示す通り、流量の計測値と出力値の関係について、低流量計測チップ8による計測値が、閾値以上であれば高流量計測チップ7による出力において直線性が良く、閾値未満であれば低流量計測チップ8による出力において直線性が良い。以上のことから、閾値による出力チップの切り替えを適用することにより、分流路3において、より正確な流量計測が可能となる。 FIG. 11 is a graph showing the relationship between the measured value of the flow rate and the output value of the high flow rate measuring chip 7 or the low flow rate measuring chip 8 based on the threshold value. As shown in FIG. 11, regarding the relationship between the measured value of the flow rate and the output value, if the measured value by the low flow rate measuring chip 8 is equal to or more than the threshold value, the linearity is good in the output by the high flow rate measuring chip 7, and if it is less than the threshold value. Good linearity at the output of the low flow rate measuring chip 8. From the above, by applying the switching of the output chip according to the threshold value, more accurate flow rate measurement becomes possible in the branch flow path 3.

〔実施例2〕
次に、本発明の実施例2について説明する。本実施例と実施例1との相違点は、分流路が有する2つの流路が互いに独立している点である。図12は、分流路の形状を変形した例として、上述の分流路3に対し、主流路2から分岐した高流量用分流路72と低流量用分流路82、及びガス種計測用分流路92を有し、高流量用分流路72と低流量用分流路82が互いに独立している分流路の概略構成を示す模式的な平面図である。
[Example 2]
Next, Example 2 of the present invention will be described. The difference between the present embodiment and the first embodiment is that the two flow paths of the branch flow paths are independent of each other. FIG. 12 shows, as an example of modifying the shape of the branch flow path, the high flow rate branch flow path 72, the low flow rate branch flow path 82, and the gas type measurement branch flow path 92 branched from the main flow path 2 with respect to the above-mentioned branch flow path 3. It is a schematic plan view which shows the schematic structure of the branching flow path which has

主流路2から分岐した高流量用分流路72、及び低流量用分流路82を適用することで、主流路2から直接、高流量用分流路72と低流量用分流路82への分流比を調整することが可能となる。また、高流量用分流路72と低流量用分流路82が互いに独立しているため、流入口及び流出口付近において乱流が生じる確率が低くなり、層流を実現することで流体の流れを安定化することが可能となる。 By applying the high flow rate dividing flow path 72 branched from the main flow rate 2 and the low flow rate dividing flow path 82, the distribution ratio from the main flow path 2 to the high flow rate dividing flow path 72 and the low flow rate dividing flow path 82 can be determined directly. It becomes possible to adjust. Further, since the high flow rate branching channel 72 and the low flow rate dividing channel 82 are independent of each other, the probability of turbulent flow occurring near the inflow port and the outflow port is low, and the fluid flow is increased by realizing the laminar flow. It becomes possible to stabilize.

なお、本実施例において、流量計測時の機能構成、及び流量値の計測から出力までのフロー、及び閾値を基準とした、高流量計測チップ7、または低流量計測チップ8における流量の計測値と出力値の関係については、実施例1同様、図9及び図10及び図11に示す通りである。 In this embodiment, the measured value of the flow rate in the high flow rate measuring chip 7 or the low flow rate measuring chip 8 based on the functional configuration at the time of flow rate measurement, the flow from the measurement of the flow rate value to the output, and the threshold value. The relationship between the output values is as shown in FIGS. 9, 10 and 11 as in the first embodiment.

なお、上記の実施例においては、本発明に係る流量計を、3チップ流量計測装置に適用したが、本発明に係る流量計は、ガス種計測用チップ9は必ずしも無くてもよい。 In the above embodiment, the flow meter according to the present invention is applied to the three-chip flow rate measuring device, but the flow meter according to the present invention does not necessarily have the gas type measurement chip 9.

なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の構成要件を図面の符号付きで記載しておく。
<発明1>
流体が流通する主流路(2)と、前記主流路から分岐するとともに前記主流路に再度合流し計測用の流体を流通させる分流路(3)と、を備える流量計測装置(1)であって、
前記分流路においては、高流量の流体の流量を計測する高流量計測チップ(7)が配置された高流量用流路(71)と、前記高流量用流路と比較して流路断面積が広く、前記高流量計測チップより低流量の流体の流量を計測する低流量計測チップ(8)が配置された
低流量用流路(81)とが並列して形成されることを特徴とする、
流量計測装置(1)。
In addition, in order to make it possible to compare the constituent requirements of the present invention with the configurations of the examples, the constituent requirements of the present invention are described below with reference numerals in the drawings.
<Invention 1>
A flow rate measuring device (1) including a main flow path (2) through which a fluid flows and a branch flow path (3) that branches from the main flow path and rejoins the main flow path to flow a fluid for measurement. ,
In the branch flow rate, the high flow rate flow rate (71) in which the high flow rate measuring chip (7) for measuring the flow rate of the high flow rate fluid is arranged, and the flow path cross-sectional area as compared with the high flow rate flow rate. The low flow rate measuring chip (8) is arranged in parallel with the low flow rate measuring chip (81) for measuring the flow rate of the fluid having a lower flow rate than the high flow rate measuring chip. ,
Flow rate measuring device (1).

1 :流量計測装置
100 :センサ素子
101 :マイクロヒータ
102 :サーモパイル
103 :キャビティエリア
104 :フレーム
11 :流量検出部
111 :流量検出部内第1温度検出部
112 :流量検出部内第2温度検出部
113 :マイクロヒータ
12 :物性値検出部
121 :物性値検出部内第1温度検出部
122 :物性値検出部内第2温度検出部
123 :物性値検出部内加熱部
13 :Micro Controller Unit
14 :Analog−to−Digital Converter
2 :主流路
3 :分流路
32 :物性値検出用流路
33 :流量検出用流路
34 :流入用流路
34A :流入口
35 :流出用流路
35A :流出口
4 :シール
5 :回路基板
6 :カバー
7 :高流量計測チップ
71 :高流量用流路
72 :高流量用分流路
8 :低流量計測チップ
81 :低流量用流路
82 :低流量用分流路
9 :ガス種計測用チップ
91 :ガス種計測用流路
92 :ガス種計測用分流路
1: Flow rate measuring device 100: Sensor element 101: Microheater 102: Thermopile 103: Cavity area 104: Frame 11: Flow rate detection unit 111: First temperature detection unit in the flow rate detection unit 112: Second temperature detection unit in the flow rate detection unit 113: Microheater 12: Physical characteristic value detection unit 121: First temperature detection unit in the physical characteristic value detection unit 122: Second temperature detection unit in the physical characteristic value detection unit 123: Heating unit in the physical characteristic value detection unit 13: Micro Controller Unit
14: Analog-to-Digital Converter
2: Main flow path 3: Branch flow path 32: Physical property value detection flow path 33: Flow rate detection flow rate 34: Inflow flow rate 34A: Inflow port 35: Outflow flow path 35A: Outlet 4: Seal 5: Circuit board 6: Cover 7: High flow rate measuring chip 71: High flow rate flow rate 72: High flow rate distribution channel 8: Low flow rate measurement chip 81: Low flow rate measurement chip 82: Low flow rate distribution channel 9: Gas type measurement chip 91: Gas type measurement flow path 92: Gas type measurement branch flow rate

Claims (7)

流体が流通する主流路と、前記主流路から分岐するとともに前記主流路に再度合流し計測用の流体を流通させる分流路と、を備える流量計測装置であって、
前記分流路においては、高流量の流体の流量を計測する高流量計測チップが配置された高流量用流路と、前記高流量用流路と比較して流路断面積が広く、前記高流量計測チップより低流量の流体の流量を計測する低流量計測チップが配置された低流量用流路とが並列して形成されることを特徴とする、
流量計測装置。
A flow rate measuring device including a main flow path through which a fluid flows and a branch flow path that branches from the main flow path and rejoins the main flow path to flow a fluid for measurement.
In the branch flow rate, the high flow rate flow rate in which the high flow rate measuring chip for measuring the flow rate of the high flow rate fluid is arranged and the flow rate cross-sectional area are wider than those of the high flow rate flow rate, and the high flow rate It is characterized in that a low flow rate flow path in which a low flow rate measurement chip for measuring the flow rate of a fluid having a lower flow rate than the measurement chip is arranged is formed in parallel.
Flow measuring device.
前記分流路が途中で分岐されることで、前記高流量用流路と前記低流量用流路が形成される、
請求項1に記載の流量計測装置。
By branching the branch flow path in the middle, the high flow rate flow rate and the low flow rate flow rate are formed.
The flow rate measuring device according to claim 1.
前記分流路は、独立した2つの流路を有し、
前記高流量用流路と、前記低流量用流路は、互いに独立して前記主流路から分岐した流路である、
請求項1に記載の流量計測装置。
The branch channel has two independent channels and has two independent channels.
The high flow rate flow rate and the low flow rate flow rate are flow paths branched from the main flow rate independently of each other.
The flow rate measuring device according to claim 1.
前記分流路には、前記分流路中を流れる流体の種類を特定するガス種計測用チップが配置されたガス種計測用流路がさらに形成され、
前記ガス種計測用流路は、前記高流量用流路と前記低流量用流路を連通させるように形成されることを特徴とする、
請求項2または3に記載の流量計測装置。
In the branch flow path, a gas type measurement flow path in which a gas type measurement chip for specifying the type of fluid flowing in the branch flow path is arranged is further formed.
The gas type measurement flow path is formed so as to communicate the high flow rate flow rate and the low flow rate flow rate.
The flow rate measuring device according to claim 2 or 3.
前記ガス種計測用流路は、前記高流量用流路と前記低流量用流路とを、各々の流路の途中において連通するように形成されることを特徴とする、
請求項4に記載の流量計測装置。
The gas type measurement flow path is characterized in that the high flow rate flow rate and the low flow rate flow rate are formed so as to communicate with each other in the middle of each flow rate.
The flow rate measuring device according to claim 4.
前記低流量計測チップによる計測値と所定の閾値とを比較する比較部をさらに備え、
前記比較部において前記計測値が前記閾値以上と判定された場合には、前記高流量計測チップによる計測値が出力され、
前記比較部において前記計測値が前記閾値未満と判定された場合には、前記低流量計測チップによる計測値が出力されることを特徴とする、
請求項1から5のいずれかに記載の流量計測装置。
A comparison unit for comparing the value measured by the low flow rate measuring chip with a predetermined threshold value is further provided.
When the comparison unit determines that the measured value is equal to or higher than the threshold value, the measured value by the high flow rate measuring chip is output.
When the comparison unit determines that the measured value is less than the threshold value, the measured value by the low flow rate measuring chip is output.
The flow rate measuring device according to any one of claims 1 to 5.
前記高流量用流路と前記低流量用流路の流路断面積の比は、1:3であることを特徴とする、
請求項1から6のいずれか一項に記載の流量計測装置。
The ratio of the flow path cross-sectional area of the high flow rate channel to the low flow rate channel is 1: 3.
The flow rate measuring device according to any one of claims 1 to 6.
JP2020044479A 2020-03-13 2020-03-13 Flow Measuring Device Active JP7487500B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020044479A JP7487500B2 (en) 2020-03-13 2020-03-13 Flow Measuring Device
CN202110170864.8A CN113390480A (en) 2020-03-13 2021-02-08 Flow rate measuring device
DE102021103501.5A DE102021103501A1 (en) 2020-03-13 2021-02-15 FLOW METER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020044479A JP7487500B2 (en) 2020-03-13 2020-03-13 Flow Measuring Device

Publications (2)

Publication Number Publication Date
JP2021144002A true JP2021144002A (en) 2021-09-24
JP7487500B2 JP7487500B2 (en) 2024-05-21

Family

ID=77457269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020044479A Active JP7487500B2 (en) 2020-03-13 2020-03-13 Flow Measuring Device

Country Status (3)

Country Link
JP (1) JP7487500B2 (en)
CN (1) CN113390480A (en)
DE (1) DE102021103501A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710414A (en) * 1980-06-23 1982-01-20 Toshiba Corp Thermal type flow meter
WO1997038287A1 (en) * 1996-04-05 1997-10-16 Mks Instruments, Inc. Mass flow transducer having extended flow rate measurement range
JPH10293054A (en) * 1997-04-21 1998-11-04 Tokyo Gas Co Ltd Flowmeter
JP2012226627A (en) * 2011-04-21 2012-11-15 Hitachi Metals Ltd Flow controller and flow sensor unit
JP2012233776A (en) * 2011-04-28 2012-11-29 Omron Corp Flow rate measuring device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635143B2 (en) * 1987-06-17 1997-07-30 株式会社日立製作所 Air flow meter
JP2867125B2 (en) * 1995-06-21 1999-03-08 東京瓦斯株式会社 Flowmeter
JP4798873B2 (en) * 2001-05-08 2011-10-19 株式会社リコー Fluidic elements, fluidic flow meters, and combined flow meters
JP2007139795A (en) * 2001-10-01 2007-06-07 Yazaki Corp Gas flowmeter, gas supply system, and gas displacement method
JP5339988B2 (en) * 2008-11-21 2013-11-13 アズビル株式会社 Split flow meter and flow controller
JP5511470B2 (en) * 2010-03-30 2014-06-04 アズビル株式会社 Thermal flow meter, thermal gas type discrimination device, and automatic gas type judgment method
JP2012026931A (en) * 2010-07-26 2012-02-09 Omron Corp Structure for flow rate measurement and flow rate measuring equipment
CN105283737B (en) * 2013-08-28 2018-12-28 株式会社堀场Stec Fluid analyzer unit and method, thermal flowmeter, mass flow controller, fluid properties determining device
JP2019002717A (en) * 2017-06-12 2019-01-10 オムロン株式会社 Flow rate measurement device
JP7174577B2 (en) 2018-09-18 2022-11-17 メタウォーター株式会社 gravity filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710414A (en) * 1980-06-23 1982-01-20 Toshiba Corp Thermal type flow meter
WO1997038287A1 (en) * 1996-04-05 1997-10-16 Mks Instruments, Inc. Mass flow transducer having extended flow rate measurement range
JPH10293054A (en) * 1997-04-21 1998-11-04 Tokyo Gas Co Ltd Flowmeter
JP2012226627A (en) * 2011-04-21 2012-11-15 Hitachi Metals Ltd Flow controller and flow sensor unit
JP2012233776A (en) * 2011-04-28 2012-11-29 Omron Corp Flow rate measuring device

Also Published As

Publication number Publication date
JP7487500B2 (en) 2024-05-21
CN113390480A (en) 2021-09-14
DE102021103501A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP5652315B2 (en) Flow measuring device
JP6493235B2 (en) Flow rate measuring device, flow rate measuring method, and flow rate measuring program
EP1879004B1 (en) Flow rate measuring device
JP4168417B2 (en) Fluid detection device
CN210123295U (en) Flow rate measuring device
WO2018230478A1 (en) Flow measuring device
WO2021176793A1 (en) Thermopile sensor
JP2010060287A (en) Flow measuring instrument
JP3981907B2 (en) Flow measuring device
JP2021144002A (en) Flow measurement device
JP3193872B2 (en) Thermal air flow meter
JP6680248B2 (en) Flow rate measuring device and flow rate measuring method
CN111693105B (en) Flow rate measuring device
JP5575359B2 (en) Thermal flow meter
JP2021135156A (en) Flow-rate measurement device
US6250150B1 (en) Sensor employing heating element with low density at the center and high density at the end thereof
JP7419855B2 (en) Flow rate measurement device, flow rate measurement method, and flow rate measurement program
CN113252124B (en) Flow rate measurement device, flow rate measurement method, and flow rate measurement program
WO2019064819A1 (en) Flow rate measurement device
JPWO2002066936A1 (en) Heating resistor type flow measurement device
WO2020080189A1 (en) Flow rate measuring device, and method for controlling flow rate measuring device
JP5019958B2 (en) Flowmeter
WO2024147736A1 (en) Thermal flow sensor for determining a flow rate of a fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240422

R150 Certificate of patent or registration of utility model

Ref document number: 7487500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150