JP2020155762A - Rare earth magnet and manufacturing method thereof - Google Patents
Rare earth magnet and manufacturing method thereof Download PDFInfo
- Publication number
- JP2020155762A JP2020155762A JP2019176505A JP2019176505A JP2020155762A JP 2020155762 A JP2020155762 A JP 2020155762A JP 2019176505 A JP2019176505 A JP 2019176505A JP 2019176505 A JP2019176505 A JP 2019176505A JP 2020155762 A JP2020155762 A JP 2020155762A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- rare earth
- alloy
- shell
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 88
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000013078 crystal Substances 0.000 claims abstract description 68
- 150000001875 compounds Chemical class 0.000 claims abstract description 23
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 12
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 93
- 239000000956 alloy Substances 0.000 claims description 93
- 239000000203 mixture Substances 0.000 claims description 77
- 238000009792 diffusion process Methods 0.000 claims description 72
- 238000000034 method Methods 0.000 claims description 31
- 229910052719 titanium Inorganic materials 0.000 claims description 30
- 229910052733 gallium Inorganic materials 0.000 claims description 21
- 229910052782 aluminium Inorganic materials 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 230000001419 dependent effect Effects 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 238000012886 linear function Methods 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- 230000005415 magnetization Effects 0.000 abstract description 29
- 230000007423 decrease Effects 0.000 abstract description 15
- 239000012071 phase Substances 0.000 description 260
- 230000005291 magnetic effect Effects 0.000 description 30
- 229910052742 iron Inorganic materials 0.000 description 19
- 239000006247 magnetic powder Substances 0.000 description 14
- 238000006467 substitution reaction Methods 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 230000001788 irregular Effects 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- 238000010791 quenching Methods 0.000 description 8
- 230000000087 stabilizing effect Effects 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 238000005324 grain boundary diffusion Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- 229910004353 Ti-Cu Inorganic materials 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229910017061 Fe Co Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229910052747 lanthanoid Inorganic materials 0.000 description 3
- 150000002602 lanthanoids Chemical class 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000001226 reprecipitation Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- 229910017758 Cu-Si Inorganic materials 0.000 description 2
- 229910017931 Cu—Si Inorganic materials 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101001101476 Bacillus subtilis (strain 168) 50S ribosomal protein L21 Proteins 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910001068 laves phase Inorganic materials 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000003993 neutron Rietveld refinement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本発明は、イットリウム(Y)を含むThMn12型化合物の主相結晶粒を有する希土類磁石およびその製造方法に関する。 The present invention relates to a rare earth magnet having main phase crystal grains of a ThMn type 12 compound containing yttrium (Y) and a method for producing the same.
近年、希土類元素の含有量を低減した磁石の開発が求められている。本明細書において希土類元素とは、スカンジウム(Sc)、イットリウム(Y)、およびランタノイドからなる群から選択された少なくとも1つの元素をいう。ここで、ランタノイドとは、ランタンからルテチウムまでの15の元素の総称である。含有する希土類元素の組成比率が相対的に小さい強磁性合金として、体心正方晶のThMn12型結晶構造を有するRT12(Rは希土類元素の少なくとも1種、TはFe、Co又はNi)が知られている。RT12は高い磁化を有するが、結晶構造が熱的に不安定であるという問題がある。 In recent years, there has been a demand for the development of magnets with a reduced content of rare earth elements. As used herein, the rare earth element means at least one element selected from the group consisting of scandium (Sc), yttrium (Y), and lanthanoids. Here, lanthanoid is a general term for 15 elements from lanthanum to lutetium. As a ferromagnetic alloy in which the composition ratio of rare earth elements contained is relatively small, RT 12 (R is at least one rare earth element, T is Fe, Co or Ni) having a body-centered tetragonal ThMn 12 type crystal structure is used. Are known. Although RT 12 has a high magnetization, it has a problem that the crystal structure is thermally unstable.
特許文献1には、T元素であるFeの一部を、構造安定化元素であるTiにより部分的に置換して、高い磁化と引き換えに、熱安定性を高めた希土類永久磁石が開示されている。 Patent Document 1 discloses a rare earth permanent magnet in which a part of Fe, which is a T element, is partially replaced by Ti, which is a structural stabilizing element, to improve thermal stability in exchange for high magnetization. There is.
特許文献2には、RFe12系化合物のR元素を、Zr、Hf等の元素により部分的に置換することで、遷移金属元素を置換する構造安定化元素Ti等の量を減らして飽和磁化を保ったまま、ThMn12構造を安定化した希土類永久磁石が開示されている。 Patent Document 2 states that by partially substituting the R element of an RFe 12- based compound with an element such as Zr or Hf, the amount of the structural stabilizing element Ti or the like that replaces the transition metal element is reduced to achieve saturation magnetization. A rare earth permanent magnet in which the ThMn 12 structure is stabilized while being maintained is disclosed.
また、特許文献3には、RFe12のR元素の一部としてY又はGdを選択した、R´−Fe−Co系強磁性合金が開示されており、このR´−Fe−Co系強磁性合金が、超急冷法により生成させたThMn12型結晶構造を有することで、高い磁気特性を示す点が記載されている。 Further, Patent Document 3 discloses an R'-Fe-Co-based ferromagnetic alloy in which Y or Gd is selected as a part of the R element of RFe 12 , and this R'-Fe-Co-based ferromagnetic alloy is disclosed. It is described that the alloy has a ThMn 12- type crystal structure produced by an ultra-quenching method and thus exhibits high magnetic properties.
また、特許文献4には、特許文献3にTi等を加えることで、ThMn12構造の安定性を向上させた希土類永久磁石が開示されている。 Further, Patent Document 4 discloses a rare earth permanent magnet in which the stability of the ThMn 12 structure is improved by adding Ti or the like to Patent Document 3.
また、特許文献5には、Cuを添加することで非磁性かつ低融点の1−4組成の相が生成し、焼結と高保磁力化が可能なことが記載されている。 Further, Patent Document 5 describes that the addition of Cu produces a phase having a non-magnetic and low melting point of 1-4 composition, which enables sintering and high coercive force.
また、特許文献6には、主相ThMn12に対し副相としてThMn12型と異なる結晶系のSm5Fe17系相、SmCo5系相、Sm2O3系相、およびSm7Cu3系相の少なくともいずれかを含むことで、高保磁力化が可能なことが記載されている。また、非特許文献1には構造安定化元素(Ti、V、Nb、Ta、Mo、W)により安定したThMn12型結晶構造が得られることが記載されている。 Further, in Patent Document 6, the Sm 5 Fe 17 system phase, the SmCo 5 system phase, the Sm 2 O 3 system phase, and the Sm 7 Cu 3 system, which are different from the ThMn 12 type as the sub-phase with respect to the main phase ThMn 12 , are described. It is described that a high coercive force can be achieved by including at least one of the phases. Further, Non-Patent Document 1 describes that a stable ThMn 12- type crystal structure can be obtained by structural stabilizing elements (Ti, V, Nb, Ta, Mo, W).
特許文献1に記載の希土類永久磁石は、TiによるFeの元素置換により、熱安定性が高められているものの、TiによるFe置換量が多いため、その分磁化が小さくなり、十分な磁気特性を得られない。 The rare earth permanent magnet described in Patent Document 1 has improved thermal stability due to element substitution of Fe by Ti, but since the amount of Fe substitution by Ti is large, the magnetization is reduced by that amount, and sufficient magnetic properties are provided. I can't get it.
一方、特許文献2に記載の希土類永久磁石では、Ti等で遷移金属元素を置換することによりThMn12構造の安定化を図っているものの、軟磁性であるbccの(Fe、Co、Ti)相やラーベス相が生成しやすく、十分な保磁力が得られない。 On the other hand, in the rare earth permanent magnet described in Patent Document 2, although the ThMn 12 structure is stabilized by substituting the transition metal element with Ti or the like, the soft magnetic bcc (Fe, Co, Ti) phase And Laves phase are easily generated, and sufficient coercive force cannot be obtained.
特許文献3に記載のR´−Fe−Co系強磁性合金は、Fe元素を構造安定化元素で置換していないため、高い磁化と大きい磁気異方性と高いキュリー温度を得られているが、非平衡相であるために、焼結等の高温での緻密化プロセスにおいて主相化合物が分解することがある。 The R'-Fe-Co-based ferromagnetic alloy described in Patent Document 3 does not replace the Fe element with a structure-stabilizing element, so that high magnetization, large magnetic anisotropy, and high Curie temperature can be obtained. Since it is a non-equilibrium phase, the main phase compound may decompose in a densification process at high temperature such as sintering.
特許文献4に記載の希土類磁石では、特許文献2とは異なり軟磁性相の生成を抑制することが可能であるが、保磁力が十分とは言えない。 Unlike Patent Document 2, the rare earth magnet described in Patent Document 4 can suppress the formation of a soft magnetic phase, but it cannot be said that the coercive force is sufficient.
特許文献5に記載の希土類磁石では、Ti添加量が多いために磁気物性値が高くないことがある。 In the rare earth magnet described in Patent Document 5, the magnetic property value may not be high because the amount of Ti added is large.
特許文献6に記載の希土類磁石では、希土類リッチな副相Sm7Cu3を使用した場合、熱処理時に主相よりも希土類リッチな組成へと平衡状態が移動し主相比率が低下することが懸念される。また、副相の保磁力がバルク全体の保磁力を決めており主相ThMn12自身が保磁力に寄与しているとは言い難い。 In the rare earth magnet described in Patent Document 6, when the rare earth rich subphase Sm 7 Cu 3 is used, there is a concern that the equilibrium state shifts to a rare earth rich composition than the main phase during the heat treatment and the main phase ratio decreases. Will be done. Further, the coercive force of the sub-phase determines the coercive force of the entire bulk, and it cannot be said that the main phase ThMn 12 itself contributes to the coercive force.
本開示の実施形態は、ThMn12型化合物の主相結晶粒を有する希土類磁石において、磁化の低下を抑制しつつ保磁力が向上した希土類磁石を提供する。 The embodiment of the present disclosure provides a rare earth magnet having a main phase crystal grain of a ThMn 12 type compound, which has an improved coercive force while suppressing a decrease in magnetization.
本開示の希土類磁石は、例示的な実施形態において、SmおよびYを含むFe基のThMn12型化合物の主相結晶粒と、Cuを含む粒界相とを有する希土類磁石であって、前記主相結晶粒は、ThMn12型のコア相およびThMn12型のシェル相を有しており、前記シェル相におけるSm濃度は、前記コア相におけるSm濃度よりも高い。 In an exemplary embodiment, the rare earth magnet of the present disclosure is a rare earth magnet having a main phase crystal grain of an Fe-based ThMn 12 type compound containing Sm and Y and a grain boundary phase containing Cu, and the main component thereof. The phase crystal grains have a ThMn 12 type core phase and a ThMn 12 type shell phase, and the Sm concentration in the shell phase is higher than the Sm concentration in the core phase.
ある実施形態において、前記主相結晶粒は、Ti、Si、Al、およびGaからなる群から選択された少なくとも1種のM元素を含有し、前記シェル相におけるM元素の濃度は、前記コア相におけるM元素の濃度よりも高い。 In certain embodiments, the main phase crystal grains contain at least one M element selected from the group consisting of Ti, Si, Al, and Ga, and the concentration of the M element in the shell phase is the core phase. Higher than the concentration of M element in.
ある実施形態において、M元素としてSiを含有し、少なくとも前記コア相内でのSi濃度の勾配は、位置に依存する一次関数で表される。 In certain embodiments, Si is contained as the M element, and at least the gradient of Si concentration within the core phase is represented by a position-dependent linear function.
本開示の希土類磁石の製造方法は、例示的な実施形態において、組成式R11−xR2x(Fe1−yCoy)wTizCuαにおいて、R1は少なくともYを有し、さらにGdを有していてもよく、R2は少なくともSmを有し、さらにLa、Ce、NdおよびPrからなる群から選択される少なくとも1種であり、x、y、z、wは、それぞれ、0.5≦x≦1.0、0≦y≦0.4、8≦w≦12、0.42≦z<0.70、0.40≦α≦0.70である、希土類磁石用合金のバルク体を用意する工程と、組成式R11−χR2χCuω系拡散合金であって、χ>x、2≦ω≦4である、拡散合金を用意する工程と、前記バルク体と前記拡散合金と接触させた状態で加熱し、前記拡散合金の成分元素をバルク体の内部に拡散することにより、シェル相におけるSm濃度がコア相におけるよりSm濃度よりも高いThMn12型化合物の主相結晶粒を有する希土類磁石を形成する工程と、を含む。 Method for producing a rare earth magnet of the present disclosure, in an exemplary embodiment, the composition formula R1 1-x R2 x (Fe 1-y Co y) in w Ti z Cu α, R1 has at least Y, further Gd R2 has at least Sm and is at least one selected from the group consisting of La, Ce, Nd and Pr, and x, y, z and w are 0. Bulk of alloy for rare earth magnets, 5 ≦ x ≦ 1.0, 0 ≦ y ≦ 0.4, 8 ≦ w ≦ 12, 0.42 ≦ z <0.70, 0.40 ≦ α ≦ 0.70 A step of preparing a body, a step of preparing a diffusion alloy having a composition formula R1 1-χ R2 χ Cu ω- based diffusion alloy in which χ> x, 2 ≦ ω ≦ 4, and the bulk body and the diffusion. By heating in contact with the alloy and diffusing the component elements of the diffusion alloy into the bulk body, the main phase crystal of the ThMn 12 type compound in which the Sm concentration in the shell phase is higher than the Sm concentration in the core phase. Includes a step of forming a rare earth magnet with grains.
ある実施形態において、前記拡散合金は、組成式R11−χR2χ(Cu1−υ−τXυSiτZnσ)ωで表され、Xは、Al又はGaの少なくとも一種であり、χ>x、0<υ≦0.3、0<τ<0.5、0<σ<0.2、2≦ω≦4である。 In certain embodiments, the diffusion alloy is represented by the composition formula R1 1-χ R2 χ (Cu 1-υ-τ X υ sis τ Zn σ ) ω , where X is at least one of Al or Ga and χ. > X, 0 <υ≤0.3, 0 <τ <0.5, 0 <σ <0.2, 2≤ω≤4.
本発明の実施形態により、ThMn12型化合物の主相結晶粒を有する希土類磁石において、磁化の低下を抑制しつつ保磁力が向上した希土類磁石を提供することができる。 According to the embodiment of the present invention, it is possible to provide a rare earth magnet having a main phase crystal grain of a ThMn 12 type compound, which has an improved coercive force while suppressing a decrease in magnetization.
<希土類磁石>
本開示の希土類磁石は、SmおよびYを含むFe基のThMn12型化合物の主相結晶粒と、Cuを含む粒界相とを有する希土類磁石である。更に、前記主相結晶粒は、ThMn12型のコア相およびThMn12型のシェル相を有しており、前記シェル相におけるSm濃度は、前記コア相におけるSm濃度より高い。すなわち、本開示においてシェル相とは、前記主相結晶粒の中央部(コア相)よりもSm濃度が高い相をいう。また、本開示において複数の主相結晶粒の全体を単に「主相」と呼び、主相結晶粒の粒界に存在する相を全体として「粒界相」と呼ぶ。
<Rare earth magnet>
The rare earth magnet of the present disclosure is a rare earth magnet having a main phase crystal grain of an Fe-based ThMn 12 type compound containing Sm and Y and a grain boundary phase containing Cu. Further, the main phase crystal grains have a ThMn 12 type core phase and a ThMn 12 type shell phase, and the Sm concentration in the shell phase is higher than the Sm concentration in the core phase. That is, in the present disclosure, the shell phase refers to a phase having a higher Sm concentration than the central portion (core phase) of the main phase crystal grains. Further, in the present disclosure, the whole of the plurality of main phase crystal grains is simply referred to as "main phase", and the phase existing at the grain boundary of the main phase crystal grains is referred to as "grain boundary phase" as a whole.
本開示の希土類磁石の主相結晶粒は、例示的な実施形態において、Ti、Si、Al、およびGaからなる群から選択された少なくとも1種のM元素を含有し、前記シェル相におけるM元素の濃度は、前記コア相におけるM元素の濃度よりも高い。 In an exemplary embodiment, the main phase crystal grains of the rare earth magnet of the present disclosure contain at least one M element selected from the group consisting of Ti, Si, Al, and Ga, and the M element in the shell phase. The concentration of is higher than the concentration of M element in the core phase.
Smは磁気異方性エネルギーの増大を、またTiとSiなどのM元素は磁化低下に伴う磁気異方性磁場の増大や応力・歪みを低減させる効果が期待される。これらの元素が主相に入ることで保磁力の増大に寄与する。一方で、Sm導入はY量の低下を意味して構造安定性が損なわれることからM元素量を増やして構造不安定化を補填する必要があるなど、SmとM元素の導入は主相結晶粒の磁化を著しく低下させる。つまり、SmとM元素の導入は磁化と保磁力の間にトレードオフの関係を生む。そのため、磁化反転の起点となる主相結晶粒外周部にSm、またはSmとM元素の両方を濃化させたシェル相を形成させることで、磁石全体としての磁化低下を抑制しつつ保磁力の向上が可能となる。 Sm is expected to increase the magnetic anisotropy energy, and M elements such as Ti and Si are expected to have the effect of increasing the magnetic anisotropy magnetic field and reducing stress and strain due to the decrease in magnetization. Entering the main phase of these elements contributes to an increase in coercive force. On the other hand, the introduction of Sm and M elements means that the amount of Y decreases and the structural stability is impaired. Therefore, it is necessary to increase the amount of M elements to compensate for the structural instability. Significantly reduces grain magnetization. That is, the introduction of Sm and M element creates a trade-off relationship between magnetization and coercive force. Therefore, by forming a shell phase in which Sm or both Sm and M elements are concentrated on the outer periphery of the main phase crystal grain, which is the starting point of magnetization reversal, the coercive force is suppressed while suppressing the decrease in magnetization of the magnet as a whole. Improvement is possible.
主相結晶粒は、コア相の周りをシェル相が薄く覆うような形態が好適である。とくに磁化反転が特定の結晶面から生じやすい場合は、その結晶面のみにシェル相を薄く形成することが望ましい。これらシェル相の厚さを磁化反転の起点となる領域以上の厚みで形成することで、十分な保磁力向上の効果をもたらす。粒端部での応力・歪みなどが緩和するスケールは結晶系で異なるが、総じて1μmあれば十分なことが多く、数nmの厚さでも十分な効果を発揮し得る。 The main phase crystal grains are preferably in a form in which the shell phase thinly covers the core phase. In particular, when magnetization reversal is likely to occur from a specific crystal plane, it is desirable to form a thin shell phase only on that crystal plane. By forming the thickness of these shell phases at a thickness equal to or greater than the region that is the starting point of magnetization reversal, the effect of sufficiently improving the coercive force is brought about. The scale at which stress and strain are relaxed at the grain ends differs depending on the crystal system, but in general, 1 μm is sufficient, and even a thickness of several nm can exert a sufficient effect.
シェル相におけるSm濃度は、コア相におけるSm濃度よりも高い。このような構成は、例えば、希土類磁石用合金のバルク体に対して、外部から金属元素を拡散させることにより実現する。磁粉や仮成型体など十分に緻密化していない試料に対しても当然ながら実現する。しかし、薄いシェル相の主相結晶粒から構築される希土類磁石を得るには、コア相への元素拡散を抑制してシェル相のみを効率よく形成させることが重要である。そのためには、粒界相が十分な流動性を持つ温度以上で溶解・再析出が生じれば十分であり、温度が高すぎるとコア相内への元素拡散やシェル相の肥大化などが生じて実現しがたくなる。よって、希土類磁石用合金を緻密化した成形体や焼結体などのバルク体と拡散合金を準備し、希土類磁石用合金のバルク体に対して、粒界に沿って拡散合金を拡散させることで希土類磁石を作製するのが好ましい。以下に説明する。一方で、主相に含まれるYが非常に酸化しやすいことを利用してSmリッチなシェルを構築する方法もある。緻密化した成形体や焼結体などのバルク体を作製する際の熱処理過程で、磁粉外周部での酸化で主相からYが奪われることでSmリッチなシェルが生成される。この場合、主相を予めYリッチな組成としておく必要がある。 The Sm concentration in the shell phase is higher than the Sm concentration in the core phase. Such a configuration is realized, for example, by diffusing a metal element from the outside into a bulk body of an alloy for a rare earth magnet. Naturally, it is realized even for samples that are not sufficiently densified, such as magnetic powder and temporary molded bodies. However, in order to obtain a rare earth magnet constructed from the main phase crystal grains of the thin shell phase, it is important to suppress the diffusion of elements into the core phase and efficiently form only the shell phase. For that purpose, it is sufficient if dissolution and reprecipitation occur at a temperature above which the grain boundary phase has sufficient fluidity, and if the temperature is too high, element diffusion into the core phase and enlargement of the shell phase occur. It becomes difficult to realize. Therefore, by preparing a bulk body such as a molded body or a sintered body in which the alloy for rare earth magnets is densified and a diffusion alloy, and diffusing the diffusion alloy along the grain boundary with the bulk body of the alloy for rare earth magnets. It is preferable to make a rare earth magnet. This will be described below. On the other hand, there is also a method of constructing a Sm-rich shell by utilizing the fact that Y contained in the main phase is very easily oxidized. In the heat treatment process for producing a bulk body such as a densified molded body or a sintered body, Y is deprived from the main phase by oxidation at the outer peripheral portion of the magnetic powder, so that a Sm-rich shell is produced. In this case, the main phase needs to have a Y-rich composition in advance.
<希土類磁石の作製方法>
希土類磁石の作製方法を説明する前に、希土類磁石用合金および拡散合金の組成について説明する。
<Method of manufacturing rare earth magnets>
Before explaining the method for producing a rare earth magnet, the composition of the rare earth magnet alloy and the diffusion alloy will be described.
[希土類磁石用合金の組成]
本開示の希土類磁石用合金は、非限定的で例示的な実施形態において、RTwTizCuαの組成式で示される。
[Composition of alloy for rare earth magnets]
Rare earth alloy magnet of the present disclosure, in an exemplary embodiment, non-limiting, represented by a composition formula of RT w Ti z Cu α.
組成式RTwTizCuαの希土類磁石用合金において、RはRは、スカンジウム(Sc)、イットリウム(Y)、およびランタノイドからなる群から選択された少なくとも1つであり、TはFe又はFeとCoである。組成比率w、z、αの範囲は、それぞれ、8≦w≦12、0.42≦z<0.70、0.40≦α≦0.70である。以下、この合金を「R−Fe−Co−Ti−Cu系希土類磁石用合金」と呼ぶ場合がある。また、この合金の粉末を緻密化した構造物を「バルク体」と呼ぶ場合がある。 In formula RT w Ti z Cu α of the rare-earth magnet alloy, R is R is scandium (Sc), yttrium (Y), and is at least one selected from the group consisting of lanthanoids, T is Fe or Fe And Co. The ranges of the composition ratios w, z, and α are 8 ≦ w ≦ 12, 0.42 ≦ z <0.70, and 0.40 ≦ α ≦ 0.70, respectively. Hereinafter, this alloy may be referred to as "R-Fe-Co-Ti-Cu based rare earth magnet alloy". Further, a structure in which the powder of this alloy is densified may be referred to as a "bulk body".
より詳細には、本実施形態におけるR−Fe−Co−Ti−Cu系希土類磁石用合金は、組成式R11−xR2x(Fe1−yCoy)wTizCuαで記述される。R1は少なくともYを有し、さらにGdを有していてもよい。R2は少なくともSmを有し、さらにGdを除くLa、Ce、NdおよびPrからなる群から選択される少なくとも1種を含んでいてもよい。x、y、z、wは、それぞれ、0.5≦x≦1.0、0≦y≦0.4、8≦w≦12、0.42≦z<0.70、0.40≦α≦0.70を満足する組成比率である。 More specifically, the alloy for R-Fe-Co-Ti- Cu -based rare earth magnet of the present embodiment is described by formula R1 1-x R2 x (Fe 1-y Co y) w Ti z Cu α .. R1 has at least Y and may further have Gd. R2 has at least Sm and may further contain at least one selected from the group consisting of La, Ce, Nd and Pr excluding Gd. x, y, z, w are 0.5 ≦ x ≦ 1.0, 0 ≦ y ≦ 0.4, 8 ≦ w ≦ 12, 0.42 ≦ z <0.70, 0.40 ≦ α, respectively. The composition ratio satisfies ≦ 0.70.
このような実施形態における合金は、R2としてSmを含有しているが、更に外部から粒界拡散によってSmを含ませる。Smは高保磁力化に重要となる磁気異方性を向上させることができる。 The alloy in such an embodiment contains Sm as R2, but further contains Sm by intergranular diffusion from the outside. Sm can improve the magnetic anisotropy, which is important for increasing the coercive magnetic force.
Cuを添加することで主相と共存し、かつ主相よりも希土類リッチな粒界相が生成する。この希土類リッチな粒界相の生成により、異方性磁粉を得るうえで有効な以下の効果を得ることができる。
・熱処理によって主相の結晶成長が進行しやすくなる。
・溶解・凝固時の異相の生成を低減できる。
・希土類リッチな粒界相が水素を吸収・放出するため、主相と粒界相との間にクラックが生じ、効率よく単結晶粒子に粉砕され得る。
By adding Cu, a grain boundary phase that coexists with the main phase and is richer in rare earths than the main phase is generated. By forming this rare earth-rich grain boundary phase, the following effects effective for obtaining anisotropic magnetic powder can be obtained.
-The heat treatment facilitates the progress of crystal growth of the main phase.
-It is possible to reduce the formation of different phases during dissolution and solidification.
-Since the rare earth-rich grain boundary phase absorbs and releases hydrogen, cracks occur between the main phase and the grain boundary phase, and the particles can be efficiently pulverized into single crystal particles.
R1、R2およびTiの組成比率は、主相の磁気物性値および高温安定性を決める。磁気異方性の観点からR2の組成比率(x)はR1の組成比率(1−x)以上であることが望ましい。そのため、0.5≦x≦1.0であることが望ましい。また、Tiは飽和磁化の観点からできるだけ少ない方が望ましいが、高温安定性の観点からは多い方が望ましい。本発明者等の検討の結果、0.42≦z<0.70の範囲が望ましい。なお、Tiの50モル%以下をV、W、Nb、Moなどで置換してもよい。 The composition ratios of R1, R2 and Ti determine the magnetic properties of the main phase and high temperature stability. From the viewpoint of magnetic anisotropy, it is desirable that the composition ratio (x) of R2 is equal to or higher than the composition ratio (1-x) of R1. Therefore, it is desirable that 0.5 ≦ x ≦ 1.0. Further, it is desirable that Ti is as small as possible from the viewpoint of saturation magnetization, but it is desirable that Ti be as large as possible from the viewpoint of high temperature stability. As a result of studies by the present inventors, a range of 0.42 ≦ z <0.70 is desirable. In addition, 50 mol% or less of Ti may be replaced with V, W, Nb, Mo and the like.
磁気モーメントの増大およびキュリー温度向上に伴う実用温度での磁化向上と磁気異方性向上の観点から、Feの一部をCoで置換することは好ましい。しかし置換量が多すぎる場合は、却って磁化や磁気異方性の低下をもたらすため望ましくない。具体的には、Co置換量yは0≦y≦0.4が望ましく、0.1≦y≦0.3がより望ましい。yは0.2程度で磁気特性が最大化する。粒界拡散させることでシェル相のCo濃度が若干高くなる傾向にあることから、本発明の希土類磁石用合金をy<0.2に組成設計することで、Coの機能をシェル相において効率よく発現させることが可能である。 From the viewpoint of improving the magnetization and magnetic anisotropy at the practical temperature accompanying the increase in the magnetic moment and the increase in the Curie temperature, it is preferable to replace a part of Fe with Co. However, if the amount of substitution is too large, it is not desirable because it causes a decrease in magnetization and magnetic anisotropy. Specifically, the Co substitution amount y is preferably 0 ≦ y ≦ 0.4, and more preferably 0.1 ≦ y ≦ 0.3. When y is about 0.2, the magnetic characteristics are maximized. Since the Co concentration in the shell phase tends to increase slightly due to grain boundary diffusion, the Co function can be efficiently performed in the shell phase by designing the composition of the rare earth magnet alloy of the present invention to y <0.2. It can be expressed.
Cuの量は、希土類磁石用合金中に生成する粒界相の量を決める。粒界相の量が少ないと溶解・凝固時のbccの(Fe、Co、Ti)やNd3(Fe、Ti)29型の結晶構造の相(以下、3−29相)やTh2Zn17型やTh2Ni17型やその内部に部分的な不規則置換部位を有する結晶構造の相(以下、2−17相)などの異相が消失できないばかりでなく、異方性焼結磁粉を得るのに十分な大きさまで結晶成長させるのが容易ではない。磁石体内部への粒界拡散も容易ではなくなる。また、粒界相の量が多いと主相の比率が低下するため磁石体としての磁化が低下する。本発明者等の検討の結果、0.40≦α≦0.70の範囲が望ましい。 The amount of Cu determines the amount of grain boundary phase formed in the rare earth magnet alloy. If the amount of grain boundary phase is small, bcc (Fe, Co, Ti) and Nd 3 (Fe, Ti) 29 type crystal structure phase (hereinafter, 3-29 phase) and Th 2 Zn 17 at the time of dissolution and solidification Not only can the different phases such as the mold, Th 2 Ni 17 mold, and the phase of the crystal structure having a partially irregular substitution site inside (hereinafter, 2-17 phase) not disappear, but also anisotropic sintered magnetic powder can be obtained. It is not easy to grow crystals to a size sufficient for. Grain boundary diffusion inside the magnet body is not easy. Further, when the amount of the grain boundary phase is large, the ratio of the main phase decreases, so that the magnetization as a magnet body decreases. As a result of examination by the present inventors, a range of 0.40 ≦ α ≦ 0.70 is desirable.
生成する粒界相はCu基である。この粒界相は、主にKHg2型の結晶構造の相(以下、1−2相)であり、他にRとCu、Fe、Coの比が1:4の組成(以下、1−4組成)の相も含む。粒界相を構成するR元素は、1−2相と1−4組成の相ともにR2/(R1+R2)のモル比が主相のそれよりも高くなる。また、FeとCoを若干固溶し、その固溶量は1−4組成の相の方が1−2相よりも多い。Tiは両相ともにほとんど固溶しない。 The grain boundary phase produced is a Cu group. The grain boundary phase is primarily the phase of the crystal structure of KHG 2 type (hereinafter, 1-2 phase), and other R and Cu, Fe, the ratio of Co 1: Composition of 4 (hereinafter, 1-4 Composition) phase is also included. The molar ratio of R2 / (R1 + R2) of the R element constituting the grain boundary phase is higher than that of the main phase in both the 1-2 phase and the 1-4 composition phase. In addition, Fe and Co are slightly dissolved, and the amount of the solid solution is larger in the phase having a 1-4 composition than in the phase 1-2. Ti hardly dissolves in both phases.
wの適正な量は添加するCu量により変化するが、8≦w≦12である。wが大き過ぎると軟磁性のbccの(Fe、Co、Ti)相が生成し、またwが小さ過ぎると2−17相や3−29相が生成するためである。とくにY酸化によりSmリッチなシェルを構築する場合、wは相対的に低い値が好ましく、8≦w≦10が適当である。 The appropriate amount of w varies depending on the amount of Cu added, but is 8 ≦ w ≦ 12. This is because if w is too large, a soft magnetic bcc (Fe, Co, Ti) phase is generated, and if w is too small, a 2-17 phase or a 3-29 phase is generated. In particular, when constructing a Sm-rich shell by Y oxidation, w is preferably a relatively low value, and 8 ≦ w ≦ 10 is appropriate.
このようにして得られるR−Fe−Co−Ti−Cu系希土類磁石用合金は、ThMn12型結晶構造を有する主相を含む。本発明の実施形態における合金中のTnMn12型化合物相は、典型的には1000℃以上でも安定に存在することができ、焼結法などの高性能磁石作製プロセスを採用するのに好適に用いることができる。なお、一般的に「ThMn12型結晶構造」は正方晶であるが、本発明の実施形態では、正方晶の結晶格子がわずかに歪んで斜方晶の対称性を有する場合や、結晶中の原子の周期性がわずかに乱れた場合でも「ThMn12型結晶構造」とみなす。また、Cu含有の有無にかかわらずTi元素濃度が7.7at%未満の場合、結晶内部に希土類元素と2つのFe元素(Feダンベル)とが不規則に置換した部分を含むことがある。具体的には、Feダンベルの軸方向がc軸に平行であり、その不規則置換の割合が最大で5%である。このことはTi元素以外の構造安定化元素にもあてはまり、Yを使用することで非特許文献1に記載の安定化元素の置換組成範囲より少ない量の安定化元素で安定化したThMn12型結晶構造では一般的に観測されることがある。 The R-Fe-Co-Ti-Cu based rare earth magnet alloy thus obtained contains a main phase having a ThMn 12- type crystal structure. The TnMn type 12 compound phase in the alloy according to the embodiment of the present invention can typically be stably present even at 1000 ° C. or higher, and is suitably used for adopting a high-performance magnet manufacturing process such as a sintering method. be able to. Generally, the "ThMn 12- type crystal structure" is a tetragonal crystal, but in the embodiment of the present invention, the crystal lattice of the tetragonal crystal is slightly distorted to have orthorhombic symmetry, or in the crystal. Even if the periodicity of the atom is slightly disturbed, it is regarded as "ThMn 12 type crystal structure". Further, when the Ti element concentration is less than 7.7 at% regardless of the presence or absence of Cu, a rare earth element and two Fe elements (Fe dumbbells) may be irregularly substituted inside the crystal. Specifically, the axial direction of the Fe dumbbell is parallel to the c-axis, and the ratio of irregular replacement is 5% at the maximum. This also applies to structural stabilizing elements other than Ti element, and ThMn 12- type crystals stabilized with a smaller amount of stabilizing element than the substitution composition range of stabilizing element described in Non-Patent Document 1 by using Y. It is commonly observed in structures.
希土類磁石用合金に、さらにZnやSnを添加しても構わない。粒界相の低融点化や均一な2粒子粒界の形成をもたらし、粒界拡散でバルク体内部まで十分に拡散合金を供給することが可能となる。主相粒内のCu固溶量が低下することで生じ得る効能もある。 Zn or Sn may be further added to the rare earth magnet alloy. It brings about lowering the melting point of the grain boundary phase and forming a uniform two-particle grain boundary, and it becomes possible to sufficiently supply the diffusion alloy to the inside of the bulk body by the grain boundary diffusion. There is also an effect that can be produced by reducing the amount of Cu solid solution in the main phase grains.
[拡散合金の組成]
本発明者らが鋭意研究した結果、本発明の実施形態にかかる拡散合金の組成は、希土類磁石用合金の粒界相の組成よりもSmリッチであることが好適である。溶解した粒界相に沿って拡散合金を導入することで、Smリッチな粒界相と平衡する1−12相が溶解・再析出により主相外周部に構築される。そのため、R11−χR2χCuω系拡散合金として拡散合金組成を表記した場合、χ>xであることが望まれる。ωは、2≦ω≦4である。
[Composition of diffusion alloy]
As a result of diligent research by the present inventors, it is preferable that the composition of the diffusion alloy according to the embodiment of the present invention is Sm richer than the composition of the grain boundary phase of the alloy for rare earth magnets. By introducing a diffusion alloy along the melted grain boundary phase, a 1-12 phase equilibrated with the Sm-rich grain boundary phase is constructed on the outer periphery of the main phase by melting and reprecipitation. Therefore, when the diffusion alloy composition is expressed as R1 1-χ R2 χ Cu ω- based diffusion alloy, it is desirable that χ> x. ω is 2 ≦ ω ≦ 4.
さらに、上記の拡散合金に少なくともAlまたはGaを含有させることで、バルク体深部でSm、Tiリッチなシェル相を構築することが可能となる。より詳細には、AlとGaは粒界相に沿って拡散するが主相の3d元素の一部を置換して粒内にも拡散するために、その分だけ主相の構成元素であるFe、Co、Ti、Cuは粒界相に吐出される。とくに、AlとGaは主相の8iサイトに選択配位する(非特許文献1参照)ために、8iサイト指向の強いTiも主相に残り濃化し、Feが吐出される。つまり、AlまたはGaの量は、粒界相に吐出されるFe元素量と相関があり、そのFe元素は粒界相内に吸収できる量であることが適当である。さらに、AlやGaの量を増やすと、生成するシェル相の厚みが大きくなる傾向にある。以上から、R11−χR2χ(Cu1−υXυ)ω(X=Al、Ga)で拡散源組成を表記した場合、0<υ≦0.3の範囲が適当である。より望ましくは、0.1≦υ≦0.2である。また、SiやZnの有無で、Al添加とGa添加でより望ましいωの組成は異なる場合があり、Alの場合には2.8<ω≦4がより望ましく、Gaの場合には2≦ω<2.8がより望ましい場合がある。 Further, by adding at least Al or Ga to the above diffusion alloy, it is possible to construct a Sm, Ti-rich shell phase in the deep part of the bulk body. More specifically, Al and Ga diffuse along the grain boundary phase, but since they replace a part of the 3d element of the main phase and diffuse into the grain, Fe, which is a constituent element of the main phase, is corresponding to that amount. , Co, Ti and Cu are discharged to the grain boundary phase. In particular, since Al and Ga are selectively coordinated to the 8i site of the main phase (see Non-Patent Document 1), Ti having a strong 8i site orientation remains in the main phase and is concentrated, and Fe is discharged. That is, the amount of Al or Ga correlates with the amount of Fe element discharged into the grain boundary phase, and it is appropriate that the Fe element is an amount that can be absorbed in the grain boundary phase. Further, when the amount of Al or Ga is increased, the thickness of the produced shell phase tends to increase. From the above, when the diffusion source composition is expressed by R1 1-χ R2 χ (Cu 1-υ X υ ) ω (X = Al, Ga), the range of 0 <υ≤0.3 is appropriate. More preferably, 0.1 ≦ υ ≦ 0.2. Further, the more desirable composition of ω may differ between the addition of Al and the addition of Ga depending on the presence or absence of Si or Zn. In the case of Al, 2.8 <ω ≦ 4 is more desirable, and in the case of Ga, 2 ≦ ω. <2.8 may be more desirable.
また、さらにシェル相のM元素をより濃化させることは、ThMn12型の熱的安定性をより一層高めるばかりではなく、磁気異方性磁場がより向上するために保磁力を向上させる上で重要である。非特許文献1によると、最大でVはT元素の4/12、SiはT元素の2/12を置換し得る。しかし、Vは粒界が狭い場合には、Fe元素と化合物を作りやすいこともあり粒界拡散でバルク体深部に十分な量を導入することが難しい。これは、Ti、Cr、Nb、Mo、Wなどにもあてはまる。一方、Siは粒界に沿ってバルク体深部に十分な量を導入できることを見出した。Siはバルク体深部においてM元素がより濃化したシェルを構築するには好適に使用し得る。Si導入量が多すぎると、R−Cu−Si系化合物の生成量が多くなりすぎてバルク体深部への十分な拡散が阻害される。R11−χR2χ(Cu1−υ−τXυSiτ)ωで拡散合金の組成を表記した場合、0<τ<0.5の範囲が適当である。また、SiはFeよりもCuとの親和性が高いことや原子径が小さいことが特徴であり、これら特徴の少なくとも一部を満たす元素はCuを含む粒界相を具備したバルク体において粒界拡散プロセスを好適に使用し得る。 Further, further enriching the M element of the shell phase not only further enhances the thermal stability of ThMn 12 type, but also improves the coercive force because the magnetic anisotropy magnetic field is further improved. is important. According to Non-Patent Document 1, V can replace 4/12 of the T element and Si can replace 2/12 of the T element at the maximum. However, when the grain boundary of V is narrow, it is easy to form a compound with the Fe element, and it is difficult to introduce a sufficient amount of V into the deep part of the bulk body by grain boundary diffusion. This also applies to Ti, Cr, Nb, Mo, W and the like. On the other hand, it was found that Si can introduce a sufficient amount into the deep part of the bulk body along the grain boundaries. Si can be suitably used to construct a shell in which the M element is more concentrated in the deep part of the bulk body. If the amount of Si introduced is too large, the amount of R-Cu-Si compound produced becomes too large, and sufficient diffusion into the deep part of the bulk body is hindered. R1 1-χ R2 χ (Cu 1-υ-τ X υ Si τ ) When the composition of the diffusion alloy is expressed in ω , the range of 0 <τ <0.5 is appropriate. Further, Si is characterized by having a higher affinity for Cu and a smaller atomic diameter than Fe, and an element satisfying at least a part of these characteristics has a grain boundary in a bulk body having a grain boundary phase containing Cu. A diffusion process can be preferably used.
したがって、上記の3つを合わせることで、主相結晶粒は、ThMn12型のコア相およびThMn12型のシェル相を有し、前記コア相よりもSmとTiとSiリッチなシェル相が構築される。その場合の拡散源組成は、R11−χR2χ(Cu1−υ−τXυSiτ)ω(X=Al、Ga、χ>x、0<υ≦0.3、0<τ<0.5、2≦ω≦4)が望ましい。さらに、上記拡散源組成にZnを添加することは、主相と粒界相との濡れ性が改善し、バルク体深部まで拡散源に含まれる金属元素をより多く導入することが可能となるため望ましい。Znは粒界相に偏在する傾向にあり、主相内部への拡散はほとんどない。この場合の拡散源組成は、R11−χR2χ(Cu1−υ−τXυSiτZnσ)ω(X=Al、Ga、χ>x、0<υ≦0.3、0<τ<0.5、0<σ<0.2、2≦ω≦4)の範囲が望ましい。 Therefore, by combining the above three, the main phase crystal grains have a ThMn12 type core phase and a ThMn12 type shell phase, and a shell phase richer in Sm, Ti, and Si than the core phase is constructed. .. In that case, the diffusion source composition is R1 1-χ R2 χ (Cu 1-υ-τ X υ Si τ ) ω (X = Al, Ga, χ> x, 0 <υ ≦ 0.3, 0 <τ < 0.5, 2 ≦ ω ≦ 4) is desirable. Further, adding Zn to the diffusion source composition improves the wettability between the main phase and the grain boundary phase, and makes it possible to introduce more metal elements contained in the diffusion source to the deep part of the bulk body. desirable. Zn tends to be unevenly distributed in the grain boundary phase, and hardly diffuses into the main phase. The diffusion source composition in this case is R1 1-χ R2 χ (Cu 1-υ−τ X υ Si τ Zn σ ) ω (X = Al, Ga, χ> x, 0 <υ ≦ 0.3, 0 < The range of τ <0.5, 0 <σ <0.2, 2 ≦ ω ≦ 4) is desirable.
<工程A>希土類磁石用合金のバルク体を用意する工程
上述した組成を有する希土類磁石用合金(R−Fe−Co−Ti−Cu系希土類磁石用合金)のバルク体を用意する。R−Fe−Co−Ti−Cu系希土類磁石用合金の作製方法としては金型鋳造法、遠心鋳造法、ストリップキャスト法、液体超急冷法などの公知の手法が採用できる。合金溶湯の凝固時にbccの(Fe、Co、Ti)相など、特に磁石用原料合金として好ましくない相の生成を極力抑えるためには、比較的冷却速度の速い、ストリップキャスト法や液体超急冷法を採用することが適当である。凝固時の冷却速度が遅い場合、析出する異相の粒サイズが大きくなるため次の熱処理工程で異相を消失し難い。液体超急冷法などで生成するナノ結晶でも、次の熱処理工程を経ることで、異方性磁粉を得るのに好適な10μm以上の結晶粒に容易に成長できるため、本原料合金はできるだけ速い冷却速度で凝固したほうがよい。凝固した組織にマクロ偏析が少なくできるだけ均一なほうがよい。例えば、液体超急冷法で作製した場合、不活性雰囲気中でロール周速度1〜40m/sが好ましい。
<Step A> Step of preparing a bulk body of an alloy for rare earth magnets A bulk body of an alloy for rare earth magnets (R-Fe-Co-Ti-Cu based alloy for rare earth magnets) having the above-mentioned composition is prepared. As a method for producing an alloy for R-Fe-Co-Ti-Cu based rare earth magnets, known methods such as a mold casting method, a centrifugal casting method, a strip casting method, and a liquid ultra-quenching method can be adopted. In order to suppress the formation of bcc (Fe, Co, Ti) phases, which are particularly unfavorable as raw material alloys for magnets, during solidification of the molten alloy, the strip casting method or liquid ultra-quenching method, which has a relatively high cooling rate, is used. It is appropriate to adopt. When the cooling rate at the time of solidification is slow, the grain size of the precipitated different phase becomes large, so that the different phase is unlikely to disappear in the next heat treatment step. Even nanocrystals generated by the liquid ultra-quenching method can be easily grown into crystal grains of 10 μm or more suitable for obtaining anisotropic magnetic powder by undergoing the next heat treatment step, so that the raw material alloy can be cooled as quickly as possible. It is better to solidify at a rate. It is better that the coagulated structure has less macrosegregation and is as uniform as possible. For example, when produced by the liquid ultra-quenching method, the roll peripheral speed is preferably 1 to 40 m / s in an inert atmosphere.
本発明の実施形態における希土類磁石用合金に熱処理を適用することで、凝固過程で生成した異相を低減したり、異方性焼結磁石用原料として有用な単結晶ライクの粒子からなる粉末を粉砕法で容易に得るための結晶粒を粗大化することができる。組成で変わるが、1−2相と1−4組成の相との共晶温度が820℃付近にあり、1−2相の融点は860℃付近、1−4相の融点は880℃付近にある。そのため、熱処理温度は900℃以上1250℃以下が好ましく、1000℃以上1100℃以下がより好ましい。熱処理時間は温度によるが5分以上50時間以下が望ましい。時間が短すぎると異相を消失させるのに十分な反応が生じなかったり粒成長が不十分だったりし、時間が長過ぎると希土類元素の蒸発や酸化が生じ、かつ操業上の効率も悪い。この温度帯では粒界相は液相となって主相の一部を溶解・再析出させるために、液相を介した速い化学反応で主相は飛躍的に結晶粒が成長し、また凝固時の異相もその粒サイズが大きくない場合には容易に消失させることができる。粒界相の量は3wt%以上、10wt%以下が望ましい。粒界相の量が少ないと溶解・凝固時の異相が消失できないばかりでなく異方性焼結磁粉を得るのに十分な大きさまで結晶成長させるのが容易ではなく、また、粒界相の量が多いと主相の比率が低下するため磁石体としての磁化が低下するからである。なお、この工程で消失しきれなかったbccの(Fe、Co、Ti)相は、少量なら工程Bで消失させることが可能である。 By applying heat treatment to the alloy for rare earth magnets in the embodiment of the present invention, it is possible to reduce the heterogeneous phase generated in the solidification process and crush the powder composed of single crystal-like particles useful as a raw material for anisotropic sintered magnets. The crystal grains that can be easily obtained by the method can be coarsened. Although it depends on the composition, the eutectic temperature of the 1-2 phase and the 1-4 composition phase is around 820 ° C, the melting point of the 1-2 phase is around 860 ° C, and the melting point of the 1-4 phase is around 880 ° C. is there. Therefore, the heat treatment temperature is preferably 900 ° C. or higher and 1250 ° C. or lower, and more preferably 1000 ° C. or higher and 1100 ° C. or lower. The heat treatment time depends on the temperature, but is preferably 5 minutes or more and 50 hours or less. If the time is too short, a sufficient reaction will not occur to eliminate the heterogeneous phase or the grain growth will be insufficient, and if the time is too long, the rare earth elements will evaporate and oxidize, and the operational efficiency will be poor. In this temperature range, the grain boundary phase becomes a liquid phase and a part of the main phase is dissolved and reprecipitated. Therefore, in the main phase, crystal grains grow dramatically and solidify due to a rapid chemical reaction via the liquid phase. The different phase of time can be easily eliminated if the grain size is not large. The amount of grain boundary phase is preferably 3 wt% or more and 10 wt% or less. If the amount of grain boundary phase is small, not only the heterogeneous phase during dissolution and solidification cannot be eliminated, but also it is not easy to grow the crystal to a size sufficient to obtain anisotropic sintered magnetic powder, and the amount of grain boundary phase. This is because the ratio of the main phase decreases when the amount is large, so that the magnetization as a magnet body decreases. The bcc (Fe, Co, Ti) phase that could not be completely eliminated in this step can be eliminated in step B if the amount is small.
本合金に含まれる粒界相は、希土類リッチな組成であることを反映して水素の吸収と放出現象が生じ、特に水素中で熱処理することで顕著に生じる。たとえば、250℃から400℃の温度で水素の吸収が生じ、540℃から660℃の間で水素の放出が生じる。そのため、希土類磁石用合金を水素中で400℃以上まで昇温して水素を吸収させた後、真空雰囲気に切り替えて十分に水素を放出させたりする。その場合、真空雰囲気に切り替える温度は700℃以下である。水素の吸収と放出を行うことで希土類リッチ相は体積膨張と収縮を起し、主相結晶粒と副相との間にクラックが生じる。これによって、ジェットミルやスタンプミルやボールミルなどを用いた粉砕工程時に、クラック部で磁粉が割れる確率が高まり、単結晶単位の微粉を多く含む高配向可能な異方性磁粉が得ることが可能となる。 The grain boundary phase contained in this alloy causes hydrogen absorption and release phenomena reflecting the rare earth-rich composition, and is particularly remarkable when heat-treated in hydrogen. For example, hydrogen absorption occurs at temperatures between 250 ° C. and 400 ° C. and hydrogen is released between 540 ° C. and 660 ° C. Therefore, the alloy for rare earth magnets is heated to 400 ° C. or higher in hydrogen to absorb hydrogen, and then the atmosphere is switched to a vacuum atmosphere to sufficiently release hydrogen. In that case, the temperature for switching to the vacuum atmosphere is 700 ° C. or lower. By absorbing and releasing hydrogen, the rare earth rich phase undergoes volume expansion and contraction, and cracks occur between the main phase crystal grains and the subphase. This increases the probability that the magnetic powder will crack at the cracks during the crushing process using a jet mill, stamp mill, ball mill, etc., making it possible to obtain highly orientable anisotropic magnetic powder containing a large amount of fine powder in single crystal units. Become.
このように作製した異方性磁粉を磁場中で成形し、900℃から1200℃で5分以上50時間の間で熱処理することで緻密化したバルク体を得ることができる。その際にSmの蒸発を抑制するためにSm系合金微粉をアンプルに同時に入れる方法が知られており採用しても構わない。また、Yが酸化しやすいためにより酸化しやすい金属または合金微粉を酸素ゲッターとして同時に入れても構わない。Yが酸化しやすいことを積極的に利用してSmリッチなシェルを構築するために、合金全体の組成をYリッチ側に設計しても構わない。そのほかにも熱間成形などを使用して緻密化したバルク体を得ても構わない。本発明の実施形態は主相と粒界相によって構成された緻密化したバルク体において好適に使用され、その効果は磁粉の配向の有無を問わない。緻密化していない磁粉においても保磁力向上の効果は見出されるが、バルク体としての体積磁化と両立しないため適当ではない。その意味でバルク体は配向している方が適当である。また、少量の酸化物相や不可避不純物に由来する相などを含んでいても構わない。 The anisotropic magnetic powder thus produced is molded in a magnetic field and heat-treated at 900 ° C. to 1200 ° C. for 5 minutes or more and 50 hours to obtain a densified bulk body. At that time, in order to suppress the evaporation of Sm, a method of simultaneously adding Sm-based alloy fine powder to the ampoule is known and may be adopted. Further, a metal or alloy fine powder that is more easily oxidized because Y is easily oxidized may be added at the same time as an oxygen getter. In order to construct a Sm-rich shell by positively utilizing the fact that Y is easily oxidized, the composition of the entire alloy may be designed on the Y-rich side. In addition, a densified bulk body may be obtained by hot molding or the like. The embodiment of the present invention is preferably used in a densified bulk body composed of a main phase and a grain boundary phase, and the effect thereof may or may not be the orientation of the magnetic powder. Although the effect of improving the coercive force can be found even in the magnetic powder that is not densified, it is not suitable because it is incompatible with the volume magnetization as a bulk body. In that sense, it is more appropriate for the bulk body to be oriented. Further, it may contain a small amount of oxide phase, a phase derived from unavoidable impurities, and the like.
緻密化したバルク体表面に異物があると工程Cの粒界拡散を阻害する場合がある。そのため、粒界拡散熱処理前にバルク体表面を研削しておくことで十分な保磁力向上効果が得られる。 If there is a foreign substance on the surface of the densified bulk body, it may hinder the intergranular diffusion in step C. Therefore, by grinding the surface of the bulk body before the grain boundary diffusion heat treatment, a sufficient coercive force improving effect can be obtained.
<工程B>拡散合金を用意する工程
上述した組成を有する拡散合金を用意する。拡散合金はアモルファスや複数の相によって構成されていても構わないが、極端に偏析していないことが好ましい。極端な偏析があるとバルク体内部への拡散を阻害する場合がある。そのため比較的冷却速度の速い、ストリップキャスト法や液体超急冷法やガスアトマイズ法やディスクアトマイズ法やアーク溶解法を採用することが適当である。また、ボールミルや遊星ボールミルなどで均質な合金を準備しても構わない。ほかにも化学反応沈殿法や逆ミセル法や水熱合成法やゾルゲル法などの化学的液相法を使用したナノ粒子合成法を使用しても構わない。
<Step B> Step of preparing a diffusion alloy A diffusion alloy having the above-mentioned composition is prepared. The diffusion alloy may be amorphous or composed of a plurality of phases, but it is preferably not extremely segregated. Extreme segregation may hinder diffusion into the bulk body. Therefore, it is appropriate to adopt the strip casting method, the liquid ultra-quenching method, the gas atomizing method, the disc atomizing method, or the arc melting method, which have a relatively high cooling rate. Further, a homogeneous alloy may be prepared by a ball mill, a planetary ball mill, or the like. In addition, a nanoparticle synthesis method using a chemical liquid phase method such as a chemical reaction precipitation method, an inverse micelle method, a hydrothermal synthesis method, or a sol-gel method may be used.
<工程C>シェル相におけるSm濃度がコア相におけるよりSm濃度よりも高いThMn12型化合物の主相結晶粒を有する希土類磁石を形成する工程
工程Bで作製した拡散合金を、工程Aで作成したバルク体へ導入するための熱処理を施す。拡散合金は主相との濡れ性が良いため、厚さ1mm程度のバルク体ならば、十分な量を少なくともバルク体に触れた状態に配置しておくことで、粒界相に沿ってバルク体内部へ十分に拡散できる。厚さが1mmを超えるバルク体ならば、バルク体下面にも拡散源敷いておくなどする。さらに、バルク体の端部での限定された高保磁力化などを意図するならば、拡散合金の成分元素が拡散した場所が高保磁力化するためにそれ相応の拡散合金の配置やバルク体のマスク処理などが必要となり、適宜行えば良い。
<Step C> A step of forming a rare earth magnet having a main phase crystal grain of a ThMn 12 type compound in which the Sm concentration in the shell phase is higher than that in the core phase. The diffusion alloy prepared in the step B was prepared in the step A. Heat treatment is performed for introduction into the bulk body. Since the diffusion alloy has good wettability with the main phase, if the bulk body has a thickness of about 1 mm, by arranging a sufficient amount in contact with the bulk body at least, the bulk body is placed along the grain boundary phase. It can be sufficiently diffused inside. If the bulk body has a thickness of more than 1 mm, a diffusion source is laid on the lower surface of the bulk body. Furthermore, if it is intended to increase the coercive force at the end of the bulk body, the place where the component elements of the diffusion alloy are diffused will have a high coercive force. Processing etc. is required and may be performed as appropriate.
拡散合金はバルク体重量に対して1wt%から80wt%の間で配置しておくことが適切である。拡散合金の量が少ないと保磁力向上効果が十分に得られず、また拡散合金の量が多いと、バルク体形状を変形させたり、バルク体内部に入らない余剰な合金の量が多くなり経済的でないなど、良い傾向にない。 It is appropriate that the diffusion alloy is arranged between 1 wt% and 80 wt% with respect to the bulk body weight. If the amount of diffusion alloy is small, the effect of improving coercive force cannot be sufficiently obtained, and if the amount of diffusion alloy is large, the shape of the bulk body is deformed and the amount of excess alloy that does not enter the bulk body increases, which is economical. There is no good tendency, such as not being targeted.
熱処理温度は500℃以上1000℃以下が好ましい。より望ましくは700℃以上1000℃以下である。温度が低すぎると拡散合金と粒界相が溶解せずバルク体内部に十分な量の拡散合金を導入することができず、温度が高すぎるとバルク体の結晶粒内部への拡散が顕著になりバルク全体の磁化低下も顕著になる。バルク体の厚さにもよるが、熱処理時間は5分以上50時間以内に設定し得る。短すぎる場合はバルク体深部への十分な拡散が生じず、長すぎる場合は保磁力向上効果が飽和する傾向にあり操業上の効率も悪い。 The heat treatment temperature is preferably 500 ° C. or higher and 1000 ° C. or lower. More preferably, it is 700 ° C. or higher and 1000 ° C. or lower. If the temperature is too low, the diffusion alloy and the grain boundary phase will not dissolve and a sufficient amount of diffusion alloy cannot be introduced inside the bulk body, and if the temperature is too high, the diffusion of the bulk body into the crystal grains will be remarkable. Therefore, the decrease in magnetization of the entire bulk becomes remarkable. Although it depends on the thickness of the bulk body, the heat treatment time can be set from 5 minutes to 50 hours. If it is too short, sufficient diffusion into the deep part of the bulk body does not occur, and if it is too long, the effect of improving the coercive force tends to be saturated and the operational efficiency is poor.
また、拡散熱処理温度よりも低い温度で再度熱処理すると保磁力が向上して有効な場合がある。 Further, if the heat treatment is performed again at a temperature lower than the diffusion heat treatment temperature, the coercive force may be improved and it may be effective.
<工程D>バルク体表面を研削する工程
拡散後のバルク体に対し、公知の加工方法により研削を行ってもよい。拡散熱処理を経たバルク体表面には拡散合金の残部があり、また拡散合金付近の粒界には2−17相や3−29相など磁気特性上好ましくない相が多い場合がある。バルク体外周部を10μmから500μm程度研削することで、このような低磁気特性領域を除去することができ、バルク全体の磁気特性が向上する。研削粉はしかるべき処理を施すことで再利用することができるので、経済性を大きく損なうことはない。使用用途に応じてこの後にメッキ工程などを入れても構わず、この後の工程によって本発明は限定されない。
<Step D> Step of Grinding the Surface of the Bulk Body The diffused bulk body may be ground by a known processing method. There is a residue of the diffusion alloy on the surface of the bulk body that has undergone the diffusion heat treatment, and there may be many unfavorable phases such as 2-17 phase and 3-29 phase at the grain boundaries near the diffusion alloy in terms of magnetic characteristics. By grinding the outer peripheral portion of the bulk body by about 10 μm to 500 μm, such a low magnetic characteristic region can be removed, and the magnetic characteristics of the entire bulk can be improved. Since the grinding powder can be reused by applying appropriate treatment, it does not significantly impair economic efficiency. A plating step or the like may be added after this depending on the intended use, and the present invention is not limited by the subsequent steps.
以下、本発明の実験例を具体的に説明するが、本発明はこれらの実験例に限定されるものではない。 Hereinafter, experimental examples of the present invention will be specifically described, but the present invention is not limited to these experimental examples.
[実験例]
<工程A>(希土類磁石用合金のバルク体を用意する工程)
99.9%以上の純度のY、Sm、Fe、Co、Ti、Cuの原料金属を溶解時の希土類元素の蒸発を加味して歩増しで秤量した。アルミナ坩堝内で十分に溶解した後、周速度が15m/sで回転するCu製のロール上に溶湯を出湯した。作製した超急冷薄帯をNb箔に包含して、Ar流気中で1050℃1時間の熱処理を実施した。ジェットミルで粉砕して平均粒度10μm以下の磁粉を得た。1T磁場中で成型したプレス体を炉の中に投入し、1150℃4時間の熱処理を施した。バルク体を切断加工して表面研磨を施すことで厚さ4mmの希土類磁石用合金のバルク体を作製した。SEMを使用して材料組織を評価した。主相の組成は、Y0.37Sm0.63(Fe0.83Co0.17)11.08Al0.07Si0.02Ti0.57Cu0.26であった。AlとSiは、本工程で使用した坩堝に由来する。
[Experimental example]
<Step A> (Step of preparing a bulk body of an alloy for rare earth magnets)
The raw material metals of Y, Sm, Fe, Co, Ti, and Cu having a purity of 99.9% or more were weighed step by step in consideration of evaporation of rare earth elements at the time of dissolution. After being sufficiently dissolved in the alumina crucible, the molten metal was discharged on a roll made of Cu rotating at a peripheral speed of 15 m / s. The prepared ultra-quenching thin band was included in the Nb foil, and heat treatment was performed at 1050 ° C. for 1 hour in Ar flow. It was pulverized with a jet mill to obtain magnetic powder having an average particle size of 10 μm or less. The pressed body molded in a 1T magnetic field was put into a furnace and heat-treated at 1150 ° C. for 4 hours. A bulk body of an alloy for rare earth magnets having a thickness of 4 mm was produced by cutting and polishing the surface of the bulk body. The material structure was evaluated using SEM. The composition of the main phase was Y 0.37 Sm 0.63 (Fe 0.83 Co 0.17 ) 11.08 Al 0.07 Si 0.02 Ti 0.57 Cu 0.26 . Al and Si are derived from the crucible used in this step.
<工程B>(拡散合金を用意する工程)
拡散合金は、超急冷装置(日新技研(株)製NEV−A30023)を使用して作製した。希土類元素の蒸発を考慮して秤量した99.9%以上の純度の原料を、石英出湯管内で十分に溶解した後、20m/sで回転するCu製のロール上に溶湯を出湯し、リボン形状の拡散合金を作製した。具体的には、下記の表1に記載の組成の拡散合金を作製した。
<Step B> (Step to prepare diffusion alloy)
The diffusion alloy was produced using an ultra-quenching device (NEV-A30023 manufactured by Nissin Giken Co., Ltd.). A raw material with a purity of 99.9% or higher, which is weighed in consideration of evaporation of rare earth elements, is sufficiently dissolved in a quartz hot water pipe, and then the hot water is discharged on a Cu roll rotating at 20 m / s to form a ribbon. Diffusion alloy was prepared. Specifically, a diffusion alloy having the composition shown in Table 1 below was prepared.
<工程C>(シェル相におけるSm濃度がコア相におけるSm濃度よりも高いThMn12型化合物の主相結晶粒を有する希土類磁石を形成する工程)
SUS製の容器内において、下層の前記拡散合金、前記希土類磁石用合金のバルク体、および上層の前記拡散合金を、この順序で配置した後、Nb箔で覆った。下層および上層の拡散合金の重量は、それぞれ、バルク体の重量に対して10%であった。つまり、バルク体に対して20wt%の拡散合金を使用した。Ar流気中において900℃で4時間の熱処理を施して実験例1〜13の希土類磁石を作製した。
<Step C> (Step of forming a rare earth magnet having main phase crystal grains of ThMn 12 type compound in which the Sm concentration in the shell phase is higher than the Sm concentration in the core phase)
In a container made of SUS, the lower layer of the diffusion alloy, the bulk body of the rare earth magnet alloy, and the upper layer of the diffusion alloy were arranged in this order and then covered with Nb foil. The weights of the lower and upper diffusion alloys were 10% of the weight of the bulk body, respectively. That is, a 20 wt% diffusion alloy was used with respect to the bulk body. The rare earth magnets of Experimental Examples 1 to 13 were prepared by heat-treating at 900 ° C. for 4 hours in Ar flow.
工程Cで得た試料の表面から深さ100μmまでの部分を、サーフェスグラインダで除去した(工程D)。また、SEMを使用して材料組織を評価した。また、バルク体および実験例1〜13の希土類磁石をパルス磁場で着磁した後にVSMを使用して室温の磁気特性を評価した。表1にバルク体に対する磁化の差(実験例の磁化−バルク体の磁化)を△Mr(%)、バルク体に対する保磁力の差(実験例の保磁力―バルク体の保磁力)を△Hc(%)で示す。表1に示すように、すべての実験例で磁化の低下を抑制しつつ、保磁力を向上させることができた。 A portion of the sample obtained in step C from the surface to a depth of 100 μm was removed with a surface grinder (step D). The material structure was also evaluated using SEM. In addition, after magnetizing the bulk body and the rare earth magnets of Experimental Examples 1 to 13 with a pulsed magnetic field, the magnetic characteristics at room temperature were evaluated using VSM. In Table 1, the difference in magnetization with respect to the bulk body (magnetization of the experimental example-magnetization of the bulk body) is ΔMr (%), and the difference in coercive force with respect to the bulk body (coercive force of the experimental example-coercive force of the bulk body) is ΔHc. Shown in (%). As shown in Table 1, in all the experimental examples, the coercive force could be improved while suppressing the decrease in magnetization.
組成分析は、実験例1〜5および実験例9〜13は、エネルギー分散形X線分光器(日本電子(株)製EX−37001)が付属した卓上走査電子顕微鏡(日本電子(株)製JCM−6000Plus)を、実験例6〜8は、エネルギー分散形X線分光器(日本電子(株)製JED−2300F)が付属した電界放出形走査電子顕微鏡(日本電子(株)製JSM−7001F)をそれぞれ使用した。実験例1〜13の主相結晶粒おけるシェル相の中心付近の組成を表1に示す。なお、実施例1〜13の主相結晶粒におけるコア相の中心付近の組成はいずれも、前記希土類磁石用合金のバルク体の主相の組成であるY0.37Sm0.63(Fe0.83Co0.17)11.08Al0.07Si0.02Ti0.57Cu0.26と同等であった。 For composition analysis, Experimental Examples 1 to 5 and Experimental Examples 9 to 13 were subjected to a desktop scanning electron microscope (JCM manufactured by JEOL Ltd.) to which an energy dispersive X-ray spectrometer (EX-37001 manufactured by JEOL Ltd.) was attached. -6000 Plus), Experimental Examples 6 to 8 are electric field emission scanning electron microscopes (JSM-7001F manufactured by JEOL Ltd.) to which an energy dispersive X-ray spectrometer (JED-2300F manufactured by JEOL Ltd.) is attached. Was used respectively. Table 1 shows the composition near the center of the shell phase in the main phase crystal grains of Experimental Examples 1 to 13. The composition of the main phase crystal grains of Examples 1 to 13 near the center of the core phase is Y 0.37 Sm 0.63 (Fe 0), which is the composition of the main phase of the bulk body of the rare earth magnet alloy. .83 Co 0.17 ) 11.08 Al 0.07 Si 0.02 Ti 0.57 Cu 0.26 was equivalent.
また、磁気特性は、6Tのパルス着磁を行った後、電磁石式振動試料型磁力計(Vibrating sample magnetometer, VSM, 東英工業(株)製VSM−5―20) で室温にて評価した。磁化の絶対値はNiで補正した。 The magnetic characteristics were evaluated at room temperature with an electromagnet type vibrating sample magnetometer (VSM, VSM-5-20 manufactured by Toei Kogyo Co., Ltd.) after performing pulse magnetization of 6T. The absolute value of magnetization was corrected with Ni.
実験例1では、Sm−Cu粒界相を拡散によって形成した。主相結晶粒は、ThMn12型のコア相およびThMn12型のシェル相を有しており、前記コア相よりもSmリッチなシェル相が生成していることを確認した。しかし、バルク体深部ではシェルの生成を確認できなかったため、保磁力は増大したものの他の実験例に比べて△HcJは小さかった。Smリッチシェルが生成したことと、工程Aで除去しきれなかった少量のbccの(Fe、Co、Ti)相の一部が消失したことに起因する。 In Experimental Example 1, the Sm-Cu grain boundary phase was formed by diffusion. It was confirmed that the main phase crystal grains had a ThMn 12 type core phase and a ThMn 12 type shell phase, and a shell phase richer in Sm than the core phase was formed. However, since the formation of the shell could not be confirmed in the deep part of the bulk body, the coercive force was increased, but ΔH cJ was smaller than that in the other experimental examples. This is due to the formation of the Sm rich shell and the disappearance of a small amount of the bcc (Fe, Co, Ti) phase that could not be completely removed in step A.
実験例2では、Alを含有したSm−Cu系粒界相を拡散によって形成した。バルク体深部でもSmリッチなシェル相が生成されていることを確認した。シェル相の平均組成はY0.18Sm0.82(Fe0.83Co0.17)10.58Al0.51Si0.02Ti0.62Cu0.27であった。主相結晶粒は、ThMn12型のコア相およびThMn12型のシェル相を有しており、前記コア相よりもSmリッチでTiもややリッチな組成のシェル相が構築を確認した。平衡組成よりも希土類元素がリッチな組成であったため、3−29相のシェルも生成した。よって、好ましくは、実施組成よりも希土類元素プアな2.8<ω≦4が適当である。実際に実験例3では、ω=3.4で作製したところ、3−29相の生成は認められなかった。 In Experimental Example 2, an Al-containing Sm—Cu-based grain boundary phase was formed by diffusion. It was confirmed that a Sm-rich shell phase was generated even in the deep part of the bulk body. The average composition of the shell phase was Y 0.18 Sm 0.82 (Fe 0.83 Co 0.17 ) 10.58 Al 0.51 Si 0.02 Ti 0.62 Cu 0.27 . The main phase crystal grains had a ThMn 12 type core phase and a ThMn 12 type shell phase, and it was confirmed that a shell phase having a composition Sm richer and Ti slightly richer than the core phase was constructed. Since the composition was richer in rare earth elements than the equilibrium composition, a 3-29 phase shell was also produced. Therefore, preferably, 2.8 <ω ≦ 4, which is a rare earth element poorer than the actual composition, is suitable. In fact, in Experimental Example 3, when ω = 3.4 was prepared, the formation of the 3-29 phase was not observed.
実験例4では、Gaが含有したSm−Cu系粒界相を拡散によって形成した。平均組成がY0.20Sm0.80(Fe0.82Co0.18)10.60Al0.26Si0.13Ti0.71Cu0.30なシェル相をバルク体深部で生成した。主相結晶粒は、ThMn12型のコア相およびThMn12型のシェル相を有しており、前記コア相よりもSm、Si、Ga、Tiリッチな組成のシェル相の構築を確認した。一方で、粒界にbccの(Fe、Co、Ti)が生成したため、保磁力が低下した。平衡組成よりもR元素プアな組成であったためである。よって、実施組成よりも希土類元素リッチな2≦ω<2.8がより適当である。実際に実験例5では、ω=2.3で作製したところ、bccの(Fe、Co、Ti)の生成は認められなかった。また、工程Aで混入する不可避不純物のAlがシェル相に濃化する特徴がある。 In Experimental Example 4, the Sm—Cu-based grain boundary phase contained in Ga was formed by diffusion. A shell phase having an average composition of Y 0.20 Sm 0.80 (Fe 0.82 Co 0.18 ) 10.60 Al 0.26 Si 0.13 Ti 0.71 Cu 0.30 was generated in the deep part of the bulk body. .. The main phase crystal grains had a ThMn 12- type core phase and a ThMn 12- type shell phase, and it was confirmed that a shell phase having a composition richer in Sm, Si, Ga, and Ti than the core phase was constructed. On the other hand, since bcc (Fe, Co, Ti) was generated at the grain boundaries, the coercive force was lowered. This is because the composition was poorer than the equilibrium composition. Therefore, 2 ≦ ω <2.8, which is rich in rare earth elements, is more suitable than the actual composition. Actually, in Experimental Example 5, when ω = 2.3 was prepared, no formation of bcc (Fe, Co, Ti) was observed. In addition, Al, which is an unavoidable impurity mixed in step A, is concentrated in the shell phase.
実験例6では、AlとSiが含有したSm−Cu系粒界相を拡散によって形成した。拡散合金中には新たに主な組成でSm(Si0.5Cu0.5)2が生成した。このR−Cu−Si系化合物の生成量が多くなりすぎるとバルク体深部への十分な拡散が阻害される。Siは1−2相中にはCu部分に5〜10at%固溶し、1−4相中にはほとんど固溶しない。Sm(Si0.5Cu0.5)2が生成するために、1−2相と1−4相との合金組成は希土類元素プア側になる。そのため、実験例2で示した2.8<ω≦4に実質なっており、3−29相は確認されなかった。バルク体深部で生成されたシェル相の平均組成はY0.20Sm0.80(Fe0.82Co0.18)10.60Al0.26Si0.13Ti0.71Cu0.30となった。主相結晶粒は、ThMn12型のコア相およびThMn12型のシェル相を有しており、前記コア相よりもSm、Si、Tiリッチな組成のシェル相の構築を確認した。実験例2と3よりもよりバルク体深部でもシェル相が明瞭に認められた。 In Experimental Example 6, a Sm—Cu-based grain boundary phase containing Al and Si was formed by diffusion. Sm (Si 0.5 Cu 0.5 ) 2 was newly produced in the diffusion alloy with a main composition. If the amount of the R-Cu-Si compound produced is too large, sufficient diffusion into the deep part of the bulk body is hindered. Si dissolves 5 to 10 at% in the Cu portion in the 1-2 phase and hardly dissolves in the 1-4 phase. Since Sm (Si 0.5 Cu 0.5 ) 2 is produced, the alloy composition of the 1-2 phase and the 1-4 phase is on the rare earth element poor side. Therefore, it was substantially 2.8 <ω ≦ 4 shown in Experimental Example 2, and the 3-29 phase was not confirmed. The average composition of the shell phase produced in the deep part of the bulk body is Y 0.20 Sm 0.80 (Fe 0.82 Co 0.18 ) 10.60 Al 0.26 Si 0.13 Ti 0.71 Cu 0.30 It became. The main phase crystal grains had a ThMn 12- type core phase and a ThMn 12- type shell phase, and it was confirmed that a shell phase having a composition richer in Sm, Si, and Ti than the core phase was constructed. The shell phase was clearly observed even in the deeper part of the bulk body than in Experimental Examples 2 and 3.
実験例7では、GaとSiが含有したSm−Cu系粒界相を拡散によって形成した。拡散合金中の構成相はGaかAlかの相違はあるが、実験例6と同様である。そのため、2.8<ω≦4に実質なっており、粒界にbccの(Fe、Co、Ti)が生成した。そのため、実験例8では、ω=2.3で作製したところ、粒界にbccの(Fe、Co、Ti)の生成は認められなかった。シェル相の平均組成はY0.20Sm0.80(Fe0.82Co0.18)10.75Al0.09Si0.19Ti0.61Cu0.31Ga0.05となった。コア相よりもSm、SiリッチでGa、Tiもややリッチな組成のシェル相の構築を確認した。実験例4と5よりもよりバルク体深部でもシェル相が明瞭に認められた。 In Experimental Example 7, a Sm—Cu-based grain boundary phase containing Ga and Si was formed by diffusion. The constituent phase in the diffusion alloy is the same as in Experimental Example 6, although there is a difference between Ga and Al. Therefore, it was substantially 2.8 <ω ≦ 4, and bcc (Fe, Co, Ti) was generated at the grain boundaries. Therefore, in Experimental Example 8, when ω = 2.3 was prepared, no formation of bcc (Fe, Co, Ti) was observed at the grain boundaries. The average composition of the shell phase was Y 0.20 Sm 0.80 (Fe 0.82 Co 0.18 ) 10.75 Al 0.09 Si 0.19 Ti 0.61 Cu 0.31 Ga 0.05 . .. It was confirmed that a shell phase having a composition richer in Sm and Si than in the core phase and slightly rich in Ga and Ti was constructed. The shell phase was clearly observed even in the deeper part of the bulk body than in Experimental Examples 4 and 5.
実験例9では、AlとSiとZnが含有したSm−Cu系粒界相を拡散によって形成した。シェル相の平均組成はY0.20Sm0.80(Fe0.82Co0.18)10.73Al0.26Si0.10Ti0.64Cu0.25Zn0.02であった。ただし、Znは同定誤差の範疇に入る。コア相よりもSm、Si、Al、Tiリッチな組成のシェル相の構築を確認した。実験例6よりもよりバルク体深部でもシェル相が明瞭に認められた。 In Experimental Example 9, a Sm—Cu-based grain boundary phase containing Al, Si, and Zn was formed by diffusion. The average composition of the shell phase was Y 0.20 Sm 0.80 (Fe 0.82 Co 0.18 ) 10.73 Al 0.26 Si 0.10 Ti 0.64 Cu 0.25 Zn 0.02 . .. However, Zn falls into the category of identification error. It was confirmed that a shell phase having a composition richer in Sm, Si, Al, and Ti than the core phase was constructed. The shell phase was clearly observed even in the deeper part of the bulk body than in Experimental Example 6.
実験例10では、GaとSiとZnが含有したSm−Cu系粒界相を拡散によって形成した。拡散合金中の構成相はZnを含むか否かの相違はあるが、実験例7と同様である。2.8<ω≦4に実質なっており、粒界にbccの(Fe、Co、Ti)が生成した。そのため、実験例11では、ω=2.3で作製したところ、bccの(Fe、Co、Ti)の生成は認められなかった。シェル相の平均組成はY0.20Sm0.80(Fe0.82Co0.18)10.82Al0.03Si0.10Ti0.71Cu0.25Ga0.09であった。コア相よりもSm、Si、Ga、Tiリッチな組成のシェル相の構築を確認した。実験例7と8よりもよりバルク体深部でもシェル相が明瞭に認められた。 In Experimental Example 10, a Sm—Cu-based grain boundary phase containing Ga, Si, and Zn was formed by diffusion. The constituent phases in the diffusion alloy are the same as in Experimental Example 7, although there is a difference in whether or not they contain Zn. It was substantially 2.8 <ω ≦ 4, and bcc (Fe, Co, Ti) was generated at the grain boundaries. Therefore, in Experimental Example 11, when ω = 2.3 was prepared, no formation of bcc (Fe, Co, Ti) was observed. The average composition of the shell phase was Y 0.20 Sm 0.80 (Fe 0.82 Co 0.18 ) 10.82 Al 0.03 Si 0.10 Ti 0.71 Cu 0.25 Ga 0.09 . .. It was confirmed that a shell phase having a composition richer in Sm, Si, Ga, and Ti than the core phase was constructed. The shell phase was clearly observed even in the deeper part of the bulk body than in Experimental Examples 7 and 8.
実験例12と実験例13では、Yを部分的に添加した拡散合金を使用した。シェル相の組成は実験例9と実験例11のシェル組成と大きな遜色はなく、保磁力向上率も十分であった。 In Experimental Example 12 and Experimental Example 13, a diffusion alloy in which Y was partially added was used. The composition of the shell phase was not inferior to that of the shell compositions of Experimental Example 9 and Experimental Example 11, and the coercive force improvement rate was sufficient.
以上の実験例で作製した試料には、コア相とシェル相に元素種に応じた濃度勾配を有していることを確認した。特にM元素としてSiを含有している場合、コア相内でSi濃度の勾配は、位置に依存する一次関数で表される。Smはシェル相内で一定であることが多い。これはコア相内の濃度勾配は固相拡散で、シェル相の濃度形成は溶解・再析出で、主として生じていることに起因している可能性があり、本開示技術を適用したことで生じる特徴的な組織形態の一つである。 It was confirmed that the samples prepared in the above experimental examples had a concentration gradient in the core phase and the shell phase according to the element species. In particular, when Si is contained as the M element, the gradient of Si concentration in the core phase is represented by a position-dependent linear function. Sm is often constant within the shell phase. This may be due to the fact that the concentration gradient in the core phase is solid-phase diffusion and the concentration formation in the shell phase is dissolution / reprecipitation, which is mainly caused by the application of the present disclosure technology. It is one of the characteristic organizational forms.
例えば、図1Aおよび図2Aに実験例9の組織と組成の線分析結果を、図1Bおよび図2Bに実験例11の組織と組成の線分析結果をそれぞれ示す。なお、測定に際し、コア相とシェル相を両方干渉して測定してしまう部分があるので、その部分は削除(「//」で示した部分)している。Siはコア相内にも拡散していることが示されている。AlとGaもコア相内に拡散するが、Siほどは拡散しないことがわかった。コア相内でのSi濃度の勾配は、位置に依存する一次関数的な変化を示す。明瞭ではないがAlやGaも拡散している範囲では一次関数的な可能性がある。Coはシェル相でコア相よりもややリッチになる傾向にあることを観測した。これはコア相のCo置換量を磁気物性値が最大化する0.2よりも若干少なくしておき、シェル相でCoを濃化させてy〜0.2にすることが可能なことを意味する。そうすることで、高価なCo使用量を低減することが可能である。コア相とシェル相の間で元素に濃度勾配があることで格子定数も連続的に変化し格子のミスマッチが解消されている。 For example, FIGS. 1A and 2A show the results of line analysis of the tissue and composition of Experimental Example 9, and FIGS. 1B and 2B show the results of line analysis of the structure and composition of Experimental Example 11. In addition, since there is a part where both the core phase and the shell phase interfere with each other during the measurement, that part is deleted (the part indicated by "//"). It has been shown that Si is also diffused within the core phase. It was found that Al and Ga also diffuse in the core phase, but not as much as Si. The gradient of Si concentration within the core phase shows a position-dependent linear functional change. Although it is not clear, it may be a linear function in the range where Al and Ga are also diffused. We observed that Co tends to be slightly richer in the shell phase than in the core phase. This means that the amount of Co substitution in the core phase can be kept slightly less than 0.2, which maximizes the magnetic property value, and Co can be concentrated in the shell phase to y to 0.2. To do. By doing so, it is possible to reduce the amount of expensive Co used. Due to the concentration gradient of the elements between the core phase and the shell phase, the lattice constant also changes continuously and the lattice mismatch is eliminated.
一方、<工程A>で合金全体の組成がYリッチとなるように例えばw=9、x=0.60で合金組成を設計して同様の方法で緻密化したバルク体を得た。そのバルク体内部では磁粉外周部に磁粉内部よりもSm濃度が高いシェルが形成されていることがわかった。コアの組成がY0.40Sm0.60(Fe0.82Co0.18)11.07Al0.04Si0.02Ti0.62Cu0.25であるのに対して、シェルの組成はY0.29Sm0.71(Fe0.83Co0.17)11.08Al0.04Si0.02Ti0.62Cu0.24であった。 On the other hand, in <Step A>, the alloy composition was designed, for example, w = 9, x = 0.60 so that the composition of the entire alloy was Y-rich, and a densified bulk body was obtained by the same method. It was found that inside the bulk body, a shell having a higher Sm concentration than inside the magnetic powder was formed on the outer peripheral portion of the magnetic powder. The composition of the core is Y 0.40 Sm 0.60 (Fe 0.82 Co 0.18 ) 11.07 Al 0.04 Si 0.02 Ti 0.62 Cu 0.25 , whereas the shell The composition was Y 0.29 Sm 0.71 (Fe 0.83 Co 0.17 ) 11.08 Al 0.04 Si 0.02 Ti 0.62 Cu 0.24 .
ThMn12型結晶構造を主相とした磁石を高保磁力化するにはその主相結晶粒の結晶構造を詳細に把握する必要がある。そこで、粉末中性子リートベルト解析による最大エントロピー法(Maximum Entropy Method、MEM)を使用した核密度解析を行った。X線では空間的に広がった電子密度による回折であるため微量元素の位置を高精度に決定するには分解能が劣る場合がある。一方、中性子線は質点に近い核からの散乱であるため、微量元素の位置を高精度に決定するには好適である。測定は、日本大強度陽子加速器施設(Japan Proton Accelerator Research Complex、J−PARC)の物質・生命科学実験施設(Material and Life Science Experimental Facility,MLF)内にあるBL20に設置された茨城県材料構造解析装置(iMATERIA)を使用した。シングルフレームモードで室温にて測定した。中性子の吸収が大きなSmを含んだ試料において吸収補正を行えるようにするため, バナジウム容器内(φ6)に中空のバナジウム円筒(φ5.8)を配置してそれらの隙間に粉末試料(<75μm)を充填(円筒対称を有する試料形状)した。解析データはバナジウム容器のバックグラウンドを差し引いた背面バンクのデータを用い、0.49Å<d<2.57Åの範囲で解析した。解析コードはZ−Rietveld 1.0.2とZ−MEM 0.8.3をそれぞれ使用した。 In order to increase the coercive force of a magnet having a ThMn 12- type crystal structure as the main phase, it is necessary to grasp the crystal structure of the main phase crystal grains in detail. Therefore, a nuclear density analysis was performed using the maximum entropy method (MEM) by powder neutron Rietveld analysis. Since X-rays are diffracted by the spatially spread electron density, the resolution may be inferior in order to determine the position of trace elements with high accuracy. On the other hand, since neutron rays are scattered from the nucleus near the mass point, they are suitable for determining the positions of trace elements with high accuracy. The measurement was carried out at the BL20 structure in the material and life science experimental facility (Material and Life Science Experiment Facility, MLF) of the Japan Proton Accelerator Research Complex (J-PARC). The device (iMATERIA) was used. Measured at room temperature in single frame mode. A hollow vanadium cylinder (φ5.8) is placed in the vanadium container (φ6) and a powder sample (<75 μm) is placed in the gap between the samples so that the absorption can be corrected in the sample containing Sm with large neutron absorption. Was filled (sample shape with cylindrical symmetry). As the analysis data, the data of the back bank after subtracting the background of the vanadium container was used, and the analysis was performed in the range of 0.49Å <d <2.57Å. The analysis codes used were Z-Rietveld 1.0.2 and Z-MEM 0.8.3.
工程Aで作製した試料を75μm以下に粉砕して評価した。本試料は、Yの部分置換により構造安定化元素Tiの置換量を低減したThMn12型化合物である。また以下のことは、Cu添加の有無に関係なく生じていることを確認した。 The sample prepared in step A was pulverized to 75 μm or less and evaluated. This sample is a ThMn type 12 compound in which the amount of substitution of the structural stabilizing element Ti is reduced by partial substitution of Y. It was also confirmed that the following occurred regardless of the presence or absence of Cu addition.
図3には、MEMにより導出した3D、(100)面、(110)面の核密度分布を示す。核密度分布が等方的でないのは、熱振動が異方的であることに対応している。通常の希土類サイトである2aサイトの[001]方向に核密度分布が高い場所が2種類あることが明らかになった。ほかにも極僅かであるが擬正方晶の名残の不規則部である4g1サイトも観測した。結晶学的には、2bサイト(侵入元素が入るサイト)と4eサイトに対応する。4eサイト間の中間に2aサイトが位置することから、4eサイトはダンベルを形成し、2aサイトと不規則に置換している結晶構造と観ることができる。2aサイトの希土類元素に替わり4eサイトのダンベルで置換した場所では、押出された希土類元素は2bサイトに配置すると推察される。このことを結晶構造モデルに取り込み再度リートベルト解析を行ったところ、フィッティングの解析精度が向上した。結果、この不規則置換率は2%程度であり、単位胞25個に1箇所ある程度の比率であることが分かった。誤差やTi量に応じた変化を考慮すると、最大で5%程度含まれる場合がある。この2%から5%程度の不規則置換が保磁力を低下させている可能性がある。結晶外周部で構造安定化元素を濃化させてこのような構造内部の不規則置換を除去することは、磁化反転の起点を除去することに等しい可能性がある。実際に実験例2から11のTiやSiが濃化したシェルでは、この不規則置換の割合が低下ないし消失することで保磁力の向上をもたらしている可能性がある。 FIG. 3 shows the kernel density distribution of the 3D, (100) plane, and (110) plane derived by MEM. The non-isotropic nuclear density distribution corresponds to the anisotropic thermal vibration. It was clarified that there are two types of sites with high nuclear density distribution in the [001] direction of the 2a site, which is a normal rare earth site. In addition, a very small amount of 4g 1 site, which is an irregular part of the remnants of pseudo-tetragonal crystals, was also observed. Crystallographically, it corresponds to 2b sites (sites containing invading elements) and 4e sites. Since the 2a site is located in the middle between the 4e sites, the 4e site can be seen as a crystal structure forming a dumbbell and irregularly replacing the 2a site. It is presumed that the extruded rare earth element is placed at the 2b site at the place where the rare earth element at the 2a site is replaced with the dumbbell at the 4e site. When this was incorporated into the crystal structure model and Rietveld analysis was performed again, the analysis accuracy of the fitting was improved. As a result, it was found that this irregular replacement rate was about 2%, which was a certain ratio at one site per 25 unit cells. Considering the error and the change according to the amount of Ti, it may be contained up to about 5%. It is possible that this irregular substitution of about 2% to 5% reduces the coercive force. Concentrating the structural stabilizing element at the outer periphery of the crystal to remove such irregular substitutions inside the structure may be equivalent to removing the origin of the magnetization reversal. In fact, in the shells enriched with Ti and Si in Experimental Examples 2 to 11, there is a possibility that the coercive force is improved by reducing or eliminating the ratio of this irregular substitution.
図4には、Y−Fe系化合物に観られるTbCu7型からThMn12型への構造変化の際の各サイトの対応関係を示す。特許文献3に記載のY−Fe系化合物の連続格子変形では、TbCu7型からThMn12型へと最短経路での変形が教示されている。一方、鋭意研究して今回新たに見出した、非平衡相から平衡相への過渡領域であるTi0.5組成付近の構造は、ctetraの方向に不規則置換部を有しており、迂回した構造変化を示すことが明らかになった。つまり、TbCu7型に内在するcortho方向の不規則部が消失し、ctetra方向の不規則部が発生・消失してThMn12型へと変形していくことが示されたのである。なお、2bサイトは希土類元素が入るには(100)面内方向が狭すぎるため、希土類元素以外が入っている可能性があることも除外しない。 FIG. 4 shows the correspondence of each site when the structure changes from TbCu 7 type to ThMn 12 type, which is seen in Y—Fe compounds. In the continuous lattice deformation of the Y—Fe-based compound described in Patent Document 3, the deformation in the shortest path from TbCu 7 type to ThMn 12 type is taught. On the other hand, the structure near the Ti 0.5 composition, which is a transient region from the non-equilibrium phase to the equilibrium phase, which was newly discovered through diligent research, has an irregular substitution part in the direction of cttra and is bypassed. It was clarified that the structural changes were observed. That is, it was shown that the irregular portion in the ortho direction inherent in the TbCu 7 type disappears, and the irregular portion in the c terra direction is generated and disappears, and is transformed into the ThMn 12 type. Since the (100) in-plane direction of the 2b site is too narrow for rare earth elements to enter, it is not excluded that there is a possibility that other than rare earth elements are contained.
本開示の実施形態は、ThMn12型化合物の主相結晶粒を有する希土類磁石であって磁化の低下を抑制しつつ保磁力が向上した希土類磁石を提供する。このような希土類磁石はモータおよびアクチュエータなどに好適に利用され得るため、産業上の様々な用途を持つ。 An embodiment of the present disclosure provides a rare earth magnet having main phase crystal grains of a ThMn 12- type compound, which has an improved coercive force while suppressing a decrease in magnetization. Since such rare earth magnets can be suitably used for motors, actuators, and the like, they have various industrial uses.
Claims (5)
前記主相結晶粒は、ThMn12型のコア相およびThMn12型のシェル相を有しており、
前記シェル相におけるSm濃度は、前記コア相におけるSm濃度よりも高い、希土類磁石。 A rare earth magnet having a main phase crystal grain of an Fe-based ThMn 12- type compound containing Sm and Y and a grain boundary phase containing Cu.
The main phase crystal grains have a ThMn 12 type core phase and a ThMn 12 type shell phase.
A rare earth magnet in which the Sm concentration in the shell phase is higher than the Sm concentration in the core phase.
組成式R11−χR2χCuω系拡散合金であって、χ>x、2≦ω≦4である、拡散合金を用意する工程と、
前記バルク体と前記拡散合金と接触させた状態で加熱し、前記拡散合金の成分元素をバルク体の内部に拡散することにより、シェル相におけるSm濃度がコア相におけるよりSm濃度よりも高いThMn12型化合物の主相結晶粒を有する希土類磁石を形成する工程と、
を含む、希土類磁石の製造方法。 In the composition formula R1 1-x R2 x (Fe 1-y Co y) w Ti z Cu α, R1 has at least Y, may further have a Gd, R2 has at least Sm, further It is at least one selected from the group consisting of La, Ce, Nd and Pr, and x, y, z and w are 0.5 ≦ x ≦ 1.0 and 0 ≦ y ≦ 0.4, 8 respectively. A step of preparing a bulk body of an alloy for rare earth magnets, wherein ≦ w ≦ 12, 0.42 ≦ z <0.70, 0.40 ≦ α ≦ 0.70.
A step of preparing a diffusion alloy, which is a composition formula R1 1-χ R2 χ Cu ω- based diffusion alloy and has χ> x, 2 ≦ ω ≦ 4.
By heating the bulk body in contact with the diffusion alloy and diffusing the component elements of the diffusion alloy into the bulk body, the Sm concentration in the shell phase is higher than the Sm concentration in the core phase. ThMn 12 The process of forming a rare earth magnet having main phase crystal grains of a type compound,
A method for manufacturing a rare earth magnet, including.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019048771 | 2019-03-15 | ||
JP2019048771 | 2019-03-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020155762A true JP2020155762A (en) | 2020-09-24 |
JP7287220B2 JP7287220B2 (en) | 2023-06-06 |
Family
ID=72559765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019176505A Active JP7287220B2 (en) | 2019-03-15 | 2019-09-27 | Rare earth magnet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7287220B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021193333A1 (en) * | 2020-03-26 | 2021-09-30 | 信越化学工業株式会社 | Anisotropic rare-earth sintered magnet and method for producing same |
WO2021193334A1 (en) * | 2020-03-26 | 2021-09-30 | 信越化学工業株式会社 | Anisotropic rare earth sintered magnet and method for producing same |
JP7533424B2 (en) | 2020-11-12 | 2024-08-14 | 信越化学工業株式会社 | Manufacturing method of rare earth sintered magnet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014196605A1 (en) * | 2013-06-05 | 2014-12-11 | トヨタ自動車株式会社 | Rare-earth magnet and method for manufacturing same |
JP2017112300A (en) * | 2015-12-18 | 2017-06-22 | トヨタ自動車株式会社 | Rare earth magnet |
JP2018103211A (en) * | 2016-12-26 | 2018-07-05 | 日立金属株式会社 | Method for producing rare earth-transition metal based ferromagnetic alloy, and rare earth-transition metal based ferromagnetic alloy |
JP2019039025A (en) * | 2017-08-22 | 2019-03-14 | トヨタ自動車株式会社 | Magnetic compound and method for producing the same |
-
2019
- 2019-09-27 JP JP2019176505A patent/JP7287220B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014196605A1 (en) * | 2013-06-05 | 2014-12-11 | トヨタ自動車株式会社 | Rare-earth magnet and method for manufacturing same |
JP2017112300A (en) * | 2015-12-18 | 2017-06-22 | トヨタ自動車株式会社 | Rare earth magnet |
JP2018103211A (en) * | 2016-12-26 | 2018-07-05 | 日立金属株式会社 | Method for producing rare earth-transition metal based ferromagnetic alloy, and rare earth-transition metal based ferromagnetic alloy |
JP2019039025A (en) * | 2017-08-22 | 2019-03-14 | トヨタ自動車株式会社 | Magnetic compound and method for producing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021193333A1 (en) * | 2020-03-26 | 2021-09-30 | 信越化学工業株式会社 | Anisotropic rare-earth sintered magnet and method for producing same |
WO2021193334A1 (en) * | 2020-03-26 | 2021-09-30 | 信越化学工業株式会社 | Anisotropic rare earth sintered magnet and method for producing same |
JP7533424B2 (en) | 2020-11-12 | 2024-08-14 | 信越化学工業株式会社 | Manufacturing method of rare earth sintered magnet |
Also Published As
Publication number | Publication date |
---|---|
JP7287220B2 (en) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5477282B2 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
KR100452787B1 (en) | Manufacturing method of an anisotropic magnet powder, precursory anisotropic magnet powder and bonded magnet | |
JP5892139B2 (en) | Rare earth anisotropic magnet and manufacturing method thereof | |
US7833361B2 (en) | Alloy and method for producing magnetic refrigeration material particles using same | |
JP7263696B2 (en) | Alloys for rare earth magnets | |
KR102718194B1 (en) | Heavy rare earth alloy, neodymium iron boron permanent magnet materials, raw materials and manufacturing methods | |
US20130068992A1 (en) | Method for producing rare earth permanent magnets, and rare earth permanent magnets | |
JP5348124B2 (en) | Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method | |
JP6614647B2 (en) | Samarium-iron-nitrogen based sintered magnet and method for producing samarium-iron-nitrogen based sintered magnet | |
TW201308368A (en) | Rare earth permanent magnet and manufacturing method thereof | |
JP5284394B2 (en) | Rare earth magnet and manufacturing method thereof | |
JP7287220B2 (en) | Rare earth magnet and manufacturing method thereof | |
JP6429021B2 (en) | permanent magnet | |
CN106796838A (en) | The permanent-magnet material without rare earth based on Fe Ni | |
JP2017057471A (en) | Magnetic compound and manufacturing method therefor | |
JP2013102122A (en) | Magnetic member and manufacturing method for magnetic member | |
CN109427456B (en) | Magnetic compound and method for producing same | |
JP5906876B2 (en) | Manufacturing method of RTB-based permanent magnet | |
JP2005150503A (en) | Method for manufacturing sintered magnet | |
CN109671547B (en) | R-T-B sintered magnet and method for producing same | |
JP2020045544A (en) | Polycrystal rare earth transition metal alloy powder and method for producing the same | |
JP5299737B2 (en) | Quenched alloy for RTB-based sintered permanent magnet and RTB-based sintered permanent magnet using the same | |
CN109952621B (en) | Rare earth-transition metal system ferromagnetic alloy | |
JP5373834B2 (en) | Rare earth magnet and manufacturing method thereof | |
KR20230126733A (en) | Main part alloy neodymium iron boron magnetic material and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230508 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7287220 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |