JP2020044664A - Construction material and method for producing construction material - Google Patents

Construction material and method for producing construction material Download PDF

Info

Publication number
JP2020044664A
JP2020044664A JP2018172569A JP2018172569A JP2020044664A JP 2020044664 A JP2020044664 A JP 2020044664A JP 2018172569 A JP2018172569 A JP 2018172569A JP 2018172569 A JP2018172569 A JP 2018172569A JP 2020044664 A JP2020044664 A JP 2020044664A
Authority
JP
Japan
Prior art keywords
building material
iron
based metal
metal member
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018172569A
Other languages
Japanese (ja)
Other versions
JP7268983B2 (en
Inventor
知記 鳥居
Tomoki Torii
知記 鳥居
恭平 野本
Kyohei Nomoto
恭平 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2018172569A priority Critical patent/JP7268983B2/en
Publication of JP2020044664A publication Critical patent/JP2020044664A/en
Application granted granted Critical
Publication of JP7268983B2 publication Critical patent/JP7268983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

To provide a construction material having rust-prevention properties and having excellent bondability between a ferrous metal member and another member.SOLUTION: A construction material has a ferrous metal member (A) with a nitride layer having a fine rugged structure formed on at least part of the surface, and a member (B) joined to the ferrous metal member (A).SELECTED DRAWING: None

Description

本発明は、建築材料および建築材料の製造方法に関する。   The present invention relates to a building material and a method for manufacturing the building material.

鉄系金属部材は、木材などの他の建築材料に比べて強度などの点で優れている。しかし、鉄系金属部材は、錆などが発生しやすいため、例えば防錆処理されて使用されている。   Iron-based metal members are superior in strength and the like to other building materials such as wood. However, iron-based metal members are susceptible to rust and the like, and thus are used, for example, after being subjected to rust prevention treatment.

鉄系金属部材に防錆性を付与する技術としては、例えば、鉄系金属部材の表面を窒化処理する技術が挙げられる(例えば特許文献1参照)。
特許文献1には、表面に窒素拡散層を有する耐食性鉄鋼材料であって、この窒素拡散層に、窒素が0.04質量%以上であって、当該耐食性鉄鋼材料の固溶上限値以下の範囲で固溶していることを特徴とする耐食性鉄鋼材料が記載されている。
As a technique for imparting rust resistance to an iron-based metal member, for example, a technique of nitriding the surface of an iron-based metal member can be cited (for example, see Patent Document 1).
Patent Document 1 discloses a corrosion-resistant steel material having a nitrogen diffusion layer on its surface, in which nitrogen is contained in the nitrogen diffusion layer in an amount of 0.04% by mass or more and a solid solution upper limit or less of the corrosion-resistant steel material. A corrosion-resistant steel material characterized by being dissolved as a solid solution is described.

特開2018−44212号公報JP 2018-44212 A

鉄系金属部材をコンクリートやセメントなどの他の部材と接合して建築材料に用いる場合がある。このような複合構造体からなる建築材料には、防錆性だけでなく、鉄系金属部材と他の部材との良好な接合性も求められる。   In some cases, an iron-based metal member is joined to another member such as concrete or cement and used as a building material. Building materials made of such a composite structure are required to have not only rust prevention properties but also good bonding properties between an iron-based metal member and other members.

本発明は上記事情に鑑みてなされたものであり、防錆性を有するとともに、鉄系金属部材と他の部材との接合性が良好な建築材料を提供するものである。   The present invention has been made in view of the above circumstances, and provides a building material having rust prevention properties and having good bonding properties between an iron-based metal member and other members.

窒化処理の途中工程で、窒素拡散層を形成する工程があるが、その際に表面に凹凸構造が生じ、最終的にはその凹凸構造を埋める工程が存在する。
一方で、本発明者らの検討によれば、窒化処理した鉄系金属部材の表面に形成された凹凸構造を残したまま、鉄系金属部材と他の部材とを接合した場合、鉄系金属部材と他の部材との接合性が良好になることを見出し、本発明に到達した。
In the middle of the nitriding treatment, there is a step of forming a nitrogen diffusion layer. At that time, an uneven structure is formed on the surface, and finally, there is a step of filling the uneven structure.
On the other hand, according to the study of the present inventors, when an iron-based metal member and another member are joined while leaving the uneven structure formed on the surface of the nitridized iron-based metal member, The present inventors have found that the joining property between a member and another member is improved, and arrived at the present invention.

すなわち、本発明によれば、以下に示す建築材料および建築材料の製造方法が提供される。   That is, according to the present invention, a building material and a method for manufacturing the building material described below are provided.

[1]
微細凹凸構造を有する窒化物層が表面の少なくとも一部に形成された鉄系金属部材(A)と、上記鉄系金属部材(A)に接合された部材(B)と、を備える建築材料。
[2]
上記[1]に記載の建築材料において、
上記部材(B)が上記窒化物層を介して上記鉄系金属部材(A)と接合している建築材料。
[3]
上記[1]または[2]に記載の建築材料において、
上記鉄系金属部材(A)と上記部材(B)との間に接着剤層(C)をさらに備える建築材料。
[4]
上記[1]乃至[3]のいずれか一つに記載の建築材料において、
上記微細凹凸構造の間隔周期が0.01μm以上500μm以下の範囲である建築材料。
[5]
上記[1]乃至[4]のいずれか一つに記載の建築材料において、
上記窒化物層の表面硬度がHv300以上である建築材料。
[6]
上記[1]乃至[5]のいずれか一つに記載の建築材料において、
上記部材(B)が、木材、石材、セメント部材、粘土、金属部材、樹脂部材、コンクリート部材およびモルタル部材から選択される少なくとも一種の部材を含む建築材料。
[7]
上記[1]乃至[6]のいずれか一つに記載の建築材料を製造するための製造方法であって、
鉄系金属部材の表面の少なくとも一部を窒化処理することにより、微細凹凸構造を有する窒化物層が表面の少なくとも一部に形成された鉄系金属部材(A)を作製する工程(a)と、
上記鉄系金属部材(A)に上記部材(B)を接合させる工程(b)と、
を備える建築材料の製造方法。
[8]
上記[7]に記載の建築材料の製造方法において、
上記工程(b)では、上記窒化物層を介して上記鉄系金属部材(A)に上記部材(B)を接合させる建築材料の製造方法。
[9]
上記[7]または[8]に記載の建築材料の製造方法であって、
上記工程(b)では、接着剤層(C)を介して上記鉄系金属部材(A)に上記部材(B)を接合させる建築材料の製造方法。
[10]
上記[7]乃至[9]のいずれか一つに記載の建築材料の製造方法において、
上記工程(a)における上記窒化処理が、塩浴窒化処理、塩浴軟窒化処理、ガス窒化処理、ガス軟窒化処理、イオン窒化処理およびプラズマ窒化処理から選択される少なくとも一種の処理を含む建築材料の製造方法。
[11]
上記[7]乃至[10]のいずれか一つに記載の建築材料の製造方法において、
上記工程(a)の前に、上記鉄系金属部材に窒化処理以外の粗化処理をおこなう工程を含む建築材料の製造方法。
[12]
上記[7]乃至[11]のいずれか一つに記載の建築材料の製造方法において、
上記工程(a)の前および/または後に、上記鉄系金属部材の洗浄処理をおこなう工程を含む建築材料の製造方法。
[13]
上記[7]乃至[12]のいずれか一つに記載の建築材料の製造方法において、
上記工程(a)の後に、上記鉄系金属部材(A)に窒化処理以外の皮膜形成処理をおこなう工程を含む建築材料の製造方法。
[1]
A building material comprising: an iron-based metal member (A) having a nitride layer having a fine uneven structure formed on at least a part of its surface; and a member (B) joined to the iron-based metal member (A).
[2]
In the building material according to the above [1],
A building material in which the member (B) is joined to the iron-based metal member (A) via the nitride layer.
[3]
In the building material according to the above [1] or [2],
A building material further comprising an adhesive layer (C) between the iron-based metal member (A) and the member (B).
[4]
In the building material according to any one of the above [1] to [3],
A building material wherein the interval period of the fine uneven structure is in a range of 0.01 μm or more and 500 μm or less.
[5]
In the building material according to any one of the above [1] to [4],
A building material in which the nitride layer has a surface hardness of Hv300 or more.
[6]
In the building material according to any one of the above [1] to [5],
A building material wherein the member (B) includes at least one member selected from wood, stone, cement, clay, metal, resin, concrete, and mortar members.
[7]
A manufacturing method for manufacturing the building material according to any one of the above [1] to [6],
(A) producing an iron-based metal member (A) in which a nitride layer having a fine uneven structure is formed on at least a part of the surface by nitriding at least a part of the surface of the iron-based metal member; ,
(B) joining the member (B) to the iron-based metal member (A);
A method for producing a building material comprising:
[8]
In the method for producing a building material according to the above [7],
In the step (b), a method for manufacturing a building material in which the member (B) is joined to the iron-based metal member (A) via the nitride layer.
[9]
A method for producing a building material according to the above [7] or [8],
In the step (b), a method of manufacturing a building material in which the member (B) is joined to the iron-based metal member (A) via an adhesive layer (C).
[10]
In the method for producing a building material according to any one of the above [7] to [9],
A building material in which the nitriding treatment in the step (a) includes at least one treatment selected from a salt bath nitriding treatment, a salt bath soft nitriding treatment, a gas nitriding treatment, a gas soft nitriding treatment, an ion nitriding treatment, and a plasma nitriding treatment; Manufacturing method.
[11]
In the method for producing a building material according to any one of the above [7] to [10],
A method for manufacturing a building material, comprising a step of performing a roughening treatment other than the nitriding treatment on the iron-based metal member before the step (a).
[12]
In the method for producing a building material according to any one of the above [7] to [11],
A method for producing a building material, comprising a step of performing a cleaning treatment of the iron-based metal member before and / or after the step (a).
[13]
In the method for producing a building material according to any one of the above [7] to [12],
A method for manufacturing a building material, comprising a step of performing a film forming process other than the nitriding process on the iron-based metal member (A) after the step (a).

本発明によれば、防錆性を有するとともに、鉄系金属部材と他の部材との接合性が良好な建築材料を提供することができる。   Advantageous Effects of Invention According to the present invention, it is possible to provide a building material that has rust prevention properties and has good bonding properties between an iron-based metal member and another member.

以下に、本発明の実施形態について説明する。なお、文中の数字範囲を示す「A〜B」は特に断りがなければ、A以上B以下を表す。   Hereinafter, embodiments of the present invention will be described. In addition, “A to B” indicating a numerical range in the text represents A or more and B or less unless otherwise specified.

1.建築材料
本実施形態に係る建築材料は、微細凹凸構造を有する窒化物層が表面の少なくとも一部に形成された鉄系金属部材(A)と、鉄系金属部材(A)に接合された部材(B)と、を備える。
本実施形態に係る建築材料は、鉄系金属部材(A)の表面には防錆性を有する窒化物層が形成されているため、本実施形態に係る建築材料に防錆性を付与することが可能である。ここで、窒化物層は、鉄系金属部材(A)の表面の一部または全部を覆うように形成されていればよいが、本実施形態に係る建築材料の鉄系金属部材(A)部分の防錆性をより良好にする観点から、窒化物層は、鉄系金属部材(A)の表面全体を覆うように形成されていることが好ましい。
1. Building Material The building material according to the present embodiment includes an iron-based metal member (A) in which a nitride layer having a fine uneven structure is formed on at least a part of the surface, and a member joined to the iron-based metal member (A). (B).
Since the building material according to the present embodiment has a rust-preventing nitride layer formed on the surface of the iron-based metal member (A), the building material according to the present embodiment has rust-preventing properties. Is possible. Here, the nitride layer may be formed so as to cover part or all of the surface of the iron-based metal member (A), but the iron-based metal member (A) portion of the building material according to the present embodiment. From the viewpoint of further improving the rust prevention of the iron-based metal member (A), it is preferable that the nitride layer be formed so as to cover the entire surface.

鉄系金属部材(A)の表面には、部材(B)との間の接合強度の向上に寄与する微細凹凸構造を有する窒化物層が形成されているため、基本的には接着剤を使用しなくても鉄系金属部材(A)と部材(B)との間の接合性確保が可能となる。
具体的には鉄系金属部材(A)の表面に形成された窒化物層の微細凹凸構造の中に部材(B)の一部が進入することによって、鉄系金属部材(A)と部材(B)との間に物理的な抵抗力(アンカー効果)が効果的に発現し、鉄系金属部材(A)と部材(B)との接合強度を良好にできる。すなわち、本実施形態に係る建築材料の好ましい一態様として、部材(B)は窒化物層を介して鉄系金属部材(A)と接合している態様が挙げられる。
Basically, an adhesive is used on the surface of the iron-based metal member (A) because a nitride layer having a fine uneven structure that contributes to the improvement of bonding strength with the member (B) is formed. Without doing so, it is possible to ensure the bondability between the iron-based metal member (A) and the member (B).
Specifically, when a part of the member (B) enters the fine uneven structure of the nitride layer formed on the surface of the iron-based metal member (A), the iron-based metal member (A) and the member ( B), a physical resistance (anchor effect) is effectively developed, and the bonding strength between the iron-based metal member (A) and the member (B) can be improved. That is, as a preferred embodiment of the building material according to the present embodiment, there is an embodiment in which the member (B) is joined to the iron-based metal member (A) via a nitride layer.

また、本実施形態に係る建築材料は、基本的には接着剤を使用しなくても鉄系金属部材(A)と部材(B)との間の接合性確保が可能であるが、必要に応じて鉄系金属部材(A)と部材(B)との間に接着剤層(C)をさらに備えてもよい。
この場合、鉄系金属部材(A)と部材(B)との間の少なくとも一部に接着剤層(C)が設けられていてもよいし、鉄系金属部材(A)と部材(B)との間の全体に接着剤層(C)が設けられていてもよい。
本実施形態に係る建築材料が接着剤層(C)をさらに備える場合、部材(B)の少なくとも一部は接着剤層(C)を介して鉄系金属部材(A)と接合している。また、接着剤層(C)の少なくとも一部が、鉄系金属部材(A)の表面に形成された窒化物層の微細凹凸構造の中に進入することによって、鉄系金属部材(A)と接着剤層(C)とが接着していることが好ましい。これにより、鉄系金属部材(A)と接着剤層(C)との接着力をより一層良好にでき、その結果、鉄系金属部材(A)と部材(B)との接合性をより一層良好にすることができる。
In addition, the building material according to the present embodiment can basically ensure the bondability between the iron-based metal member (A) and the member (B) without using an adhesive, but is necessary. Accordingly, an adhesive layer (C) may be further provided between the iron-based metal member (A) and the member (B).
In this case, the adhesive layer (C) may be provided on at least a part between the iron-based metal member (A) and the member (B), or the iron-based metal member (A) and the member (B) may be provided. May be provided with an adhesive layer (C) entirely.
When the building material according to the present embodiment further includes an adhesive layer (C), at least a part of the member (B) is joined to the iron-based metal member (A) via the adhesive layer (C). Further, at least a part of the adhesive layer (C) penetrates into the fine unevenness structure of the nitride layer formed on the surface of the iron-based metal member (A), whereby the iron-based metal member (A) It is preferable that the adhesive layer (C) is adhered. Thereby, the adhesive force between the iron-based metal member (A) and the adhesive layer (C) can be further improved, and as a result, the bondability between the iron-based metal member (A) and the member (B) can be further improved. Can be good.

本実施形態に係る建築材料は、鉄系金属部材(A)と部材(B)との接合性が良好であるため、鉄系金属部材(A)と部材(B)との接合部への水分や湿気の浸入を防ぐこともできる。つまり、本実施形態に係る建築材料の接合部における気密性や水密性を向上させることもできる。   Since the building material according to the present embodiment has a good bondability between the iron-based metal member (A) and the member (B), the building material according to the present embodiment has moisture to the joint between the iron-based metal member (A) and the member (B). And the ingress of moisture can be prevented. That is, it is also possible to improve the airtightness and watertightness at the joint of the building material according to the present embodiment.

以下、鉄系金属部材(A)、部材(B)、および建築材料の製造方法について説明する。   Hereinafter, a method of manufacturing the iron-based metal member (A), the member (B), and the building material will be described.

<鉄系金属部材(A)>
本実施形態に係る鉄系金属部材とは鉄系材料により構成され、所定の建築物を組み立てることが可能な部品材のことを示す。
鉄系材料とは、例えば、鉄、鉄鋼材、ステンレス鋼、鉄とアルミニウムとの合金、鉄とチタンとの合金、鉄とマグネシウムとの合金などが挙げられ、これらの中でも、鉄鋼材、ステンレス鋼が好ましく、鉄鋼材として、SS、SCM、SPCC、炭素鋼が好ましい。
<Iron-based metal member (A)>
The iron-based metal member according to the present embodiment is a component material that is made of an iron-based material and can assemble a predetermined building.
Examples of the iron-based material include iron, steel, stainless steel, an alloy of iron and aluminum, an alloy of iron and titanium, an alloy of iron and magnesium, and among these, iron and steel, stainless steel Are preferable, and as the steel material, SS, SCM, SPCC, and carbon steel are preferable.

鉄系金属部材(A)の形状は、部材(B)と接合できる形状であれば特に限定されず、例えば、平板状、曲板状、棒状、筒状、塊状などとすることができる。また、これらの組み合わせからなる構造体であってもよい。   The shape of the iron-based metal member (A) is not particularly limited as long as it can be joined to the member (B), and may be, for example, a flat plate, a curved plate, a bar, a tube, a block, or the like. Further, a structure composed of these combinations may be used.

鉄系金属部材(A)は、鉄系材料を切断、プレスなどによる塑性加工、打ち抜き加工、切削、研磨、放電加工などの除肉加工によって上述した所定の形状に加工された後に、後述する窒化処理がなされたものが好ましい。要するに、種々の加工法により、必要な形状に加工されたものを用いることが好ましい。   The iron-based metal member (A) is formed into the above-described predetermined shape by cutting the iron-based material, plastic working by pressing or the like, punching, cutting, polishing, electric discharge machining, or the like, and then nitriding to be described later. Those that have been treated are preferred. In short, it is preferable to use one processed into a required shape by various processing methods.

本実施形態において鉄系金属部材(A)の表面には微細凹凸構造を有する窒化物層が形成されている。
微細凹凸構造を有する窒化物層の厚さは特に限定されないが、本実施形態に係る建築材料における鉄系金属部材(A)部分の防錆能をより高めつつ、鉄系金属部材(A)と部材(B)との接合強度をより向上させる観点から、1μm以上50μm以下が好ましく、5μm以上30μm以下がより好ましく、10μm以上20μm以下がさらに好ましい。
In this embodiment, a nitride layer having a fine uneven structure is formed on the surface of the iron-based metal member (A).
The thickness of the nitride layer having the fine uneven structure is not particularly limited, but the rust-preventing ability of the iron-based metal member (A) in the building material according to the present embodiment is further improved, and the thickness of the iron-based metal member (A) is improved. From the viewpoint of further improving the bonding strength with the member (B), the thickness is preferably from 1 μm to 50 μm, more preferably from 5 μm to 30 μm, even more preferably from 10 μm to 20 μm.

また、本実施形態に係る窒化物層は、例えば、Fe−N−C系を主体とする化合物層である。   In addition, the nitride layer according to the present embodiment is, for example, a compound layer mainly composed of an Fe-NC system.

上記微細凹凸構造は、鉄系金属部材(A)と部材(B)とをより一層強固に接合する観点から、間隔周期が0.01μm以上500μm以下であることが好ましい。
上記微細凹凸構造の間隔周期は凸部から隣接する凸部までの距離の平均値であり、電子顕微鏡またはレーザー顕微鏡で撮影した写真から求めることができる。
具体的には、電子顕微鏡またはレーザー顕微鏡により、鉄系金属部材(A)の表面を撮影する。その写真から、任意の凸部を50個選択し、それらの凸部から隣接する凸部までの距離をそれぞれ測定する。凸部から隣接する凸部までの距離の全てを積算して50で除したものを間隔周期とする。
In the fine uneven structure, the interval period is preferably 0.01 μm or more and 500 μm or less, from the viewpoint of more strongly joining the iron-based metal member (A) and the member (B).
The interval period of the fine uneven structure is an average value of a distance from a convex portion to an adjacent convex portion, and can be obtained from a photograph taken with an electron microscope or a laser microscope.
Specifically, the surface of the iron-based metal member (A) is photographed with an electron microscope or a laser microscope. From the photograph, 50 arbitrary convex portions are selected, and the distance from each of the convex portions to the adjacent convex portion is measured. The interval period is obtained by integrating all the distances from the convex portion to the adjacent convex portion and dividing by 50.

上記微細凹凸構造の間隔周期は、好ましくは0.02μm以上100μm以下、より好ましくは0.05μm以上50μm以下、さらに好ましくは0.05μm以上20μm以下、特に好ましくは0.10μm以上10μm以下である。
上記微細凹凸構造の間隔周期が上記下限値以上であると、上記微細凹凸構造の凹部に部材(B)がより多く進入することができ、鉄系金属部材(A)と部材(B)との接合強度をより向上させることができる。また、上記微細凹凸構造の間隔周期が上記上限値以下であると、鉄系金属部材(A)と部材(B)との接合部に隙間が生じることをより一層抑制できる。その結果、鉄系金属部材(A)と部材(B)との接合部の隙間から水分などの不純物が浸入することを抑制できるため、本実施形態に係る建築材料を高温、高湿下で用いた際、強度が低下することを抑制できる。
The interval period of the fine uneven structure is preferably 0.02 μm or more and 100 μm or less, more preferably 0.05 μm or more and 50 μm or less, further preferably 0.05 μm or more and 20 μm or less, and particularly preferably 0.10 μm or more and 10 μm or less.
When the interval period of the fine uneven structure is equal to or more than the lower limit value, the member (B) can enter the concave portion of the fine uneven structure more, and the iron-based metal member (A) and the member (B) The joining strength can be further improved. In addition, when the interval period of the fine uneven structure is equal to or less than the upper limit, it is possible to further suppress the generation of a gap at the joint between the iron-based metal member (A) and the member (B). As a result, it is possible to prevent impurities such as moisture from entering from a gap at the joint between the iron-based metal member (A) and the member (B), so that the building material according to the present embodiment is used under high temperature and high humidity. In this case, it is possible to suppress a decrease in strength.

鉄系金属部材(A)と部材(B)との接合強度をより一層向上させる観点から、JIS B0601:2001に準拠して測定される、微細凹凸構造を有する窒化物層の算術平均粗さ(Ra)が好ましくは0.2μm以上1μm以下であり、より好ましくは0.5μm以上0.8μm以下である。   From the viewpoint of further improving the bonding strength between the iron-based metal member (A) and the member (B), the arithmetic average roughness of the nitride layer having a fine uneven structure, which is measured according to JIS B0601: 2001 ( Ra) is preferably from 0.2 μm to 1 μm, and more preferably from 0.5 μm to 0.8 μm.

本実施形態に係る窒化物層の表面硬度は、耐摩耗性の観点から、Hv300以上であることが好ましい。また、本実施形態に係る窒化物層の表面硬度は、鉄系金属部材(A)の種類によって大きく変化するものであり、クラックや欠けなどを防止し、かつ経済性などの観点から、例えば、鉄系金属部材(A)の種類が、SS400系鉄鋼材の場合ではHv350〜900、好ましくはHv500〜800であり、SCM440系鉄鋼材の場合ではHV600〜1000、好ましくはHV700〜900であり、ステンレス鋼ではHv800〜1200、好ましくはHV900〜1100であることが好ましい。なお、上記例示の素材は本実施形態に係る鉄系金属材料の一例であり、建築材料として用いられる鉄系金属材料であれば幅広く用いることができる。
ここで、本実施形態に係る窒化物層の表面硬度はビッカース硬度(HV)を意味し、JIS Z2244(2009)に規定されるビッカース硬さ試験−試験方法に基づいて、試験片にダイヤモンド圧子を押し込む方法で測定したときの値である。
The surface hardness of the nitride layer according to the present embodiment is preferably Hv300 or more from the viewpoint of wear resistance. Further, the surface hardness of the nitride layer according to the present embodiment varies greatly depending on the type of the iron-based metal member (A), and, for example, from the viewpoint of preventing cracking and chipping and economical efficiency, The type of the iron-based metal member (A) is Hv350-900, preferably Hv500-800 when the SS400-based steel material is used, and HV600-1000, preferably HV700-900 when the SCM440-based steel material is used. For steel, it is preferably HV800 to 1200, preferably HV900 to 1100. Note that the above-described materials are examples of the iron-based metal material according to the present embodiment, and any iron-based metal material used as a building material can be widely used.
Here, the surface hardness of the nitride layer according to the present embodiment means Vickers hardness (HV), and a diamond indenter is applied to a test piece based on the Vickers hardness test-test method specified in JIS Z2244 (2009). It is a value measured by the pushing method.

また、鉄系金属部材(A)の表面には、窒化物層以外の被膜が形成されていてもよい。このような被膜としては、例えば、酸化物皮膜、防錆皮膜、化成皮膜、セラミック皮膜などが挙げられる。これらの被膜は窒化物層上に形成されているのが好ましい。   Further, a film other than the nitride layer may be formed on the surface of the iron-based metal member (A). Examples of such a coating include an oxide coating, a rust prevention coating, a chemical conversion coating, and a ceramic coating. These coatings are preferably formed on a nitride layer.

<部材(B)>
本実施形態に係る部材(B)は特に限定されず、例えば、建築材料として公知の材料を用いることができる。より具体的には、部材(B)としては、木材、石材、セメント部材、粘土、金属部材、樹脂部材、コンクリート部材、モルタル部材などが挙げられる。
これらの部材は一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
これらの中でも、成形性および強度の観点から、コンクリート部材が好ましい。
<Member (B)>
The member (B) according to the present embodiment is not particularly limited, and for example, a known material as a building material can be used. More specifically, the member (B) includes wood, stone, cement, clay, metal, resin, concrete, mortar, and the like.
These members may be used alone or in combination of two or more.
Among these, concrete members are preferred from the viewpoint of moldability and strength.

<接着剤層(C)>
本実施形態に係る接着剤層(C)は特に限定されず、例えば、公知の接着剤を用いることができる。より具体的には、接着剤層(C)を構成する接着剤としては、フェノール系接着剤、ウレタン系接着剤、エポキシ系接着剤、ポリエステル系接着剤、アクリル系接着剤、ポリオレフィン系接着剤、石油樹脂などのホットメルト系接着剤などが挙げられる。
これらの接着剤は一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
<Adhesive layer (C)>
The adhesive layer (C) according to the present embodiment is not particularly limited, and for example, a known adhesive can be used. More specifically, the adhesive constituting the adhesive layer (C) includes a phenol-based adhesive, a urethane-based adhesive, an epoxy-based adhesive, a polyester-based adhesive, an acrylic-based adhesive, a polyolefin-based adhesive, Hot-melt adhesives such as petroleum resins are exemplified.
One of these adhesives may be used alone, or two or more thereof may be used in combination.

2.建築材料の製造方法
本実施形態に係る建築材料の製造方法は、鉄系金属部材の表面の少なくとも一部を窒化処理することにより、微細凹凸構造を有する窒化物層が表面の少なくとも一部に形成された鉄系金属部材(A)を作製する工程(a)と、鉄系金属部材(A)に部材(B)を接合させる工程(b)と、を備える。
2. The method for manufacturing a building material The method for manufacturing a building material according to the present embodiment includes forming a nitride layer having a fine uneven structure on at least a part of the surface by nitriding at least a part of the surface of the iron-based metal member. And a step (b) of joining the member (B) to the iron-based metal member (A).

工程(a)では、鉄系金属部材の表面の少なくとも一部を窒化処理することにより、微細凹凸構造を有する窒化物層が表面の少なくとも一部に形成された鉄系金属部材(A)を作製する。窒化処理は公知の窒化処理方法を用いることができる。このような窒化処理としては、例えば、塩浴窒化処理、塩浴軟窒化処理、ガス窒化処理、ガス軟窒化処理、イオン窒化処理、プラズマ窒化処理などが挙げられる。
これらの窒化処理は一種類を単独でおこなってもよいし、二種類以上の処理を組み合わせておこなってもよい。
これらの窒化処理の中でも、部材(B)との間の接合強度の向上に寄与する微細凹凸構造を効果的に得ることができる点から、塩浴窒化処理および塩浴軟窒化処理が好ましい。
In the step (a), at least a part of the surface of the iron-based metal member is subjected to nitriding treatment to produce an iron-based metal member (A) having a nitride layer having a fine uneven structure formed on at least a part of the surface. I do. For the nitriding treatment, a known nitriding treatment method can be used. Examples of such nitriding include salt bath nitriding, salt bath nitrocarburizing, gas nitriding, gas nitrocarburizing, ion nitriding, and plasma nitriding.
One of these nitriding treatments may be performed alone, or two or more thereof may be performed in combination.
Among these nitriding treatments, a salt bath nitriding treatment and a salt bath nitrocarburizing treatment are preferable from the viewpoint that a fine concavo-convex structure contributing to the improvement of the bonding strength with the member (B) can be effectively obtained.

本実施形態に係る建築材料の製造方法において、工程(a)の前に、鉄系金属部材に窒化処理以外の粗化処理をおこなってもよい。これにより、鉄系金属部材の表面に微細凹凸構造を付与できるため、鉄系金属部材と窒化物層との密着性をより一層良好にすることができる。
鉄系金属部材の粗化処理方法としては特に限定されず、公知の粗化処理方法を採用できる。例えば、NaOHなどの無機塩基水溶液および/または塩酸、硝酸などの無機酸水溶液に鉄系金属部材を浸漬する方法;例えばダイヤモンド砥粒研削またはブラスト加工によって作製した凹凸を有する金型パンチをプレスすることにより鉄系金属部材表面に凹凸を形成する方法や、サンドブラスト、ローレット加工、レーザー加工により鉄系金属部材表面に凹凸形状を作製する方法等の機械的切削;陽極酸化法により鉄系金属部材を処理する方法、国際公開第2009/31632号パンフレットに開示されているような、水和ヒドラジン、アンモニア、及び水溶性アミン化合物から選ばれる1種以上の水溶液に鉄系金属部材を浸漬する方法;特許5129903号に記載されているように鉄系金属部材をクエン酸に浸漬させたのち過マンガン酸カリウム水溶液で処理する方法などが挙げられる。これらの方法は、使用する鉄系金属部材の金属種や、凹凸形状によって適宜使い分けて採用される。
In the method for manufacturing a building material according to the present embodiment, a roughening process other than the nitriding process may be performed on the iron-based metal member before the step (a). Thereby, since a fine uneven structure can be provided on the surface of the iron-based metal member, the adhesion between the iron-based metal member and the nitride layer can be further improved.
The method of roughening the iron-based metal member is not particularly limited, and a known roughening method can be employed. For example, a method of immersing an iron-based metal member in an aqueous solution of an inorganic base such as NaOH and / or an aqueous solution of an inorganic acid such as hydrochloric acid or nitric acid; for example, pressing a mold punch having irregularities produced by diamond abrasive grinding or blasting. Mechanical cutting, such as a method of forming irregularities on the surface of an iron-based metal member by sanding, knurling, or laser processing; a treatment of an iron-based metal member by anodizing. A method of immersing an iron-based metal member in one or more aqueous solutions selected from hydrated hydrazine, ammonia, and a water-soluble amine compound as disclosed in WO 2009/31632; After immersing iron-based metal members in citric acid as described in A method of treating with an aqueous solution of potassium and the like. These methods are appropriately used and adopted depending on the metal type of the iron-based metal member to be used and the uneven shape.

本実施形態に係る建築材料の製造方法において、工程(a)の前および/または後に、鉄系金属部材の洗浄処理をおこなってもよい。
例えば、鉄系金属部材に機械油などの著しい汚染がある場合は、工程(a)の前に水酸化ナトリウム水溶液や水酸化カリウム水溶液等のアルカリ性水溶液、希塩酸や硝酸水溶液等の無機酸水溶液、脱脂等によって洗浄処理を行なうことが好ましい。
また、工程(a)やその後の工程で鉄系金属部材に処理液や油等が付着した場合は、洗浄処理によって付着液や油を除去するのが好ましい。
また、工程(a)によってスマットなどが生じた場合は、工程(a)の後に超音波洗浄などによってスマットなどを除去することが好ましい。
In the method for manufacturing a building material according to the present embodiment, a cleaning treatment of the iron-based metal member may be performed before and / or after the step (a).
For example, if the iron-based metal member is significantly contaminated with mechanical oil or the like, before the step (a), an alkaline aqueous solution such as an aqueous solution of sodium hydroxide or potassium hydroxide, an aqueous solution of an inorganic acid such as an aqueous solution of dilute hydrochloric acid or nitric acid, or degreasing It is preferable to carry out a cleaning treatment by the method described above.
Further, in the case where the treatment liquid or the oil adheres to the iron-based metal member in the step (a) or a subsequent step, it is preferable to remove the adhered liquid or the oil by the cleaning treatment.
Further, when smut or the like is generated in the step (a), it is preferable to remove the smut or the like by ultrasonic cleaning or the like after the step (a).

また、本実施形態に係る建築材料の製造方法において、工程(a)の後に、上記鉄系金属部材(A)に窒化処理以外の皮膜形成処理をおこなってもよい。このような皮膜形成処理としては、例えば、酸化物皮膜形成処理、防錆皮膜形成処理、化成皮膜形成処理、セラミック皮膜形成処理などが挙げられる。これらの被膜形成処理は、公知の方法に基づいておこなうことができる。   Further, in the method for manufacturing a building material according to the present embodiment, after the step (a), a film forming process other than the nitriding process may be performed on the iron-based metal member (A). Examples of such a film formation treatment include an oxide film formation treatment, a rust prevention film formation treatment, a chemical conversion film formation treatment, and a ceramic film formation treatment. These film forming processes can be performed based on a known method.

工程(b)では、鉄系金属部材(A)に部材(B)を接合させる。
鉄系金属部材(A)に部材(B)を接合させる方法は特に限定されず、窒化物層を介して鉄系金属部材(A)に部材(B)を接合させる方法や、接着剤層(C)を介して鉄系金属部材(A)に部材(B)を接合させる方法などが挙げられる。
In the step (b), the member (B) is joined to the iron-based metal member (A).
The method for joining the member (B) to the iron-based metal member (A) is not particularly limited, and a method for joining the member (B) to the iron-based metal member (A) via a nitride layer, an adhesive layer ( And a method of joining the member (B) to the iron-based metal member (A) via C).

ここで、窒化物層を介して鉄系金属部材(A)に部材(B)を接合させる方法としては特に限定されず、公知の成形方法を採用できる。例えば、部材(B)の少なくとも一部が鉄系金属部材(A)における窒化物層と接するように、部材(B)を形成するための原材料を鉄系金属部材(A)が配置された型に流し込み、その後、原材料を所望の形状に固化することによって、窒化物層を介して鉄系金属部材(A)に部材(B)を接合させることができる。
また、接着剤層(C)を介して鉄系金属部材(A)に部材(B)を接合させる方法としては特に限定されず、公知の成形方法を採用できる。例えば、部材(B)の少なくとも一部が鉄系金属部材(A)の表面に付与された接着剤層(C)と接するように、部材(B)を形成するための原材料を鉄系金属部材(A)が配置された型に流し込み、その後、原材料を所望の形状に固化することによって、接着剤層(C)を介して鉄系金属部材(A)に部材(B)を接合させることができる。
Here, the method for joining the member (B) to the iron-based metal member (A) via the nitride layer is not particularly limited, and a known forming method can be adopted. For example, a mold in which the iron-based metal member (A) is arranged as a raw material for forming the member (B) such that at least a part of the member (B) is in contact with the nitride layer of the iron-based metal member (A). Then, the raw material is solidified into a desired shape, whereby the member (B) can be joined to the iron-based metal member (A) via the nitride layer.
The method for joining the member (B) to the iron-based metal member (A) via the adhesive layer (C) is not particularly limited, and a known molding method can be employed. For example, the raw material for forming the member (B) is changed to an iron-based metal member so that at least a part of the member (B) is in contact with the adhesive layer (C) provided on the surface of the iron-based metal member (A). The member (B) is joined to the iron-based metal member (A) via the adhesive layer (C) by pouring into a mold in which (A) is arranged and then solidifying the raw material into a desired shape. it can.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   Although the embodiments of the present invention have been described above, these are merely examples of the present invention, and various configurations other than the above can be adopted.

Claims (13)

微細凹凸構造を有する窒化物層が表面の少なくとも一部に形成された鉄系金属部材(A)と、前記鉄系金属部材(A)に接合された部材(B)と、を備える建築材料。   A building material comprising: an iron-based metal member (A) having a nitride layer having a fine uneven structure formed on at least a part of its surface; and a member (B) joined to the iron-based metal member (A). 請求項1に記載の建築材料において、
前記部材(B)が前記窒化物層を介して前記鉄系金属部材(A)と接合している建築材料。
The building material according to claim 1,
A building material in which the member (B) is joined to the iron-based metal member (A) via the nitride layer.
請求項1または2に記載の建築材料において、
前記鉄系金属部材(A)と前記部材(B)との間に接着剤層(C)をさらに備える建築材料。
The building material according to claim 1 or 2,
A building material further comprising an adhesive layer (C) between the iron-based metal member (A) and the member (B).
請求項1乃至3のいずれか一項に記載の建築材料において、
前記微細凹凸構造の間隔周期が0.01μm以上500μm以下の範囲である建築材料。
The building material according to any one of claims 1 to 3,
A building material wherein the interval period of the fine uneven structure is in a range of 0.01 μm or more and 500 μm or less.
請求項1乃至4のいずれか一項に記載の建築材料において、
前記窒化物層の表面硬度がHv300以上である建築材料。
In the building material according to any one of claims 1 to 4,
A building material wherein the surface hardness of the nitride layer is Hv300 or more.
請求項1乃至5のいずれか一項に記載の建築材料において、
前記部材(B)が、木材、石材、セメント部材、粘土、金属部材、樹脂部材、コンクリート部材およびモルタル部材から選択される少なくとも一種の部材を含む建築材料。
The building material according to any one of claims 1 to 5,
A building material wherein the member (B) includes at least one member selected from wood, stone, cement, clay, metal, resin, concrete, and mortar members.
請求項1乃至6のいずれか一項に記載の建築材料を製造するための製造方法であって、
鉄系金属部材の表面の少なくとも一部を窒化処理することにより、微細凹凸構造を有する窒化物層が表面の少なくとも一部に形成された鉄系金属部材(A)を作製する工程(a)と、
前記鉄系金属部材(A)に前記部材(B)を接合させる工程(b)と、
を備える建築材料の製造方法。
It is a manufacturing method for manufacturing the building material according to any one of claims 1 to 6,
(A) producing an iron-based metal member (A) in which a nitride layer having a fine uneven structure is formed on at least a part of the surface by nitriding at least a part of the surface of the iron-based metal member; ,
(B) joining the member (B) to the iron-based metal member (A);
A method for producing a building material comprising:
請求項7に記載の建築材料の製造方法において、
前記工程(b)では、前記窒化物層を介して前記鉄系金属部材(A)に前記部材(B)を接合させる建築材料の製造方法。
The method for producing a building material according to claim 7,
In the step (b), a method of manufacturing a building material in which the member (B) is joined to the iron-based metal member (A) via the nitride layer.
請求項7または8に記載の建築材料の製造方法において、
前記工程(b)では、接着剤層(C)を介して前記鉄系金属部材(A)に前記部材(B)を接合させる建築材料の製造方法。
The method for producing a building material according to claim 7 or 8,
In the step (b), a method for manufacturing a building material in which the member (B) is joined to the iron-based metal member (A) via an adhesive layer (C).
請求項7乃至9のいずれか一項に記載の建築材料の製造方法において、
前記工程(a)における前記窒化処理が、塩浴窒化処理、塩浴軟窒化処理、ガス窒化処理、ガス軟窒化処理、イオン窒化処理およびプラズマ窒化処理から選択される少なくとも一種の処理を含む建築材料の製造方法。
The method for producing a building material according to any one of claims 7 to 9,
A building material, wherein the nitriding treatment in the step (a) includes at least one kind of treatment selected from salt bath nitriding treatment, salt bath nitrocarburizing treatment, gas nitriding treatment, gas nitrocarburizing treatment, ion nitriding treatment, and plasma nitriding treatment. Manufacturing method.
請求項7乃至10のいずれか一項に記載の建築材料の製造方法において、
前記工程(a)の前に、前記鉄系金属部材に窒化処理以外の粗化処理をおこなう工程を含む建築材料の製造方法。
The method for producing a building material according to any one of claims 7 to 10,
A method for manufacturing a building material, comprising a step of performing a roughening process other than a nitriding process on the iron-based metal member before the step (a).
請求項7乃至11のいずれか一項に記載の建築材料の製造方法において、
前記工程(a)の前および/または後に、前記鉄系金属部材の洗浄処理をおこなう工程を含む建築材料の製造方法。
In the method for producing a building material according to any one of claims 7 to 11,
A method for manufacturing a building material, comprising a step of performing a cleaning treatment of the iron-based metal member before and / or after the step (a).
請求項7乃至12のいずれか一項に記載の建築材料の製造方法において、
前記工程(a)の後に、前記鉄系金属部材(A)に窒化処理以外の皮膜形成処理をおこなう工程を含む建築材料の製造方法。
The method for producing a building material according to any one of claims 7 to 12,
A method for manufacturing a building material, comprising a step of performing a film forming process other than a nitriding process on the iron-based metal member (A) after the step (a).
JP2018172569A 2018-09-14 2018-09-14 Building materials and methods of manufacturing building materials Active JP7268983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018172569A JP7268983B2 (en) 2018-09-14 2018-09-14 Building materials and methods of manufacturing building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018172569A JP7268983B2 (en) 2018-09-14 2018-09-14 Building materials and methods of manufacturing building materials

Publications (2)

Publication Number Publication Date
JP2020044664A true JP2020044664A (en) 2020-03-26
JP7268983B2 JP7268983B2 (en) 2023-05-08

Family

ID=69901996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018172569A Active JP7268983B2 (en) 2018-09-14 2018-09-14 Building materials and methods of manufacturing building materials

Country Status (1)

Country Link
JP (1) JP7268983B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266309A (en) * 1988-04-18 1989-10-24 Takenaka Komuten Co Ltd Frictional connection method for high strength bolt
JPH05254053A (en) * 1991-04-11 1993-10-05 Denki Kagaku Kogyo Kk Laminate and method for forming film
JPH06122957A (en) * 1992-10-12 1994-05-06 Matsushita Electric Works Ltd Surface treatment ferritic stainless steel
JPH093614A (en) * 1995-06-22 1997-01-07 Dainippon Toryo Co Ltd Formation of thermally sprayed metallic film
JP2013007094A (en) * 2011-06-24 2013-01-10 Air Water Inc Steel back plate for use in friction material, and method of producing steel product
JP2015117777A (en) * 2013-12-18 2015-06-25 曙ブレーキ工業株式会社 Pressure plate, brake pad using pressure plate and process of manufacture of pressure plate and brake pad

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266309A (en) * 1988-04-18 1989-10-24 Takenaka Komuten Co Ltd Frictional connection method for high strength bolt
JPH05254053A (en) * 1991-04-11 1993-10-05 Denki Kagaku Kogyo Kk Laminate and method for forming film
JPH06122957A (en) * 1992-10-12 1994-05-06 Matsushita Electric Works Ltd Surface treatment ferritic stainless steel
JPH093614A (en) * 1995-06-22 1997-01-07 Dainippon Toryo Co Ltd Formation of thermally sprayed metallic film
JP2013007094A (en) * 2011-06-24 2013-01-10 Air Water Inc Steel back plate for use in friction material, and method of producing steel product
JP2015117777A (en) * 2013-12-18 2015-06-25 曙ブレーキ工業株式会社 Pressure plate, brake pad using pressure plate and process of manufacture of pressure plate and brake pad

Also Published As

Publication number Publication date
JP7268983B2 (en) 2023-05-08

Similar Documents

Publication Publication Date Title
DK1198609T4 (en) Process for manufacturing a structural metal coated construction part
JP2011036949A (en) Method for manufacturing die steel tool, and form rolling die
CN105603358A (en) Titanium alloy ultrasonic knife surface strengthening method
JP2008031519A (en) Hot-dip galvanizing method and galvanized article
TWI500817B (en) Formation method of fluoride thermal spray membrane and fluoride thermal spray membrane-coated member
TW201317364A (en) Method of manufacturing a bi-metal screw
MX2023014591A (en) High-strength steel sheet and manufacturing method therefor.
JP6649991B2 (en) Surface treatment method for mold molding surface
JP2020044664A (en) Construction material and method for producing construction material
JP2022125057A (en) Base material having at least all or part of surface made of metal material, base material having pores on surface of metal material, and composite of base material-resin cured product comprising base material and resin cured product
TW201902701A (en) Housing and method of manufacturing the same
TW201908130A (en) Housing and method of manufacturing the same
US20110135414A1 (en) Method of increasing the fracture toughness of the outer layer of a carbide cutting bit of a drill
JP2008138235A (en) Method for reforming rolling die, and rolling die
TW200700574A (en) Method for manufacturing sputtering target and sputtering target
KR930006043B1 (en) Connecting method and used parts
JP2015066523A (en) Manufacturing method for fluid machine member, and fluid machine member
JP2006523769A5 (en)
JP2593280B2 (en) Ceramic press mold
JP2007277620A (en) Method for depositing spray deposit film on brittle base material
TWI626317B (en) Method for manufacturing magnesium vibration plate for sound and magnesium vibration plate for sound
RU2631572C1 (en) Method of applying multilayer ion-plasma coating on stamp engraving surface from heat-resistant steel
RU2657670C2 (en) Method of restoration of worn surfaces of metal parts
RU2132402C1 (en) Process of surface preparation for plasma coating
JPH07173635A (en) Method for surface treatment of metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230421

R150 Certificate of patent or registration of utility model

Ref document number: 7268983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150