JP2020516883A - 高精密な校正システム及び方法 - Google Patents

高精密な校正システム及び方法 Download PDF

Info

Publication number
JP2020516883A
JP2020516883A JP2019555480A JP2019555480A JP2020516883A JP 2020516883 A JP2020516883 A JP 2020516883A JP 2019555480 A JP2019555480 A JP 2019555480A JP 2019555480 A JP2019555480 A JP 2019555480A JP 2020516883 A JP2020516883 A JP 2020516883A
Authority
JP
Japan
Prior art keywords
calibration
vision system
target
relative position
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019555480A
Other languages
English (en)
Other versions
JP7165484B2 (ja
Inventor
ワイ. リ,デイヴィッド
ワイ. リ,デイヴィッド
スン,リ
Original Assignee
コグネックス・コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コグネックス・コーポレイション filed Critical コグネックス・コーポレイション
Publication of JP2020516883A publication Critical patent/JP2020516883A/ja
Priority to JP2022169547A priority Critical patent/JP2023011704A/ja
Application granted granted Critical
Publication of JP7165484B2 publication Critical patent/JP7165484B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/246Calibration of cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker
    • G06T2207/30208Marker matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/243Image signal generators using stereoscopic image cameras using three or more 2D image sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)
  • Measurement Of Optical Distance (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Studio Devices (AREA)

Abstract

本発明は、少なくとも1つの表面上に校正パターンを付けた校正ターゲットを提供する。校正ターゲットに対してパターン上の校正特徴の位置の関係が決定されて、校正ビジョンシステムによる校正手順で使用するために保存される。校正ターゲットの特徴関係を知ることにより、校正ビジョンシステムが校正ターゲットを単一のポーズで撮像して、各々の校正特徴を所定の座標空間で再発見できるようになる。次に校正ビジョンシステムは、保存されたデータからの特徴間の関係を校正ビジョンシステムのローカル座標空間に変換できる。これらの位置は、バーコードに符号化されてターゲットに適用されるか、別個の符号化された要素で設けられているか、又は電子データソースから取得できる。ターゲットは、ターゲットの全体ジオメトリに対して隣接する校正特徴の位置を定義するパターン内の符号化された情報を含むことができる。

Description

本発明は、マシンビジョンシステム用途で使用される校正システム及び方法、ならびに校正オブジェクト(ターゲット)に関する。
マシンビジョンシステム(本明細書では「ビジョンシステム」とも呼ばれる)では、1以上のカメラを使用して撮像されたシーン内のオブジェクト又は表面でビジョンシステムプロセスを実行する。これらのプロセスは、検査、シンボルのデコード、整列、及びその他の自動化された様々なタスクを含むことができる。より具体的には、ビジョンシステムを使用して、撮像されたシーン中に存在する工作物を検査することができる。シーンは通常1以上のビジョンシステムカメラによって撮像され、これらのビジョンシステムカメラは関連するビジョンシステムプロセスを操作して結果をもたらす内部又は外部ビジョンシステムプロセッサを含むことができる。一般に、1以上のカメラが十分な精度と信頼性をもってビジョンタスクを実行できるようにするためにカメラを校正することが望ましい。カメラを適当な座標空間と物理単位に関して校正するために、校正オブジェクト若しくは校正ターゲットを採用できる。例として、工作物の画像は2次元(2D)画像ピクセルデータ(例えばx座標とy座標)、3次元(3D)画像データ(x座標、y座標及びz座標)又はハイブリッド2.5D画像データによって特徴付けることができ、2.5D画像データは複数のx−y座標平面が本質的に平行であり可変なz高さによって特徴付けられる。
校正オブジェクト若しくは校正ターゲット(しばしば「プレート」の形態をなす)は、多くの場合に、表面に見えるようにした特徴的なパターン(アートワーク)を有する平坦な構造として設けられている。この特徴的なパターンは、一般に注意して精密に設計されているので、ユーザはカメラで取得したターゲットの画像中に見える各特徴を容易に識別できる。幾つかの例示的なパターンには、四角形のモザイク状のチェッカーボードや、全体パターンの中に周期的な間隔で追加的な象眼細工のコードを有するチェッカーボードが含まれ(これに限るものではない)、これらは特徴位置、ドットグリッド、ライングリッド、ハニカムパターン、モザイク状の三角形、その他の多角形などを指定する。各々の見える特徴の特性は、設計内部で暗黙的に定義され基準位置及び/又は座標系に対して相対的な位置及び/又は回転など、ターゲットの設計から知られている。
交線のモザイク状配列を特徴とする典型的なチェッカーボードパターンの設計は、校正を実行する際に精度と堅牢性に関してある利点を提供する。より具体的には、静止しているオブジェクトの2次元(2D)校正でビジョンシステムの精度を決定するのに、通常は校正チェッカーボードのエッジによって個々のチェッカーボードタイルのコーナーの相対位置を決定すれば十分であり、必要に応じてカメラのプロセッサに補正係数を与え、このような補正係数を考慮して実行時オブジェクトが測定される。
更に背景として、ビジョンシステムカメラの校正は、カメラのピクセルを所定の座標系にマッピングすることを含む。ターゲットは、座標系(例えば一連のチェッカーボードのX−Y軸構成)を定義する特徴、例えば特徴パターンに埋め込まれた2Dコード(「バーコード」とも呼ばれる)、さもなければパターン座標系を定義する特徴的な基準を提供できる。特徴をカメラのピクセルにマッピングすることにより、システムはターゲットに合わせて校正される。複数のカメラを使用して校正ターゲットの全部又は一部の画像を取得する場合、すべてのカメラは、ターゲットの特徴(例えばターゲットの平面に沿ったX及びY、Z(高さ)及びX−Y平面におけるZ軸を中心とした回転Θ)によって指定できる共通の座標系、又は別の(例えばグローバル)座標系にマッピングされる。一般に、校正ターゲットは多数の種類の校正操作で使用することができる。例として、典型的な内的及び外的カメラ校正操作は、各々のカメラによってターゲットの画像を取得することと、取得した画像を用いて校正ターゲット自体の座標系に対して校正することを伴い、このターゲットはすべてのカメラの全体視野の少なくとも一部における特定の位置である。ビジョンプロセッサ内の校正アプリケーションは、各カメラが取得したターゲットの画像から各カメラの相対位置を推定する。ターゲット上の基準を使用して各カメラをそれぞれの視野内のターゲットの部分に対して向けることができる。この校正は「カメラをプレートに校正する」と言われる。
ユーザは、典型的な平面校正ターゲットを使用して2D、2.5D又は3Dビジョンシステムを校正しようとする際に何らかの不便に遭遇することがある。このような不便さは2つの原因から生じ得る。第1に、3D情報を用いる精密な校正ターゲットは、校正ターゲットをミクロンレベルで製造することを要求するが、これは時間がかかるだけでなくコストもかかる。第2に、立体ビジョンシステム若しくはステレオビジョンシステムの校正は、校正ターゲットがすべてのカメラに見える多数のポーズで撮像されることを要求する。このプロセスはユーザにとって長時間かかりエラーが発生しやすい。ステレオビジョンシステムが複雑である(例えば複数のカメラを使用する)場合に特にそうである。例えば4台のカメラで構成される市販のビジョンシステムは、十分な校正を達成するのにターゲットの20以上のビューを必要とする。
本発明は先行技術の欠点を、少なくとも1つ(1つ以上の)表面で校正パターンを定義することによって克服する。校正ターゲットに対して校正パターン上の校正特徴の位置(例えばチェッカーボードの交点)の関係が決定されて(例えばターゲットの製造時)、校正ビジョンによる校正手順で使用するのために保存される。校正ターゲットの特徴関係を知ることにより、校正ビジョンシステムが校正ターゲットを単一のポーズで撮像して、各々の校正特徴を所定の座標空間で再発見できるようになる。次に校正ビジョンシステムは保存されたデータからの特徴間の関係を校正ビジョンシステムのローカル座標空間に変換できる。これらの位置は、バーコードに符号化されてターゲットに適用されるか(校正中に撮像/復号化される)、別個の符号化された要素(例えばターゲットと共に出荷されるカード)で設けられているか、又は電子データソース(例えば特定のターゲットに関連付けられたディスク、サムドライブ又はウェブサイト)から取得できる。ターゲットは、ターゲットの全体ジオメトリに対して隣接する校正特徴の特定の位置を定義するパターン内の符号化された情報を含むことができる。1実施形態において、ターゲットは距離で隔てられた少なくとも2つの表面からなり、第1の表面に第1の校正パターンを付けた大きいプレートと、第1の校正パターンから間隔(例えばZ軸高さによって定義される)をおいて配置された第2の校正パターンを有し、大きいプレートの第1の表面にあてがわれる小さいプレートとを含んでいる。ターゲットは両面を持つことができ、第1の表面と、対応するパターンを付けた小さい方の第2の表面が反対側にそれぞれ表示されることにより、関連するマルチカメラ、即ちビジョンシステムによるターゲットの360度観察と同時校正が可能になる。他の実施形態では、ターゲットは、立方体などの3D形状であることができ、1つ以上の表面がパターンを含み、各表面上の特徴間の関係が決定されて、校正ビジョンシステムによる使用のために保存される。
例示的な実施形態では、校正ターゲットが設けられて、第1の校正パターンを付けた第1の表面を含む。データソースは、第1の校正パターン上の校正特徴の相対位置を定義する。データソースは校正ビジョンシステムによって識別可能であり、校正ビジョンシステムは校正ターゲットの画像を取得して相対位置をビジョンシステムのローカル座標空間に変換する。第2の校正パターンを付けた第2の表面も設けることができ、第2の表面は第1の表面から離れて配置されている。これによりデータソースは、第2の校正パターン上の校正特徴の相対位置も定義する。
例示的に、第2の表面は第1の表面に付着したプレート上に設けられているか、又は第1の表面に対して非平行方向に向けられた3次元対象の別個の面に設けられている。例示的な実施形態では、第1の校正パターンと第2の校正パターンはチェッカーボードである。データソースは、(a)校正ターゲット上のコード、(b)別個の印刷されたコード、及び(c)校正ビジョンシステムのプロセッサによってアクセス可能な電子データソースのうちの少なくとも1つを含む。相対位置は、校正ターゲットの製造中又は製造後に精密なビジョンシステムによって定義でき、校正ビジョンシステムによる使用のために利用できるようになる。精密なビジョンシステムは、(a)立体視システム、(b)3以上のカメラからなるビジョンシステムとレーザ変位センサ、及び(c)飛行時間型カメラアセンブリのうち少なくとも1つを、他のタイプの3D撮像装置のほかに含む。例示的に、校正ターゲットは、第1の表面と反対側に第3の校正パターンを付けた第3の表面と、第4の校正パターンを付けた第4の表面を含むことができ、第4の表面は第3の表面の上に間隔をおいて配置できる。それによって電子データソースは、第1の校正パターン、第2の校正パターン、第3の校正パターン及び第4の校正パターン上の校正特徴の相対位置を定義することができる。例示的に、精密なビジョンシステムと校正ビジョンシステムは、校正ターゲットのそれぞれ反対側で校正ターゲットを撮像するように配置されている。実施形態では、校正ビジョンシステムは、2Dビジョンシステム、2.5Dビジョンシステム及び3Dビジョンシステムのうちの1つである。例示的に、第1の校正パターンと第2の校正パターンのうちの少なくとも1つは、表面エリア全体に対して隣接する校正特徴の相対位置を定義するコードを含む。
ビジョンシステムを校正するための例示的方法において、第1の校正パターンを付けた第1の表面を有する校正ターゲットが設けられている。第1の校正パターン上の校正特徴の相対位置を定義するデータソースがアクセスされる。精密なビジョンシステムが校正ターゲットの少なくとも1つの画像を取得することによってデータソースが生成される。校正ターゲットは、ユーザによる校正操作中に校正ビジョンシステムによって連続的に取得される。精密なビジョンシステムによる相対位置が、校正ビジョンシステムローカル座標空間に変換される。例示的に、第2の校正パターンを付けた第2の表面が設けられている。この第2の表面は第1の表面から離れて配置されており、データソースは第2の校正パターン上の校正特徴の相対位置を定義する。
校正ターゲットを製造するための例示的な方法では、所定の第1の校正パターンを付けた少なくとも第1の表面が設けられている。第1の表面の画像が取得され、その上に校正パターン特徴が配置される。配置された校正特徴を使用して、第1の校正パターン上の校正特徴の相対位置を定義するデータソースが生成される。このデータソースは、校正ターゲットの画像を取得するビジョンシステムによって識別可能で、相対位置をビジョンシステムのローカル座標空間に変換する。例示的に第2の表面が、第1の表面に対して配置された第2の校正パターンを付けて設けられている。この第2の表面は第1の表面から離れて配置され、データソースは第2の校正パターン上の校正特徴の相対位置を定義する。第2の表面は第1の表面に付着したプレート上に設けることができ、又は第2の表面は第1の表面に対して非平行方向に向けられた3次元対象物の別個の面上に設けることができる。例示的に、第1の校正パターンと第2の校正パターンはチェッカーボードであってよい。例示的な実施形態では、第3の表面が第1の表面の反対側に第3の校正パターンを付けて設けられている。第4の校正パターンを付けた第4の表面が、第3の表面にあてがわれる。第4の表面は第3の表面上に間隔をおいて配置され、それによってデータソースは、、第1の校正パターン、第2の校正パターン、第3の校正パターン及び第4の校正パターン上の校正特徴の相対位置を定義する。データソースは、(a)校正ターゲット上のコード、(b)別個の印刷されたコード、及び(c)校正ビジョンシステムのプロセッサによってアクセス可能な電子データソースのうちの少なくとも1つで設けることができる。
以下の本発明の説明は添付の図面を参照する。
例示的な実施形態による、校正ターゲット及び関連する保存された校正ターゲット特徴関係データを用いて校正プロセスが行われる全体的なビジョンシステム構成の図である。
図1の例示的な実施形態による、両面の多重表面校正ターゲットの側面図である。
例示的な実施形態による、高精密なビジョンシステムを使用して、製造された校正ターゲットを分析し、そこから保存された校正ターゲット特徴関係データを生成する手順のフローチャートである。
図3の手順に従って非常に精密な校正ターゲット特徴関係データを生成するための3台のカメラからなる3Dビジョンシステムの例示的な実施形態である。
例示的な実施形態による、校正ターゲット及び図3の手順で生成された関連する保存された特徴関係データを用いてビジョンシステムを校正するための手順のフローチャートである。
例示的な実施形態による、図5の手順で校正ターゲットに適用されるコードを読み取り、そこから保存された特徴関係データを復号化するための手順のより詳細なフローチャートである。
代替的な実施形態による、それぞれ校正パターンを付けた少なくとも3層に重ねた表面を有する校正ターゲットの部分斜視図である。
別の代替実施形態による、少なくとも2つの別個の表面に付けられた校正パターンを有する3D形状(例えば立方体)を画定する校正ターゲットの斜視図である。
I.システムの概要
図1は、例示的な実施形態による校正ターゲット120の少なくとも2つの側の各々にそれぞれ複数のカメラ01−N(110、112)及び1−M(114、116)を有するビジョンシステム構成100を示す。カメラ110〜116は、シーン全体の中で校正ターゲット120の一部又は全部の画像を取得するように配置されている。ターゲット120は、パターンを見ることを可能にする任意の許容可能なメカニズム(例えばロッド又はブラケット122)によって支持することができる。カメラの数及び画像シーンに対するカメラの向きは、別の構成においては非常に可変である。この実施形態では、各側は少なくとも2台のカメラ、典型的には少なくとも4台のカメラからなる。他の実施形態では、必要に応じて、各側又は片側のみを単一のカメラ又は4以上のカメラで撮像することができる。カメラ110−116は公知の技術を用いて三角測量を可能にするように配置されていて、撮像された表面の3次元(3D)表現又を生成できるようになっている。代替の実施形態では、図示の単一光学カメラを1以上の他のタイプのカメラで置き換えることができ、これにはレーザ変位センサ、立体視カメラ、LIDARベースの(より一般的には距離測定)カメラ、飛行時間カメラなどが含まれるが、これらに限らない。
カメラ110−116はそれぞれ、1以上の内部又は外部ビジョンシステムプロセッサ130に画像データを伝送するイメージセンサSを含んでおり、プロセッサ130は機能的なモジュール、プロセス及び/又はプロセッサを使用して適当なビジョンシステムプロセスを実行する。非限定的な例として、モジュール/プロセスは、エッジファインダ及びコントラストツール、ブロブアナライザ、キャリパなど、画像内の特徴を見つけて分析するビジョンシステムツール132のセットを含むことができる。ビジョンシステムツール132は、少なくとも1つの共通(即ちグローバル)座標系140に対する1以上のカメラの校正を処理する校正モジュール/プロセス134と相互作用する。このシステムは、関連する直交x、y及びz軸に沿ったデカルト座標の観点で定義することができる。x、y及びz軸を中心とした回転は、それぞれθ、θ及びθとして定義することもできる。別の実施形態では、極座標など他の座標系を使用することができる。ビジョンシステムプロセス(プロセッサ)130はID/コード発見及び復号化モジュール136も含むことができ、これは慣用的技術又はカスタム技術を使用してバーコード及び/又は様々なタイプや標準の他のIDを見つけて復号化する。
プロセッサ130は、カスタム回路でインスタンス化することができ、又は図示されているように汎用コンピューティングデバイス150のハードウェア及びソフトウェアとして設けることができる。このコンピューティングデバイス150は、PC、ラップトップ、タブレット、スマートフォン、又は他の許容可能な構成であることができる。コンピューティングデバイスは、例えば、キーボード152、マウス154、及び/又はディスプレイ/タッチスクリーン156などのユーザインターフェースを含むことができる。コンピューティングデバイス150は、有線及び/又は無線リンクを使用する適当な通信ネットワーク(例えばWAN、LAN)上に常駐することができる。このネットワークは、品質管理、ロボット制御、アライメント、部品受入/拒否、ロジスティクス、表面検査など様々なタスクのためにプロセッサ130によって生成されたビジョンシステムデータを使用する1以上のデータハンドリングデバイス160に接続できる。
例示的な構成の校正ターゲット120は、本明細書で想定されている多様な実装の1つである。代替の実施形態では、ターゲットは、単一の露光された撮像面と、関連するアートワーク/校正パターン(例えば明るい正方形と暗い正方形をモザイク状に配列したチェッカーボード)を有するプレートからなる。しかしながら図示の例では、校正ターゲットは、それぞれに校正パターンを付けた複数の積み重ねられたプレート170及び172からなる。パターンを付ける方法は極めて可変であり、例えばスクリーン印刷又はフォトリソグラフィを採用できる。一般に、特徴の境界を画定する線とそれらの交点は、許容可能なレベルの解像度を生み出すのに十分鮮明であり、シーン全体のサイズに応じてミクロン、ミリメートルなどで測定できる。1実施形態では、更に図2に示されているように、校正ターゲット120は、3層に積み重ねられたプレート170、172及び210からなる。中央プレート170は最大の面積を有し、図示された幅WP1にわたって延びているが、中央プレート170を挟んでそれぞれ反対側の表面に積み重ねられた2つのプレート172、210は、面積が小さく幅WP2及びWP3を有する。中央プレートを挟んでそれぞれ反対側の表面220及び222は、任意の許容可能な値(例えば1〜50ミリメートル)であってよい厚さTP1だけ分離されている。上述したように各表面220及び222は、例示的な校正パターンを含むことができる。したがって各パターンの校正特徴は、TP1の高さ間隔(例えばz軸)で配置される。積み重ねられたプレート172及び210はそれぞれの厚さTP2及びTP3を画定しており、それぞれの表面/校正パターン230及び240はそれらの下に位置する表面220及び222から対応する間隔で配置されている。これらの間隔が、各表面校正パターンによって画定されるx−y軸寸法に加えて、特徴に対するz軸寸法を生み出す。このようにして校正ターゲットは、ビジョンシステムの各側の3D校正のための特徴情報を効果的に提供できる。
プレート170、172及び210は、様々な方法で一緒に組み立てることができる。基本的な例では、適当な接着剤(シアノアクリレート、エポキシなど)を使用して、ほぼ中央の位置で中央プレートの隣接する表面220、222に面積の小さいプレート172、210を接着する。表面230、220、222、240間の平行度は慎重に制御されず、大きいプレート上に小さいプレートを配置する際のセンタリングもない。実際、非対称性と傾斜位置の導入は、以下で一般的に説明するように、校正ビジョンシステム(100)の校正に益することがある。
特に、特徴間の3次元の関係がデータ180のセットに含まれており、これらは特定の校正ターゲット120に関連してプロセッサに保存できる。データは、様々な形式からなることができる、例えばデータ180は、校正ターゲット120内のすべての校正特徴(又はすべてのサブセット)又は特徴グループの位置からなることができる。データは様々なやり方で取得又はアクセスできる。図示されているように、2Dバーコード(例えばデータマトリックスIDコード)182を校正ターゲット120のある位置(例えばエッジ)に設けることができ、それがビジョンシステムの1以上のカメラによって取得され、プロセッサ130及びモジュール136によって復号化される。データ180の提供及びアクセスのための他のメカニズムには、出荷されるターゲット120と一緒に別個のラベル又はカードを供給してそれらのコードをスキャンすること、ターゲットに対するシリアル番号(又は他の識別子)に関連付けてウェブサイトからデータをダウンロードすること、ディスク、フラッシュメモリ(サムドライブ)又はその他の電子データ保存装置でデータを提供することなどが含まれる。
II.校正ターゲット特徴関係データの生成
例示的な校正ターゲットに対する校正パターン特徴の関係を記述するデータは、図3の手順300に従って生成される。一般に、関連するターゲット座標における関係(例えば2D座標又は3D座標)が知られていて校正ビジョンシステムに利用できると、ターゲットの製造公差を著しく低減できる。これらの関係は、高精密なビジョンシステムで特徴を分析することによって導き出すことができる。「高精密な」(又は単に「精密な」)とは、ビジョンシステムが供給する関係データは、任意の座標の校正ビジョンシステムの座標系への変換が、実行時に校正ビジョンシステムによって実行されるタスクに対する許容公差範囲内にあることを十分保証できることを意味する。したがって例として、ビジョンシステムがミクロンレベルの公差を要求する場合、高精密なビジョンシステムはサブミクロン範囲の関係データを返す。
手順300のステップ310において、(本明細書に記載されているいずれかの物理的構成に従って)製造された校正ターゲットは、高精密なビジョンシステムの視野内に配置されている。1以上のステレオカメラアセンブリを備えた立体視システムは、実装の一形態である。しかしながら高精密なビジョンシステムは、(例えば)1つ以上のレーザ変位センサ(プロファイラ)、飛行時間カメラなどを使用して実装することができる。図4に示す実施形態では、非常に精密なターゲット420の片側を撮像するためのビジョンシステム420が示されている。ビジョンシステム構成400は、それぞれ所定の相対角度に向けられた非平行光軸OA1、OA2及びOA3に配置された3台のカメラ430、432及び434を含む。これら3台のカメラは、3視点からの特徴の三角測量を可能にし、それにより従来の立体視システムよりも精度を高める。即ち、各カメラは他の2台のカメラと三角測量でき、それらの結果が結合/平均される。各カメラ430、432及び434からの画像情報が取得され(図3のステップ320)、校正データ生成モジュールビジョンシステムプロセス(プロセッサ)450に伝送される。データは、ステレオビジョンモジュール/プロセス(プロセッサ)452により、ビジョンシステムツールと組み合わせて処理される。これらのビジョンシステムツールは、カメラの画像内の特徴を見つけて分解し(図3のステップ330)、三角測量によって3D座標空間460におけるそれらの相対位置を決定する(図3のステップ340)。即ち、各カメラは平面(x−y)画像を生成する。各カメラと他のカメラの相対角度を知ることにより、各x−y画像内の同じ特徴にz軸の高さを与えることが可能になる。データの3D座標は、校正データモジュール/プロセス(プロセッサ)に提供されて、校正データモジュール/プロセス(プロセッサ)はこれらの座標を特徴と関連付け、(任意選択で)特徴校正データの保存又は符号化されたセット470を生成する(図3のステップ350)。このセットは、ターゲット420内の関連する各特徴の座標及び/又は1以上の基準に対して相対的な特徴の配置(例えば線のコーナーや基準などに対する向き)を含むことができる。データセット470は1以上の符号化されたIDラベルに印刷されて、ターゲット420に添付され、又はターゲット420と一緒にユーザに出荷される(図3のステップ360)。代替として、ユーザのビジョンシステムにダウンロードするために利用可能にし、又は当業者には明白な他のメカニズムによってユーザに供給することができる。校正プレート及び使用方法が、2016年5月1日に出願されたリュウ・ガンによる「自動位置決め基準として符号化された2Dデータコードを採用するシステム、方法及び校正プレート」と題する共通に譲渡された米国特許番号において、有用な背景として示され説明されており、その教示は参照により本明細書に組み込まれることに留意されたい。
III.ターゲットと特徴関係データを使用する校正プロセス
図5と図6は、本発明による校正ターゲット及び関連する特徴関係データを使用してビジョンシステム(「校正ビジョンシステム」と呼ばれる)を校正するための手順500及び600を集合的に説明する。図5のステップ510において(本明細書で想定されている任意の構成例による)校正ターゲットは1以上のカメラ(慣用的光学系、テレセントリック光学系、レーザ変位、飛行時間などの適当なメカニズムに従って動作する)からなるビジョンシステムの視野内に配置されている。カメラは片側又は複数の(例えば相対する)側からターゲットを撮像するように向けることができる。それぞれのカメラからの画像はステップ520で通常同時に取得され、取得された画像データはビジョンシステムプロセス(プロセッサ)に送信される。各画像内の特徴は、ビジョンツール(例えばエッジ、コーナーなど)を使用して配置され、ステップ530においてカメラの座標系と関連付けられる。
手順500においてはステップ540で、特定の校正ターゲット上の校正特徴の関係(例えば真の相対位置)が、記憶装置から、或いは(他のメカニズムと並んで)ターゲット上のIDコードを読み取ることによりアクセスされる。ここで図6を参照すると、校正ターゲットの特徴関係データを含む、例示的な適用されたIDコード読み取るための手順600が示されている。IDコードは、IDが適用される既知の位置又は領域のスキャンに基づいて、又はより一般的には(例えば)従来のID発見及び復号化プロセスを使用したID特徴の検索に基づいてターゲット上に配置される(ステップ610)。手順600は発見されたIDを復号化し、ステップ620で復号化された情報を撮像された校正ターゲットに関連付けてビジョンシステムプロセッサのメモリに保存する。様々な実施形態において、IDは特徴位置座標若しくは他の関係を直接符号化することができ、又はダウンロード可能なデータベースなど他のソースから座標を読み出すことを可能にする識別子を含むことができる。
例示的な手順600において読み出された特徴関係データは、ステップ630で、校正ターゲットの画像内の実際に配置された特徴(例えば測定された相対位置)に関連付けられ(図5のステップ530も参照)、ステップ550(図5)に従い、校正モジュール/プロセス(プロセッサ)はターゲット内の特徴の既知の位置に配置された特徴を関係データから変換して、相対位置をビジョンシステムのローカル座標空間(1以上のカメラを含む)に変換する。即ち、校正プロセスは、校正ビジョンシステムによって校正ターゲット上に配置されたどの特徴が、関係データ内の特徴に対応するかを決定する。この対応は、ターゲット上の基準を関係データ内の同じ基準の位置で登録し、次に周囲の特徴を基準に対するそれらの相対位置に応じて埋めることよって達成できる。様々な実施形態において、校正ターゲットはアートワーク内の所定の位置に埋め込まれた基準を含むことができ、各基準は表面全体の一部を参照することに留意されたい。基準は、下側にある特徴に関する詳細(例えばチェッカーボードのコーナーの数、サイズ、位置など)を含むデータマトリックスコードなどのIDを含むことができる。例えば、図1の校正ターゲット120の表面上のID190を参照されたい。図6の任意選択のステップ640は、そのような埋め込まれたコードの発見及び読み取りを記載している。この構成は、例えば校正ターゲットの一部が1以上のカメラに隠れている場合や、カメラの視野がターゲットの表面全体よりも小さいために特定のカメラがターゲット全体の一部しか撮像できない場合に望ましいことがある。埋め込まれたIDにより、ビジョンシステムプロセッサは個別のビューをグローバル座標系に向けることが可能になり、(任意選択で)部分ビューをターゲットの単一の全体画像に登録できる。
図5の校正手順500のステップ560で、変換された特徴は各カメラの校正パラメータとしてビジョンシステム(1以上のカメラを含む)に保存され、後続の実行時ビジョンシステム操作で使用される。
IV.代替的な校正ターゲットの配置構成
上述した校正ターゲットは、2組の2D特徴を有する片面又は両面プレート構造として示されており、下側にある下部プレートと、それより面積/寸法が小さい下部プレートが互いに積み重ねられているので両プレートの特徴を観察及び撮像できる。別の実施形態では、関連する格納された表現を備えた特徴の単一層を使用することができる。これは、特に校正中にビジョンシステムがプレート上のすべての特徴を精密に撮像することが困難な配置において、2D(又は3D)校正の望ましい実装である。撮像されたターゲット上で大まかに識別された特徴は、保存/アクセスされた特徴関係を使用して、特徴の精密な表現に変換できる。
他の校正ターゲットの実施形態は、積み重ねられた2組以上の2D特徴を採用できる。図7は、下部プレート720と、より小さい寸法の中間プレート730と、更に小さい寸法の上部プレート740を含む例示的な校正ターゲット710の部分図を示す。この配置はピラミッド型であるため、各プレートの特徴をカメラで観察及び撮像できる。プレートは対称的又は中心に積み重ねる必要はないことに留意されたい。特徴が何らかのやり方で積み重ねられ、z軸(高さ)次元に沿って間隔をおくことができる限り、ターゲットは所期の機能を果たすことができる。1つの代替的配置は、ステップパターンであることができる。別の実施形態では、3以上のプレートを積み重ねることができ、ターゲットは配置構成のそれぞれ反対側に積み重ねられた複数のプレートを提供することができる。上記の埋め込まれたID基準750は、表面全体の隣接する特徴の位置を識別するために設けられていることに留意されたい。
別の代替構成では、校正ターゲットは図8に示すような立方体810などの多面体−を含むことができる。この実施形態では、この3Dオブジェクトの2以上の直交面820及び830が校正パターンを含んでいる。少なくとも1つの表面820は、ビジョンシステムによって読み取られて復号化され得る特徴関係データを備えたIDラベル840を含むものとして示されている。1実施形態において、360度の観察及び校正用に側面を配置することができる。いずれの実施形態においても、IDラベルは校正ターゲット上の任意の適当な位置又は複数の位置に配置できることに留意されたい。
V.結論
上述した校正ターゲットとその製造及び使用のための方法が、2D及び3Dビジョンシステムを校正するための高い信頼性と汎用性のあるメカニズムを提供することは明らかである。校正ターゲットは製造及び使用が簡単で、製造及び印刷工程における不正確さを許容する。同様に、ターゲットは、特徴関係をユーザに提供して、ビジョンシステムを校正するための広範なメカニズムを可能にする。また、このターゲットは1回の画像取得ステップで全360度の校正を効果的に可能にする。
以上は本発明の例示的な実施形態を詳細に説明したものである。本発明の精神と範囲を逸脱することなく種々の改変及び追加を行うことができる。上述した種々の実施形態の各々の特徴は、関連する新しい実施形態において多数の特徴の組み合わせを提供するのに適する限り、別の記載された実施形態の特徴と組み合わされてよい。更に、上に本発明の装置と方法の多数の別個の実施形態を記したが、ここに記載されたものは本発明の原理の応用を例示したものに過ぎない。例えば、本明細書で使用される様々な方向及び/又は向きを表わす用語(及びそれらの文法的変化)、例えば、「垂直」、「水平」、「上」、「下」、「底部」、「頂部」、「側部」、「前部」、「後部」、「左」、「右」、「前方」、「後方」、及びこれに類するものは、相対的な表現法として用いられているに過ぎず、重力の作用方向など固定した座標系を基準とした絶対的な向きを表わすものではない。また、本明細書中で使用される「プロセス」及び/又は「プロセッサ」という言葉は広く電子ハードウェア及び/又はソフトウェアをベースとする多様な機能及びコンポーネント(或いは機能的「モジュール」又は「エレメント」と呼ぶことがある)を含むものと解釈すべきであることにも留意されたい。更に、表示されたプロセス又はプロセッサは他のプロセス及び/又はプロセッサと組み合わせ、又は種々のサブプロセス又はサブプロセッサに分割されてよい。そのようなサブプロセス及び/又はサブプロセッサは、本明細書に記載された実施形態に従って多様に組み合わせることができる。同様に、本明細書中の何らかの機能、プロセス及び/又はプロセッサは、プログラム命令の非一時的コンピュータ可読媒体からなる電子ハードウェア、ソフトウェア、或いはハードウェアとソフトウェアの組み合わせを用いて実施できることが明確に想定されている。また、様々な実施形態が積み重ねられたプレートを示しているが、表面は、プレートの一部が下側にある表面との接触から離れているようにスペーサ又は他の距離生成部材を使用して一緒に組み立てることができる。したがって、この説明は例示の方法によるものとしてのみ受け取られるべきであり、それ以外に本発明の範囲を限定することを意味するものではない。
以下に特許請求の範囲を記載する。

Claims (17)

  1. 校正特徴をビジョンシステムのローカル座標空間にマッピングする画像変換を生成するための方法であって、
    当該方法は校正ターゲットの第1の表面と前記校正ターゲットの第2の表面の第1の画像を取得するステップを有し、ここで、前記第1の表面は第1の校正パターンを有し、前記第2の表面は第2の校正パターンを有し、
    当該方法は前記第1の画像から校正特徴の測定された相対位置を特定するステップを有し、
    当該方法は第1の校正パターンと第2の校正パターン上の校正特徴の真の相対位置を定義する少なくとも1つのデータソースから校正特徴の真の相対位置を特定するステップを有し、ここで、前記データソースは校正ターゲットの画像を取得する校正ビジョンシステムによって識別可能であり、さらに
    当該方法は、前記真の相対位置及び測定された相対位置から、前記測定された相対位置をビジョンシステムのローカル座標空間に変換する画像変換を生成するステップを有する、
    上記方法。
  2. 前記第1の画像を取得することは、前記校正ターゲットの第3の表面と前記校正ターゲットの第4の表面を含み、前記第3の表面は第3の校正パターンを有し、前記第4の表面は第4の校正パターンを有する、請求項1記載の方法。
  3. 前記ビジョンシステムは1台のカメラを含む、請求項1記載の方法。
  4. 前記データソースは、(a)前記校正ターゲット上のコード、(b)別個の印刷されたコード、及び(c)前記校正ビジョンシステムのプロセッサによってアクセス可能な電子データソース、の少なくとも1つを含む、請求項1に記載の方法。
  5. 前記第1の表面と前記第2の表面とは距離で隔てられている、請求項1記載の方法。
  6. 前記校正ビジョンシステムは、2Dビジョンシステム、2.5Dビジョンシステム、及び3Dビジョンシステムのうちの1つである、請求項1記載の方法。
  7. 前記第1の画像は2D画像又は3D画像の少なくとも1つである、請求項1記載の方法。
  8. 前記測定された相対位置は、2D座標又は3D座標を含む、請求項1記載の方法。
  9. 校正特徴をビジョンシステムのローカル座標空間にマッピングする画像変換を生成するための方法であって、
    当該方法は校正ターゲットの第1の表面の複数の画像を取得するステップを有し、ここで、前記第1の表面は第1の校正パターンを有し、
    当該方法は前記複数の画像の少なくとも1つの画像から校正特徴の測定された相対位置を特定するステップを有し、
    当該方法は前記第1の校正パターン上の校正特徴の真の相対位置を定義する少なくとも1つのデータソースから校正特徴の真の相対位置を特定するステップを有し、ここで、前記第データソースは、前記校正ターゲットの複数の画像を取得する校正ビジョンシステムによって識別可能であり、さらに
    当該方法は前記真の相対位置と前記測定された相対位置から、前記測定された相対位置をビジョンシステムのローカル座標空間に変換する画像変換を生成するステップを有する、
    上記方法。
  10. 前記複数の画像を取得することは、前記校正ターゲットの第2の表面を含み、前記第2の表面は第2の校正パターンを有する、請求項9記載の方法。
  11. 前記第1の表面と前記第2の表面とは距離で隔てられている、請求項10記載の方法。
  12. 前記ビジョンシステムは複数のカメラを含む、請求項9記載の方法。
  13. 前記データソースは、(a)校正ターゲット上のコード、(b)別個の印刷コード、及び(c)前記校正ビジョンシステムのプロセッサによってアクセス可能な電子データソース、の少なくとも1つを含む、請求項9記載の方法。
  14. 前記校正ビジョンシステムは、2Dビジョンシステム、2.5Dビジョンシステム、及び3Dビジョンシステムのうちの1つである、請求項9記載の方法。
  15. 前記複数の画像は、複数の2D画像又は複数の3D画像の少なくとも1つである、請求項9記載の方法。
  16. 前記測定された相対位置は2D座標又は3D座標を含む、請求項9記載の方法。
  17. 校正特徴をビジョンシステムのローカル座標空間にマッピングする画像変換を生成するためのシステムであって、
    当該システムは校正ターゲットの第1の表面の複数の画像を提供するプロセッサを備え、ここで、前記第1の表面は第1の校正パターンを有し、
    当該システムは前記複数の画像の少なくとも1つから校正特徴の相対位置を測定する測定プロセスを備え、
    当該システムは前記第1の校正パターン上の校正特徴の真の相対位置を定義するデータソースを有し、ここで、前記データソースは前記校正ターゲットの複数の画像を取得する校正ビジョンシステムによって識別可能であり、さらに
    当該システムは、前記真の相対位置に基づいて前記測定された相対位置を前記ビジョンシステムのローカル座標空間に変換する画像変換プロセスを備える、
    上記システム。
JP2019555480A 2017-04-17 2018-04-17 高精密な校正システム及び方法 Active JP7165484B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022169547A JP2023011704A (ja) 2017-04-17 2022-10-23 高精密な校正システム及び方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762486411P 2017-04-17 2017-04-17
US62/486,411 2017-04-17
PCT/US2018/027997 WO2018195096A1 (en) 2017-04-17 2018-04-17 High-accuracy calibration system and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022169547A Division JP2023011704A (ja) 2017-04-17 2022-10-23 高精密な校正システム及び方法

Publications (2)

Publication Number Publication Date
JP2020516883A true JP2020516883A (ja) 2020-06-11
JP7165484B2 JP7165484B2 (ja) 2022-11-04

Family

ID=63856024

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019555480A Active JP7165484B2 (ja) 2017-04-17 2018-04-17 高精密な校正システム及び方法
JP2022169547A Pending JP2023011704A (ja) 2017-04-17 2022-10-23 高精密な校正システム及び方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022169547A Pending JP2023011704A (ja) 2017-04-17 2022-10-23 高精密な校正システム及び方法

Country Status (6)

Country Link
US (1) US20190122388A1 (ja)
JP (2) JP7165484B2 (ja)
KR (2) KR102633873B1 (ja)
CN (1) CN110506297B (ja)
DE (1) DE112018002048T5 (ja)
WO (1) WO2018195096A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022030807A (ja) * 2020-08-07 2022-02-18 倉敷紡績株式会社 カメラ校正板
JP2022039906A (ja) * 2020-08-28 2022-03-10 中国計量大学 マルチセンサによる複合キャリブレーション装置及び方法
WO2023037670A1 (ja) * 2021-09-09 2023-03-16 Towa株式会社 校正方法、及び電子部品の製造方法
WO2023037671A1 (ja) * 2021-09-09 2023-03-16 Towa株式会社 メンテナンス方法、及び電子部品の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158414A (ja) * 2018-03-08 2019-09-19 東芝テック株式会社 情報処理装置
DE102018115334B3 (de) * 2018-06-26 2019-05-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Kalibrieren einer elektromagnetische Strahlung abstrahlenden Vorrichtung mittels einer Sensoreinheit
US10599055B1 (en) 2018-11-15 2020-03-24 Applied Materials, Inc. Self aligning systems and methods for lithography systems
CN109978956B (zh) * 2019-03-22 2021-07-06 新华三技术有限公司 采集设备的标定方法、装置及标定系统
US10565737B1 (en) 2019-07-09 2020-02-18 Mujin, Inc. Method and system for performing automatic camera calibration for a scanning system
CN110415304B (zh) * 2019-07-31 2023-03-03 北京博视智动技术有限公司 一种视觉标定方法及系统
US20210291376A1 (en) * 2020-03-18 2021-09-23 Cognex Corporation System and method for three-dimensional calibration of a vision system
CN113509263B (zh) * 2021-04-01 2024-06-14 上海复拓知达医疗科技有限公司 一种物体空间校准定位方法
CN113509264B (zh) * 2021-04-01 2024-07-12 上海复拓知达医疗科技有限公司 一种基于校正物体在空间中位置的增强现实系统、方法及计算机可读存储介质
US11988496B1 (en) * 2022-03-22 2024-05-21 Advanced Gauging Technologies, LLC Strip width measurement with continuous hardware imperfection corrections of sensed edge positions
WO2023220593A1 (en) * 2022-05-09 2023-11-16 Cognex Corporation System and method for field calibration of a vision system
CN116299374B (zh) * 2023-05-17 2023-08-04 苏州艾秒科技有限公司 基于机器视觉的声呐成像水下自动校准定位方法和系统
CN116673998B (zh) * 2023-07-25 2023-10-20 宿迁中矿智能装备研究院有限公司 一种工业机械手的定位校准装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311485A (ja) * 1987-06-13 1988-12-20 Omron Tateisi Electronics Co 自動キャリブレ−ション装置
JPH10122819A (ja) * 1996-10-21 1998-05-15 Omron Corp キャリブレーション方法およびその装置
JP2001175868A (ja) * 1999-12-22 2001-06-29 Nec Corp 人物検出方法及び装置
JP2005537583A (ja) * 2002-09-03 2005-12-08 バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド 物体の単一カメラ追跡方法及び装置
JP2013231900A (ja) * 2012-05-01 2013-11-14 Hazama Ando Corp カメラキャリブレーション用3次元パターン
JP2016001181A (ja) * 2009-12-24 2016-01-07 コグネックス・コーポレイション カメラのミスキャリブレーションの実行時決定のためのシステムと方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260427A (ja) * 1994-03-17 1995-10-13 Hitachi Ltd 位置決め用マーク検出方法および装置
US5825483A (en) * 1995-12-19 1998-10-20 Cognex Corporation Multiple field of view calibration plate having a reqular array of features for use in semiconductor manufacturing
US5768443A (en) * 1995-12-19 1998-06-16 Cognex Corporation Method for coordinating multiple fields of view in multi-camera
JP3635540B2 (ja) * 2002-08-29 2005-04-06 オリンパス株式会社 キャリブレーションパターンユニット
JP3635539B2 (ja) * 2002-08-29 2005-04-06 オリンパス株式会社 キャリブレーションパターンユニット
US7307654B2 (en) * 2002-10-31 2007-12-11 Hewlett-Packard Development Company, L.P. Image capture and viewing system and method for generating a synthesized image
JP3735344B2 (ja) * 2002-12-27 2006-01-18 オリンパス株式会社 キャリブレーション装置、キャリブレーション方法、及びキャリブレーション用プログラム
JP2005106614A (ja) * 2003-09-30 2005-04-21 Tdk Corp 立体カメラ用校正治具および当該カメラの校正方法
US8111904B2 (en) * 2005-10-07 2012-02-07 Cognex Technology And Investment Corp. Methods and apparatus for practical 3D vision system
CN100429476C (zh) * 2006-12-20 2008-10-29 北京航空航天大学 一种双传感器激光视觉三维测量系统校准方法
US8126260B2 (en) * 2007-05-29 2012-02-28 Cognex Corporation System and method for locating a three-dimensional object using machine vision
CN101299270B (zh) * 2008-05-27 2010-06-02 东南大学 三维扫描系统中的多个摄像机同步快速标定方法
CN101887585B (zh) * 2010-07-15 2012-04-11 东南大学 基于非共面特征点的摄像机标定方法
WO2012013486A1 (en) * 2010-07-27 2012-02-02 Siemens Aktiengesellschaft A method and a system for calibrating a multi-view three dimensional camera
KR101276208B1 (ko) * 2011-05-30 2013-06-18 전자부품연구원 스테레오 카메라용 보정 시스템 및 스테레오 영상 보정 장치
US9160904B1 (en) * 2012-09-12 2015-10-13 Amazon Technologies, Inc. Gantry observation feedback controller
KR20140068444A (ko) * 2012-11-28 2014-06-09 한국전자통신연구원 다층 평면 물체 영상을 이용하여 카메라를 보정하기 위한 장치 및 그 방법
US9230326B1 (en) * 2012-12-31 2016-01-05 Cognex Corporation System, method and calibration plate employing embedded 2D data codes as self-positioning fiducials
US10664994B2 (en) * 2013-02-25 2020-05-26 Cognex Corporation System and method for calibration of machine vision cameras along at least three discrete planes
US9688200B2 (en) * 2013-03-04 2017-06-27 Magna Electronics Inc. Calibration system and method for multi-camera vision system
US9641830B2 (en) * 2014-04-08 2017-05-02 Lucasfilm Entertainment Company Ltd. Automated camera calibration methods and systems
US9307231B2 (en) * 2014-04-08 2016-04-05 Lucasfilm Entertainment Company Ltd. Calibration target for video processing
CN103983961A (zh) * 2014-05-20 2014-08-13 南京理工大学 一种3d激光雷达和摄像机联合标定立体标定靶
US9596459B2 (en) * 2014-09-05 2017-03-14 Intel Corporation Multi-target camera calibration
CN204155318U (zh) * 2014-10-17 2015-02-11 中国航空工业空气动力研究院 适用于风洞试验的叠加式主动发光三维摄像机标定设备
CN104376558B (zh) * 2014-11-13 2017-02-08 浙江大学 一种基于长方体的Kinect深度相机的内参标定方法
CN104369188B (zh) * 2014-11-20 2015-11-11 中国计量学院 基于机器视觉和超声波传感器的工件抓取装置与方法
KR101947935B1 (ko) * 2014-12-22 2019-02-13 사이버옵틱스 코포레이션 3차원 측정 시스템의 갱신 보정 방법
DE112016000356T5 (de) * 2015-01-16 2018-01-11 Imra Europe S.A.S. Selbstrektifizierung von Stereokameras
US9894350B2 (en) * 2015-02-24 2018-02-13 Nextvr Inc. Methods and apparatus related to capturing and/or rendering images
JP2017003525A (ja) * 2015-06-15 2017-01-05 株式会社トプコン 三次元計測装置
US10089778B2 (en) * 2015-08-07 2018-10-02 Christie Digital Systems Usa, Inc. System and method for automatic alignment and projection mapping
CN106056587B (zh) * 2016-05-24 2018-11-09 杭州电子科技大学 全视角线激光扫描三维成像标定装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311485A (ja) * 1987-06-13 1988-12-20 Omron Tateisi Electronics Co 自動キャリブレ−ション装置
JPH10122819A (ja) * 1996-10-21 1998-05-15 Omron Corp キャリブレーション方法およびその装置
JP2001175868A (ja) * 1999-12-22 2001-06-29 Nec Corp 人物検出方法及び装置
JP2005537583A (ja) * 2002-09-03 2005-12-08 バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド 物体の単一カメラ追跡方法及び装置
JP2016001181A (ja) * 2009-12-24 2016-01-07 コグネックス・コーポレイション カメラのミスキャリブレーションの実行時決定のためのシステムと方法
JP2013231900A (ja) * 2012-05-01 2013-11-14 Hazama Ando Corp カメラキャリブレーション用3次元パターン

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022030807A (ja) * 2020-08-07 2022-02-18 倉敷紡績株式会社 カメラ校正板
JP7469989B2 (ja) 2020-08-07 2024-04-17 倉敷紡績株式会社 カメラ校正板
JP2022039906A (ja) * 2020-08-28 2022-03-10 中国計量大学 マルチセンサによる複合キャリブレーション装置及び方法
JP7072759B2 (ja) 2020-08-28 2022-05-23 中国計量大学 マルチセンサによる複合キャリブレーション装置及び方法
WO2023037670A1 (ja) * 2021-09-09 2023-03-16 Towa株式会社 校正方法、及び電子部品の製造方法
WO2023037671A1 (ja) * 2021-09-09 2023-03-16 Towa株式会社 メンテナンス方法、及び電子部品の製造方法
TWI835241B (zh) * 2021-09-09 2024-03-11 日商Towa股份有限公司 維護方法、及電子零件的製造方法

Also Published As

Publication number Publication date
CN110506297A (zh) 2019-11-26
KR102633873B1 (ko) 2024-02-05
KR20220080011A (ko) 2022-06-14
JP7165484B2 (ja) 2022-11-04
DE112018002048T5 (de) 2020-02-20
JP2023011704A (ja) 2023-01-24
US20190122388A1 (en) 2019-04-25
WO2018195096A1 (en) 2018-10-25
CN110506297B (zh) 2023-08-11
KR20190126458A (ko) 2019-11-11

Similar Documents

Publication Publication Date Title
JP7165484B2 (ja) 高精密な校正システム及び方法
US12112503B2 (en) Method and apparatus for calibrating external parameters of image acquisition device, device and storage medium
CN107976669B (zh) 一种确定相机与激光雷达之间的外参数的装置
CN107976668B (zh) 一种确定相机与激光雷达之间的外参数的方法
US9928595B2 (en) Devices, systems, and methods for high-resolution multi-view camera calibration
CN104048674B (zh) 利用不准确的校准靶的机器视觉系统校准
Stahs et al. Fast and robust range data acquisition in a low-cost environment
JP5447963B2 (ja) 立体マーカを利用した位置計測システム
US20150116691A1 (en) Indoor surveying apparatus and method
US20150369593A1 (en) Orthographic image capture system
CN109099883A (zh) 高精度大视场机器视觉测量与标定装置及方法
JP5477658B2 (ja) キャリブレーション用校正治具、校正治具を備えた3次元計測システム
JP2015147517A (ja) 整備支援システムおよび整備支援方法
KR102152217B1 (ko) Vr 장비와 ar 장비간의 좌표계 일치용 지그 및 이를 이용한 물리 공간 공유 방법
US10967517B2 (en) Information processing apparatus, method, and storage medium for presenting information for calibration
Shi et al. Large-scale three-dimensional measurement based on LED marker tracking
CN112304214B (zh) 基于摄影测量的工装检测方法和工装检测系统
Puggelli et al. Low cost device to perform 3D acquisitions based on ChAruCo markers
JP4429135B2 (ja) 三次元形状計測システム及び計測方法
JP2014032161A (ja) 画像処理装置及び方法
CN113008135B (zh) 用于确定空间中目标点位置的方法、设备、电子装置及介质
JP2011059006A (ja) 位置計測用標識体および位置計測システム
Zhang et al. Global homography calibration for monocular vision-based pose measurement of mobile robots
JP2015165192A (ja) 標識、計測装置、計測方法及びプログラム
Zou et al. Calibration of 3D imaging system based on multi-line structured-light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201009

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221023

R150 Certificate of patent or registration of utility model

Ref document number: 7165484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150