JP2018101102A - Projection optical system and projector - Google Patents
Projection optical system and projector Download PDFInfo
- Publication number
- JP2018101102A JP2018101102A JP2016248212A JP2016248212A JP2018101102A JP 2018101102 A JP2018101102 A JP 2018101102A JP 2016248212 A JP2016248212 A JP 2016248212A JP 2016248212 A JP2016248212 A JP 2016248212A JP 2018101102 A JP2018101102 A JP 2018101102A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- lens
- image
- projection optical
- intermediate image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/16—Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
- Projection Apparatus (AREA)
Abstract
Description
本発明は、プロジェクタの投射光学系に関するものである。 The present invention relates to a projection optical system of a projector.
特許文献1には、より短い距離における被投射面により良好な像を投射することが可能なより小型の投射光学系を提供する技術が開示されている。特許文献1には、物体と共役な第一の像を形成すると共に光軸を有する第一の光学系及び第一の像と共役な第二の像を被投射面に投射する第二の光学系を含む、投射光学系が開示されている。第一の像は、Im×Tr≦1.70の条件を満たす。ただし、Imは、第一の光学系の焦点距離によって規格化された第一の光学系の光軸の方向における第一の像の長さを表すと共に、Trは、投射光学系についてのスローレシオを表す。スローレシオは、水平方向におけるスクリーンに投射された画像の大きさに対する投射光学系の投射距離(第二の光学系の主点からスクリーンまで)の比である。
スローレシオが小さく、より短い距離で投影することができる投射光学系であって、高画質の画像を投影できるとともに、コンパクトな投射光学系が要望されている。 There is a demand for a projection optical system that has a low throw ratio and can project at a shorter distance, and that can project a high-quality image and that is compact.
本発明の態様の1つは、縮小側の第1の像面から拡大側の第2の像面へ投射する投射光学系であって、複数のレンズを含む第1の光学系を有する投射光学系である。第1の光学系は、縮小側から入射した光により当該第1の光学系の内部の光軸の第1の側に結像される第1の中間像を当該第1の光学系よりも拡大側の光軸の第2の側に第2の中間像として結像する。投射光学系は、さらに、第2の中間像よりも拡大側に位置する正の屈折力の第1の反射面を含む第2の光学系を有する。 One aspect of the present invention is a projection optical system that projects from a first image plane on the reduction side to a second image plane on the enlargement side, and has a first optical system that includes a plurality of lenses. It is a system. The first optical system enlarges the first intermediate image formed on the first side of the optical axis inside the first optical system by the light incident from the reduction side as compared with the first optical system. An image is formed as a second intermediate image on the second side of the side optical axis. The projection optical system further includes a second optical system including a first reflecting surface having a positive refractive power and located closer to the enlargement side than the second intermediate image.
内部に第1の中間像を形成し、その第1の中間像を拡大側、すなわち、第1の反射面の入力側(縮小側)に第2の中間像として形成する第1の光学系を有する投射光学系は、第1の反射面の入力となる第2の中間像の光軸に沿った長さを短くできる。このため、屈折力が大きく、コンパクトな第1の反射面を配置することが可能となり、コンパクトで高倍率であって、スローレシオの小さな投射光学系を提供できる。 A first optical system that forms a first intermediate image therein and forms the first intermediate image as a second intermediate image on the enlargement side, that is, the input side (reduction side) of the first reflecting surface, The projection optical system which has can shorten the length along the optical axis of the 2nd intermediate image used as the input of the 1st reflective surface. For this reason, it is possible to dispose a compact first reflecting surface having a large refractive power, and it is possible to provide a projection optical system that is compact, has a high magnification, and has a small slow ratio.
さらに、この投射光学系の合成焦点距離faと、第1の反射面の曲率半径rmとが以下の条件(1)および(2)を満たす。
40<|rm×fa|<80 ・・・(1)
5.8<|rm/fa|<7.9・・・(2)
ただし合成焦点距離faおよび曲率半径rmの単位はmmである。条件(1)に示すように、第1の反射面のパワーと投射光学系のパワーとが十分に大きく、投射光学系のパワーに占める第1の反射面のパワーが条件(2)に示す範囲であることが、コンパクトで、かつスローレシオの小さな投射光学系を提供するのに適している。条件(1)の下限は45.5であってもよく、上限は60.0であってもよく、さらに、49.0であってもよい。また、条件(2)の下限は6.25であってもよく、上限は6.65であってもよい。
Further, the combined focal length fa of the projection optical system and the radius of curvature rm of the first reflecting surface satisfy the following conditions (1) and (2).
40 <| rm × fa | <80 (1)
5.8 <| rm / fa | <7.9 (2)
However, the unit of the composite focal length fa and the radius of curvature rm is mm. As shown in condition (1), the power of the first reflecting surface and the power of the projection optical system are sufficiently large, and the power of the first reflecting surface in the power of the projection optical system is in the range shown in condition (2). It is suitable for providing a projection optical system that is compact and has a small slow ratio. 45.5 may be sufficient as the minimum of condition (1), 60.0 may be sufficient as it, and 49.0 may be sufficient as it. Further, the lower limit of the condition (2) may be 6.25, and the upper limit may be 6.65.
特に、第1の反射面の曲率半径rmは以下の条件(3)を満たすことが望ましい。
15.0<|rm|<21.5・・・(3)
条件(3)の下限は16.5であってもよく、上限は18.5であってもよい。
In particular, it is desirable that the curvature radius rm of the first reflecting surface satisfies the following condition (3).
15.0 <| rm | <21.5 (3)
The lower limit of condition (3) may be 16.5, and the upper limit may be 18.5.
第1の反射面は非球面であってもよい。非球面のコーニック係数kが以下の条件を満たす。
−1.35<k<−0.70・・・(11)
The first reflecting surface may be an aspheric surface. The aspherical conic coefficient k satisfies the following condition.
−1.35 <k <−0.70 (11)
この投射光学系は、曲率半径rmが小さく、曲率が大きい第1の反射面を採用することにより、スローレシオが小さく、広角の投射光学系を提供している。さらに、第1の反射面を、条件(11)を満たすコーニング係数kを有する非球面とすることにより、歪曲収差を効率的に補正できる。このため、非点収差、像面湾曲を含めてバランスのとれた性能の投射光学系を提供できる。条件(11)の下限は、−1.10であってもよく、−1.05であってもよい。また、上限は、−0.80であってもよく、−0.85であってもよい。 This projection optical system provides a wide-angle projection optical system with a small slow ratio by adopting the first reflecting surface with a small curvature radius rm and a large curvature. Furthermore, distortion can be efficiently corrected by making the first reflecting surface an aspherical surface having a Corning coefficient k that satisfies the condition (11). Therefore, it is possible to provide a projection optical system having a balanced performance including astigmatism and field curvature. The lower limit of condition (11) may be −1.10 or −1.05. Further, the upper limit may be -0.80 or -0.85.
なお、光軸の第1の側に結像される第1の中間像を第1の光学系の拡大側に、光軸の第2の側、すなわち第1の中間像と光軸を挟んで反対側に第2の中間像を結像する第1の光学系において、光軸から離れると縮小側に近づくように傾いた第1の中間像を形成し、その第1の中間像が跨ぐように中間レンズを設けることが好ましい。これにより第1の光学系の全長に対して数多くのレンズを配置できるので、投射光学系の全長を短くできるとともに、スローレシオを小さくでき、さらに、投影される画質も改善できる。 The first intermediate image formed on the first side of the optical axis is placed on the enlargement side of the first optical system, and the second side of the optical axis, that is, the first intermediate image and the optical axis are sandwiched. In the first optical system that forms the second intermediate image on the opposite side, a first intermediate image that is inclined so as to approach the reduction side is formed away from the optical axis, and the first intermediate image straddles the first intermediate image. It is preferable to provide an intermediate lens. As a result, a large number of lenses can be arranged with respect to the total length of the first optical system, so that the total length of the projection optical system can be shortened, the slow ratio can be reduced, and the projected image quality can be improved.
本発明の異なる態様の1つは、上記の投射光学系と、第1の像面に画像を形成する光変調器とを有するプロジェクタである。プロジェクタは、第1の像面を照明する照明光学系を含んでいてもよい。 One of the different aspects of the present invention is a projector having the projection optical system described above and a light modulator that forms an image on a first image plane. The projector may include an illumination optical system that illuminates the first image plane.
以下においては、複数のレンズを含む第1の光学系と、正の屈折力の第1の反射面を含む第2の光学系とを含む投射光学系であって、第2の光学系の第1の反射面が、第1の光学系から出力された光を反射して投影光としてスクリーンに投射する投射光学系に対して、幾つかの条件を開示する。第1の光学系は、縮小側から入射した光により第1の光学系の内部に結像される第1の中間像を第1の光学系よりも拡大側に第2の中間像として結像する屈折光学系(レンズシステム)である。 In the following, a projection optical system including a first optical system including a plurality of lenses and a second optical system including a first reflecting surface having a positive refractive power, Several conditions are disclosed with respect to a projection optical system in which one reflection surface reflects light output from the first optical system and projects it onto a screen as projection light. The first optical system forms a first intermediate image formed inside the first optical system by light incident from the reduction side as a second intermediate image closer to the enlargement side than the first optical system. A refractive optical system (lens system).
投射光学系の合成焦点距離faと、第2のレンズ群の合成焦点距離f2とは以下の条件(4)を満たすことが望ましい。
8<f2/fa<20・・・(4)
ただし合成焦点距離faおよび合成焦点距離f2の単位はmmである。条件(4)の下限は10.0であってもよく、13.0であってもよい。また、上限は18.0であってもよく、15.0であってもよい。
It is desirable that the combined focal length fa of the projection optical system and the combined focal length f2 of the second lens group satisfy the following condition (4).
8 <f2 / fa <20 (4)
However, the unit of the synthetic focal length fa and the synthetic focal length f2 is mm. The lower limit of the condition (4) may be 10.0 or 13.0. Further, the upper limit may be 18.0 or 15.0.
また、第1の光学系の最も拡大側に位置する第1のレンズシステムにおいては、光軸の周りに光束が集中するので、第1のレンズシステムの有効径は相対的に小さくてよく、コンパクトであるとともに、第1の反射面で反射された光束との干渉も容易に取り除ける。 Further, in the first lens system located on the most enlarged side of the first optical system, the luminous flux concentrates around the optical axis, so that the effective diameter of the first lens system may be relatively small and compact. In addition, interference with the light beam reflected by the first reflecting surface can be easily removed.
上記の投射光学系により、条件(5)に示すように、第1の光学系の最も縮小側のレンズの縮小側の面から第1の反射面までの光軸に沿った全長Laに対する第1の光学系の長さ(屈折光学系の有効長、最も縮小側のレンズの縮小側の面から最も拡大側のレンズの拡大側の面までの光軸に沿った距離)Leの比が0.6以上、さらには0.62より大きいというように、全長に対して、収差補正に使用できる空間の割合が大きく、光学系全体をコンパクトにできるとともに、条件(6)に示すようにスローレシオTRも0.19以下、さらには0.19より小さい光学系を提供できる。
0.62<Le/La<0.72・・・(5)
0.17<TR<0.19・・・(6)
なおスローレシオTRは、第1の反射面からスクリーンまでの距離Lmと、第1の像面の長辺方向(一般的には横方向)をスクリーンに投影した際のサイズLnとの比であり以下の式で定義される。
TR=Lm/Ln・・・(6−1)
With the above projection optical system, as shown in the condition (5), the first optical system with respect to the total length La along the optical axis from the reduction side surface of the first reduction lens to the first reflection surface of the first optical system. The ratio of Le (the effective length of the refracting optical system, the distance along the optical axis from the reduction side surface of the most reduction lens to the enlargement side surface of the enlargement side lens) is 0. The ratio of the space that can be used for aberration correction is large with respect to the total length, such as 6 or more, and more than 0.62, and the entire optical system can be made compact, and the slow ratio TR as shown in condition (6). Can also provide an optical system of 0.19 or less, and even smaller than 0.19.
0.62 <Le / La <0.72 (5)
0.17 <TR <0.19 (6)
The slow ratio TR is a ratio between the distance Lm from the first reflecting surface to the screen and the size Ln when the long side direction (generally the horizontal direction) of the first image surface is projected onto the screen. It is defined by the following formula.
TR = Lm / Ln (6-1)
また、上記の投射光学系により、条件(7)に示すように、第1の光学系の最も縮小側のレンズの縮小側の面から第1の反射面までの光軸に沿った全長Laに対する第1の光学系から第1の反射面までの長さ(第1の光学系の最も拡大側のレンズの面から第1の反射面までの光軸に沿った長さ)Lfの比が0.35以下、さらには0.38より小さい、というように、全長に対して、屈折光学系と反射面との間の、収差補正に用いることができない空間の占める割合が小さく、光学系全体をコンパクトにできるとともに、条件(6)に示すようにスローレシオTRも0.19以下と小さい光学系を提供できる。
0.26<Lf/La<0.38・・・(7)
Further, by the above projection optical system, as shown in the condition (7), with respect to the total length La along the optical axis from the reduction side surface of the first reduction lens to the first reflection surface of the first optical system. The ratio of the length from the first optical system to the first reflecting surface (the length along the optical axis from the lens surface on the most enlarged side of the first optical system to the first reflecting surface) Lf is 0. .35 or less, and smaller than 0.38, the ratio of the space between the refractive optical system and the reflecting surface that cannot be used for aberration correction to the entire length is small, and the entire optical system is In addition to being compact, it is possible to provide an optical system with a slow ratio TR of 0.19 or less as shown in condition (6).
0.26 <Lf / La <0.38 (7)
第1の光学系は、第1の中間像が跨ぐように形成される中間レンズと、中間レンズを含め、中間レンズの縮小側に配置された第1のレンズ群と、中間レンズの拡大側に配置された第2のレンズ群とを含んでもよい。第1の中間像と重なるようにレンズを配置することにより、さらにコンパクトな投射光学系を提供できる。第1の中間像は、光軸から離れると縮小側に近づくように傾いて形成されてもよく、典型的には、第1の中間像の光軸に近い基端が中間レンズの外の拡大側に位置し、第1の中間像の光軸から離れた先端が中間レンズの外の縮小側に位置するものである。この投射光学系においては、第1の中間像は収差補正途上の像であり、中間レンズを跨ぐことによる影響は小さく、あったとしても補正することは容易である。 The first optical system includes an intermediate lens formed so as to straddle the first intermediate image, a first lens group disposed on the reduction side of the intermediate lens including the intermediate lens, and an enlargement side of the intermediate lens. The second lens group may be included. By arranging the lens so as to overlap the first intermediate image, a more compact projection optical system can be provided. The first intermediate image may be formed to be inclined so as to approach the reduction side as it is away from the optical axis. Typically, the base end close to the optical axis of the first intermediate image is enlarged outside the intermediate lens. The tip of the first intermediate image that is away from the optical axis is located on the reduction side outside the intermediate lens. In this projection optical system, the first intermediate image is an image in the course of aberration correction, and the influence of straddling the intermediate lens is small, and it is easy to correct it.
中間レンズの焦点距離fmと、投射光学系の合成焦点距離faとが以下の条件(8)を満たしてもよい。中間レンズのパワーが大きすぎるとフォーカシングに対する効き量が大きすぎて調整しにくく、小さすぎるとフォーカシングに適さない。
10<|fm/fa|<30・・・(8)
ただし、焦点距離fmおよび合成焦点距離faの単位はmmである。
The focal length fm of the intermediate lens and the combined focal length fa of the projection optical system may satisfy the following condition (8). If the power of the intermediate lens is too large, the effect on focusing is too large to adjust, and if it is too small, it is not suitable for focusing.
10 <| fm / fa | <30 (8)
However, the unit of the focal length fm and the combined focal length fa is mm.
この投射光学系は、さらに、光軸の第1の側に結像される第1の中間像を第1の光学系の拡大側に、光軸の第2の側、すなわち第1の中間像と光軸を挟んで反対側に第2の中間像を結像する第1の光学系において、光軸から離れると縮小側に近づくように傾いた第1の中間像を形成し、その第1の中間像が跨ぐように中間レンズを設けることにより、第1の光学系の全長に対して数多くのレンズを配置できるので、投射光学系の全長を短くできるとともに、スローレシオを小さくでき、さらに、投影される画質も改善できる。 The projection optical system further includes a first intermediate image formed on the first side of the optical axis on the enlargement side of the first optical system and a second side of the optical axis, that is, the first intermediate image. In the first optical system that forms a second intermediate image on the opposite side across the optical axis, a first intermediate image inclined so as to approach the reduction side when it is separated from the optical axis is formed. By providing an intermediate lens so that the intermediate image spans, many lenses can be arranged with respect to the total length of the first optical system, so that the total length of the projection optical system can be shortened, and the slow ratio can be reduced, The projected image quality can also be improved.
中間レンズは、フォーカシングのために移動するレンズであってもよい。第1の中間像の前後で光束は像高に対応して分散するので、第1の中間像が跨いで形成される中間レンズはフォーカシングに対する効き量が大きく、中間レンズを移動することはフォーカシングに適している。第1の中間像が、第1の中間像の光軸に近い基端が中間レンズの外の拡大側に位置し、第1の中間像の光軸から離れた先端が中間レンズの外の縮小側に位置する場合は、中間レンズは、フォーカシングのために先端と基端との間で移動することが望ましい。第1の中間像の基端が中間レンズに入ると中間レンズにゴミなどが付着している場合にその影響を受けやすくなる。第1の中間像の先端が中間レンズに入るほど中間レンズが移動すると、収差補正が難しくなる。 The intermediate lens may be a lens that moves for focusing. Since the luminous flux is dispersed before and after the first intermediate image in accordance with the image height, the intermediate lens formed across the first intermediate image has a large effect on focusing, and moving the intermediate lens is in focus. Is suitable. The first intermediate image has a base end close to the optical axis of the first intermediate image located on the enlargement side outside the intermediate lens, and a distal end away from the optical axis of the first intermediate image is reduced outside the intermediate lens. When located on the side, the intermediate lens is preferably moved between the distal end and the proximal end for focusing. When the base end of the first intermediate image enters the intermediate lens, it is likely to be affected by dust attached to the intermediate lens. If the intermediate lens moves so that the leading edge of the first intermediate image enters the intermediate lens, aberration correction becomes difficult.
中間レンズは、典型的には、第1の中間像と逆方向に傾いた、縮小側に凸の正のメニスカスレンズである。第1の光学系は、さらに、中間レンズの縮小側に隣接して配置された、拡大側に凸の負のメニスカスの前側のレンズを含んでもよい。中間レンズと前側のレンズとのレンズ間隔は光軸から離れると広がり、これらのレンズの組み合わせは台形補正に適している。 The intermediate lens is typically a positive meniscus lens that is inclined in the opposite direction to the first intermediate image and convex toward the reduction side. The first optical system may further include a lens on the front side of the negative meniscus convex on the enlargement side and disposed adjacent to the reduction side of the intermediate lens. The distance between the intermediate lens and the front lens increases as the distance from the optical axis increases, and the combination of these lenses is suitable for keystone correction.
第1の光学系は、中間レンズの縮小側に隣接して配置された前側のレンズを含み、フォーカシングのために移動する前側フォーカシングレンズ群と、中間レンズの拡大側に隣接して配置された後側のレンズを含み、フォーカシングのために移動する後側フォーカシングレンズ群とを含んでもよい。中間レンズがフォーカシングのために移動できる量が限定されるので、中間レンズの前後のレンズ群をフォーカシングのために移動することによりさらに鮮明な画像を表示できる。 The first optical system includes a front lens disposed adjacent to the reduction side of the intermediate lens, and a front focusing lens group that moves for focusing, and a lens that is disposed adjacent to the magnification side of the intermediate lens. And a rear focusing lens group that includes a side lens and moves for focusing. Since the amount of movement of the intermediate lens for focusing is limited, a clearer image can be displayed by moving the lens groups before and after the intermediate lens for focusing.
第1の光学系は、中間レンズおよび前側フォーカシングレンズ群を含み、中間レンズの縮小側に配置された第1のレンズ群と、後側フォーカシングレンズ群を含み、中間レンズの拡大側に配置された第2のレンズ群とを含んでもよい。第1のレンズ群は、前側フォーカシングレンズ群の縮小側に配置されたレンズを含み、フォーカシングの際に移動しない前側固定レンズ群を含む。第2のレンズ群は、後側フォーカシングレンズ群の拡大側に配置されたレンズを含み、フォーカシングの際に移動しない後側固定レンズ群を含む。 The first optical system includes an intermediate lens and a front focusing lens group, includes a first lens group disposed on the reduction side of the intermediate lens and a rear focusing lens group, and is disposed on the enlargement side of the intermediate lens. And a second lens group. The first lens group includes a lens disposed on the reduction side of the front focusing lens group, and includes a front fixed lens group that does not move during focusing. The second lens group includes a lens disposed on the enlargement side of the rear focusing lens group, and includes a rear fixed lens group that does not move during focusing.
中間レンズ、前側フォーカシングレンズ群および後側フォーカシングレンズ群は、それぞれ、標準状態から至近側にフォーカシングのために縮小側に移動し、標準状態から無限側にフォーカシングするために拡大側に移動する。前側フォーカシングレンズ群が、至近側から無限側にフォーカシングするために移動する距離Di1と、中間レンズが、至近側から無限側にフォーカシングするために移動する距離Di2と、後側フォーカシングレンズ群が、至近側から無限側にフォーカシングするために移動する距離Di3とは以下の条件(9)を満足するものであってもよい。
Di2<Di1<Di3・・・(9)
The intermediate lens, the front focusing lens group, and the rear focusing lens group respectively move from the standard state to the reduction side for focusing from the standard state, and move to the enlargement side for focusing from the standard state to the infinite side. The distance Di1 that the front side focusing lens group moves to focus from the closest side to the infinity side, the distance Di2 that the intermediate lens moves to focus from the near side to the infinity side, and the rear side focusing lens group The distance Di3 moved for focusing from the side to the infinite side may satisfy the following condition (9).
Di2 <Di1 <Di3 (9)
また、前側フォーカシングレンズ群の合成焦点距離ffと、中間レンズの焦点距離fmと、後側フォーカシングレンズ群の合成焦点距離frとは以下の条件(10)を満足するものであってもよい。
fr<fm<ff・・・(10)
Further, the combined focal length ff of the front focusing lens group, the focal length fm of the intermediate lens, and the combined focal length fr of the rear focusing lens group may satisfy the following condition (10).
fr <fm <ff (10)
また、第1の光学系は、最も拡大側に、縮小側から順番に配置された第1の接合レンズと、両凸の第1の正レンズとから構成された第1のレンズシステムを含む。第1の光学系において、その最も拡大側を、縮小側から順番に配置された第1の接合レンズと、両凸の第1の正レンズとから構成された第1のレンズシステムで構成することにより投射光学系の全長を短くできるとともに、スローレシオを小さくでき、さらに、投影される画質も改善できる。 Further, the first optical system includes a first lens system including a first cemented lens and a biconvex first positive lens arranged in order from the reduction side on the most enlargement side. In the first optical system, the most magnified side is composed of a first lens system composed of a first cemented lens arranged in order from the reduction side and a biconvex first positive lens. Thus, the overall length of the projection optical system can be shortened, the slow ratio can be reduced, and the projected image quality can be improved.
両面が正のパワーを持つ両凸の第1の正レンズを第1の光学系の最も拡大側、すなわち拡大側の端に配置し、それに隣接するように第1の接合レンズを配置することにより、第2の中間像を形成する光束が主に、第1の正レンズおよび第1の接合レンズからなる第1のレンズシステムの内部で光軸と交差するように設計できる。したがって、第2の中間像を第1の光学系の近くに結像でき、さらに、第1の光学系の拡大側の径が小さくなるので、パワーの大きな第1の反射面を第1の光学系の近くに配置できる。また、第2の中間像を形成する光束が、主に第1のレンズシステム内で光軸と交差するので、第2の中間像を形成する光束が第1の接合レンズおよび第1の正レンズを通過する位置が分散し、これらのレンズにより収差を補正しやすい状態となる。このため、第1の接合レンズを含めた第1のレンズシステムにより、色収差だけではなく、像面湾曲、非点収差も含めて補正しやすい。 By arranging a biconvex first positive lens having positive power on both sides at the most enlargement side of the first optical system, that is, at the end of the enlargement side, and arranging the first cemented lens adjacent to it. The light beam forming the second intermediate image can be designed so as to intersect the optical axis mainly in the first lens system including the first positive lens and the first cemented lens. Therefore, the second intermediate image can be formed near the first optical system, and the diameter on the enlargement side of the first optical system is reduced. Can be placed near the system. In addition, since the light beam forming the second intermediate image mainly intersects the optical axis in the first lens system, the light beam forming the second intermediate image is the first cemented lens and the first positive lens. The positions passing through the lens are dispersed, and it becomes easy to correct the aberration by these lenses. For this reason, it is easy to correct not only chromatic aberration but also field curvature and astigmatism by the first lens system including the first cemented lens.
第1の接合レンズは負の屈折力を備えていることが望ましい。光束が第1のレンズシステム内で光軸と集中して交差するので収差補正に適している一方、公差感度(誤差感度、効き量)が高くなる。第1の接合レンズを負の屈折力として、第1の正レンズと異なるパワーを持たせることにより、これらのレンズの組み合わせによる公差感度を低減でき、より安定して画質の高い画像を投影できる。 It is desirable that the first cemented lens has a negative refractive power. While the light beam concentrates and intersects with the optical axis in the first lens system, it is suitable for aberration correction, while tolerance sensitivity (error sensitivity, effect amount) is increased. By using the first cemented lens as a negative refractive power and having a power different from that of the first positive lens, tolerance sensitivity due to the combination of these lenses can be reduced, and an image with higher image quality can be projected more stably.
また、第1の接合レンズの拡大側の面は、拡大側に凹の面であってもよい。第1の正レンズの縮小側に凸の面と向き合う第1の接合レンズの拡大側の面を拡大側に凹(縮小側に凸)にすることにより、これらの面の曲率半径(曲率)は同じ方向を向き、面間隔が大きく変わることを抑制できる。したがって、これらのレンズの組み合わせによる公差感度を低減でき、より安定して画質の高い画像を投影できる。 Further, the surface on the enlargement side of the first cemented lens may be a concave surface on the enlargement side. By making the enlargement-side surface of the first cemented lens facing the convex surface on the reduction side of the first positive lens concave on the enlargement side (convex on the reduction side), the curvature radii (curvature) of these surfaces are It can be turned in the same direction and the change in the surface spacing can be suppressed. Therefore, tolerance sensitivity by the combination of these lenses can be reduced, and an image with higher image quality can be projected more stably.
図1に、プロジェクタの一例を示している。プロジェクタ1は、縮小側2の光変調器(ライトバルブ)5の像面(第1の像面)5aから拡大側3のスクリーンまたは壁面(第2の像面)6へ投射する投射光学系10を含む。ライトバルブ5は、LCD、デジタルミラーデバイス(DMD)あるいは有機ELなどの画像を形成できるものであればよく、単板式であっても、各色の画像をそれぞれ形成する方式であってもよい。ライトバルブ5は発光タイプであってもよく、照明タイプであってもよい。照明タイプの場合は、プロジェクタ1はさらに照明光学系(不図示)を含む。スクリーン6は、壁面やホワイトボードなどであってもよく、プロジェクタ1はフロントプロジェクタであっても、スクリーンを含むリアプロジェクタであってもよい。
FIG. 1 shows an example of a projector. The
投射光学系10は、複数のレンズを含む第1の光学系11と、正の屈折力の第1の反射面M1を含む第2の光学系12とを含む。第2の光学系12の反射面M1は、第1の光学系11から出力された光を反射して投影光19としてスクリーン6に投射する。第1の光学系11は、縮小側2から入射した光により第1の光学系11の内部に結像される第1の中間像IM1を第1の光学系11よりも拡大側3に第2の中間像IM2として結像する屈折光学系(レンズシステム)である。本例においては、第1の中間像IM1は、光軸7の、図面の上側(第1の側)に結像され、第2の中間像IM2は、第1の中間像IM1に対して光軸7の反対側(図面の下側、第2の側)に結像される。
The projection
第1の光学系11は、縮小側(入力側)2に配置された、全体として正のパワーの第1のレンズ群(第1の屈折光学系)G1と、第1のレンズ群G1の拡大側(出力側)3に配置された、全体として正のパワーの第2のレンズ群(第2の屈折光学系)G2とを含む。第1のレンズ群G1の最も拡大側3のレンズは、第1の中間像IM1が跨ぐように形成される中間レンズL9であり、この中間レンズL9と第2のレンズ群G2とにより、第1の中間像IM1を第1の反射面(ミラー)M1の縮小側2に第2の中間像IM2として結像する。正のパワーのミラーM1は、第2の中間像IM2をスクリーン6に拡大投影する。
The first
図2、図3および図4に、投射光学系10の各エレメントのデータを示している。図2において、Sはエレメントがレンズの場合の面番号、Riは縮小側2から順に並んだ各エレメント(レンズの場合は各レンズ面)の曲率半径(mm)、diは縮小側2から順に並んだ各エレメントの面の間の距離(間隔、mm)、Diは各エレメントの有効径(直径、mm)、屈折率(d線)、アッベ数(d線)を示している。図3は、各レンズおよび複数のレンズの組み合わせの焦点距離(mm)を示している。図4は各エレメントの面の中の、非球面の面番号と、非球面データを示している。非球面は、Xを光軸方向の座標、Yを光軸と垂直方向の座標、光の進行方向を正、Rを近軸曲率半径とすると、図2に示した係数Riと図4に示した係数K、A、B、C、D、およびEを用いて次式で表わされる。なお、「En」は、「10のn乗」を意味する。以下の各実施例においても同様である。
X=(1/Ri)Y2/[1+{1−(1+K)(1/Ri)2Y2}1/2]
+AY3+BY4+CY6+DY8+EY10
2, 3 and 4 show data of each element of the projection
X = (1 / Ri) Y 2 / [1+ {1- (1 + K) (1 / Ri) 2 Y 2} 1/2]
+ AY 3 + BY 4 + CY 6 + DY 8 + EY 10
投射光学系10の第1の光学系(レンズシステム、屈折光学系)11は、縮小側2から、入射側のガラスブロックCGと、第1のレンズ群G1と、第2のレンズ群G2とを含む。第1のレンズ群G1は、縮小側(ライトバルブ側)2より、両凸の正レンズL1と、絞りSと、縮小側2に凸の負のメニスカスレンズL2と、両凹の負レンズL3と、両凸の正レンズL4と、両凸の正レンズL5と、拡大側3に凸の負のメニスカスレンズL6と、縮小側2に凸の正のメニスカスレンズL7と、拡大側3に凸の負のメニスカスレンズL8と、縮小側2に凸の正のメニスカスレンズL9とを含む9枚構成である。レンズL3およびL4は接合され、接合レンズ(バルサムレンズ)B1を構成し、レンズL5およびL6は接合され、接合レンズB2を構成している。接合レンズB1は、軸上色収差の補正に好適であり、接合レンズB2は、倍率色収差の補正に好適である。
A first optical system (lens system, refractive optical system) 11 of the projection
第2のレンズ群G2は、縮小側2より、縮小側2に凸の正のメニスカスレンズL10と、両凹の負レンズL11と、両凸の正レンズL12と、両凸の正レンズL13と、両凹の負レンズL14と、両凸の正レンズL15とを含む6枚構成である。レンズL13およびL14は接合され、接合レンズB3を構成している。接合レンズB3は、軸上色収差および倍率色収差の補正に好適である。
The second lens group G2 includes a positive meniscus lens L10 convex from the
両凸の正レンズL15は、第1の光学系11の最も拡大側3のレンズであり、第1の正レンズL15となる。また、接合レンズB3は、第1の正レンズL15に対して空気間隔のみを隔てて縮小側2に配置された第1の接合レンズB3となる。したがって、第1の光学系11は、最も拡大側3に、第1の接合レンズB3と、第1の正レンズL15とから構成された第1のレンズシステムLS1を含む。
The biconvex positive lens L15 is the lens on the most
投射光学系10はインターフォーカスタイプであり、第1のレンズ群G1のレンズL7およびL8が第1のフォーカシング群LF1として、焦点調整のために一体で移動し、第1のレンズ群G1のレンズL9(中間レンズ)が第2のフォーカシング群LF2として、焦点調整のために移動し、さらに、第2のレンズ群G2のレンズL10、L11およびL12が第3のフォーカシング群LF3として、焦点調整のために一体で移動する。
The projection
第1のフォーカシング群LF1は、中間レンズL9の縮小側2に隣接して配置された前側のレンズL8を含み、フォーカシングのために移動する前側フォーカシングレンズ群である。第3のフォーカシング群LF3は、中間レンズL9の拡大側3に隣接して配置された後側のレンズL10を含み、フォーカシングのために移動する後側フォーカシングレンズ群である。第1のレンズ群G1は、第2のフォーカシング群LF2と、その前側のフォーカシングレンズ群である第1のフォーカシング群LF1と、その縮小側2に配置されたレンズL1〜L6を含み、フォーカシングの際に移動しない前側固定レンズ群FF1とを含む。第2のレンズ群は、後側フォーカシングレンズ群LF3と、その拡大側3に配置されたレンズL13〜L15を含み、フォーカシングの際に移動しない後側固定レンズ群である第1のレンズシステムLS1とを含む。
The first focusing group LF1 is a front focusing lens group that includes a front lens L8 disposed adjacent to the
図5に、中間レンズL9と、その前後のレンズL8およびL10を抜き出して拡大して示している。第1の中間像IM1は、光軸7から離れると縮小側2に近づくように傾いて形成される。その第1の中間像IM1が跨ぐように中間レンズL9が設けられている。このように、第1の中間像IM1と中間レンズL9とを重ねて配置することにより、第1の光学系11の全長Laに対して数多くのレンズ、本例においては15枚構成(レンズL1〜L15)を配置できる。このため、投射光学系10の全長を短くできるとともに、スローレシオTRを小さくでき、さらに、投影される画質も改善できる。また、第1の中間像付近のレンズ径が増大することを抑制でき、この点でも小型化に適している。
In FIG. 5, the intermediate lens L9 and the front and rear lenses L8 and L10 are extracted and enlarged. The first intermediate image IM1 is formed so as to be inclined so as to approach the
中間レンズL9は、フォーカシングのために、標準状態Pos1、至近側Pos2および無限側Pos3へ移動するレンズである。第1の中間像IM1の前後で光束8は像高(光軸7から離れた方向)に対応して分散する。第1の中間像IM1が跨いで形成される中間レンズL9はフォーカシングに対する効き量が大きく、中間レンズL9を移動することはフォーカシングに適している。
The intermediate lens L9 is a lens that moves to the standard state Pos1, the closest side Pos2, and the infinite side Pos3 for focusing. Before and after the first intermediate image IM1, the
この光学系11においては、第1の中間像IM1の光軸7に近い基端IM1−bが中間レンズL9の外の拡大側3、すなわち、レンズL9の拡大側3の面S16の外の拡大側3に位置する。また、第1の中間像IM1の光軸7から離れた先端IM1−tが中間レンズL9の外の縮小側2、すなわち、レンズL9の縮小側2の面S15の縮小側2に位置する。中間レンズL9(第2のフォーカシング群LF2)は、フォーカシングのために先端IM1−tと基端IM1−bとの間で移動する。第1の中間像IM1の基端IM1−bが中間レンズL9に入るほど移動すると、基端IM1−bの側は像が鮮明であり、中間レンズL9の表面にゴミなどが付着している場合にその影響を受けやすくなる。一方、第1の中間像IM1の先端IM1−tが中間レンズL9に入るほど中間レンズL9が移動すると、画像の光軸7から離れた拡大率の大きな周辺部分の収差補正が難しくなる。
In this
本例の中間レンズL9は、第1の中間像IM1と逆方向に傾いた、縮小側に凸の正のメニスカスレンズである。中間レンズL9の縮小側2に隣接して配置されたレンズ(前側のレンズ)L8は、拡大側3に凸の負のメニスカスであり、中間レンズL9と前側のレンズL8とのレンズ間隔は光軸7から離れると広がり、これらのレンズL8およびL9の組み合わせは台形補正に適している。
The intermediate lens L9 in this example is a positive meniscus lens that is inclined in the opposite direction to the first intermediate image IM1 and is convex on the reduction side. A lens (front lens) L8 disposed adjacent to the
図6に、ミラーM1からスクリーン6までの距離d28が標準状態(Pos1)と、至近側(Pos2)と、無限側(Pos3)とにおける第1のフォーカシング群LF1、第2のフォーカシング群LF2および第3のフォーカシング群LF3の位置関係を示す距離d10、d14、d16およびd22を示している。距離d10はレンズL6の拡大側3の面S10とレンズL7の縮小側2の面S11との距離を示し、距離d14はレンズL8の拡大側3の面S14とレンズL9の縮小側2の面S15との距離を示し、距離d16はレンズL9の拡大側3の面S16とレンズL10の縮小側2の面S17との距離を示し、距離d22はレンズL12の拡大側3の面S22とレンズL13の縮小側2の面S23との距離を示す。以下の各実施例においても同様である。
In FIG. 6, the distance d28 from the mirror M1 to the
これらのフォーカシング群LF1、LF2およびLF3は、至近側から標準状態をへて無限側に焦点距離、すなわち、ミラーM1とスクリーン6との距離が増加するに連れて、縮小側2から拡大側3に、それぞれ移動し、移動量がそれぞれの群により異なる。前側フォーカシングレンズ群である第1のフォーカシング群LF1は、至近側Pos2から無限側Pos3にフォーカシングする際に拡大側3へ距離Di1だけ単調に移動する。すなわち、第1のフォーカシング群LF1は、標準状態Pos1Pos1に対しては、至近側Pos2では縮小側2へ移動し、無限側Pos3では拡大側3へ移動する。
These focusing groups LF1, LF2, and LF3 are moved from the
中間レンズを含む第2のフォーカシング群LF2も同様であり、フォーカシングするために距離Di2だけ、至近側Pos2から無限側Pos3に、標準状態Pos1を挟んで、縮小側2から拡大側3へ単調に移動する。後側フォーカシングレンズ群である第3のフォーカシング群FL3も同様であり、フォーカシングするために、至近側Pos2から無限側Pos3に、標準状態Pos1を挟んで、縮小側2から拡大側3へ単調に、距離Di3だけ移動する。距離Di1、Di2、Di3はそれぞれ以下のように算出される。
Di1=Pos3−Pos2(面s10)=0.26mm
Di2=Di1+(Pos3−Pos2(面s14))=0.05mm
Di3=Di1+Di2+(Pos3−Pos2(面s16))=0.37mm
・・・(12)
The same applies to the second focusing group LF2 including the intermediate lens, and in order to perform focusing, the distance Di2 is monotonously moved from the closest side Pos2 to the infinite side Pos3 from the
Di1 = Pos3-Pos2 (surface s10) = 0.26 mm
Di2 = Di1 + (Pos3-Pos2 (surface s14)) = 0.05 mm
Di3 = Di1 + Di2 + (Pos3-Pos2 (surface s16)) = 0.37 mm
(12)
最も移動量が小さいのは、第1の中間像IM1が跨ぐように形成され、フォーカシングの際に効き量(公差感度)の大きな中間レンズL9を含む第2のフォーカシング群LF2である。これら3つのフォーカシング群LF1、FL2およびLF3は、第1の中間像IM1の近傍に配置されたレンズからなる群であり、第1の中間像IM1の前後の光束が比較的光軸と平行にあるいは分散して通過する。このため、これらのフォーカシング群LF1、LF2およびLF3に含まれる各レンズを動かし、光線が分散して通過する位置を微調整し、それにより収差補正を微調整しやすい。このため、ミラーM1とスクリーン6との距離による収差の変動を効率よく補正できる。
The smallest moving amount is the second focusing group LF2 including the intermediate lens L9 which is formed so as to straddle the first intermediate image IM1 and has a large effect amount (tolerance sensitivity) during focusing. These three focusing groups LF1, FL2 and LF3 are groups of lenses arranged in the vicinity of the first intermediate image IM1, and the light beams before and after the first intermediate image IM1 are relatively parallel to the optical axis or Pass through in a dispersed manner. For this reason, it is easy to finely adjust the aberration correction by moving the lenses included in these focusing groups LF1, LF2, and LF3 and finely adjusting the positions where the light rays are dispersed and passed. For this reason, the fluctuation | variation of the aberration by the distance of the mirror M1 and the
図7(a)に、標準状態Pos1における球面収差と非点収差と歪曲収差とを示し、図7(b)に、標準状態Pos1における各像高における横収差図(コマ収差)を示している。図8(a)に、至近側Pos2における球面収差と非点収差と歪曲収差とを示し、図8(b)に、至近側Pos2における各像高における横収差図を示している。また、図9(a)に、無限側Pos3における球面収差と非点収差と歪曲収差とを示し、図9(b)に、無限側Pos3における各像高における横収差図を示している。これらの図に示すように、各ポイントにおいて、コマ収差を含む諸収差が良好に補正されており、鮮明な像をスクリーン6に投影することができる。なお、球面収差(図7(a)など)およびコマ収差(図7(b)など)は、波長650nm(破線)と、波長550nm(実線)と、波長450nm(一点鎖線)とを示し、非点収差およびコマ収差は、タンジェンシャル光線(T)およびサジタル光線(S)をそれぞれ示している。
FIG. 7A shows spherical aberration, astigmatism, and distortion in the standard state Pos1, and FIG. 7B shows lateral aberration diagrams (coma aberration) at various image heights in the standard state Pos1. . FIG. 8A shows spherical aberration, astigmatism, and distortion at the closest side Pos2, and FIG. 8B shows lateral aberration diagrams at various image heights at the close side Pos2. FIG. 9A shows spherical aberration, astigmatism, and distortion on the infinite side Pos3, and FIG. 9B shows lateral aberration diagrams at various image heights on the infinite side Pos3. As shown in these drawings, various aberrations including coma are corrected well at each point, and a clear image can be projected on the
投射光学系10の主なパラメータは以下の通りである。
倍率:136.0
全体の合成焦点距離(fa):2.70mm
F値:2.5
最大画角(半画角):77.66度
イメージサークル(第1の像面、直径):24.05mm
第1の反射面M1の曲率半径(|rm|、条件(3)):17.25mm
第1の反射面M1のコーニック係数(k、条件(11)):−0.96
第2のレンズ群の合成焦点距離(f2):37.55mm
中間レンズL9の焦点距離(fm):42.00mm
第1のフォーカシング群LF1の焦点距離(ff):222.06
第3のフォーカシング群LF3の焦点距離(fr):22.92
全長(La):195.2mm
第1の光学系の有効長(Le):134.3mm
第1の光学系から第1の反射面までの距離(Lf):60.94mm
第1の反射面からスクリーンまでの距離(Lm):380.00mm
スクリーンに投影した際の横方向の長さ(Ln):2077mm
条件(1)(|rm×fa|):46.6
条件(2)(|rm/fa|):6.39
条件(4)(f2/fa):13.9
条件(5)(Le/La):0.69
条件(6)(TR):0.183
条件(7)(Lf/La):0.31
条件(8)(|fm/fa|):15.6
The main parameters of the projection
Magnification: 136.0
Overall composite focal length (fa): 2.70 mm
F value: 2.5
Maximum angle of view (half angle of view): 77.66 degrees Image circle (first image plane, diameter): 24.05 mm
Radius of curvature of first reflecting surface M1 (| rm |, condition (3)): 17.25 mm
Conic coefficient (k, condition (11)) of first reflecting surface M1: −0.96
Composite focal length (f2) of the second lens group: 37.55 mm
Focal length (fm) of intermediate lens L9: 42.00 mm
Focal length (ff) of the first focusing group LF1: 222.06
Focal length (fr) of third focusing group LF3: 22.92
Full length (La): 195.2mm
Effective length (Le) of the first optical system: 134.3 mm
Distance (Lf) from the first optical system to the first reflecting surface: 60.94 mm
Distance from the first reflecting surface to the screen (Lm): 380.00 mm
Length in the horizontal direction when projected onto the screen (Ln): 2077 mm
Condition (1) (| rm × fa |): 46.6
Condition (2) (| rm / fa |): 6.39
Condition (4) (f2 / fa): 13.9
Condition (5) (Le / La): 0.69
Condition (6) (TR): 0.183
Condition (7) (Lf / La): 0.31
Condition (8) (| fm / fa |): 15.6
なお、投射光学系10の全長Laは、最も縮小側のレンズL1の縮小側の面S1から第1の反射面M1までの光軸7に沿った距離を示し、第1の光学系11の有効長Leは、最も縮小側2のレンズL1の縮小側2の面S1から最も拡大側3のレンズL15の拡大側3の面S27までの光軸7に沿った距離を示し、第1の光学系11から第1の反射面M1までの距離Lfは、最も拡大側3のレンズL15の拡大側3の面S27から第1の反射面M1までの光軸7に沿った距離を示す。
The total length La of the projection
この投射光学系10は、第1の光学系11が、縮小側2から入射した光により第1の光学系11の内部の光軸7の第1の側に結像される第1の中間像IM1を、第1の光学系11よりも拡大側3の光軸7の反対側(第2の側)に第2の中間像IM2として結像し、第2の中間像IM2よりも拡大側3に位置する正の屈折力の第1の反射面M1を含む第2の光学系12よりスクリーン6に拡大投影する。内部に第1の中間像IM1を形成し、その第1の中間像IM1を拡大側3、すなわち、第1の反射面M1の入力側(縮小側)2に第2の中間像IM2として形成する第1の光学系11を有する投射光学系10は、第1の反射面M1の入力となる第2の中間像IM2の光軸7に沿った長さを短くできる。このため、屈折力が大きく、コンパクトな第1の反射面M1を配置することが可能となり、コンパクトで高倍率であって、スローレシオTRの小さな投射光学系10を提供できる。
The projection
さらに、第1の光学系11は、最も拡大側3に、縮小側2から順番に配置された第1の接合レンズB3と、両凸の第1の正レンズL15とから構成された第1のレンズシステムLS1を含む。両面が正のパワーを持ち、両面で比較的強いパワーを発揮できる両凸の第1の正レンズL15を、第1の光学系11の最も拡大側3、すなわち拡大側3の端に配置することにより、第2の中間像IM2を形成する光束8が主に、第1の正レンズL15および第1の接合レンズB3からなる第1のレンズシステムLS1の内部で光軸7と交差するように設計できる。
Further, the first
すなわち、第1の光学系11を、光軸7の第1の側に結像される第1の中間像IM1から、光軸7の反対側に形成される第2の中間像IM2に至る光束8が、第1の光学系11の拡大側3の端に配置された第1のレンズシステムLS1で主に光軸7と交差するように設計できる。このため、光束8は、第1のレンズシステムLS1で光軸7の周りに集まり、中心光のみならず、周辺光も含めて、レンズ径の小さな第1の接合レンズB3と、両凸の第1の正レンズL15とを通過する。したがって、第1のレンズシステムLS1に含まれるレンズL13〜L15により効率良く収差が補正された第2の中間像IM2を第1の光学系11の拡大側3の近傍に、比較的小さいサイズで形成できる。
That is, the light beam from the first
さらに、第1の光学系11は、第1の中間像IM1が跨ぐように形成される中間レンズL9を含む。このため、投射光学系10の全長Laに対して屈折光学系である第1の光学系11が占める割合Le/Laを大きくでき、本例の第1の光学系11においては15枚のレンズL1〜L15を配置できる。このため、投射光学系10の全長Laを短くできるとともに、スローレシオTRを小さくでき、さらに、スクリーン6に投影される画質も改善できる。本例の投射光学系10においては、条件(5)〜(10)をそれぞれ満たしており、全長Laが短い投射光学系10でありながら、屈折光学系である第1の光学系11が占める割合を5割、またはそれ以上にすることが可能となっており、収差が良好に補正された画像を、スローレシオTRが0.19以下(0.19より小さい)というように、投射光学系10およびそれを含むプロジェクタ1をスクリーン6の近く配置して、投影できる。
Further, the first
したがって、投射光学系10においては、第2の中間像IM2を第1の光学系11の近くに結像でき、さらに、第1の光学系11の拡大側3の径が小さくなるので、パワーの大きな(曲率半径rmが小さく、焦点距離の絶対値が短い)第1の反射面M1を第1の光学系11の近くに配置できる。本例の投射光学系10においては、第1の反射面M1の曲率半径rmが条件(1)、(2)および(3)を満たしており、投射光学系10の全体のパワーに占める第1の反射面M1のパワーが十分に大きく、さらに、第1の反射面M1自身のパワーも十分に大きな値となっている。
Therefore, in the projection
また、第1の反射面M1は非球面であり、そのコーニック係数は条件(11)を満たす。このため、歪曲収差を良好に補正でき、第1の光学系11における非点収差の補正、像面湾曲の補正とともに、全体としてバランスよく収差が補正された像をスクリーン6に投影できるプロジェクタ1を提供できる。
The first reflecting surface M1 is an aspheric surface, and its conic coefficient satisfies the condition (11). For this reason, the
第1のレンズシステムLS1のレンズL13〜L15のうち、最大有効径のレンズは、最も縮小側のレンズL13であり、その縮小側の面S23の有効径D23は17mmである。これに対し、第2のレンズ群G2の最大有効径のレンズは、最も縮小側のレンズL10であり、その縮小側の面S17の有効径D17は25.3mmである。したがって、第2のレンズ群G2において、最も拡大側3に配置される第1のレンズシステムLS1の径(有効径)が小さく、第1の反射面M1からスクリーン6に向かって投影される投影光19との干渉を防止でき、コンパクトで大きな画像を投影できるプロジェクタ1を提供できる。
Of the lenses L13 to L15 of the first lens system LS1, the lens having the maximum effective diameter is the lens L13 on the most reduction side, and the effective diameter D23 of the surface S23 on the reduction side is 17 mm. On the other hand, the lens with the maximum effective diameter of the second lens group G2 is the lens L10 on the most reduction side, and the effective diameter D17 of the reduction side surface S17 is 25.3 mm. Accordingly, in the second lens group G2, the diameter (effective diameter) of the first lens system LS1 disposed on the
また、第2の中間像IM2を形成する光束8が、主に第1のレンズシステムLS1内で光軸7と交差するので、第2の中間像IM2を形成する光束8が第1の接合レンズB3および第1の正レンズL15を通過する位置が光軸7を中心として分散し、これらのレンズL13〜L15により収差を補正しやすい状態となる。このため、第1の接合レンズB3を含めた第1のレンズシステムLS1により、色収差だけではなく、像面湾曲、非点収差も含めて良好に補正できる。
Further, since the
さらに、第1の光学系11において、第1の中間像IM1から第2の中間像IM2を形成する第2のレンズ群G2のパワーを、条件(4)を満たすように選択することにより、第1の反射面M1が強いパワーを備えている投射光学系10において、第2のレンズ群G2に収差補正のために十分なパワーを確保するとともに、第1のレンズ群G1にも収差補正のためのパワーを持たせることができる。したがって、第1の光学系11において、バランスのとれた収差補正が可能となり、高画質の画像をスクリーン6に投影可能な投射光学系10およびプロジェクタ1を提供できる。
Furthermore, in the first
また、第1のレンズシステムLS1の第1の接合レンズB3は負の屈折力を備えている。光束8が第1のレンズシステムLS1内で光軸7と集中して交差するので収差補正に適している一方、各レンズによる収差補正に対する公差感度(誤差感度、効き量)が高くなる。すなわち、この投射光学系10は、第1の光学系11の中で、第1のレンズシステムLS1の各レンズの製造公差および組み立て時の公差により、収差補正能力に差が出やすい設計となる。このため、第1の接合レンズB3を負の屈折力として、第1の正レンズL15と異なるパワーを持たせることにより、第1のレンズシステムLS1の公差感度を低減でき、より安定して画質の高い画像を投影できる投射光学系10を提供できる。
The first cemented lens B3 of the first lens system LS1 has a negative refractive power. While the
また、第1のレンズシステムLS1の両凸の第1の正レンズL15の縮小側2に凸の面S26と向き合う、第1の接合レンズB3の拡大側3の面S25は、拡大側3に凹の面となっている。これらの面S25とS26とは、曲率半径(曲率)が同じ方向であり、これらの面S25と面S26との間隔、すなわち、光軸7に垂直な方向の間隔が大きく変わらない。したがって、第1のレンズシステムLS1を構成するレンズL13〜L15の組み合わせによる公差感度をさらに低減でき、より安定して画質の高い画像を投影する投射光学系10を提供できる。
Further, the surface S25 on the
さらに、第1の光学系11は、第1の中間像IM1が跨ぐように形成される中間レンズL9を備えている。第1の中間像IM1と重なるように中間レンズL9を配置することにより、第1の光学系11のスペース(有効長Le)をさらに有効に利用でき、さらにコンパクトな投射光学系10を提供できる。第1の中間像IM1は、光軸7から離れると縮小側2に近づくように傾いて形成されている。すなわち、第1の中間像IM1の光軸7に近い、光束8の中心光となる基端IM1−bが中間レンズL9の外の拡大側3に位置し、第1の中間像IM1の光軸7から離れた、光束8の周辺光となる先端IM1−tが中間レンズL9の外の縮小側2に位置する。
Further, the first
この投射光学系10においては、第1の中間像IM1は、第2のレンズ群G2によりさらに収差補正される像であり、第1の中間像IM1が中間レンズL9を跨ぎ、中間レンズL9の表面の影響を受けることがあっても、第2のレンズ群G2により補正することが可能である。したがって、第1の中間像IM1が中間レンズL9を跨ぐことで、第1の光学系11の有効長Leに、より多くのレンズを配置し、それによる収差補正能力の向上を優先させることができる。また、第1の中間像IM1が縮小側2に傾いて、投射光学系10からより遠くに、拡大して投影される第1の中間像IM1の周辺光については、第2のレンズ群G2に加えて、中間レンズL9を用いて収差補正を行うことができる。したがって、より高画質の画像をスクリーン6に投影する投射光学系10およびプロジェクタ1を提供できる。
In the projection
なお、条件(1)の下限は45.5であってもよく、上限は49.0であってもよい。条件(2)の下限は6.25であってもよく、上限は6.65であってもよい。レンズL8のサグ量を少なくすることができ、レンズL8を製造し易くなる。また、条件(3)の下限は16.5であってもよく、上限は18.5であってもよい。また、条件(4)の下限は13.0であってもよく、上限は15.0であってもよい。これらの条件によってもレンズL8のサグ量を少なくすることができ、レンズL8を製造し易くなる。条件(1)および条件(2)と、条件(3)と、条件(4)との少なくとも2つの条件の組合せをとることによりレンズL8のサグ量をより少なくすることができ、レンズL8を製造し易くなる。 The lower limit of condition (1) may be 45.5, and the upper limit may be 49.0. The lower limit of condition (2) may be 6.25, and the upper limit may be 6.65. The sag amount of the lens L8 can be reduced, and the lens L8 can be easily manufactured. Further, the lower limit of the condition (3) may be 16.5, and the upper limit may be 18.5. Further, the lower limit of the condition (4) may be 13.0, and the upper limit may be 15.0. Under these conditions, the sag amount of the lens L8 can be reduced, and the lens L8 can be easily manufactured. By taking a combination of at least two of the conditions (1) and (2), the condition (3), and the condition (4), the sag amount of the lens L8 can be reduced, and the lens L8 is manufactured. It becomes easy to do.
図10に、プロジェクタの他の例を示している。このプロジェクタ1も、縮小側2の光変調器(ライトバルブ)5の像面(第1の像面)5aから拡大側3のスクリーンまたは壁面(第2の像面)へ投射する投射光学系10を含む。投射光学系10は、複数のレンズを含む第1の光学系11と、正の屈折力の第1の反射面M1を含む第2の光学系12とを含み、第1の光学系11は、縮小側2から入射した光により第1の光学系11の内部に結像される第1の中間像IM1を第1の光学系11よりも拡大側3に第2の中間像IM2として結像し、第1の反射面M1が第2の中間像IM2を第2の像面へ映像(最終的な画像)として投影する。
FIG. 10 shows another example of the projector. The
第1の光学系11は、上記の例と同様に、縮小側(入力側)2に配置された第1のレンズ群(第1の屈折光学系)G1と、第1のレンズ群G1の拡大側(出力側)3に配置された第2のレンズ群(第2の屈折光学系)G2とを含む。第1のレンズ群G1は、最も拡大側3に、第1の中間像IM1が跨ぐように形成される中間レンズL9を含む。
Similarly to the above example, the first
図11、図12および図13に、投射光学系10の各エレメントのデータを示している。第1のレンズ群G1はレンズL1〜L9を含み、それぞれのレンズの基本的な構成は、図1に示した投射光学系10と共通する。第2のレンズ群G2はレンズL10〜L15を含み、それぞれのレンズの基本的な構成は、レンズL11が拡大側3に凸の負のメニスカスレンズであり、レンズL12が拡大側に凸の正のメニスカスレンズであることを除き、共通する。したがって、第1のレンズシステムLS1は、最も拡大側3に、第1の接合レンズB3と、第1の正レンズL15とから構成された第1のレンズシステムLS1を含む。この投射光学系10もインターフォーカスタイプであり、フォーカシング群LF1〜LF3を含む。
11, 12, and 13 show data of each element of the projection
図14に、標準状態(Pos1)と、至近側(Pos2)と、無限側(Pos3)とにおけるフォーカシング群LF1〜LF3の位置関係を示す距離d10、d14、d16およびd22を示している。フォーカシング群LF1、LF2およびLF3は、至近側から標準状態をへて無限側に焦点距離、すなわち、ミラーM1とスクリーン6との距離が増加するに連れて、縮小側2から拡大側3に、それぞれ移動し、移動量がそれぞれの群により異なる。最も移動量が小さいのは、第1の中間像IM1が跨ぐように形成され、フォーカシングの際に効き量(公差感度)の大きな中間レンズL9を含む第2のフォーカシング群LF2である。
FIG. 14 shows distances d10, d14, d16, and d22 indicating the positional relationship of the focusing groups LF1 to LF3 in the standard state (Pos1), the closest side (Pos2), and the infinite side (Pos3). The focusing groups LF1, LF2 and LF3 are moved from the close side to the infinite side through the standard state, that is, as the distance between the mirror M1 and the
図15(a)に、標準状態Pos1における球面収差と非点収差と歪曲収差とを示し、図15(b)に、標準状態Pos1における各像高における横収差図を示している。図16(a)に、至近側Pos2における球面収差と非点収差と歪曲収差とを示し、図16(b)に、至近側Pos2における各像高における横収差図を示している。また、図17(a)に、無限側Pos3における球面収差と非点収差と歪曲収差とを示し、図17(b)に、無限側Pos3における各像高における横収差図を示している。これらの図に示すように、本例の投射光学系10においても、各ポジションにおいて、コマ収差を含む諸収差が良好に補正されており、鮮明な像をスクリーン6に投影することができる。
FIG. 15A shows spherical aberration, astigmatism, and distortion in the standard state Pos1, and FIG. 15B shows lateral aberration diagrams at various image heights in the standard state Pos1. FIG. 16A shows spherical aberration, astigmatism, and distortion at the close side Pos2, and FIG. 16B shows lateral aberration diagrams at each image height at the close side Pos2. FIG. 17A shows spherical aberration, astigmatism, and distortion on the infinite side Pos3, and FIG. 17B shows a lateral aberration diagram at each image height on the infinite side Pos3. As shown in these drawings, also in the projection
この実施例の投射光学系10の主なパラメータは以下の通りである。
倍率:137.4
全体の合成焦点距離(fa):2.70mm
F値:2.5
最大画角(半画角):77.75度
イメージサークル(第1の像面、直径):24.05mm
第1の反射面M1の曲率半径(|rm|、条件(3)):15.8mm
第1の反射面M1のコーニック係数(k、条件(11)):−0.9965
第2のレンズ群の合成焦点距離(f2):47.29mm
中間レンズL9の焦点距離(fm):58.53mm
第1のフォーカシング群LF1の焦点距離(ff):111.12
第3のフォーカシング群LF3の焦点距離(fr):22.25
全長(La):195.4mm
第1の光学系の有効長(Le):134.4mm
第1の光学系から第1の反射面までの距離(Lf):60.94mm
第1の反射面からスクリーンまでの距離(Lm):380.00mm
スクリーンに投影した際の横方向の長さ(Ln):2077mm
移動距離Di1:0.24mm
移動距離Di2:0.08mm
移動距離Di3:0.39mm
条件(1)(|rm×fa|):42.7
条件(2)(|rm/fa|):5.85
条件(4)(f2/fa):17.5
条件(5)(Le/La):0.69
条件(6)(TR):0.183
条件(7)(Lf/La):0.31
条件(8)(|fm/fa|):21.68
第1のレンズシステムLS1の最大有効径:18.10mm(L13の面S23)
第2のレンズ群G2の最大有効径:25.10mm(L10の面S17)
The main parameters of the projection
Magnification: 137.4
Overall composite focal length (fa): 2.70 mm
F value: 2.5
Maximum angle of view (half angle of view): 77.75 degrees Image circle (first image plane, diameter): 24.05 mm
Radius of curvature of first reflecting surface M1 (| rm |, condition (3)): 15.8 mm
Conic coefficient (k, condition (11)) of first reflecting surface M1: −0.9965
Composite focal length (f2) of the second lens group: 47.29 mm
Focal length (fm) of intermediate lens L9: 58.53 mm
Focal length (ff) of first focusing group LF1: 111.12.
Focal length (fr) of third focusing group LF3: 22.25
Full length (La): 195.4mm
Effective length (Le) of the first optical system: 134.4 mm
Distance (Lf) from the first optical system to the first reflecting surface: 60.94 mm
Distance from the first reflecting surface to the screen (Lm): 380.00 mm
Length in the horizontal direction when projected onto the screen (Ln): 2077 mm
Travel distance Di1: 0.24mm
Travel distance Di2: 0.08mm
Travel distance Di3: 0.39mm
Condition (1) (| rm × fa |): 42.7
Condition (2) (| rm / fa |): 5.85
Condition (4) (f2 / fa): 17.5
Condition (5) (Le / La): 0.69
Condition (6) (TR): 0.183
Condition (7) (Lf / La): 0.31
Condition (8) (| fm / fa |): 21.68
Maximum effective diameter of the first lens system LS1: 18.10 mm (surface S23 of L13)
Maximum effective diameter of second lens group G2: 25.10 mm (L10 surface S17)
この投射光学系10も、第1の光学系11が、内部の光軸7の第1の側に結像される第1の中間像IM1を、第1の光学系11よりも拡大側3の光軸7の反対側(第2の側)に第2の中間像IM2として結像し、第1の反射面M1が第2の中間像IM2をスクリーン6に拡大投影するタイプである。さらに、第1の光学系11は、最も拡大側3に、縮小側2から順番に配置された第1の接合レンズB3と、両凸の第1の正レンズL15とから構成された第1のレンズシステムLS1とを含む。したがって、第1のレンズシステムLS1に含まれるレンズL13〜L15により効率良く収差が補正された第2の中間像IM2を第1の光学系11の拡大側3の近傍に、比較的小さいサイズで形成でき、さらに、第1の光学系11の拡大側3の径が小さくなるので、パワーの大きな(曲率半径rmが小さく、焦点距離の絶対値が短い)第1の反射面M1を第1の光学系11の近くに配置できる。
Also in the projection
本例の投射光学系10においても、第1の反射面M1の曲率半径rmが条件(1)、(2)および(3)をそれぞれ満たしており、投射光学系10の全体のパワーに占める第1の反射面M1のパワーが十分に大きく、さらに、第1の反射面M1自身のパワーも十分に大きな値となっている。第1の反射面M1は非球面でコーニック係数は条件(11)を満たす。このため、歪曲収差も良好に補正できる。また、第2のレンズ群G2において、最も拡大側3に配置される第1のレンズシステムLS1の径(有効径)が小さく、第1の反射面M1からスクリーン6に向かって投影される投影光19との干渉を防止でき、コンパクトで大きな画像を投影できるプロジェクタ1を提供できる。
Also in the projection
本例の投射光学系10においても、第1の中間像IM1が中間レンズL9を跨ぐように設計されており、条件(5)〜(10)をそれぞれ満たしており、全長Laが短い投射光学系10でありながら、屈折光学系である第1の光学系11が占める割合を5割、またはそれ以上にすることが可能となっており、収差が良好に補正された画像を、スローレシオTRが0.19以下というように、投射光学系10およびそれを含むプロジェクタ1をスクリーン6の近く配置して、投影できる。
Also in the projection
また、第1の光学系11において、第2のレンズ群G2のパワーが、条件(4)を満たすように選択されており、第2のレンズ群G2に収差補正のために十分なパワーを確保するとともに、第1のレンズ群G1にも収差補正のためのパワーを持たせることができる。したがって、この第1の光学系11においても、バランスのとれた収差補正が可能となり、高画質の画像をスクリーン6に投影可能な投射光学系10およびプロジェクタ1を提供できる。
In the first
また、第1のレンズシステムLS1の第1の接合レンズB3は負の屈折力を備え、拡大側3の面S25は、拡大側3に凹の面となっている。したがって、第1のレンズシステムLS1を構成するレンズL13〜L15の組み合わせによる公差感度を低減でき、より安定して画質の高い画像を投影する投射光学系10を提供できる。
The first cemented lens B3 of the first lens system LS1 has a negative refractive power, and the surface S25 on the
さらに、第1の光学系11も、第1の中間像IM1が跨ぐように形成される中間レンズL9を備えており、第1の光学系11の有効長Leをさらに有効に利用することにより、より高画質の画像をスクリーン6に投影する、よりコンパクトな投射光学系10およびプロジェクタ1を提供できる。
Furthermore, the first
図18に、プロジェクタの他の例を示している。このプロジェクタ1も、縮小側2の光変調器(ライトバルブ)5の像面(第1の像面)5aから拡大側3のスクリーンまたは壁面(第2の像面)へ投射する投射光学系10を含む。投射光学系10は、複数のレンズを含む第1の光学系11と、正の屈折力の第1の反射面M1を含む第2の光学系12とを含み、第1の光学系11は、縮小側2から入射した光により第1の光学系11の内部に結像される第1の中間像IM1を第1の光学系11よりも拡大側3に第2の中間像IM2として結像し、第1の反射面M1が第2の中間像IM2を第2の像面へ映像(最終的な画像)として投影する。
FIG. 18 shows another example of the projector. The
第1の光学系11は、上記の各例と同様に、縮小側(入力側)2に配置された第1のレンズ群(第1の屈折光学系)G1と、第1のレンズ群G1の拡大側(出力側)3に配置された第2のレンズ群(第2の屈折光学系)G2とを含む。第1のレンズ群G1は、最も拡大側3に、第1の中間像IM1が跨ぐように形成される中間レンズL9を含む。
As in the above examples, the first
図19、図20および図21に、投射光学系10の各エレメントのデータを示している。第1のレンズ群G1はレンズL1〜L9を含み、それぞれのレンズの基本的な構成は、図1に示した投射光学系10と共通する。第2のレンズ群G2はレンズL10〜L15を含み、それぞれのレンズの基本的な構成は、図1に示した投射光学系10と共通する。この第1のレンズシステム11も、最も拡大側3に、第1の接合レンズB3と、第1の正レンズL15とから構成された第1のレンズシステムLS1を含む。また、この投射光学系10もインターフォーカスタイプであり、フォーカシング群LF1〜LF3を含む。
19, 20, and 21 show data of each element of the projection
図22に、標準状態(Pos1)と、至近側(Pos2)と、無限側(Pos3)とにおけるフォーカシング群LF1〜LF3の位置関係を示す距離d10、d14、d16およびd22を示している。フォーカシング群LF1、LF2およびLF3は、至近側から標準状態をへて無限側に焦点距離、すなわち、ミラーM1とスクリーン6との距離が増加するに連れて、縮小側2から拡大側3に、それぞれ移動し、移動量がそれぞれの群により異なる。最も移動量が小さいのは、第1の中間像IM1が跨ぐように形成され、フォーカシングの際に効き量(公差感度)の大きな中間レンズL9を含む第2のフォーカシング群LF2である。
FIG. 22 shows distances d10, d14, d16, and d22 indicating the positional relationship of the focusing groups LF1 to LF3 in the standard state (Pos1), the closest side (Pos2), and the infinite side (Pos3). The focusing groups LF1, LF2 and LF3 are moved from the close side to the infinite side through the standard state, that is, as the distance between the mirror M1 and the
図23(a)に、標準状態Pos1における球面収差と非点収差と歪曲収差とを示し、図23(b)に、標準状態Pos1における各像高における横収差図を示している。図24(a)に、至近側Pos2における球面収差と非点収差と歪曲収差とを示し、図24(b)に、至近側Pos2における各像高における横収差図を示している。また、図25(a)に、無限側Pos3における球面収差と非点収差と歪曲収差とを示し、図25(b)に、無限側Pos3における各像高における横収差図を示している。これらの図に示すように、本例の投射光学系10においても、コマ収差を含む諸収差が良好に補正されており、鮮明な像をスクリーン6に投影することができる。
FIG. 23A shows spherical aberration, astigmatism, and distortion in the standard state Pos1, and FIG. 23B shows lateral aberration diagrams at various image heights in the standard state Pos1. FIG. 24A shows spherical aberration, astigmatism, and distortion at the close side Pos2, and FIG. 24B shows lateral aberration diagrams at each image height at the close side Pos2. FIG. 25 (a) shows spherical aberration, astigmatism, and distortion on the infinite side Pos3, and FIG. 25 (b) shows lateral aberration diagrams at various image heights on the infinite side Pos3. As shown in these figures, also in the projection
この実施例の投射光学系10の主なパラメータは以下の通りである。
倍率:136.8
全体の合成焦点距離(fa):2.70mm
F値:2.5
最大画角(半画角):77.73度
イメージサークル(第1の像面、直径):24.05mm
第1の反射面M1の曲率半径(|rm|、条件(3)):21.2mm
第1の反射面M1のコーニック係数(k、条件(11)):−0.90
第2のレンズ群の合成焦点距離(f2):27.45mm
中間レンズL9の焦点距離(fm):44.11mm
第1のフォーカシング群LF1の焦点距離(ff):273.73
第3のフォーカシング群LF3の焦点距離(fr):22.70
全長(La):195.3mm
第1の光学系の有効長(Le):134.4mm
第1の光学系から第1の反射面までの距離(Lf):60.94mm
第1の反射面からスクリーンまでの距離(Lm):380.00mm
スクリーンに投影した際の横方向の長さ(Ln):2077mm
移動距離Di1:0.44mm
移動距離Di2:−0.03mm
移動距離Di3:0.56mm
条件(1)(|rm×fa|):57.2
条件(2)(|rm/fa|):7.85
条件(4)(f2/fa):10.2
条件(5)(Le/La):0.69
条件(6)(TR):0.183
条件(7)(Lf/La):0.31
条件(8)(|fm/fa|):16.33
第1のレンズシステムLS1の最大有効径:15.50mm(L13の面S23)
第2のレンズ群G2の最大有効径:24.20mm(L10の面S17)
The main parameters of the projection
Magnification: 136.8
Overall composite focal length (fa): 2.70 mm
F value: 2.5
Maximum angle of view (half angle of view): 77.73 degrees Image circle (first image plane, diameter): 24.05 mm
Radius of curvature of first reflective surface M1 (| rm |, condition (3)): 21.2 mm
Conic coefficient (k, condition (11)) of first reflecting surface M1: −0.90
Composite focal length (f2) of the second lens group: 27.45 mm
Focal length (fm) of the intermediate lens L9: 44.11 mm
Focal length (ff) of first focusing group LF1: 273.73
Focal length (fr) of third focusing group LF3: 22.70
Full length (La): 195.3mm
Effective length (Le) of the first optical system: 134.4 mm
Distance (Lf) from the first optical system to the first reflecting surface: 60.94 mm
Distance from the first reflecting surface to the screen (Lm): 380.00 mm
Length in the horizontal direction when projected onto the screen (Ln): 2077 mm
Travel distance Di1: 0.44mm
Travel distance Di2: -0.03mm
Travel distance Di3: 0.56mm
Condition (1) (| rm × fa |): 57.2
Condition (2) (| rm / fa |): 7.85
Condition (4) (f2 / fa): 10.2.
Condition (5) (Le / La): 0.69
Condition (6) (TR): 0.183
Condition (7) (Lf / La): 0.31
Condition (8) (| fm / fa |): 16.33
Maximum effective diameter of the first lens system LS1: 15.50 mm (surface S23 of L13)
Maximum effective diameter of second lens group G2: 24.20 mm (L10 surface S17)
この投射光学系10も、第1の光学系11が、内部の光軸7の第1の側に結像される第1の中間像IM1を、第1の光学系11よりも拡大側3の光軸7の反対側(第2の側)に第2の中間像IM2として結像し、第1の反射面M1が第2の中間像IM2をスクリーン6に拡大投影するタイプである。さらに、第1の光学系11は、最も拡大側3に、縮小側2から順番に配置された第1の接合レンズB3と、両凸の第1の正レンズL15とから構成された第1のレンズシステムLS1とを含む。さらに、この投射光学系10においても条件(1)〜(11)をそれぞれ満たしており、コンパクトで画質の高い大きな画像を、スクリーン6の近傍から投影できる投射光学系10およびプロジェクタ1を提供できる。
Also in the projection
さらに、第1の光学系11も、第1の中間像IM1が跨ぐように形成される中間レンズL9を備えており、第1の光学系11の有効長Leをさらに有効に利用することにより、より高画質の画像をスクリーン6に投影する、よりコンパクトな投射光学系10およびプロジェクタ1を提供できる。
Furthermore, the first
1 プロジェクタ、 10 投射光学系
11 第1の光学系、 12 第2の光学系
LS1 第1のレンズシステム
DESCRIPTION OF
Claims (7)
複数のレンズを含む第1の光学系であって、縮小側から入射した光により当該第1の光学系の内部の光軸の第1の側に結像される第1の中間像を当該第1の光学系よりも拡大側の前記光軸の第2の側に第2の中間像として結像する第1の光学系と、
前記第2の中間像よりも拡大側に位置する正の屈折力の第1の反射面を含む第2の光学系とを有し、
当該投射光学系の合成焦点距離faと、前記第1の反射面の曲率半径rmとが以下の条件を満たす、投射光学系。
40<|rm×fa|<80
5.8<|rm/fa|<7.9
ただし合成焦点距離faおよび曲率半径rmの単位はmmである。 A projection optical system that projects from a first image plane on the reduction side to a second image plane on the enlargement side,
A first optical system including a plurality of lenses, wherein a first intermediate image formed on the first side of the optical axis inside the first optical system by light incident from the reduction side is the first optical system. A first optical system that forms an image as a second intermediate image on the second side of the optical axis on the magnification side of the first optical system;
A second optical system including a first reflecting surface having a positive refractive power and located closer to the enlargement side than the second intermediate image;
A projection optical system in which a combined focal length fa of the projection optical system and a curvature radius rm of the first reflecting surface satisfy the following conditions.
40 <| rm × fa | <80
5.8 <| rm / fa | <7.9
However, the unit of the composite focal length fa and the radius of curvature rm is mm.
前記第1の反射面の曲率半径rmが以下の条件を満たす、投射光学系。
15.0<|rm|<21.5
ただし曲率半径rmの単位はmmである。 In claim 1,
A projection optical system in which a radius of curvature rm of the first reflecting surface satisfies the following condition.
15.0 <| rm | <21.5
However, the unit of the radius of curvature rm is mm.
前記第1の反射面は非球面であり、コーニック係数kが以下の条件を満たす、投射光学系。
−1.35<k<−0.70 In claim 1 or 2,
The projection optical system, wherein the first reflecting surface is an aspherical surface and the conic coefficient k satisfies the following condition.
−1.35 <k <−0.70
前記第1の光学系は、前記第1の中間像が跨ぐように形成される中間レンズと、
前記中間レンズを含め、前記中間レンズの縮小側に配置された第1のレンズ群と、
前記中間レンズの拡大側に配置された第2のレンズ群とを含む、投射光学系。 In any of claims 1 to 3,
The first optical system includes an intermediate lens formed so as to straddle the first intermediate image;
A first lens group disposed on the reduction side of the intermediate lens, including the intermediate lens;
A projection optical system including a second lens group disposed on the enlargement side of the intermediate lens.
前記第1の光学系の最も縮小側のレンズの縮小側の面から前記第1の反射面までの前記光軸に沿った全長Laに対する前記第1の光学系の長さLeの比と、スローレシオTRとが以下の条件を満たす、投射光学系。
0.62<Le/La<0.72
0.17<TR<0.19 In any of claims 1 to 4,
The ratio of the length Le of the first optical system to the total length La along the optical axis from the reduction-side surface of the lens on the most reduction side of the first optical system to the first reflection surface, and the slow A projection optical system in which the ratio TR satisfies the following conditions.
0.62 <Le / La <0.72
0.17 <TR <0.19
前記第1の光学系の最も縮小側のレンズの縮小側の面から前記第1の反射面までの前記光軸に沿った全長Laに対する前記第1の光学系から前記第1の反射面までの長さLfの比と、スローレシオTRとが以下の条件を満たす、投射光学系。
0.26<Lf/La<0.38
0.17<TR<0.19 In any of claims 1 to 4,
From the first optical system to the first reflecting surface with respect to the total length La along the optical axis from the reduction-side surface of the first optical system to the first reflecting surface. A projection optical system in which the ratio of the length Lf and the slow ratio TR satisfy the following conditions.
0.26 <Lf / La <0.38
0.17 <TR <0.19
前記第1の像面に画像を形成する光変調器とを有する、プロジェクタ。 A projection optical system according to any one of claims 1 to 6;
And a light modulator for forming an image on the first image plane.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016248212A JP2018101102A (en) | 2016-12-21 | 2016-12-21 | Projection optical system and projector |
PCT/JP2017/045875 WO2018117208A1 (en) | 2016-12-21 | 2017-12-21 | Projection optical system and projector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016248212A JP2018101102A (en) | 2016-12-21 | 2016-12-21 | Projection optical system and projector |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018101102A true JP2018101102A (en) | 2018-06-28 |
Family
ID=62626683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016248212A Pending JP2018101102A (en) | 2016-12-21 | 2016-12-21 | Projection optical system and projector |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018101102A (en) |
WO (1) | WO2018117208A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI696029B (en) * | 2019-06-11 | 2020-06-11 | 王志煌 | Projector |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002131639A (en) * | 2000-10-20 | 2002-05-09 | Nikon Corp | Zoom lens and projection type display device equipped therewith |
US20110267687A1 (en) * | 2010-04-29 | 2011-11-03 | Samsung Electronics Co., Ltd. | Optical system and image projecting apparatus using the same |
JP2012108267A (en) * | 2010-11-16 | 2012-06-07 | Samsung Yokohama Research Institute Co Ltd | Projection optical system and image projection device |
WO2013005444A1 (en) * | 2011-07-05 | 2013-01-10 | 日東光学株式会社 | Projection optical assembly and projector device |
US20140002802A1 (en) * | 2012-06-27 | 2014-01-02 | Young Optics Inc. | Projection apparatus and projection lens thereof |
JP2014098750A (en) * | 2012-11-13 | 2014-05-29 | Mitsubishi Electric Corp | Projection optical system and projection display device |
WO2014103324A1 (en) * | 2012-12-28 | 2014-07-03 | 日東光学株式会社 | Projection optical system and projector device |
JP2015060088A (en) * | 2013-09-19 | 2015-03-30 | 富士フイルム株式会社 | Projection optical system and projection type display device |
JP2015200829A (en) * | 2014-04-09 | 2015-11-12 | リコー光学株式会社 | Projection optical system, projector device, and image capturing device |
JP2015215478A (en) * | 2014-05-12 | 2015-12-03 | セイコーエプソン株式会社 | Projection lens and projector |
WO2016068269A1 (en) * | 2014-10-31 | 2016-05-06 | 日東光学株式会社 | Projection optical system and projector device |
WO2017188449A1 (en) * | 2016-04-28 | 2017-11-02 | 株式会社nittoh | Optical system having lens including areas having different characteristics |
-
2016
- 2016-12-21 JP JP2016248212A patent/JP2018101102A/en active Pending
-
2017
- 2017-12-21 WO PCT/JP2017/045875 patent/WO2018117208A1/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002131639A (en) * | 2000-10-20 | 2002-05-09 | Nikon Corp | Zoom lens and projection type display device equipped therewith |
US20110267687A1 (en) * | 2010-04-29 | 2011-11-03 | Samsung Electronics Co., Ltd. | Optical system and image projecting apparatus using the same |
JP2012108267A (en) * | 2010-11-16 | 2012-06-07 | Samsung Yokohama Research Institute Co Ltd | Projection optical system and image projection device |
WO2013005444A1 (en) * | 2011-07-05 | 2013-01-10 | 日東光学株式会社 | Projection optical assembly and projector device |
US20140002802A1 (en) * | 2012-06-27 | 2014-01-02 | Young Optics Inc. | Projection apparatus and projection lens thereof |
JP2014098750A (en) * | 2012-11-13 | 2014-05-29 | Mitsubishi Electric Corp | Projection optical system and projection display device |
WO2014103324A1 (en) * | 2012-12-28 | 2014-07-03 | 日東光学株式会社 | Projection optical system and projector device |
JP2015060088A (en) * | 2013-09-19 | 2015-03-30 | 富士フイルム株式会社 | Projection optical system and projection type display device |
JP2015200829A (en) * | 2014-04-09 | 2015-11-12 | リコー光学株式会社 | Projection optical system, projector device, and image capturing device |
JP2015215478A (en) * | 2014-05-12 | 2015-12-03 | セイコーエプソン株式会社 | Projection lens and projector |
WO2016068269A1 (en) * | 2014-10-31 | 2016-05-06 | 日東光学株式会社 | Projection optical system and projector device |
WO2017188449A1 (en) * | 2016-04-28 | 2017-11-02 | 株式会社nittoh | Optical system having lens including areas having different characteristics |
Also Published As
Publication number | Publication date |
---|---|
WO2018117208A1 (en) | 2018-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6517294B2 (en) | Projection optical system | |
US10310366B2 (en) | Projection optical assembly and projector device | |
JP5069146B2 (en) | Projection zoom lens and projection display device | |
JP5728202B2 (en) | Projection optical system and image projection apparatus | |
JP6589243B2 (en) | Projection optical system and projector | |
JP6593844B2 (en) | Projection optical system and projector | |
JP5345008B2 (en) | Projection variable focus lens and projection display device | |
JP5632782B2 (en) | Projection optical system and projection-type image display device | |
JP6393906B2 (en) | Projection optical system and image projection apparatus | |
WO2020262108A1 (en) | Projection optical system and projector device | |
US7038857B1 (en) | Projection zoom lens | |
JP5307655B2 (en) | Projection variable focus lens and projection display device | |
JP2015014677A (en) | Projection lens and projection display device | |
JP4864555B2 (en) | Projection zoom lens and projection display device | |
JP2006145671A (en) | Zoom lens for projection and projector device | |
WO2018117208A1 (en) | Projection optical system and projector | |
WO2020137884A1 (en) | Projection optical system and projector | |
JP2013029788A (en) | Projection type display device | |
JP5638481B2 (en) | Projection display | |
WO2020262120A1 (en) | Projection optical system and projector device | |
WO2020137885A1 (en) | Projection optical system and projector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190405 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191217 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200414 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20201001 |