JP2021143669A - Pumping-type hydraulic pressure power generation structure aimed at control of tropical cyclone such as typhoon and integrated operation method - Google Patents
Pumping-type hydraulic pressure power generation structure aimed at control of tropical cyclone such as typhoon and integrated operation method Download PDFInfo
- Publication number
- JP2021143669A JP2021143669A JP2020064711A JP2020064711A JP2021143669A JP 2021143669 A JP2021143669 A JP 2021143669A JP 2020064711 A JP2020064711 A JP 2020064711A JP 2020064711 A JP2020064711 A JP 2020064711A JP 2021143669 A JP2021143669 A JP 2021143669A
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- water
- pumping
- pressure
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 158
- 238000005086 pumping Methods 0.000 claims abstract description 46
- 238000002347 injection Methods 0.000 claims abstract description 22
- 239000007924 injection Substances 0.000 claims abstract description 22
- 238000005507 spraying Methods 0.000 claims abstract description 10
- 238000011161 development Methods 0.000 claims abstract description 7
- 230000005611 electricity Effects 0.000 claims abstract description 3
- 238000003860 storage Methods 0.000 claims description 29
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 16
- 230000000694 effects Effects 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 239000013535 sea water Substances 0.000 claims description 5
- 238000012423 maintenance Methods 0.000 claims description 4
- 238000011160 research Methods 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- 238000007689 inspection Methods 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 2
- 239000013505 freshwater Substances 0.000 claims 1
- 230000007774 longterm Effects 0.000 claims 1
- 230000006837 decompression Effects 0.000 abstract description 4
- 238000013016 damping Methods 0.000 abstract 2
- 239000000243 solution Substances 0.000 abstract 1
- 230000003313 weakening effect Effects 0.000 abstract 1
- 238000010276 construction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229940090046 jet injector Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
台風等の熱帯低気圧の巨大化を防ぐため、潜水船型揚水式水圧発電体から取水口を海洋深層水域へ配置し高圧低温水を揚水して水圧発電耐圧空胴体内で高圧水流発電、発生電力で水上に揚水し低温水の放出散布で熱帯低気圧中心周辺の海面上下を冷却する方法である。In order to prevent the enormous tropical low pressure such as typhoons, the intake is arranged from the submersible pumped storage hydroelectric power generator to the deep ocean water area, and high pressure low temperature water is pumped to generate hydraulic power generation. It is a method of pumping water to the water and cooling the sea level above and below the center of the tropical low pressure by discharging and spraying low temperature water.
海洋の深層水域には5〜9度の安定した低温水が存在し、海洋表面の25〜30度以上の上層の高温水に混ぜて温度を下げ熱帯低気圧を制御するには、無尽蔵に存在する海洋深層低温水を海洋表面へ大量揚水し放出散布が有効であるが、既成技術には効果的方法は経済性や実用性の問題で存在しない。Stable low-temperature water of 5 to 9 degrees Celsius exists in the deep waters of the ocean, and it is inexhaustible for controlling tropical low pressure by mixing it with high-temperature water of 25 to 30 degrees Celsius or higher on the surface of the ocean to lower the temperature. Although it is effective to pump a large amount of deep sea water to the surface of the ocean and release it, there is no effective method in the existing technology due to problems of economic efficiency and practicality.
熱帯低気圧の進行水域に低気圧制御用の揚水式水圧発電構造体を配置し、水上の船舶型浮力体と連結の水中の潜水船型水圧発電体から延伸し海洋深層水域に取水口を配置し高圧低温水を導入し水圧発電の発生電力で水上へ大量揚水し、水上の船舶型浮力体の噴射推進機関で進行中の熱帯低気圧の中心部に噴射航行による水上への散布で海面上下を冷却する。A pumping-type hydraulic power generation structure for low pressure control is placed in the advancing water area of the tropical low pressure, and an intake is placed in the deep ocean water area extending from the submersible hydraulic power generation body connected to the ship-type buoyancy body on the water. High-pressure low-temperature water is introduced, and a large amount of water is pumped onto the water by the generated power of hydraulic power generation. Cooling.
廣大な海洋表面一部分を冷却する為の揚水量は膨大であり、揚水設備で海洋深層低温水を揚水に要する投入の電力量も膨大である為、化石燃料での現地発電では経費と環境に問題があり、現地自然エネルギーの安価な発生電力エネルギーが必要である。Since the amount of pumped water to cool a large part of the ocean surface is enormous, and the amount of power input required to pump deep-sea low-temperature water at the pumping facility is also enormous, local power generation using fossil fuels is problematic in terms of cost and environment. Therefore, cheap pumped storage energy of local natural energy is required.
海洋での各種海洋産業や開発研究活動・現地作業へのエネルギー供給に必要な、安価で安定の大電力量を得るには揚水式水圧発電技術が最も有効であり、設備・装置の整備と運用操作の工夫で台風等の熱帯低気圧中心部分の通称台風の目に対し、進行前方及び中心周辺海面に発電後の低温水を大量放出散布で海面温度の冷却で制御が可能である。Pumped-storage hydroelectric power generation technology is the most effective way to obtain a large amount of cheap and stable energy required for energy supply to various marine industries, development research activities, and field work in the ocean, and maintenance and operation of facilities and equipment. It is possible to control by cooling the sea surface temperature by spraying a large amount of low-temperature water after power generation on the sea surface before and around the center of the tropical cyclone, which is commonly known as a typhoon, by devising the operation.
揚水と発電部分の耐圧空洞体の建造は船舶建造に類似し、耐圧殻・発電装置・揚水ポンプ・水上フロート・自動電磁弁は既存技術が存在し人工頭脳・ロボット化は実用進化中である。Construction of pressure-resistant cavities for pumping and power generation is similar to ship construction, and existing technologies exist for pressure-resistant shells, power generation devices, pumps, water floats, and automatic solenoid valves, and artificial intelligence and robotization are in the process of practical evolution.
台風・ハリケーン等の熱帯低気圧は南の海上で発生し急速に発達し平均速度20〜40kmで移動の過程で温かい海洋からエネルギーを吸収し強風・豪雨を伴い移動し北上後に海上からのエネルギー供給の減少で消滅する。包蔵エネルギー・影響面積・移動距離・被害規模、範囲は廣大で、熱帯性低気圧の発達・成長の防止・減衰・消滅の為の条件は必然的に大規模であり大型構造物や装置・設備及び多数装備が国家プロジェクト的課題である。Tropical cyclones such as typhoons and hurricanes occur over the sea in the south, develop rapidly, absorb energy from the warm ocean in the process of moving at an average speed of 20 to 40 km, move with strong winds and heavy rain, and supply energy from the sea after moving north. Disappears with a decrease in. The energy contained, the area affected, the distance traveled, the scale of damage, and the extent of damage are vast, and the conditions for the development, growth prevention, attenuation, and extinction of tropical cyclones are inevitably large, and large structures, equipment, and equipment. And a large number of equipment is a national project issue.
自然エネルギーは海洋おいては、潮流・波浪・潮汐・風力・温度差・水圧等の発電方式が実用化や開発・研究されているが、台風等の熱帯性低気圧は南方海上で発生後に北上移動の過程で急速に発達する為に、制御の為のエネルギー供給源として従来の供給源や発電方式では、燃料供給・発電環境・地域の偏在や気象・海況の変動により環境・安定供給・経済効率が問題であり、大型設備、船舶・構造物の移動・航行時の動力エネルギー供給及び海上での保守・点検と合わせ制御効果と経済性に課題が多い。In the ocean, power generation methods such as tidal current, waves, tidal currents, wind power, temperature difference, and water pressure have been put into practical use, developed, and researched, but tropical cyclones such as typhoons move northward after they occur in the southern seas. Due to the rapid development in the process of movement, conventional sources of energy and power generation methods for control use the environment, stable supply, and economy due to fuel supply, power generation environment, uneven distribution of regions, and fluctuations in weather and sea conditions. Efficiency is a problem, and there are many problems in control effect and economic efficiency in combination with power energy supply during movement / navigation of large equipment, ships / structures, and maintenance / inspection at sea.
台風等の熱帯性低気圧を制御するには海洋深層域の低温水を揚水し海洋表面を冷却して巨大化による猛威を減少させる方法が最も合理的であり、膨大なエネルギーを有する深層低温水を水面に揚水する為に必要な大電力を得る為、無限に近い存在の深層高圧低温水を利用する水圧発電体と揚水・散布設備の移動や航行方法の構築が課題である。The most rational method for controlling tropical cyclones such as typhoons is to pump low-temperature water in the deep ocean region and cool the ocean surface to reduce the violence caused by enormous growth. In order to obtain the large amount of power required to pump the water to the surface of the water, it is an issue to move the hydraulic power generator and the pumping / spraying equipment that use the deep high-pressure low-temperature water that exists near infinity, and to construct a navigation method.
熱帯低気圧・台風等の膨大なエネルギー現象を制御には、巨大設備規模で数台以上、又は中型級は10台以上の設備を大中小の熱帯低気圧の規模と状況に組合せる必要があり水中と水上は連結して構成される移動型揚水式水圧発電の構造体の連携連動が課題である。In order to control enormous energy phenomena such as tropical cyclones and typhoons, it is necessary to combine several or more facilities on a huge facility scale, or 10 or more facilities on a medium-sized class, according to the scale and situation of large, medium and small tropical cyclones. The issue is the coordination and interlocking of the structures of mobile pumping hydraulic power generation, which is constructed by connecting underwater and water.
揚水式水圧発電は、空胴体内部の気圧と外部深層高圧水との圧力差で内部空間へ導入の高圧水で発電時に空間の気圧を一定に保つ為に大量の揚水を必要とし、熱帯低気圧の制御には電力と揚水を動力や推進力とする移動型の水圧発電構造体の構築が課題である。Pumping-type hydraulic power generation requires a large amount of pumping to keep the air pressure in the space constant during power generation with the high-pressure water introduced into the internal space due to the pressure difference between the air pressure inside the fuselage and the external deep high-pressure water. The challenge is to build a mobile penstock power generation structure that uses electric power and pumping as power and propulsion.
台風等の大型熱帯性低気圧は海洋水の高温になる年間数ヶ月に主として集中し、秋・冬・春先の低温期は遊休の為に、大型装置の台風等専用の揚水式水圧発電構造体を海洋開発や遊休時等の他用途使用で費用対効果や利用効果を高め経済性の確保が課題である。Large tropical cyclones such as typhoons are mainly concentrated in several months a year when the temperature of ocean water becomes high, and due to idleness in the low temperature period of autumn, winter, and early spring, a pumping type hydraulic power generation structure dedicated to typhoons of large equipment etc. It is an issue to improve cost effectiveness and utilization effect by using it for other purposes such as ocean development and idle time, and to secure economic efficiency.
台風等の熱帯低気圧は海洋より熱エネルギーを吸収して洋上を北上し成長し巨大化しつつ南洋から長距離移動するが台風の目は直径平均40〜50km、平均時速20〜40kmでの通常移動の為、進行方向に継続して海面の冷却の必要があり、移動速度以上の航行性能を有する推進設備と、チーム構成での冷却手段の操作運用方法が必要であるTropical cyclones such as typhoons absorb heat energy from the ocean, move northward over the ocean, grow huge, and move long distances from the South Sea, but the eyes of typhoons move normally at an average diameter of 40 to 50 km and an average speed of 20 to 40 km / h. Therefore, it is necessary to continuously cool the sea surface in the direction of travel, and it is necessary to have propulsion equipment with navigation performance higher than the moving speed and an operation method of cooling means in a team configuration.
本発明は、年々巨大化し破壊的になる台風等の熱帯性低気圧や海上に発生する竜巻等の温度差に起因する異常気象は、世界各地で人命・財産に甚大な被害が生じているが地球規模の災害に対する有効な制御の方法として、台風等の熱帯低気圧制御の為の専用型の揚水式水圧発電構造体の構築と効果的運用・操作方法が最も有効な手段である。According to the present invention, abnormal weather caused by tropical cyclones such as typhoons that become huge and destructive year by year and temperature differences such as tornadoes that occur on the sea causes enormous damage to human lives and property all over the world. As an effective control method for global disasters, the most effective means is the construction and effective operation / operation method of a dedicated pumping type hydraulic power generation structure for controlling tropical cyclones such as typhoons.
揚水式水圧発電は、深層高圧低温水域に取水口を配置し、高圧低温圧水を水中に設置の耐圧空胴体内部に導入し、減圧した空胴体内部に取水口から取水導入管を経てサイフォン式で水圧発電空洞体内に高圧水を吸引導入し圧力差で水圧タービン発電する方式である。In pumping type hydraulic power generation, an intake is placed in a deep high-pressure low-temperature water area, high-pressure low-pressure water is introduced inside a pressure-resistant air fuselage installed in water, and a siphon type is introduced from the water intake to the inside of a decompressed air fuselage. This is a method in which high-pressure water is sucked and introduced into the penstock of hydraulic power generation and hydraulic turbine power is generated by the pressure difference.
揚水式水圧発電構造体は、海上の海況に影響を受けぬ上層水域に耐圧空胴体を配置し、移動時の抵抗軽減の為に潜水船型複殻構造とし、海上の船舶型浮力体に揚水ポンプ・水上放水散布装置・AI情報処理調整・GPS機能・ジェット噴射推進装置等の設備を有し水上と水中を揚水パイプ・気圧調節管・電力線で連結しケーブルで連結を維持し保持する。The pumped-storage hydroelectric power generation structure has a pressure-resistant air fuselage placed in the upper water area that is not affected by the sea conditions at sea, and has a submersible double-shell structure to reduce resistance during movement.・ Equipped with equipment such as water discharge spraying device, AI information processing adjustment, GPS function, jet injection propulsion device, etc., the water and water are connected by pumping pipes, pressure control pipes, and power lines, and the connection is maintained and maintained by cables.
潜水船型水圧発電体を水中に配置し高圧を利用の為に取水口を深層水域に降ろし、水圧原理により耐圧空洞体の上辺の同一水深・同一水準の円周上位置に等間隔に配置の複数の取水導入口から同圧同水量で耐圧配管へ導入、複数機連動の水圧発電で高い発電効率を得る。Multiple submersible hydraulic power generators are placed underwater, the intake is lowered to a deep water area to utilize high pressure, and the pressure-resistant cavity is placed at the same depth and at the same level on the circumference at equal intervals according to the hydraulic principle. Introduced into pressure-resistant pipes with the same pressure and the same amount of water from the water intake inlet of the above, and high power generation efficiency is obtained by hydraulic power generation linked with multiple machines.
耐圧空洞体の複数の取水口から耐圧配管内に高圧高速水流を導入し、空胴体内部の減圧空間への高圧噴射水で複数の発電機連動でのタービン水圧発電で安定した大電力を得て、発電後の貯留水を揚水し、多量の低温水で熱帯低気圧の中心周辺を冷却し制御する。High-pressure high-speed water flow is introduced into the pressure-resistant pipe from multiple intakes of the pressure-resistant cavity, and stable large power is obtained by turbine hydraulic power generation linked with multiple generators with high-pressure jet water into the decompression space inside the air fuselage. The stored water after power generation is pumped up, and a large amount of low-temperature water is used to cool and control the area around the center of the tropical low pressure.
耐圧空洞体は、上部構造空間に配管・発電設備・気圧調節管・送電線・バルブ・センサー等を主要装備し、下部全体を貯留水空間とし発電後の放出水を貯留後に空胴体中央の揚水管から天頂貫通孔を経て水上の揚水ポンプで揚水し、低温水を水上の船舶型浮力体の移動・航行の推進噴射機関の噴射放出と高圧ホースの散布で海上と大気冷却に利用する。The pressure-resistant cavity is mainly equipped with piping, power generation equipment, pressure control pipes, transmission lines, valves, sensors, etc. in the upper structural space, and the entire lower part is used as a storage space to store the discharged water after power generation and then pump up the center of the air fuselage. It is pumped from a pipe through a zenith through hole by a pump on the water, and low-temperature water is used for cooling the sea and the atmosphere by injecting and discharging a propulsion injection engine for movement and navigation of a ship-type buoyant body on the water and spraying a high-pressure hose.
空胴体内の貯留水は洋上の船舶型浮力体上施設内のポンプセンターで揚水し、ポンプ排出水の一部を水上の浮力体のジェット噴射装置で水面直下の噴出と、GPS位置機能の測定による水中の潜水船との速度とを噴出調整で行い移動航行を速やかに行う。The stored water in the air fuselage is pumped up at the pump center in the offshore ship-type buoyancy body facility, and a part of the pump discharge water is ejected just below the water surface by the jet injection device of the buoyancy body on the water, and the GPS position function is measured. The speed with the submersible underwater is adjusted by adjusting the ejection, and the mobile navigation is carried out promptly.
船舶型浮力体が洋上を移動の際は、水中の潜水船型耐圧空胴体は船舶型浮力体と直接にケーブル等の曳航装置で係留結合し上下一体航行し、台風等の移動速度に合わせ支援船等の協力で、発電と揚水作業を継続し海上を移動航行しつつ長時間連続して冷却できる。When the ship-type buoyant body moves over the ocean, the underwater submersible-type pressure-resistant air fuselage is moored and coupled directly with the ship-type buoyant body by a towing device such as a cable, and sails integrally up and down, and is a support ship according to the movement speed of the typhoon. With the cooperation of, etc., it is possible to continue power generation and pumping work, and to cool continuously for a long time while moving and navigating over the sea.
台風等の熱帯低気圧が発達し北上の過程で進行が速くなり、洋上の船舶型浮力体と水中の潜水船型耐圧空胴体の移動速度が下回る場合には電動式無人噴射装備乃至はスクリュー式補助推進機関を接続し熱帯低気圧の進行前面と台風の中心部付近の冷却を続けて熱帯低気圧中心付近の気圧低下を抑えて、海面からの熱吸収による巨大化を防止する。If tropical cyclones such as typhoons develop and progress faster in the process of moving north, and the moving speed of offshore ship-type buoyants and underwater submersible-type pressure-resistant air fuselage is lower, electric unmanned injection equipment or screw-type assistance A propulsion engine is connected to continue cooling the front of the tropical cyclone and near the center of the typhoon to suppress the drop in pressure near the center of the tropical cyclone and prevent it from becoming huge due to heat absorption from the sea surface.
本体耐圧構造の内外構造と内部設備は発電機、発電設備と揚水設備が主要装備で、既存の技術と設備と建造方法が利用可能であり、船舶建造と類似の為、製造が容易で型式及び連続建造による量産効果が重工業・造船・重電産業等への寄与が期待できる。The main equipment of the internal and external structure and internal equipment of the main body pressure resistant structure is a generator, power generation equipment and pumping equipment, existing technology, equipment and construction method can be used, and because it is similar to ship construction, it is easy to manufacture and model and The mass production effect of continuous construction can be expected to contribute to the heavy industry, shipbuilding, heavy electric industry, etc.
水中に沈設の耐圧空洞体に、浮力体構造設備の揚水ポンプを水上の初動支援船の電力で始動しポンプを逆転して海水注水直後に真空ポンプでエアー排出して内部減圧を維持し、取水口の弁を開放し深層高圧水の流入で水圧発電を直ちに開始し、水圧発電構造体の自給電源として、揚水と水中放出・空間散布・推進力等の構造体各機関の動力を供給する。In a pressure-resistant cavity submerged in water, a pump for buoyancy structure equipment is started with the power of the initial support ship on the water, the pump is reversed, and immediately after seawater injection, air is discharged with a vacuum pump to maintain internal decompression and water intake. The valve at the mouth is opened and hydraulic power generation is immediately started by the inflow of deep high-pressure water, and as a self-sufficient power source for the hydraulic power generation structure, the power of each engine of the structure such as pumping and water discharge, space spraying, and propulsion is supplied.
熱帯低気圧は地球の大気の修正現象であり従来の技術では完全消滅は困難である。熱帯低気圧の中心は平均直径40km〜50kmで移動し発達し巨大化する為、深層低温水を揚水し放出散布で中心付近の海面温度の低下で海水面からのエネルギー吸収を減らし、上昇気流への水分供給減少と気圧上昇で中心部の求心力を減衰し緩解して巨大化を防止して被害の軽減と被害対策を容易にする。又、完全消滅は陸への水分供給や気候変動の為にも問題がある。Tropical cyclones are a correction phenomenon of the Earth's atmosphere, and it is difficult to completely eliminate them with conventional technology. Since the center of a tropical cyclone moves with an average diameter of 40 km to 50 km, develops and becomes huge, deep low-temperature water is pumped up and released to reduce the energy absorption from the sea surface by lowering the sea surface temperature near the center, resulting in an updraft. The afferent force in the central part is dampened and relaxed by the decrease in water supply and the increase in atmospheric pressure to prevent enormous growth and facilitate damage reduction and damage countermeasures. In addition, complete extinction has problems due to water supply to land and climate change.
水中の潜水船と水上の船舶型浮力体は、水中の揚水管から揚水パイプを水上のポンプ設備に接続し、送電ケーブル内蔵の気圧調整管と、保護し維持するケーブルを係留し上下連携・連動で航行し、熱帯低気圧の進行速度に対応し管・パイプ・ホース等の素材は強靭で柔軟性と軽量な炭素繊維等の新素材で曳航可能とし、進行速度上昇に対応不足の場合は予備無人電動式推進器を取水口下部に接続、又必要に応じ曳航ケーブル等に接続する。Underwater submersibles and underwater vessel-type buoyants connect the pumping pipe from the underwater pumping pipe to the water pump equipment, and moor the pressure control pipe with a built-in power transmission cable and the cable to protect and maintain it. It is possible to tow with new materials such as tough, flexible and lightweight carbon fiber for pipes, pipes, hoses, etc. in response to the traveling speed of tropical low pressure. Connect the unmanned electric propulsion device to the lower part of the water outlet, and connect it to the towing cable if necessary.
船舶型浮力体に吸排気ポンプ・蓄電池・揚水分配室・各種巻上げ機・レダードームを装備し、潜水船外殻に船尾舵及び船首・船尾水平舵を有する。深層水域の楕円球型取水口は流入口に、生物・夾雑物等の流入防御の為の二重格子カバーを装備し水上のGPS及びAI処理機能の下で、電力ケーブルを通じ水上、水中の各機器を統一調整して航行を継続する。The ship-type buoyancy body is equipped with an intake / exhaust pump, storage battery, pumping water distribution chamber, various hoisting machines, and leder dome, and the outer shell of the submarine has a stern rudder and a bow / stern horizontal rudder. The elliptical spherical intake in the deep water area is equipped with a double grid cover at the inflow port to prevent the inflow of organisms and impurities, and under the GPS and AI processing functions on the water, each of the water and water through the power cable. Unify the equipment and continue navigation.
熱帯低気圧は成長し宏大な勢力圏と平均40〜50km2の中心圏と平均速度20〜40km/hで進行の中心圏内を冷却に一艘当たりの拡散による冷却範囲を4〜5km2と仮定し8隻〜10隻の並走でカバーができるが、中心圏前方を数隻で航行し予冷して冷却範囲を拡大し、航行速度が平均速度を上回る場合は、蛇行・交差等の航法で冷却範囲と効果を高める事が出来る。Tropical cyclones assumed growing grand a sphere of influence around
地球表面積の約7割の海洋に存在する水圧の潜在エネルギー量は莫大であり、水量と共に無限と思える海洋で、各発電方法があるが、揚水式水圧発電は大発電量と最も安定な電力を得て自然災害の内でも毎年各国で大きな被害と人命の損失を出す台風・ハリケーン等の熱帯低気圧を制御できるエネルギーを得ることが出来る。The amount of latent energy of water pressure existing in the ocean, which is about 70% of the earth's surface area, is enormous, and there are various power generation methods in the ocean that seems to be infinite with the amount of water, but pumping type hydraulic power generation produces a large amount of power and the most stable power. Even in natural disasters, it is possible to obtain energy that can control tropical cyclones such as typhoons and hurricanes that cause great damage and loss of human life in each country every year.
揚水式水圧発電構造体は、その揚水機能で海上表面や海面表層の冷却と、台風等の熱帯低気圧を制御の為の専用型揚水式水圧発電構造体の揚水能力で熱帯低気圧の進路上及びその前方付近の海面冷却で中心付近の勢力を減衰して求心力を弱めて巨大化を抑止する。The pumping-type hydraulic power generation structure cools the surface of the sea and the surface of the sea with its pumping function, and the pumping capacity of a dedicated pumping-type hydraulic power generation structure for controlling tropical cyclones such as typhoons is on the path of tropical cyclones. And by cooling the sea surface near the front, the force near the center is dampened, the centripetal force is weakened, and the enormous growth is suppressed.
本発明は、本体耐圧構造以外の内外構造と内部設備は発電機、発電設備と揚水設備が主要装備で、既存の技術が利用可能であり、船舶・潜水艦建造と類似の為、製造が容易で型式及び連続建造による量産効果で経済性に優れている。In the present invention, the internal and external structures and internal equipment other than the main body pressure-resistant structure are mainly equipped with a generator, power generation equipment and pumping equipment, existing technology can be used, and since it is similar to the construction of a ship / submarine, it is easy to manufacture. It is highly economical due to the mass production effect of the model and continuous construction.
台風等の熱帯低気圧は年々巨大化し風速60m以上も予想され豪雨被害と共に大災害を想定されるが、現在まで熱帯低気圧の制御方法は有効な提案は無いが、揚水式水圧発電は無限の水圧・水量・低温水の物理現象の利用で現地自然エネルギーと大電力量の安定的供給で、高い経済効率と費用対効果が可能である。Tropical cyclones such as typhoons are expected to grow enormous year by year and wind speeds of 60 m or more are expected, and a major disaster is expected along with heavy rain damage. By utilizing the physical phenomena of water pressure, water volume, and low temperature water, stable supply of local natural energy and large amount of power can be achieved with high economic efficiency and cost effectiveness.
熱帯低気圧制御の為の専用揚水式水圧発電体は、台風発生の期間外には、発電能力と移動航行性能で定置型の産業用揚水発電構造体の定期点検時等の代理電源や温帯低気圧による異常気象の予防や大規模災害時の非常電源等の臨時配置等の活用が可能である。Dedicated pumped-storage hydropower generators for tropical cyclone control are used as a proxy power source for periodic inspections of stationary industrial pumped-storage power generation structures due to their power generation capacity and mobile navigation performance outside the period of typhoon occurrence, and extratropical cyclones. It is possible to prevent abnormal weather due to atmospheric pressure and to temporarily arrange emergency power sources in the event of a large-scale disaster.
揚水式水圧発電構造体は、年間24時間安定・安価な大電力量の供給で、海洋資源開発・研究・資源探査等・遠洋養殖・海水成分分離及び大量揚水の活用で温度差発電の実用化及び発生電力での電解法での水素・酸素生産等の海洋産業への応用・転用が可能である。The pumped-storage hydroelectric power generation structure provides a stable and inexpensive supply of large amounts of
揚水式水圧発電構造体(図1)は,水中部分の潜水船型揚水式水圧発電体(図2)と水上部分の船舶型浮力体図(図3)で構成され、水圧発電体(図2)内に発電装置を内蔵し、船舶型浮力体(図3)に揚水ポンプセンター(27)及び人工知能・GPS位置測定センター(36)を設備し、水上の船舶型浮力体(図3)と、水中の水圧発電体殻(図2)を懸垂ケーブル(30a−30b)で連結して揚水導入管(25)を揚水ポンプ(27)に接続、気圧調節管内に電力ケーブル(16)を併設装備し、船舶型浮力体(3)は噴射推進(34)を装備し揚水を噴射して航行の推進力とする。The pumped-storage hydroelectric power generation structure (Fig. 1) is composed of a submersible-type pumped-storage hydroelectric power generator (Fig. 2) in the underwater part and a ship-type buoyancy body diagram (Fig. 3) in the water part, and is a hydraulic power generation body (Fig. 2). A power generation device is built in, and a pump center (27) and an artificial intelligence / GPS position measurement center (36) are installed in the ship-type buoyant body (Fig. 3). The underwater penstock (Fig. 2) is connected by a suspension cable (30a-30b), the pumping introduction pipe (25) is connected to the pumping pump (27), and the power cable (16) is installed inside the pressure control pipe. , The ship-type buoyant body (3) is equipped with injection propulsion (34) and injects pumped water to use it as a propulsive force for navigation.
潜水船型揚水式水圧発電体(図2)は楕円球形の潜水船型外郭(1)の内に球形の水圧発電耐圧空胴体(図2)を設置し、上部は揚水式水圧発電構造(図4)とし、深層水域に配置の取水口(38)から深層高圧低温水を導入し潜水船型発電内郭(図4)取水導入口(14a−14d)から内部耐圧配管(5a−5d)に装備の高圧噴射ノズル(6a−6d)で水圧発電(8a―8d)後に空胴体下部(24)で貯留、発電体(図2)の底部近くに配置の揚水管吸引口(15)から水上のポンプ(27a―27b)で揚水し、船上の複数の放水ノズル(35a―35j)で高速放水と、船尾のジェット噴射(33)の低温水で海面冷却をする。The submersible pumped-storage hydroelectric power generator (Fig. 2) has a spherical hydroelectric power generation pressure-resistant air fuselage (Fig. 2) inside the elliptical spherical submersible outer shell (1), and the upper part is a pumped-storage hydroelectric power generation structure (Fig. 4). Then, deep high-pressure low-temperature water is introduced from the intake (38) located in the deep water area, and the high pressure installed in the internal pressure-resistant pipe (5a-5d) from the intake inlet (14a-14d) of the submersible power generation inner shell (Fig. 4). After hydraulic power generation (8a-8d) with the injection nozzle (6a-6d), it is stored in the lower part of the air fuselage (24), and the pump (27a) on the water from the pumped storage pipe suction port (15) located near the bottom of the power generator (FIG. 2). The water is pumped by -27b), high-speed water is discharged by a plurality of water discharge nozzles (35a-35j) on the ship, and the sea surface is cooled by the low-temperature water of the jet injection (33) at the stern.
上部構造(図4)は空間(23)に取水導入口(3a―3d)・内部耐圧配管(5a―5d)と発電設備(8a−8d)等を集中装備し、上部構造天頂より少し下方の、同水位・水準の同心円周上の個所に、取水導入口(14a―14d)を等間隔に設置し深層水域の高圧高速水流として噴射で水圧発電(8a―8d)を行う。The superstructure (Fig. 4) is centrally equipped with an intake inlet (3a-3d), internal pressure-resistant pipe (5a-5d), power generation equipment (8a-8d), etc. in the space (23), and is slightly below the zenith of the superstructure. Intake inlets (14a-14d) are installed at equal intervals on the concentric circumferences of the same water level and level, and hydraulic power generation (8a-8d) is performed by jetting as a high-pressure high-speed water flow in deep water areas.
水圧原理により、水中の上部辺に取水導入口一体装備自動電磁弁(14a―14d)を装備し内部耐圧配管(5a―5d)に接続、配管内に導入の同圧・同水量・同速の高圧高速水流で下部空間への直噴射ノズル(6a―6d)の噴射水による複数のタービン発電機(8a―8d)連動で高い発電効率と大きな発生電力量を得るBased on the principle of water pressure, an automatic solenoid valve (14a-14d) equipped with an integrated water intake port is installed on the upper side of the water and connected to the internal pressure resistant pipe (5a-5d). High power generation efficiency and large amount of generated power are obtained by interlocking with multiple turbine generators (8a-8d) by the injection water of the direct injection nozzle (6a-6d) to the lower space with high-pressure high-speed water flow.
下部構造空間(24)の貯留水の揚水による減圧空間へ取水導入口(3a―3f)から高圧水を導入して、貯留量と導入量を4基の取水導入口&自動電磁弁(14a―14d)の同調で流入量と揚水量を等量に調節、内部に設置の気圧調節管(16)と一体の気圧調節自動電磁弁(17)の開閉調節で減圧状態に維持し年間24時間の安定した高効率発電ができる。High-pressure water is introduced from the intake inlet (3a-3f) into the decompression space by pumping the stored water in the substructure space (24), and the storage amount and introduction amount are adjusted to 4 intake inlets & automatic solenoid valves (14a-). 14d) is synchronized to adjust the inflow and pumping amount to the same amount, and the pressure control automatic solenoid valve (17) integrated with the pressure control pipe (16) installed inside is maintained in a depressurized state for 24 hours a year. Stable and highly efficient power generation is possible.
下部空間(24)の貯留水は揚水ポンプ施設(27)で揚水後に船舶型浮力体(図3)の航行移動の為の噴射水として分流し、水面下に設置のジェット噴射機(34)で噴出させ、GPSと人工知能(36)の連動での噴出調整で移動・航行の際の推進動力とするThe stored water in the lower space (24) is diverted as jet water for navigation movement of the ship-type buoyant body (Fig. 3) after pumping at the pumping pump facility (27), and is separated by a jet injector (34) installed under the water surface. It is made to spout, and it is used as a propulsion power when moving / navigating by adjusting the spout in conjunction with GPS and artificial intelligence (36).
下部空間(24)の貯留水を揚水して空間気圧を減圧状態で一定に保つ為に、各取水導入口&自動電磁弁(14a―14d)の開閉を人工知能センター(36)で情報処理し、揚水管(4)の自動電磁弁(14)で揚水量と貯留量の増減で耐圧空洞体(図2)の耐圧配管(5a―5d)の噴射ノズル(6a―6d)と自動電磁弁(7a〜7d)の開閉で噴射水圧・水量増減による発電出力を人工知能(36)の統合の下に調節管理する。In order to pump up the stored water in the lower space (24) and keep the space pressure constant in the decompressed state, the artificial intelligence center (36) processes the opening and closing of each intake port & automatic solenoid valve (14a-14d). , The injection nozzle (6a-6d) and the automatic solenoid valve (6a-6d) of the pressure-resistant pipe (5a-5d) of the pressure-resistant cavity (FIG. 2) by increasing or decreasing the pumped amount and the stored amount with the automatic solenoid valve (14) of the pumping pipe (4). By opening and closing 7a to 7d), the power generation output due to the increase or decrease in the jet water pressure and water volume is adjusted and managed under the integration of artificial intelligence (36).
水上の船舶型浮力体(図3)と、水上気象や環境に影響を受けぬ50m以上の水中に自沈設置の潜水船型揚水式水圧発電体(図2)と揚水導入管(3)と気圧調節・送電線兼用管(28)とを、ケーブル(30a−30b)で維持連結して深層水域に取水導入管を降ろし、500m〜1km、さらに高圧の深層水域に取水口(38)を配置し、深層高圧低温水を水圧発電体内(2)に吸引導入して高速高圧噴射でタービン発電(8a〜8d)する。A ship-type buoyant body on water (Fig. 3), a submersible-type pumped-storage hydroelectric power generator (Fig. 2), a pumped-storage introduction pipe (3), and pressure control installed by self-sinking in water of 50 m or more that is not affected by water weather or the environment. -The power transmission line combined pipe (28) is maintained and connected with a cable (30a-30b), the intake pipe is lowered into the deep water area, and the intake (38) is arranged in the deep water area of 500 m to 1 km and higher pressure. Deep high-pressure low-temperature water is sucked and introduced into the penstock (2) to generate turbine power (8a to 8d) by high-speed high-pressure injection.
水圧発電体(図2)を上層水域に配置し水面の船舶型浮力体(図3)をGPS・人工知能センター(36)の移動航行の位置測定で水上・水中の航行の同調航法を維持し潜水船外殻(1)の船尾舵(20)と船首水平舵(22)と船尾平行舵で航行制御を統合調節する。The hydraulic power generator (Fig. 2) is placed in the upper water area, and the ship-type buoyant body (Fig. 3) on the water surface maintains the synchronized navigation of water and water navigation by measuring the position of the mobile navigation of the GPS / artificial intelligence center (36). Navigation control is integrated and adjusted by the stern rudder (20) of the submersible outer shell (1), the stern horizontal rudder (22), and the stern parallel rudder.
水中の潜水船体(図2)と水上の船舶型浮力体(図3)は、連結し連動で熱帯低気圧に先行・随伴航行で長時間冷却する為に、揚水導入管と深層水導入管を強靭で柔軟性と軽く水圧強度を有する高機能素材で構成と、上下動をクッション機能とケーブルで抑える。An underwater submersible hull (Fig. 2) and a ship-type buoyant body on the water (Fig. 3) are connected and interlocked to precede a tropical cyclone and cool for a long time by accompanying navigation. It is made of a high-performance material that is tough, flexible, and lightly hydraulically strong, and its vertical movement is suppressed by a cushion function and a cable.
揚水式水圧発電構造体(図1)は水上水中の2重構造と、高圧低温を求め深層水域に取水口を配置し、航行時の強い水中抵抗は電動式補助推進機(41)で推進力を上げる。The pumped-storage hydroelectric power generation structure (Fig. 1) has a double structure in water and a water intake is located in a deep water area in search of high pressure and low temperature. Raise.
巨大熱帯低気圧(45)の中心部(47)は目と称し平均直径40〜50kmに及ぶが進行の前方冷却(46)・蛇行・交差等の航法(48)での広範囲の長時間冷却で、目の求心力及び遠心力を弱め中心部周辺の気圧の低下と水蒸気の抑止で勢力の巨大化を制御する。The central part (47) of a huge tropical cyclone (45) is called an eye and has an average diameter of 40 to 50 km. , The centripetal force and centrifugal force of the eyes are weakened, and the enormous force is controlled by lowering the air pressure around the center and suppressing water vapor.
揚水式水圧発電構造体(図1)を必要水深地点に移動し、搭載の蓄電池(32)で揚水ポンプを逆転作動し発電空洞体(図2)ないに水上で注水し、上層水域に沈下配置し揚水管弁(15)と気圧調節管自動電磁弁以外(17)以外の全弁を閉鎖し揚水ポンプ(27)を正転して、揚水と気圧調節ポンプ(29)作動による高減圧状態で全電子弁を一挙に開放し深層高圧水を空胴体内に吸引導入し水圧発電、発生電力で揚水し気圧調節管弁(17)で発電空胴体(図2)の内気圧を圧力調節し初動を開始する。Move the pumped storage hydraulic power generation structure (Fig. 1) to the required depth point, reversely operate the pumping pump with the on-board storage battery (32), inject water on the water without the power generation cavity (Fig. 2), and place it in the upper water area. All valves except the pumping pipe valve (15) and the pressure control pipe automatic electromagnetic valve (17) are closed and the pump (27) is rotated in the normal direction. All electronic valves are opened at once, deep high-pressure water is sucked and introduced into the air fuselage, hydraulic power is generated, pumped with the generated power, and the internal pressure of the power generation air fuselage (Fig. 2) is adjusted by the pressure control tube valve (17) for initial operation. To start.
W 海面
Wh 海面下50〜100m 上層水域
Wi 深層高圧低温水域
Dw 海底
1 潜水船外殻
2 水圧発電耐圧空胴体殻
3 取水導入管 3a−3d
4 揚水管
5 耐圧内部ダクト配管 5a―5d
6 高圧噴射ノズル 6a―6d
7 噴射ノズル自動電磁弁 7a―7d
8 高圧タービン発電機 8a−8d
9 水圧発電防水室
10 放出水スカート 10aー10d
11 上段支柱フロアー
12 下段支柱フロアー
13 空胴体内上下通気部分
14 取水導入管口自動電磁弁 14a−14d
15 揚水管口自動電磁弁
16 気圧調整管
17 気圧調整管口自動電磁弁
18 深層水導入分配室
19 潜水船スクリュー
20 潜水船船尾舵
21 船首平行舵 21a−21b
22 船尾平行舵 22a−22b
23 上部構造空間
24 下部構造貯留水空間
25 揚水導入管
26 揚水分配タンク
27 揚水ポンプセンター
28 気圧調節管内電気ケーブル
29 内気圧調節ポンプ
30 水中・水上連結ケーブル
31 ケーブル巻取調節機
32 蓄電設備
33 潜水船電動スクリュー推進装置
34 ジェット噴射電動ポンプ
35 高圧放水散布ホース・ノズル 35a―35j
36 AI情報処理・調節室
37 レーダー・アンテナドーム
38 取水口
39 深層水導入管
40 深層水導入管維持ケーブル
41 着脱式電動補助推進装置
42 取水口生物・ゴミ・夾雑物フイルター
43 電力ケーブル
44 取水口平行舵 44a−44b
45 熱帯低気圧勢力圏
46 冷却の為の勢力圏内の船舶型浮力体の航行配置形図
47 熱帯低気圧中心部圏
48 熱帯低気圧中心部&台風の目圏内冷却の為の船舶型浮力体の航行配置図W Sea level Wh 50 to 100 m below sea level Upper water area Wi Deep high-pressure low-temperature water
4
6 High-pressure injection nozzle 6a-6d
7 Injection nozzle automatic solenoid valve 7a-7d
8 High-
9 Hydraulic power generation
11
15 Pumping pipe mouth
22 Stern parallel rudder 22a-22b
23
36 AI Information Processing /
45 Tropical Cyclone Power Zone 46 Navigation layout of ship-type buoyants within the power zone for cooling Figure 47 Tropical
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020064711A JP2021143669A (en) | 2020-03-12 | 2020-03-12 | Pumping-type hydraulic pressure power generation structure aimed at control of tropical cyclone such as typhoon and integrated operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020064711A JP2021143669A (en) | 2020-03-12 | 2020-03-12 | Pumping-type hydraulic pressure power generation structure aimed at control of tropical cyclone such as typhoon and integrated operation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021143669A true JP2021143669A (en) | 2021-09-24 |
Family
ID=77766179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020064711A Pending JP2021143669A (en) | 2020-03-12 | 2020-03-12 | Pumping-type hydraulic pressure power generation structure aimed at control of tropical cyclone such as typhoon and integrated operation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021143669A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023195158A1 (en) * | 2022-04-08 | 2023-10-12 | 日本電信電話株式会社 | Heat conversion system and heat conversion method |
-
2020
- 2020-03-12 JP JP2020064711A patent/JP2021143669A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023195158A1 (en) * | 2022-04-08 | 2023-10-12 | 日本電信電話株式会社 | Heat conversion system and heat conversion method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Review of integrated installation technologies for offshore wind turbines: Current progress and future development trends | |
US20080277492A1 (en) | Fluid property regulator | |
CN103523183B (en) | Power supply platform on removable half submerged floating Multifunction fishing | |
EP4071352B1 (en) | Deep-sea multi-energy integrated platform for complementary power generation, production, living and exploration | |
US8558403B2 (en) | Single moored offshore horizontal turbine train | |
US11274648B2 (en) | Pumped storage system with waterfall control subsystem | |
US20170045026A1 (en) | Deep water power generation station, power station, marine power plant and offshore floating city thereof | |
CN110622900A (en) | Articulated net cage for open sea cultivation | |
JP5261804B1 (en) | Marine resource collection system | |
CN104118539A (en) | Large multifunctional deep sea floating base | |
CN106800073B (en) | Floating body and implementation method are carried in a kind of unmanned automatic positioning | |
US8653682B2 (en) | Offshore hydroelectric turbine assembly and method | |
CN104890829A (en) | Inflated film structural bodies, inflated body devices and manual climate control methods formed by same | |
JP2021143669A (en) | Pumping-type hydraulic pressure power generation structure aimed at control of tropical cyclone such as typhoon and integrated operation method | |
CN102530187B (en) | The high-speed double-head ship that the dead beat rudder that do not sink tune energy left and right displacement is walked crosswise | |
CN204124315U (en) | A kind of not heavy environment protection ship operated steadily | |
JP2001349272A (en) | Marine wind power generation system | |
Wang | Taut mooring | |
JP7241494B2 (en) | Pumped-storage hydraulic power generation structure with two methods of water flow and hydraulic power generation. | |
JP2013199257A (en) | Electricity production system by offshore platform | |
CN206954453U (en) | It is a kind of that nobody is automatically positioned carrying floating body | |
CN208815472U (en) | A kind of offshore platform wave buffering HSE ring | |
CN102588200A (en) | Static water power generation system | |
CN115520333A (en) | Intelligent mobile multifunctional offshore platform | |
JP2009174510A (en) | Annular floating structure turning on sea |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240220 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240410 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240615 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240917 |