JP2018066502A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2018066502A
JP2018066502A JP2016204760A JP2016204760A JP2018066502A JP 2018066502 A JP2018066502 A JP 2018066502A JP 2016204760 A JP2016204760 A JP 2016204760A JP 2016204760 A JP2016204760 A JP 2016204760A JP 2018066502 A JP2018066502 A JP 2018066502A
Authority
JP
Japan
Prior art keywords
temperature
defrosting
room temperature
defrosting operation
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016204760A
Other languages
Japanese (ja)
Inventor
大貴 ▲高▼雄
大貴 ▲高▼雄
Daiki Takao
遠藤 浩彰
Hiroaki Endo
浩彰 遠藤
純一 津野
Junichi Tsuno
純一 津野
光将 榎本
Mitsumasa Enomoto
光将 榎本
智之 舟木
Tomoyuki Funaki
智之 舟木
勇太 清水
Yuta Shimizu
勇太 清水
山本 浩太郎
Kotaro Yamamoto
浩太郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2016204760A priority Critical patent/JP2018066502A/en
Publication of JP2018066502A publication Critical patent/JP2018066502A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which does not impair comfort of a user even when a defrosting operation is performed during a heating operation.SOLUTION: In an air conditioner, when a defrosting operation is performed during a heating operation, a target temperature Tt is calculated in which an addition temperature Tadd corresponding to a temperature difference ΔTd between a setting temperature Ts and a room temperature Tr at the defrosting finish time acquired in the previous defrosting operation is added to the setting temperature Ts. Then, before performing the defrosting operation, a compressor is controlled so as to bring the room temperature T to the target temperature Tt, and the operation is shifted to the defrosting operation. Thereby, an unpleasant situation can be suppressed in which the room temperature T drops greatly during the defrosting operation and a user feels cold or the room temperature T increases greatly by a room temperature adjustment operation before defrosting and the user feels hot. Thus, the comfort of the user is not impaired during the defrosting operation.SELECTED DRAWING: Figure 2

Description

本発明は空気調和機に関わり、より詳細には、暖房運転時の快適性を向上できる空気調和機に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner that can improve comfort during heating operation.

空気調和機は、外気温度が低いときに暖房運転が行われると、蒸発器として機能する室外熱交換器に霜が発生し、発生する霜の量が多いと室外熱交換器における熱交換効率が悪化する。このため、空気調和機では、室外熱交換器で発生した霜を融かすために除霜運転が行われる。除霜運転として、例えば、暖房運転を一時的に中断し、室外熱交換器を蒸発器として機能する状態から凝縮器として機能する状態に切り替えて、圧縮機から吐出された高温の冷媒で霜を融かす逆サイクル除霜運転が知られている。   When the air conditioner is heated when the outside air temperature is low, frost is generated in the outdoor heat exchanger that functions as an evaporator, and if the amount of generated frost is large, the heat exchange efficiency in the outdoor heat exchanger is reduced. Getting worse. For this reason, in an air conditioner, defrosting operation is performed in order to melt the frost generated in the outdoor heat exchanger. As the defrosting operation, for example, the heating operation is temporarily interrupted, the outdoor heat exchanger is switched from the state functioning as an evaporator to the state functioning as a condenser, and frost is removed by the high-temperature refrigerant discharged from the compressor. Reverse cycle defrosting operation to melt is known.

除霜運転を行うと暖房運転が一時的に中断されるため、除霜運転中に室温が低下する。この対策として、特許文献1に示される空気調和機では、室外熱交換器への着霜量が所定の基準量以上となったことを検知すると、除霜運転を開始する前に室温を設定温度より所定温度(例えば、2℃)高い温度まで上昇させる除霜前運転を行うことが開示されている。   Since the heating operation is temporarily interrupted when the defrosting operation is performed, the room temperature decreases during the defrosting operation. As a countermeasure, in the air conditioner disclosed in Patent Document 1, when it is detected that the amount of frost formation on the outdoor heat exchanger has exceeded a predetermined reference amount, the room temperature is set to the set temperature before starting the defrosting operation. It is disclosed to perform a pre-defrosting operation in which the temperature is increased to a temperature higher than a predetermined temperature (for example, 2 ° C.).

特許文献1に記載の空気調和機では、上述した除霜前運転を行って室温を上昇させてから除霜運転を行う。これにより、除霜運転時に暖房運転が中断されても室温の低下を抑えることができるので、除霜運転を行うことによって使用者の快適性が損なわれることを抑制できる。   In the air conditioner described in Patent Document 1, the defrosting operation is performed after the above-described operation before defrosting is performed to increase the room temperature. Thereby, even if heating operation is interrupted at the time of a defrost operation, the fall of room temperature can be suppressed, Therefore It can suppress that a user's comfort is impaired by performing a defrost operation.

特開2010−96474号公報JP 2010-96474 A

特許文献1に記載の空気調和機では、除霜前運転で設定温度に加える所定温度が固定であり、暖房運転時の周囲環境(外気温度や空気調和機が設置される部屋の断熱性)は考慮されていない。そのため、外気温度が低い、部屋の断熱性が低い等、除霜運転中に室温が大きく低下する周囲環境である場合は、除霜前運転で設定温度を所定温度高くしても、除霜運転中に室温が大きく低下して使用者の快適性が損なわれる恐れがあった。   In the air conditioner described in Patent Literature 1, the predetermined temperature to be added to the set temperature in the operation before defrosting is fixed, and the ambient environment during the heating operation (outside air temperature and heat insulation of the room where the air conditioner is installed) is Not considered. Therefore, if the ambient temperature is such that the room temperature is greatly reduced during the defrosting operation, such as when the outside air temperature is low or the room heat insulation is low, the defrosting operation can be performed even if the set temperature is increased by a predetermined temperature during the operation before defrosting There is a risk that the comfort of the user may be impaired due to a significant drop in room temperature.

一方、外気温度が高い、部屋の断熱性が高い等、除霜運転中に室温がさほど低下しない周囲環境である場合は、暖房運転時の設定温度が低く設定されている可能性が高い。この場合、除霜前運転で設定温度を所定温度高くして室温を上昇させると、使用者が暑く感じて不快に感じる恐れがあった。つまり、特許文献1に記載の除霜前運転では、周囲環境に応じた暖房運転時(含む除霜運転時)の最適な室温制御が必ずしも行えていなかった。   On the other hand, in the case of an ambient environment where the room temperature does not decrease so much during the defrosting operation, such as when the outside air temperature is high or the room is highly insulated, it is highly possible that the set temperature during the heating operation is set low. In this case, if the set temperature is increased by a predetermined temperature and the room temperature is raised in the operation before defrosting, the user may feel hot and feel uncomfortable. In other words, in the pre-defrosting operation described in Patent Document 1, the optimum room temperature control during the heating operation (including the defrosting operation) according to the surrounding environment has not necessarily been performed.

本発明は以上述べた問題点を解決するものであって、暖房運転時に除霜運転を行っても使用者の快適性を損なわない空気調和機を提供することを目的とする。   The present invention solves the above-described problems, and an object thereof is to provide an air conditioner that does not impair the comfort of the user even if the defrosting operation is performed during the heating operation.

上記の課題を解決するために、本発明の空気調和機は、暖房運転時に圧縮機、室内熱交換器、室外熱交換器の順で冷媒が循環する冷媒回路と、室外熱交換器に送風する室外ファンと、室温を検出する室温検出手段と、冷媒回路に備えられて圧縮機から吐出された冷媒の流れ方向を切り替える流路切替手段と、除霜運転時に室外ファンを停止させるとともに圧縮機から吐出された冷媒を室外熱交換器に向かうよう流路切替手段を切り替える制御手段を有する。制御手段は、暖房運転を開始した後、室外熱交換器で霜が発生したことを検知すれば室外熱交換器の除霜運転を実行し、当該除霜運転を行う毎に除霜運転が終了した時刻での室温である除霜終了時室温を室温検出手段から取り込み、暖房運転時の設定温度あるいは除霜運転開始前の暖房運転時の室温と取り込んだ除霜終了時室温の温度差を算出して記憶する。そして、制御手段は、2回目の除霜運転以降については、前回除霜運転を行った際に記憶した温度差に応じた加算温度を設定温度に加算して目標温度を設定し、除霜運転開始前の室温が目標温度となるように圧縮機を制御する除霜前室温調整運転を実行し、除霜前室温調整運転を行っているときに除霜運転開始前の室温が目標温度に到達すれば、除霜運転を開始する。   In order to solve the above problems, the air conditioner of the present invention blows air to the refrigerant circuit in which the refrigerant circulates in the order of the compressor, the indoor heat exchanger, and the outdoor heat exchanger, and the outdoor heat exchanger during heating operation. An outdoor fan, room temperature detecting means for detecting the room temperature, flow path switching means for switching the flow direction of the refrigerant discharged from the compressor provided in the refrigerant circuit, and stopping the outdoor fan during the defrosting operation and from the compressor Control means for switching the flow path switching means to direct the discharged refrigerant toward the outdoor heat exchanger. When the control means detects that frost has been generated in the outdoor heat exchanger after starting the heating operation, the control means executes the defrosting operation of the outdoor heat exchanger, and the defrosting operation is completed each time the defrosting operation is performed. The room temperature at the end of defrosting is read from the room temperature detection means, and the temperature difference between the set temperature at the time of heating operation or the room temperature at the time of heating operation before the start of the defrosting operation is calculated. And remember. Then, after the second defrosting operation, the control means sets the target temperature by adding the added temperature corresponding to the temperature difference stored when the previous defrosting operation is performed to the set temperature, and performs the defrosting operation. Execute the room temperature adjustment operation before defrosting to control the compressor so that the room temperature before the start becomes the target temperature, and the room temperature before the start of the defrost operation reaches the target temperature when performing the room temperature adjustment operation before the defrosting Then, the defrosting operation is started.

上記のように構成した本発明の空気調和機によれば、前回の除霜運転時の室温の低下値に応じた加算温度を設定温度に加えて目標温度を求め、除霜運転開始前の室温が目標温度になるように室温を調整する除霜前室温調整運転を行う。これにより、除霜運転中に設定温度と室温の温度差が大きくなることや除霜運転前の室温の大きな上昇を抑えることができ、暖房運転時に除霜運転を行っても使用者の快適性を損なわないようにできる。   According to the air conditioner of the present invention configured as described above, the target temperature is obtained by adding the added temperature corresponding to the lowering value of the room temperature during the previous defrosting operation to the set temperature, and the room temperature before the start of the defrosting operation Perform the room temperature adjustment operation before defrosting to adjust the room temperature so that becomes the target temperature. As a result, the temperature difference between the set temperature and the room temperature during the defrosting operation can be increased, and a large increase in the room temperature before the defrosting operation can be suppressed. Can be maintained.

本発明の実施形態における、空気調和機の説明図であり、(A)は冷媒回路図、(B)は室外機制御手段のブロック図である。It is explanatory drawing of the air conditioner in embodiment of this invention, (A) is a refrigerant circuit figure, (B) is a block diagram of an outdoor unit control means. 本発明の実施形態における、暖房運転−除霜運転時の室温の時間的な変化を示す図である。It is a figure which shows the time change of the room temperature at the time of heating operation-defrost operation in embodiment of this invention. 本発明の実施形態における、加算温度テーブルである。It is an addition temperature table in the embodiment of the present invention. 本発明の実施形態における、室外機制御手段での処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process in the outdoor unit control means in embodiment of this invention. 本発明の他の実施形態における、加算温度テーブルである。It is an addition temperature table in other embodiments of the present invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機と1台の室内機が2本の冷媒配管で接続された空気調和機を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, an air conditioner in which one outdoor unit and one indoor unit are connected by two refrigerant pipes will be described as an example. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1(A)に示すように、本実施例における空気調和機1は、屋外に設置される室外機2と、室内に設置され室外機2に液管4およびガス管5で接続された室内機3を備えている。詳細には、液管4は、一端が室外機2の閉鎖弁25に、他端が室内機3の液管接続部33に接続されている。また、ガス管5は、一端が室外機2の閉鎖弁26に、他端が室内機3のガス管接続部34に接続されている。以上により、空気調和機1の冷媒回路10が構成されている。   As shown in FIG. 1A, an air conditioner 1 according to this embodiment includes an outdoor unit 2 installed outdoors, and an indoor unit installed indoors and connected to the outdoor unit 2 with a liquid pipe 4 and a gas pipe 5. Machine 3 is provided. Specifically, the liquid pipe 4 has one end connected to the closing valve 25 of the outdoor unit 2 and the other end connected to the liquid pipe connecting portion 33 of the indoor unit 3. The gas pipe 5 has one end connected to the closing valve 26 of the outdoor unit 2 and the other end connected to the gas pipe connecting portion 34 of the indoor unit 3. The refrigerant circuit 10 of the air conditioner 1 is configured as described above.

まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、室外ファン24と、液管4の一端が接続された閉鎖弁25と、ガス管5の一端が接続された閉鎖弁26と、膨張弁27を備えている。そして、室外ファン24を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路10aを構成している。   First, the outdoor unit 2 will be described. The outdoor unit 2 is connected to a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an outdoor fan 24, a closing valve 25 to which one end of the liquid pipe 4 is connected, and one end of the gas pipe 5. A closing valve 26 and an expansion valve 27 are provided. And these each apparatus except the outdoor fan 24 is mutually connected by each refrigerant | coolant piping explained in full detail below, and the outdoor unit refrigerant circuit 10a which makes a part of the refrigerant circuit 10 is comprised.

圧縮機21は、図示しないインバータにより回転数が制御されることで、運転容量を変えることができる容量可変型圧縮機である。圧縮機21の冷媒吐出側は、四方弁22のポートaに吐出管61で接続されている。また、圧縮機21の冷媒吸入側は、四方弁22のポートcに吸入管66で接続されている。   The compressor 21 is a variable capacity compressor capable of changing the operating capacity by controlling the rotation speed by an inverter (not shown). The refrigerant discharge side of the compressor 21 is connected to the port a of the four-way valve 22 by a discharge pipe 61. The refrigerant suction side of the compressor 21 is connected to the port c of the four-way valve 22 by a suction pipe 66.

四方弁22は、冷媒の流れる方向を切り替えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管61で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管62で接続されている。ポートcは、上述したように圧縮機21の冷媒吸入側と吸入管66で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管64で接続されている。   The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and includes four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by the discharge pipe 61 as described above. The port b is connected to one refrigerant inlet / outlet of the outdoor heat exchanger 23 by a refrigerant pipe 62. The port c is connected to the refrigerant suction side of the compressor 21 by the suction pipe 66 as described above. The port d is connected to the shutoff valve 26 and the outdoor unit gas pipe 64.

室外熱交換器23は、冷媒と、後述する室外ファン24の回転により室外機2の内部に取り込まれた外気を熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbと冷媒配管62で接続され、他方の冷媒出入口は閉鎖弁25と室外機液管63で接続されている。   The outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 24 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port b of the four-way valve 22 by the refrigerant pipe 62, and the other refrigerant inlet / outlet is connected to the closing valve 25 by the outdoor unit liquid pipe 63.

膨張弁27は、例えば電子膨張弁である。膨張弁27は、その開度が調整されることで、室外熱交換器23に流入する冷媒量、あるいは、室外熱交換器23から流出する冷媒量を調節する。   The expansion valve 27 is an electronic expansion valve, for example. The expansion valve 27 adjusts the amount of refrigerant flowing into the outdoor heat exchanger 23 or the amount of refrigerant flowing out of the outdoor heat exchanger 23 by adjusting the opening degree thereof.

室外ファン24は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン24は、図示しないファンモータによって回転することで室外機2の図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を室外機2の図示しない吹出口から室外機2外部へ放出する。   The outdoor fan 24 is formed of a resin material and is disposed in the vicinity of the outdoor heat exchanger 23. The outdoor fan 24 is rotated by a fan motor (not shown) to take outside air into the outdoor unit 2 from a suction port (not shown) of the outdoor unit 2, and the outdoor air exchanged heat with the refrigerant in the outdoor heat exchanger 23. It discharges from the blower outlet which is not illustrated to the exterior of the outdoor unit 2.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管61には、圧縮機21から吐出される冷媒の圧力を検出する吐出圧力センサ71と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ73が設けられている。吸入管66には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ72と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ74とが設けられている。   In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, the discharge pipe 61 includes a discharge pressure sensor 71 that detects the pressure of refrigerant discharged from the compressor 21 and a discharge temperature that detects the temperature of refrigerant discharged from the compressor 21. A sensor 73 is provided. The suction pipe 66 is provided with a suction pressure sensor 72 that detects the pressure of the refrigerant sucked into the compressor 21 and a suction temperature sensor 74 that detects the temperature of the refrigerant sucked into the compressor 21.

室外機液管63における室外熱交換器23と膨張弁27の間には、室外熱交換器23から流出、または、室外熱交換器23に流入する冷媒の温度を検出するための熱交温度センサ75が設けられている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ76が備えられている。   Between the outdoor heat exchanger 23 and the expansion valve 27 in the outdoor unit liquid pipe 63, a heat exchange temperature sensor for detecting the temperature of the refrigerant flowing out of the outdoor heat exchanger 23 or flowing into the outdoor heat exchanger 23. 75 is provided. An outdoor air temperature sensor 76 that detects the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature, is provided near the suction port (not shown) of the outdoor unit 2.

また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図1(B)に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240を備えている。   The outdoor unit 2 includes an outdoor unit control means 200. The outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2. As shown in FIG. 1B, the outdoor unit control means 200 includes a CPU 210, a storage unit 220, a communication unit 230, and a sensor input unit 240.

記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン24の制御状態等を記憶している。また、図示は省略するが、記憶部220には後述する室内機3から受信する要求能力に応じて圧縮機21の回転数を定めた回転数テーブルが予め記憶されている。通信部230は、室内機3との通信を行うインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。   The storage unit 220 includes a ROM and a RAM, and stores a control program for the outdoor unit 2, detection values corresponding to detection signals from various sensors, control states of the compressor 21 and the outdoor fan 24, and the like. Although not shown, the storage unit 220 stores in advance a rotation speed table that determines the rotation speed of the compressor 21 in accordance with a requested capability received from the indoor unit 3 described later. The communication unit 230 is an interface that performs communication with the indoor unit 3. The sensor input unit 240 captures detection results from various sensors of the outdoor unit 2 and outputs them to the CPU 210.

CPU210は、前述した室外機2の各センサでの検出結果をセンサ入力部240を介して取り込む。また、CPU210は、室内機3から送信される制御信号を通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号に基づいて、圧縮機21や室外ファン24の駆動制御を行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、四方弁22の切り替え制御を行う。さらには、CPU210は、取り込んだ検出結果や制御信号に基づいて、室外膨張弁27の開度調整を行う。   CPU210 takes in the detection result in each sensor of outdoor unit 2 mentioned above via sensor input part 240. FIG. Further, the CPU 210 takes in a control signal transmitted from the indoor unit 3 via the communication unit 230. The CPU 210 controls the driving of the compressor 21 and the outdoor fan 24 based on the detection results and control signals taken in. Further, the CPU 210 performs switching control of the four-way valve 22 based on the detected result and control signal taken in. Furthermore, the CPU 210 adjusts the opening degree of the outdoor expansion valve 27 based on the acquired detection result and control signal.

次に、図1(A)を用いて、室内機3について説明する。室内機3は、室内熱交換器31と、室内ファン32と、液管4の他端が接続された液管接続部33と、ガス管5の他端が接続されたガス管接続部34を備えている。そして、室内ファン32を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路10bを構成している。   Next, the indoor unit 3 will be described with reference to FIG. The indoor unit 3 includes an indoor heat exchanger 31, an indoor fan 32, a liquid pipe connection portion 33 to which the other end of the liquid pipe 4 is connected, and a gas pipe connection portion 34 to which the other end of the gas pipe 5 is connected. I have. And these each apparatus except the indoor fan 32 is mutually connected by each refrigerant | coolant piping explained in full detail below, and the indoor unit refrigerant circuit 10b which makes a part of refrigerant circuit 10 is comprised.

室内熱交換器31は、冷媒と後述する室内ファン32の回転により室内機3の図示しない吸込口から室内機3の内部に取り込まれた室内空気を熱交換させるものであり、一方の冷媒出入口が液管接続部33に室内機液管67で接続され、他方の冷媒出入口がガス管接続部34に室内機ガス管68で接続されている。室内熱交換器31は、室内機3が冷房運転を行う場合は蒸発器として機能し、室内機3が暖房運転を行う場合は凝縮器として機能する。尚、液管接続部33やガス管接続部34では、各冷媒配管が溶接やフレアナット等により接続されている。   The indoor heat exchanger 31 exchanges heat between indoor air taken into the indoor unit 3 from a suction port (not shown) of the indoor unit 3 by rotation of a refrigerant and an indoor fan 32 described later. An indoor unit liquid pipe 67 is connected to the liquid pipe connection part 33, and the other refrigerant inlet / outlet is connected to the gas pipe connection part 34 via an indoor unit gas pipe 68. The indoor heat exchanger 31 functions as an evaporator when the indoor unit 3 performs a cooling operation, and functions as a condenser when the indoor unit 3 performs a heating operation. In addition, in the liquid pipe connection part 33 and the gas pipe connection part 34, each refrigerant | coolant piping is connected by welding, a flare nut, etc.

室内ファン32は樹脂材で形成されており、室内熱交換器31の近傍に配置されている。室内ファン31は、図示しないファンモータによって回転することで、室内機3の図示しない吸込口から室内機3の内部に室内空気を取り込み、室内熱交換器31において冷媒と熱交換した室内空気を室内機3の図示しない吹出口から室内へ吹き出す。   The indoor fan 32 is formed of a resin material and is disposed in the vicinity of the indoor heat exchanger 31. The indoor fan 31 is rotated by a fan motor (not shown) so that indoor air is taken into the indoor unit 3 from a suction port (not shown) of the indoor unit 3, and the indoor air heat-exchanged with the refrigerant in the indoor heat exchanger 31 is taken into the room It blows out into the room from the blower outlet which machine 3 does not illustrate.

以上説明した構成の他に、室内機3には各種のセンサが設けられている。室内機液管67には、室内熱交換器31に流入あるいは室内熱交換器31から流出する冷媒の温度を検出する液側温度センサ77が設けられている。室内機ガス管68には、室内熱交換器31から流出あるいは室内熱交換器31に流入する冷媒の温度を検出するガス側温度センサ78が設けられている。そして、室内機3の図示しない吸込口付近には、室内機3の内部に流入する室内空気の温度、すなわち室温を検出する室温検出手段である室温センサ79が備えられている。   In addition to the configuration described above, the indoor unit 3 is provided with various sensors. The indoor unit liquid pipe 67 is provided with a liquid side temperature sensor 77 that detects the temperature of the refrigerant flowing into or out of the indoor heat exchanger 31. The indoor unit gas pipe 68 is provided with a gas side temperature sensor 78 that detects the temperature of the refrigerant flowing out of the indoor heat exchanger 31 or flowing into the indoor heat exchanger 31. A room temperature sensor 79 that is a room temperature detecting means for detecting the temperature of room air flowing into the indoor unit 3, that is, the room temperature, is provided in the vicinity of a suction port (not shown) of the indoor unit 3.

また、図示と詳細な説明は省略するが、室内機3には室内機制御手段が備えられている。室内機制御手段は、CPUと記憶部と通信部とセンサ入力部を備えている。記憶部は、ROMやRAMで構成されており、室内機3の制御プログラムや各種センサからの検出信号に対応した検出値、室内ファン32の制御状態等を記憶している。通信部は、室外機2の室外機制御手段200との通信を行うためのインターフェイスである。センサ入力部は、室内機3の各種センサでの検出結果を取り込んでCPUに出力する。CPUは、前述した室内機3の各センサでの検出結果をセンサ入力部を介して取り込む。また、CPUは、室外機2から送信される制御に関わる信号を通信部を介して取り込む。また、CPUは、取り込んだ検出結果や制御信号に基づいて、室内ファン32の駆動制御を行う。   Moreover, although illustration and detailed description are abbreviate | omitted, the indoor unit 3 is provided with the indoor unit control means. The indoor unit control means includes a CPU, a storage unit, a communication unit, and a sensor input unit. The storage unit includes a ROM and a RAM, and stores a control program for the indoor unit 3, detection values corresponding to detection signals from various sensors, a control state of the indoor fan 32, and the like. The communication unit is an interface for performing communication with the outdoor unit control means 200 of the outdoor unit 2. The sensor input unit captures detection results from various sensors of the indoor unit 3 and outputs them to the CPU. The CPU takes in the detection result of each sensor of the indoor unit 3 described above via the sensor input unit. Further, the CPU takes in a signal related to control transmitted from the outdoor unit 2 via the communication unit. In addition, the CPU performs drive control of the indoor fan 32 based on the acquired detection result and control signal.

さらには、CPUは、使用者が図示しないリモコンを操作して設定した設定温度と、室温センサ79で検出した室温との温度差を算出し、算出した温度差に基づいた要求能力を通信部を介して室外機2の室外機制御手段200に送信する。   Further, the CPU calculates a temperature difference between the set temperature set by the user by operating a remote controller (not shown) and the room temperature detected by the room temperature sensor 79, and transmits the required capacity based on the calculated temperature difference to the communication unit. To the outdoor unit control means 200 of the outdoor unit 2.

次に、本実施形態における空気調和機1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図1(A)を用いて説明する。以下の説明では、まず、室内機3が暖房運転を行う場合について説明し、次に、冷房運転/除霜運転を行う場合について説明する。
<暖房運転>
Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 during the air conditioning operation of the air conditioner 1 in the present embodiment will be described with reference to FIG. In the following description, the case where the indoor unit 3 performs the heating operation will be described first, and then the case where the cooling operation / defrosting operation is performed will be described.
<Heating operation>

室内機3が暖房運転を行う場合、CPU210は、図1(A)に示すように四方弁22を実線で示す状態、すなわち、四方弁22のポートaとポートdが連通するよう、また、ポートbとポートcが連通するよう、切り替える。これにより、冷媒回路10において実線矢印で示す方向に冷媒が循環し、室外熱交換器23が蒸発器として機能するとともに室内熱交換器31が凝縮器として機能する暖房サイクルとなる。   When the indoor unit 3 performs the heating operation, the CPU 210 performs a state where the four-way valve 22 is indicated by a solid line as shown in FIG. 1A, that is, the port a and the port d of the four-way valve 22 communicate with each other. Switch so that b and port c communicate. As a result, the refrigerant circulates in the direction indicated by the solid line arrow in the refrigerant circuit 10, and the outdoor heat exchanger 23 functions as an evaporator and the indoor heat exchanger 31 functions as a condenser.

圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から室外機ガス管64を流れ閉鎖弁26を介してガス管5に流入する。ガス管5を流れる冷媒は、ガス管接続部34を介して室内機3に流入する。   The high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 61 and flows into the four-way valve 22, flows from the four-way valve 22 through the outdoor unit gas pipe 64, and flows into the gas pipe 5 through the closing valve 26. The refrigerant flowing through the gas pipe 5 flows into the indoor unit 3 through the gas pipe connection part 34.

室内機3に流入した冷媒は、室内機ガス管68を流れて室内熱交換器31に流入し、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器31が凝縮器として機能し、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の暖房が行われる。   The refrigerant that has flowed into the indoor unit 3 flows through the indoor unit gas pipe 68 and flows into the indoor heat exchanger 31, and is condensed by exchanging heat with the indoor air taken into the indoor unit 3 by the rotation of the indoor fan 32. To do. As described above, the indoor heat exchanger 31 functions as a condenser, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchanger 31 is blown into the room from a blower outlet (not shown), so that the indoor unit 3 is installed. The heated room is heated.

室内熱交換器31から流出した冷媒は室内機液管67を流れ、液管接続部33を介して液管4に流入する。液管4を流れ閉鎖弁25を介して室外機2に流入した冷媒は、室外機液管63を流れて膨張弁27を通過する際に減圧される。   The refrigerant flowing out of the indoor heat exchanger 31 flows through the indoor unit liquid pipe 67 and flows into the liquid pipe 4 through the liquid pipe connecting portion 33. The refrigerant flowing through the liquid pipe 4 and flowing into the outdoor unit 2 through the closing valve 25 is decompressed when flowing through the outdoor unit liquid pipe 63 and passing through the expansion valve 27.

膨張弁27を通過して室外熱交換器23に流入した冷媒は、室外ファン24の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から冷媒配管62に流出した冷媒は、四方弁22、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。
<冷房運転/除霜運転>
The refrigerant flowing through the expansion valve 27 and flowing into the outdoor heat exchanger 23 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 24. The refrigerant that has flowed out of the outdoor heat exchanger 23 into the refrigerant pipe 62 flows through the four-way valve 22 and the suction pipe 66, is sucked into the compressor 21, and is compressed again.
<Cooling operation / Defrosting operation>

室内機3が冷房運転あるいは除霜運転を行う場合、CPU210は、図1(A)に示すように四方弁22を破線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するよう、切り替える。これにより、冷媒回路10において破線矢印で示す方向に冷媒が循環し、室外熱交換器23が凝縮器として機能するとともに室内熱交換器31が蒸発器として機能する冷房サイクルとなる。   When the indoor unit 3 performs a cooling operation or a defrosting operation, the CPU 210 communicates the state where the four-way valve 22 is indicated by a broken line, that is, the port a and the port b of the four-way valve 22 as shown in FIG. In addition, the switching is performed so that the port c and the port d communicate with each other. As a result, the refrigerant circulates in the direction indicated by the broken-line arrow in the refrigerant circuit 10, and a cooling cycle in which the outdoor heat exchanger 23 functions as a condenser and the indoor heat exchanger 31 functions as an evaporator is formed.

圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から冷媒配管62を流れて室外熱交換器23に流入する。冷房運転の場合、室外熱交換器23に流入した冷媒は、室外ファン24の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。一方、除霜運転の場合、室外熱交換器23に流入した冷媒は、室外熱交換器23に発生している霜を融かして凝縮する。尚、除霜運転の際は、室外ファン24は停止している。   The high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 61 and flows into the four-way valve 22, flows from the four-way valve 22 through the refrigerant pipe 62, and flows into the outdoor heat exchanger 23. In the case of the cooling operation, the refrigerant flowing into the outdoor heat exchanger 23 is condensed by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 24. On the other hand, in the case of the defrosting operation, the refrigerant flowing into the outdoor heat exchanger 23 melts and condenses the frost generated in the outdoor heat exchanger 23. Note that the outdoor fan 24 is stopped during the defrosting operation.

室外熱交換器23から流出した冷媒は室外機液管63を流れ、全開とされている膨張弁27および閉鎖弁25を介して液管4に流出する。液管4を流れ液管接続部33を介して室内機3に流入した冷媒は、室内機液管67を流れて室内熱交換器31に流入する。   The refrigerant that has flowed out of the outdoor heat exchanger 23 flows through the outdoor unit liquid pipe 63, and flows out to the liquid pipe 4 through the expansion valve 27 and the closing valve 25 that are fully opened. The refrigerant flowing through the liquid pipe 4 and flowing into the indoor unit 3 via the liquid pipe connecting portion 33 flows through the indoor unit liquid pipe 67 and flows into the indoor heat exchanger 31.

室内熱交換器31に流入した冷媒は、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、室内熱交換器31が蒸発器として機能し、冷房運転の場合は、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の冷房が行われる。一方、除霜運転の場合、室内ファン32は、冷媒回路10の均圧を促すために除霜運転開始から所定時間(例:20秒)は最低回転数で駆動し、その後停止させる。   The refrigerant flowing into the indoor heat exchanger 31 evaporates by exchanging heat with the indoor air taken into the interior of the indoor unit 3 by the rotation of the indoor fan 32. Thus, in the case of cooling operation, the indoor heat exchanger 31 functions as an evaporator, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchanger 31 is blown into the room from a blower outlet (not shown). The room where the indoor unit 3 is installed is cooled. On the other hand, in the case of the defrosting operation, the indoor fan 32 is driven at the minimum number of rotations for a predetermined time (eg, 20 seconds) from the start of the defrosting operation in order to promote equalization of the refrigerant circuit 10, and then stopped.

室内熱交換器31から流出した冷媒は、室内機ガス管68を流れガス管接続部34を介してガス管5に流出する。ガス管5を流れて閉鎖弁26を介して室外機2に流入した冷媒は、室外機ガス管64、四方弁22、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。   The refrigerant that has flowed out of the indoor heat exchanger 31 flows through the indoor unit gas pipe 68 and flows out to the gas pipe 5 through the gas pipe connecting portion 34. The refrigerant flowing through the gas pipe 5 and flowing into the outdoor unit 2 through the closing valve 26 flows through the outdoor unit gas pipe 64, the four-way valve 22, and the suction pipe 66, and is sucked into the compressor 21 and compressed again.

次に、主に図2乃至図4を用いて、本実施形態の空気調和機1における除霜運転時の動作や、除霜運転時に室外機制御手段200のCPU210が実行する処理について具体的に説明する。   Next, with reference mainly to FIGS. 2 to 4, the operation during the defrosting operation in the air conditioner 1 of the present embodiment and the processing executed by the CPU 210 of the outdoor unit control means 200 during the defrosting operation are specifically described. explain.

まず、図2を用いて除霜運転時の動作を説明する。図2は、暖房運転中に除霜運転を行う際の、室温の時間的な変化を示す図であり、縦軸に室温(単位:℃。以降、室温Tと記載)を、横軸に時間(単位:分。以降、時間tと記載)をそれぞれ取っている。   First, the operation | movement at the time of a defrost operation is demonstrated using FIG. FIG. 2 is a diagram illustrating a temporal change in room temperature when performing a defrosting operation during heating operation, in which the vertical axis represents room temperature (unit: ° C., hereinafter referred to as room temperature T), and the horizontal axis represents time. (Unit: minute. Hereinafter, described as time t).

尚、図2においては、Tsは使用者が定める暖房運転の設定温度、TrおよびTr’は除霜運転を終了した時の室温(以降、除霜終了時室温と記載)、ΔTdおよびΔTd’は設定温度Tsと除霜終了時室温Trの温度差(ΔTd=Ts−Tr)、Taddは設定温度Tsに加算される加算温度、Ttは設定温度Tsに加算温度Taddを加算した目標温度、t1〜t5は除霜運転開始/終了や除霜運転開始条件の成立等といった動作切替や判断をする時刻、tdsは除霜運転を行っている時間である。   In FIG. 2, Ts is a set temperature for heating operation determined by the user, Tr and Tr ′ are room temperatures when the defrosting operation is finished (hereinafter, referred to as room temperature at the time of defrosting), ΔTd and ΔTd ′ are Temperature difference (ΔTd = Ts−Tr) between the set temperature Ts and the room temperature Tr at the end of defrosting, Tadd is an added temperature added to the set temperature Ts, Tt is a target temperature obtained by adding the added temperature Tadd to the set temperature Ts, and t1 to t5 is the time when operation switching and determination such as start / end of the defrosting operation and establishment of the defrosting operation start condition are performed, and tds is the time during which the defrosting operation is performed.

空気調和機1が暖房運転を行っているときに、時刻t1で除霜運転の開始条件が成立すれば、室外機制御手段200のCPU210は、暖房運転を中断して冷媒回路10を前述した除霜運転の状態に切り替えて除霜運転を開始する。そして、CPU210は、除霜運転中の時刻t2で除霜運転の終了条件が成立すれば、除霜運転を終了して冷媒回路10を暖房運転の状態に戻して暖房運転を再開する。   If the start condition of the defrosting operation is satisfied at time t1 when the air conditioner 1 is performing the heating operation, the CPU 210 of the outdoor unit control means 200 interrupts the heating operation and removes the refrigerant circuit 10 as described above. Switch to the frost operation state and start the defrost operation. Then, when the defrosting operation end condition is satisfied at time t2 during the defrosting operation, the CPU 210 ends the defrosting operation, returns the refrigerant circuit 10 to the heating operation state, and restarts the heating operation.

ここで、除霜運転開始条件とは、予め試験等を行って定められて室外機制御手段200の記憶部220に記憶されているものであり、室外熱交換器23での着霜量が暖房能力に支障をきたすレベルであることを示すものである。除霜運転開始条件の具体的な例としては、暖房運転時間(空気調和機1を暖房運転で起動した時刻、あるいは、除霜運転から暖房運転に復帰した時刻から暖房運転を継続している時間)が30分経過した後、熱交温度センサ75で検出した冷媒温度が外気温度センサ76で検出した外気温度よりも5℃以上低い状態が10分間継続した場合や、上記暖房運転時間が所定時間(例えば、180分)以上となった場合、等である。   Here, the defrosting operation start condition is determined in advance by performing a test or the like and stored in the storage unit 220 of the outdoor unit control means 200, and the amount of frost formation in the outdoor heat exchanger 23 is the heating amount. It shows that it is a level that interferes with ability. As a specific example of the defrosting operation start condition, the heating operation time (the time during which the heating operation is continued from the time when the air conditioner 1 is started in the heating operation or the time when the defrosting operation is returned to the heating operation) ) For 30 minutes, when the refrigerant temperature detected by the heat exchange temperature sensor 75 is lower by 5 ° C. or more than the outside air temperature detected by the outside air temperature sensor 76 for 10 minutes, or when the heating operation time is a predetermined time (For example, 180 minutes) or more.

また、除霜運転終了条件とは、予め試験等を行って定められて室外機制御手段200の記憶部220に記憶されているものであり、室外熱交換器23で発生した霜が全て融解したことを示すものである。この除霜運転終了条件の具体的な例としては、熱交温度センサ75で検出した冷媒温度が10℃以上となった場合や、除霜運転を所定時間(例えば、10分)継続した場合、等である。   The defrosting operation end condition is determined in advance through a test or the like and stored in the storage unit 220 of the outdoor unit control means 200, and all the frost generated in the outdoor heat exchanger 23 has melted. It shows that. As a specific example of this defrosting operation end condition, when the refrigerant temperature detected by the heat exchanger temperature sensor 75 is 10 ° C. or higher, or when the defrosting operation is continued for a predetermined time (for example, 10 minutes), Etc.

図2に示すように、暖房運転を行っているとき、つまり、時刻t1で除霜運転開始条件が成立するまでは、室温Tは設定温度Tsとなるように制御されている。時刻t1で除霜運転開始条件が成立すると、暖房運転が中断されて除霜運転が開始され、除霜運転終了条件が成立する時刻t2までの除霜運転時間tdsの間、除霜運転が行なわれる。そして、時刻t2で除霜運転終了条件が成立すると、除霜運転が終了となって暖房運転に復帰する。   As shown in FIG. 2, when the heating operation is performed, that is, until the defrosting operation start condition is satisfied at time t1, the room temperature T is controlled to become the set temperature Ts. When the defrosting operation start condition is satisfied at time t1, the heating operation is interrupted and the defrosting operation is started, and the defrosting operation is performed during the defrosting operation time tds until time t2 when the defrosting operation end condition is satisfied. It is. When the defrosting operation termination condition is satisfied at time t2, the defrosting operation is terminated and the heating operation is resumed.

除霜運転が開始された時刻t1から時間が経過するにつれて室温Tは低下し、除霜運転を終了した時刻t2では室温Tは設定温度Tsより温度差ΔTd低下した除霜終了時室温Trとなる。この後、再び除霜運転開始条件が成立し、暖房運転を中断して除霜運転を行う度に除霜終了後室温Trは上記と同じ設定温度Tsより温度差ΔTd低い温度まで低下する。   The room temperature T decreases as time elapses from the time t1 at which the defrosting operation is started, and at the time t2 at which the defrosting operation is completed, the room temperature T becomes the room temperature Tr at the end of the defrosting in which the temperature difference ΔTd is lower than the set temperature Ts. . Thereafter, the defrosting operation start condition is satisfied again, and whenever the heating operation is interrupted and the defrosting operation is performed, the room temperature Tr decreases to a temperature lower than the set temperature Ts as described above by a temperature difference ΔTd.

上述した温度差ΔTdは、空気調和機1の暖房運転時の周囲環境によって変化する。例えば、外気温度が低い場合や室内機3が設置された部屋の断熱性が低い場合には、温度差ΔTdが大きくなる。つまり、除霜運転中に室温Tが低下して使用者に不快感を与える恐れがある。これを防ぐために、例えば、前述した特許文献1に記載の空気調和機のように、除霜運転を開始する前に室温Tを設定温度より所定温度だけ高い温度まで上げてから除霜運転に移行することで、使用者が不快と感じる温度まで室温が低下することを抑えることが考えられる。しかし、外気温度が非常に低い(例:−5℃以下)場合や室内機3が設置された部屋の断熱性が非常に低い場合は、上記のように室温Tを上昇させても、除霜運転中に室温Tが大きく低下して使用者に不快感を与える恐れがある。   The temperature difference ΔTd described above varies depending on the surrounding environment during the heating operation of the air conditioner 1. For example, when the outside air temperature is low or the heat insulating property of the room where the indoor unit 3 is installed is low, the temperature difference ΔTd becomes large. That is, the room temperature T may be lowered during the defrosting operation, which may cause discomfort to the user. In order to prevent this, for example, like the air conditioner described in Patent Document 1 described above, before starting the defrosting operation, the room temperature T is raised to a temperature higher than the set temperature by a predetermined temperature and then the defrosting operation is performed. By doing so, it is conceivable to suppress the room temperature from decreasing to a temperature at which the user feels uncomfortable. However, when the outside air temperature is very low (eg, −5 ° C. or lower) or the heat insulating property of the room in which the indoor unit 3 is installed is very low, defrosting is possible even if the room temperature T is raised as described above. During operation, the room temperature T may be greatly reduced, which may cause discomfort to the user.

一方、外気温度が高い(例:10℃以上)場合や室内機3が設置された部屋の断熱性が高い場合等、除霜運転中に室温Tがさほど低下しない周囲環境である場合は、前述した外気温度が低い場合や室内機3が設置された部屋の断熱性が低い場合と比べて、暖房運転時の設定温度Tsが低く設定されている可能性が高い。このとき、上述した特許文献1に記載の空気調和機のように、除霜運転を開始する前に室温を設定温度より所定温度だけ高い温度まで上昇させると、使用者が暑く感じて不快感を覚える恐れがある。   On the other hand, when the ambient temperature is high (eg, 10 ° C. or higher) or when the room where the indoor unit 3 is installed has high thermal insulation, the ambient temperature where the room temperature T does not decrease so much during the defrosting operation is described above. There is a high possibility that the set temperature Ts during the heating operation is set to be lower than when the outside air temperature is low or when the thermal insulation of the room where the indoor unit 3 is installed is low. At this time, if the room temperature is raised to a temperature higher than the set temperature by a predetermined temperature before starting the defrosting operation as in the air conditioner described in Patent Document 1 described above, the user feels hot and feels uncomfortable. There is a fear to remember.

そこで、本発明の空気調和機1では、前回除霜運転を行った際の設定温度Tsと除霜終了時室温Trの温度差ΔTdを算出して記憶しておき、次の除霜運転時には、除霜運転に移行する前に先に算出した温度差ΔTdに応じた加算温度Taddを設定温度Tsに加えて目標温度Ttを求め、室温Tが目標温度Ttとなるように圧縮機21を制御する除霜前室温調整運転を実行する。そして、室温Tが目標温度Ttとなれば、暖房運転から除霜運転に移行する。   Therefore, in the air conditioner 1 of the present invention, the temperature difference ΔTd between the set temperature Ts at the previous defrosting operation and the room temperature Tr at the time of defrosting is calculated and stored, and at the next defrosting operation, Before shifting to the defrosting operation, the target temperature Tt is obtained by adding the added temperature Tadd corresponding to the previously calculated temperature difference ΔTd to the set temperature Ts, and the compressor 21 is controlled so that the room temperature T becomes the target temperature Tt. Perform the room temperature adjustment operation before defrosting. Then, when the room temperature T becomes the target temperature Tt, the heating operation is shifted to the defrosting operation.

ここで、温度差ΔTdに応じた加算温度Taddは、図3に示す加算温度テーブル300で定められている。この加算温度テーブル300は、予め試験等を行って定められて室外機制御手段200の記憶部220に記憶されているものである。具体的には、温度差ΔTdが2℃未満である場合は加算温度Taddは0℃とされている。温度差ΔTdが2℃以上4℃未満である場合は加算温度Taddは1℃とされている。温度差ΔTdが4℃以上6℃未満である場合は加算温度Taddは1.5℃とされている。温度差ΔTdが6℃以上8℃未満である場合は加算温度Taddは2℃とされている。温度差ΔTdが8℃以上10℃未満である場合は加算温度Taddは2.5℃とされている。そして、温度差ΔTdが10℃以上である場合は加算温度Taddは3℃とされている。つまり、加算温度テーブル300では、温度差ΔTdが大きくなるにつれて加算温度Taddが大きくなるように定められている。   Here, the addition temperature Tadd corresponding to the temperature difference ΔTd is determined in the addition temperature table 300 shown in FIG. This additional temperature table 300 is determined in advance by performing a test or the like and stored in the storage unit 220 of the outdoor unit control means 200. Specifically, when the temperature difference ΔTd is less than 2 ° C., the additional temperature Tadd is set to 0 ° C. When the temperature difference ΔTd is not less than 2 ° C. and less than 4 ° C., the addition temperature Tadd is set to 1 ° C. When the temperature difference ΔTd is not less than 4 ° C. and less than 6 ° C., the addition temperature Tadd is set to 1.5 ° C. When the temperature difference ΔTd is 6 ° C. or more and less than 8 ° C., the additional temperature Tadd is set to 2 ° C. When the temperature difference ΔTd is 8 ° C. or more and less than 10 ° C., the addition temperature Tadd is set to 2.5 ° C. When the temperature difference ΔTd is 10 ° C. or more, the additional temperature Tadd is 3 ° C. That is, in the addition temperature table 300, it is determined that the addition temperature Tadd increases as the temperature difference ΔTd increases.

例えば、図2において時刻t2で前回の除霜運転が終了して暖房運転に復帰し、時刻t3で再び除霜運転開始条件が成立したとする。このとき、時刻t3では前回の除霜運転時に求めて記憶されている温度差ΔTdを読み出し、後述する加算温度テーブル300を参照して読み出した温度差ΔTdに応じた加算温度Taddを抽出する。そして、現在の設定温度Tsに抽出した加算温度Taddを加えて目標温度Ttを求め、室温Tが目標温度Ttとなるように圧縮機21の回転数を上昇させる。そして、時刻t4で室温Tが目標温度Ttに到達すれば、暖房運転が停止されて除霜運転が開始される。尚、詳細な説明は省略するが、上記圧縮機21の回転数上昇に応じて、室外ファン24の回転数や膨張弁27の開度も適宜調整される。   For example, in FIG. 2, it is assumed that the previous defrosting operation ends at time t2 and returns to the heating operation, and the defrosting operation start condition is satisfied again at time t3. At this time, the temperature difference ΔTd obtained and stored at the time of the previous defrosting operation is read at time t3, and the additional temperature Tadd corresponding to the read temperature difference ΔTd is extracted with reference to the additional temperature table 300 described later. Then, the target temperature Tt is determined by adding the extracted temperature Tadd to the current set temperature Ts, and the rotational speed of the compressor 21 is increased so that the room temperature T becomes the target temperature Tt. When the room temperature T reaches the target temperature Tt at time t4, the heating operation is stopped and the defrosting operation is started. Although a detailed description is omitted, the rotational speed of the outdoor fan 24 and the opening degree of the expansion valve 27 are adjusted as appropriate according to the increase in the rotational speed of the compressor 21.

つまり、前回の温度差ΔTdが大きかった場合は加算温度Taddも大きくなって目標温度Ttと設定温度Tsの差が大きくなる。このとき上述した除霜前室温調整運転を実行すれば、例えば、時刻t5で除霜運転終了条件が成立して除霜運転を終了した時の除霜終了時室温Tr’は、前回の除霜運転時の除霜終了時室温Trより高くなって、設定温度Tsと除霜終了時室温Tr’の温度差ΔTd’も前回の温度差ΔTdより小さくなる。つまり、除霜運転中に室温Tが低下しても設定温度Tsとの温度差が小さくなって、使用者の快適性が向上する。   That is, when the previous temperature difference ΔTd is large, the additional temperature Tadd is also increased, and the difference between the target temperature Tt and the set temperature Ts is increased. If the room temperature adjustment operation before defrosting described above is executed at this time, for example, the room temperature Tr ′ at the end of defrosting when the defrosting operation end condition is satisfied and the defrosting operation is ended at time t5 is the previous defrosting. The temperature becomes higher than the room temperature Tr at the end of defrosting during operation, and the temperature difference ΔTd ′ between the set temperature Ts and the room temperature Tr ′ at the end of defrosting is also smaller than the previous temperature difference ΔTd. That is, even if the room temperature T decreases during the defrosting operation, the temperature difference from the set temperature Ts is reduced, and the user's comfort is improved.

また、前回の温度差ΔTdが小さかった場合は加算温度Taddも小さくなって目標温度Ttと設定温度Tsの差が小さくなる。このとき上述した除霜前室温調整運転を実行しても、除霜運転開始前の室温T(例えば、時刻t4での室温T)は、本来の設定温度Tsよりさほど高い温度となっていない。つまり、除霜運転前に室温Tが過剰に高くなることはなく、使用者が暑さを感じて不快を覚えることがない。   When the previous temperature difference ΔTd is small, the additional temperature Tadd is also small, and the difference between the target temperature Tt and the set temperature Ts is small. At this time, even if the room temperature adjustment operation before defrosting described above is executed, the room temperature T before the start of the defrosting operation (for example, room temperature T at time t4) is not much higher than the original set temperature Ts. That is, the room temperature T is not excessively increased before the defrosting operation, and the user does not feel the heat and feel uncomfortable.

次に、図4を用いて、空気調和機1が暖房運転中に除霜運転を行うときの制御について説明する。図4は、空気調和機1が暖房運転中に除霜運転を行う際の室外機制御手段200のCPU210が行う処理の流れを示すものである。図4において、STは処理のステップを表し、これに続く数字はステップ番号を表している。尚、図4では、本発明に関わる処理を中心に説明しており、これ以外の処理、例えば、冷媒回路10の圧力や温度に関わる制御といった空気調和機1の一般的な制御に関わる処理については説明を省略する。   Next, the control when the air conditioner 1 performs the defrosting operation during the heating operation will be described with reference to FIG. FIG. 4 shows the flow of processing performed by the CPU 210 of the outdoor unit control means 200 when the air conditioner 1 performs the defrosting operation during the heating operation. In FIG. 4, ST represents a process step, and the number following this represents a step number. In FIG. 4, processing related to the present invention is mainly described, and processing other than this, for example, processing related to general control of the air conditioner 1 such as control related to the pressure and temperature of the refrigerant circuit 10 is described. Will not be described.

暖房運転を開始すると、まず、CPU210は、使用者が図示しないリモコン等を用いて設定した設定温度Tsを通信部230を介して取り込んで記憶部220に記憶する。そして、CPU210は、フラグFを0とする(ST1)。このフラグFは、空気調和機1が暖房運転を開始してから除霜運転を初めて行うか否かを判断するためのものであり、フラグF=0であれば暖房運転開始後に初めて除霜運転を行うことを示し、フラグF=1であれば既に除霜運転を行っていることを示す。   When the heating operation is started, first, the CPU 210 takes in the set temperature Ts set by the user using a remote controller (not shown) via the communication unit 230 and stores it in the storage unit 220. Then, the CPU 210 sets the flag F to 0 (ST1). This flag F is for determining whether or not the defrosting operation is performed for the first time after the air conditioner 1 starts the heating operation. If the flag F = 0, the defrosting operation is performed for the first time after the heating operation is started. The flag F = 1 indicates that the defrosting operation has already been performed.

次に、CPU210は、除霜運転開始条件が成立しているか否かを判断する(ST2)。前述したように、除霜運転開始条件とは、予め試験等を行って定められて室外機制御手段200の記憶部220に記憶されているものであり、室外熱交換器23での着霜量が暖房能力に支障をきたすレベルであることを示すものである。   Next, CPU 210 determines whether or not a defrosting operation start condition is satisfied (ST2). As described above, the defrosting operation start condition is determined in advance by performing a test or the like and stored in the storage unit 220 of the outdoor unit control means 200. The amount of frost formation in the outdoor heat exchanger 23 is as follows. Indicates that the heating capacity is disturbed.

ST2において、除霜運転開始条件が成立していなければ(ST2−No)、CPU210は、暖房運転を継続し(ST14)、ST2に処理を戻す。除霜運転開始条件が成立していれば(ST2−Yes)、CPU210は、フラグFが1であるか否かを判断する(ST3)。   In ST2, if the defrosting operation start condition is not satisfied (ST2-No), CPU 210 continues the heating operation (ST14), and returns the process to ST2. If the defrosting operation start condition is satisfied (ST2-Yes), CPU 210 determines whether flag F is 1 (ST3).

フラグFが1でなければ(ST3−No)、CPU210は、暖房運転開始後に初めて除霜運転を行うと判断し、ST8に処理を進めて後述する除霜運転の準備処理を行う。フラグFが1であれば(ST3−Yes)、CPU210は、加算温度Taddを抽出する(ST4)。具体的には、前回の除霜運転時に算出した温度差ΔTd(後述するST11の処理時に算出)を記憶部220から読み出し、同じく記憶部220に記憶している加算温度テーブル300を参照して、読み出した温度差ΔTdに応じた加算温度Taddを抽出する。   If the flag F is not 1 (ST3-No), the CPU 210 determines that the defrosting operation is performed for the first time after the start of the heating operation, and proceeds to ST8 to perform a defrosting operation preparation process described later. If the flag F is 1 (ST3-Yes), the CPU 210 extracts the addition temperature Tadd (ST4). Specifically, the temperature difference ΔTd calculated at the previous defrosting operation (calculated at the time of processing of ST11 described later) is read from the storage unit 220, and referring to the addition temperature table 300 that is also stored in the storage unit 220, An additional temperature Tadd corresponding to the read temperature difference ΔTd is extracted.

次に、CPU210は、設定温度TsにST4で抽出した加算温度Taddを加えて目標温度Ttを算出する(ST5)そして、CPU210は、室温TがST5で算出した目標温度Ttとなるように、圧縮機21の回転数を制御する(ST6)。具体的には、室温Tを目標温度Ttまで上昇させるために、室温Tと目標温度Ttの温度差に応じた分、圧縮機21の回転数を上昇させる。   Next, the CPU 210 calculates the target temperature Tt by adding the added temperature Tadd extracted in ST4 to the set temperature Ts (ST5). Then, the CPU 210 compresses the room temperature T so as to become the target temperature Tt calculated in ST5. The rotational speed of the machine 21 is controlled (ST6). Specifically, in order to raise the room temperature T to the target temperature Tt, the rotation speed of the compressor 21 is increased by an amount corresponding to the temperature difference between the room temperature T and the target temperature Tt.

次に、CPU210は、室温Tが目標温度Ttに到達したか否かを判断する(ST7)。室温Tが目標温度Ttに到達していなければ(ST7−No)、CPU210は、ST6に処理を戻す。室温Tが目標温度Ttに到達していれば(ST7−Yes)、CPU210は、ST8に処理を進める。
尚、以上説明したST4〜ST7までの処理が、本発明の除霜前室温調整運転に関わる処理である。
Next, CPU 210 determines whether or not room temperature T has reached target temperature Tt (ST7). If the room temperature T has not reached the target temperature Tt (ST7-No), the CPU 210 returns the process to ST6. If the room temperature T has reached the target temperature Tt (ST7-Yes), the CPU 210 advances the process to ST8.
The processes from ST4 to ST7 described above are processes related to the room temperature adjustment operation before defrosting of the present invention.

ST8において、CPU210は、除霜運転準備処理を実行する。ここで、除霜運転準備処理とは、冷媒回路10を前述した暖房運転の状態から除霜運転の状態に切り替える処理を示す。具体的には、CPU210は、圧縮機21および室外ファン24を停止し、四方弁22を切り替えて冷媒回路10を除霜運転の状態とする。   In ST8, the CPU 210 executes a defrosting operation preparation process. Here, the defrosting operation preparation process refers to a process of switching the refrigerant circuit 10 from the heating operation state described above to the defrosting operation state. Specifically, the CPU 210 stops the compressor 21 and the outdoor fan 24 and switches the four-way valve 22 to place the refrigerant circuit 10 in the defrosting operation state.

次に、CPU210は、圧縮機21を所定回転数で起動して(ST9)、除霜運転を開始する。また、室外ファン24は、除霜運転中は停止している。これにより、圧縮機21から吐出された高温の冷媒が室外熱交換器23に流入して室外熱交換器23に発生した霜を融かす。尚、圧縮機21の所定回転数としては、室外熱交換器23に発生した霜を早く融かすために、できる限り高い回転数(例えば、90rps)であることが望ましい。   Next, the CPU 210 starts the compressor 21 at a predetermined rotation speed (ST9), and starts the defrosting operation. The outdoor fan 24 is stopped during the defrosting operation. As a result, the high-temperature refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 23 and melts the frost generated in the outdoor heat exchanger 23. The predetermined rotation speed of the compressor 21 is preferably as high as possible (for example, 90 rps) in order to quickly melt the frost generated in the outdoor heat exchanger 23.

次に、CPU210は、除霜運転終了条件が成立したか否かを判断する(ST10)。前述したように、除霜運転終了条件とは、予め試験等を行って定められて室外機制御手段200の記憶部220に記憶されているものであり、室外熱交換器23で発生した霜が全て融解したことを示すものである。   Next, CPU 210 determines whether or not the defrosting operation end condition is satisfied (ST10). As described above, the defrosting operation end condition is determined in advance by performing a test or the like and stored in the storage unit 220 of the outdoor unit control means 200, and frost generated in the outdoor heat exchanger 23 is generated. All indicate melting.

除霜運転終了条件が成立していなければ(ST10−No)、CPU210は、ST9に処理を戻して除霜運転を継続する。除霜運転終了条件が成立していれば(ST10−Yes)、CPU210は、除霜終了時室温Trを取り込んで温度差ΔTdを算出する(ST11)。具体的には、CPU210は、室内機3の室温センサ79で検出した除霜運転終了条件が成立した時刻の室温Tを通信部230を介して取り込んでこれを除霜終了時室温Trとし、記憶部220に記憶している設定温度Tsから除霜終了時室温Trを減じて温度差ΔTdを算出する。尚、CPU210は、算出した温度差ΔTdを記憶部220に記憶し、前述したST4の処理で加算温度Taddを抽出する際にこの温度差ΔTdを用いる。   If the defrosting operation end condition is not satisfied (ST10-No), the CPU 210 returns the process to ST9 and continues the defrosting operation. If the defrosting operation end condition is satisfied (ST10-Yes), the CPU 210 takes in the room temperature Tr at the end of the defrosting and calculates the temperature difference ΔTd (ST11). Specifically, the CPU 210 takes in the room temperature T at the time when the defrosting operation end condition detected by the room temperature sensor 79 of the indoor unit 3 is established through the communication unit 230 and sets it as the room temperature Tr at the end of the defrosting operation. The temperature difference ΔTd is calculated by subtracting the room temperature Tr at the end of the defrosting from the set temperature Ts stored in the unit 220. The CPU 210 stores the calculated temperature difference ΔTd in the storage unit 220, and uses this temperature difference ΔTd when extracting the added temperature Tadd in the process of ST4 described above.

次に、CPU210は、暖房運転の再開処理を実行する(ST12)。ここで、運転再開処理とは、冷媒回路10を除霜運転の状態から暖房運転の状態に切り替える処理を指す。具体的には、CPU210は、圧縮機21を停止し四方弁22を切り替えて、冷媒回路10を暖房運転の状態とする。   Next, the CPU 210 executes a heating operation restart process (ST12). Here, the operation restart process refers to a process of switching the refrigerant circuit 10 from the defrosting operation state to the heating operation state. Specifically, the CPU 210 stops the compressor 21 and switches the four-way valve 22 to place the refrigerant circuit 10 in the heating operation state.

ST12の処理を終えたCPU210は、暖房運転を再開するとともにフラグFを1として(ST13)、ST2に処理を戻す。   CPU210 which finished the process of ST12 restarts heating operation, sets flag F to 1 (ST13), and returns a process to ST2.

以上説明したように、本実施形態の空気調和機1では、暖房運転中に除霜運転を行うときに、前回の除霜運転時に設定温度Tsと除霜終了時室温Trの温度差ΔTdを算出してこれを記憶しておき、次の除霜運転時に記憶している温度差ΔTdに応じた加算温度Taddを設定温度Tsに加えた目標温度Ttを算出する。そして、除霜前室温調整運転を行って室温Tを目標温度Ttまで上昇させてから除霜運転に移行する。これにより、除霜運転中に室温Tが大きく低下して使用者が寒さを感じる、あるいは、除霜前室温調整運転で室温Tが大きく上昇して使用者が暑さを感じる、といった不快感を抑制することができ、除霜運転時に使用者の快適性を損なわないようにできる。   As described above, in the air conditioner 1 of the present embodiment, when performing the defrosting operation during the heating operation, the temperature difference ΔTd between the set temperature Ts and the room temperature Tr at the end of the defrosting is calculated during the previous defrosting operation. This is stored in advance, and a target temperature Tt is calculated by adding an additional temperature Tadd corresponding to the temperature difference ΔTd stored during the next defrosting operation to the set temperature Ts. Then, after the room temperature adjustment operation before defrosting is performed and the room temperature T is raised to the target temperature Tt, the operation proceeds to the defrosting operation. Thereby, during the defrosting operation, the room temperature T greatly decreases and the user feels cold, or the room temperature T increases greatly during the defrosting room temperature adjustment operation, and the user feels hot. It can suppress, and it can avoid impairing a user's comfort at the time of a defrost driving | operation.

尚、以上説明した実施形態では、温度差ΔTdは設定温度Tsから除霜終了時室温Trを減じて求めたものを用いているが、これに代えて、除霜運転を開始する直前の室温(例えば、図2における時刻t1や時刻t4における室温T)から除霜終了時室温Trを減じて求めた温度差を用いてもよい。また、図3の加算温度テーブル300に示すように、温度差ΔTdが10℃以上である場合は加算温度Taddを3.0℃としている、つまり、加算温度Taddに上限値を設けている。これにより、除霜前室温調整運転を行うことによって室温Tが上昇しても最大で設定温度Ts+3.0℃までしか室温Tが上昇しないので、室温Tの過剰な上昇を抑えて使用者の不快感を軽減できる。   In the embodiment described above, the temperature difference ΔTd is obtained by subtracting the room temperature Tr at the end of defrosting from the set temperature Ts, but instead of this, the room temperature immediately before starting the defrosting operation ( For example, the temperature difference obtained by subtracting the room temperature Tr at the end of defrosting from the room temperature T at time t1 or time t4 in FIG. 2 may be used. As shown in the addition temperature table 300 of FIG. 3, when the temperature difference ΔTd is 10 ° C. or more, the addition temperature Tadd is set to 3.0 ° C. That is, an upper limit value is provided for the addition temperature Tadd. Thereby, even if the room temperature T rises by performing the room temperature adjustment operation before defrosting, the room temperature T only rises up to the set temperature Ts + 3.0 ° C. at the maximum. Pleasure can be reduced.

次に、本発明の空気調和機の第2の実施形態について、図5を用いて説明する。本実施形態における空気調和機は、第1の実施形態における空気調和機1で室外機制御手段200の記憶部220に記憶されている加算温度テーブル300に代えて、図5に示す加算温度テーブル400が記憶されており、この加算温度テーブル400を用いて加算温度Taddを決定している。尚、上記以外の空気調和機1の構成や、除霜前室温調整運転を含めた除霜運転時の処理については、第1の実施形態と同じであるため詳細な説明を省略する。   Next, 2nd Embodiment of the air conditioner of this invention is described using FIG. The air conditioner according to the present embodiment is an air conditioner 1 according to the first embodiment, and instead of the addition temperature table 300 stored in the storage unit 220 of the outdoor unit control means 200, the addition temperature table 400 shown in FIG. Is stored, and the addition temperature Tadd is determined using the addition temperature table 400. In addition, about the structure of the air conditioner 1 other than the above and the process at the time of defrost operation including room temperature adjustment operation before defrost, since it is the same as that of 1st Embodiment, detailed description is abbreviate | omitted.

図5に示す加算温度テーブル400は、予め試験等を行って定められて室外機制御手段200の記憶部220に記憶されているものである。この加算温度テーブル400は、第1の実施形態における加算温度テーブル300が、設定温度Tsと除霜終了時室温Trの温度差ΔTdに応じて加算温度Taddが定められているのに対して、設定温度Tsと除霜終了時室温Trの温度差を除霜時間tdsで除して算出する温度変化率ΔTcに応じて加算温度Taddが定められている。尚、温度変化率ΔTcの単位は、例えば、分母の除霜時間tdsを秒で表すと℃/秒となる。以降、本実施形態ではこの単位を使用する。   The added temperature table 400 shown in FIG. 5 is determined in advance by performing a test or the like and stored in the storage unit 220 of the outdoor unit control means 200. This addition temperature table 400 is set in contrast to the addition temperature table 300 in the first embodiment, where the addition temperature Tadd is determined according to the temperature difference ΔTd between the set temperature Ts and the room temperature Tr at the end of defrosting. The additional temperature Tadd is determined according to the temperature change rate ΔTc calculated by dividing the temperature difference between the temperature Ts and the room temperature Tr at the end of the defrosting by the defrosting time tds. The unit of the temperature change rate ΔTc is, for example, ° C./second when the defrosting time tds of the denominator is expressed in seconds. Hereinafter, this unit is used in the present embodiment.

具体的には、温度変化率ΔTcが0.1℃/秒未満である場合は加算温度Taddは0℃とされている。温度変化率ΔTcが0.1℃/秒以上0.2℃/秒未満である場合は加算温度Taddは1℃とされている。温度変化率ΔTcが0.2℃/秒以上0.3℃/秒未満である場合は加算温度Taddは1.5℃とされている。温度変化率ΔTcが0.3℃/秒以上0.4℃/秒未満である場合は加算温度Taddは2℃とされている。温度変化率ΔTcが0.4℃/秒以上0.5℃/秒未満である場合は加算温度Taddは2.5℃とされている。そして、温度変化率ΔTcが0.5℃/秒以上である場合は加算温度Taddは3℃とされている。つまり、加算温度テーブル400では、温度変化率ΔTcが大きくなるにつれて加算温度Taddも大きくなるように定められている。   Specifically, when the temperature change rate ΔTc is less than 0.1 ° C./second, the additional temperature Tadd is set to 0 ° C. When the temperature change rate ΔTc is 0.1 ° C./second or more and less than 0.2 ° C./second, the addition temperature Tadd is set to 1 ° C. When the temperature change rate ΔTc is 0.2 ° C./second or more and less than 0.3 ° C./second, the addition temperature Tadd is set to 1.5 ° C. When the temperature change rate ΔTc is 0.3 ° C./second or more and less than 0.4 ° C./second, the addition temperature Tadd is set to 2 ° C. When the temperature change rate ΔTc is 0.4 ° C./second or more and less than 0.5 ° C./second, the addition temperature Tadd is set to 2.5 ° C. When the temperature change rate ΔTc is 0.5 ° C./second or more, the addition temperature Tadd is 3 ° C. That is, in the addition temperature table 400, it is determined that the addition temperature Tadd increases as the temperature change rate ΔTc increases.

本実施形態の空気調和機が除霜運転を行うときは、第1の実施形態で説明した図4に示す処理のうち、ST11の処理が第1の実施形態と異なる処理となる。つまり、図4のST10で除霜運転終了条件が成立していれば(ST10−Yes)、CPU210は、除霜終了時室温Trを取り込んで設定温度Tsとの温度差を算出するとともに、除霜運転を開始した時刻(例えば、図2の時刻t1)と除霜運転を終了した時刻(例えば、図2の時刻t2)を用いて、除霜運転時間tdsを算出する。そして、CPU210は、除霜終了時室温Trを取り込んで設定温度Tsとの温度差(=Ts−Tr)を除霜運転時間tds(=時刻t2−時刻t1)で除して温度変化率ΔTcを求め、求めた温度変化率ΔTcを記憶部220に記憶する。   When the air conditioner of the present embodiment performs the defrosting operation, among the processes shown in FIG. 4 described in the first embodiment, the process of ST11 is a process different from the first embodiment. That is, if the defrosting operation termination condition is satisfied in ST10 of FIG. 4 (ST10-Yes), the CPU 210 takes in the room temperature Tr at the time of defrosting and calculates the temperature difference from the set temperature Ts, and also defrosts. The defrosting operation time tds is calculated using the time when the operation is started (for example, time t1 in FIG. 2) and the time when the defrosting operation is completed (for example, time t2 in FIG. 2). Then, the CPU 210 takes in the room temperature Tr at the end of the defrosting and divides the temperature difference (= Ts−Tr) from the set temperature Ts by the defrosting operation time tds (= time t2−time t1) to obtain the temperature change rate ΔTc. The obtained temperature change rate ΔTc is stored in the storage unit 220.

そして、次に除霜運転を行う際に、CPU210は、図4のST4において、記憶部220から読み出した温度変化率ΔTcを用い、同じく記憶部220に記憶している加算温度テーブル400を参照して、読み出した温度変化率ΔTcに応じた加算温度Taddを抽出する。   When performing the defrosting operation next time, the CPU 210 uses the temperature change rate ΔTc read from the storage unit 220 in ST4 of FIG. 4 and refers to the addition temperature table 400 that is also stored in the storage unit 220. Thus, the additional temperature Tadd corresponding to the read temperature change rate ΔTc is extracted.

以上説明したように、本実施形態の空気調和機では、暖房運転中に除霜運転を行うときに、前回の除霜運転時に室温Tの時間変化を示す温度変化率ΔTcを算出してこれを記憶しておき、次の除霜運転時に記憶している温度変化率ΔTcに応じた加算温度Taddを設定温度Tsに加えた目標温度Ttを算出する。そして、除霜前室温調整運転を行って室温Tを目標温度Ttまで上昇させてから除霜運転に移行する。これにより、除霜運転中に設定温度Tsと室温Tの温度差が大きくなって使用者が寒さを感じる、あるいは、除霜前室温調整運転で室温Tが大きく上昇して使用者が暑さを感じる、といった不快感を抑制することができ、除霜運転時に使用者の快適性を損なわないようにできる。   As described above, in the air conditioner of the present embodiment, when performing the defrosting operation during the heating operation, the temperature change rate ΔTc indicating the time change of the room temperature T during the previous defrosting operation is calculated and this is calculated. The target temperature Tt is calculated by adding the added temperature Tadd corresponding to the temperature change rate ΔTc stored in the next defrosting operation to the set temperature Ts. Then, after the room temperature adjustment operation before defrosting is performed and the room temperature T is raised to the target temperature Tt, the operation proceeds to the defrosting operation. As a result, the temperature difference between the set temperature Ts and the room temperature T increases during the defrosting operation, and the user feels cold, or the room temperature T greatly increases during the room temperature adjustment operation before the defrosting, and the user gets hot. Uncomfortable feeling such as feeling can be suppressed, and the comfort of the user can be prevented from being impaired during the defrosting operation.

尚、図4の加算温度テーブル400に示すように、温度変化率ΔTcが0.5/秒以上である場合は加算温度Taddを3.0℃としている、つまり、加算温度Taddに上限値を設けている。これにより、除霜前室温調整運転を行うことによって室温Tが上昇しても最大で設定温度Ts+3.0℃までしか室温Tが上昇しないので、室温Tの過剰な上昇を抑えて使用者の不快感を軽減できる。   As shown in the addition temperature table 400 of FIG. 4, when the temperature change rate ΔTc is 0.5 / second or more, the addition temperature Tadd is set to 3.0 ° C. That is, an upper limit value is provided for the addition temperature Tadd. ing. Thereby, even if the room temperature T rises by performing the room temperature adjustment operation before defrosting, the room temperature T only rises up to the set temperature Ts + 3.0 ° C. at the maximum. Pleasure can be reduced.

以上説明した各実施形態において、除霜前室温調整運転の実施中は、使用者に直接温風が当たらないように風向板を操作してもよい。除霜前室温調整運転では、室温Tを使用者が設定温度Tsより高い温度である目標温度Ttまで上昇させるため、除霜前室温調整運転中に使用者に温風が直接当たると使用者が不快に感じる恐れがあるが、直接温風が当たらないように風向板を操作すれば、使用者の不快感を軽減できる。   In each embodiment described above, the wind direction plate may be operated so that warm air does not directly hit the user during the room temperature adjustment operation before defrosting. In the room temperature adjustment operation before defrosting, the user raises the room temperature T to the target temperature Tt that is higher than the set temperature Ts. Although the user may feel uncomfortable, the user's discomfort can be reduced by operating the wind direction plate so that the hot air is not directly hit.

また、除霜前室温調整運転の実施中は、室内機3の表示部や図示しないリモコンの表示部に、「除霜前室温調整運転を実施中」と表示してもよい。これにより、除霜前室温調整運転で室温Tが上昇したことに気付いた使用者が、設定温度Tsを低くすることを抑制できる。   Further, during the execution of the room temperature adjustment operation before defrosting, “the room temperature adjustment operation before defrosting is being executed” may be displayed on the display unit of the indoor unit 3 or the display unit of a remote controller (not shown). Thereby, it can suppress that the user who noticed that room temperature T rose by the room temperature adjustment operation before defrosting makes setting temperature Ts low.

1 空気調和機
2 室外機
3 室内機
10 冷媒回路
21 圧縮機
22 四方弁
23 室外熱交換器
31 室内熱交換器
79 室温センサ
200 室外機制御手段
210 CPU
220 記憶部
300、400 加算温度テーブル
T (現在の)室温
Tr、Tr’ 除霜終了時室温
Ts 基準設定温度
Tt 目標設定温度
Tadd 加算温度
ΔTd、ΔTd’ 温度差
ΔTc 温度変化率
tds 除霜時間
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 Indoor unit 10 Refrigerant circuit 21 Compressor 22 Four-way valve 23 Outdoor heat exchanger 31 Indoor heat exchanger 79 Room temperature sensor 200 Outdoor unit control means 210 CPU
220 Storage unit 300, 400 Addition temperature table T (current) room temperature Tr, Tr ′ Room temperature at the end of defrosting Ts Reference set temperature Tt Target set temperature Tadd Addition temperature ΔTd, ΔTd ′ Temperature difference ΔTc Temperature change rate tds Defrosting time

Claims (2)

暖房運転時に、圧縮機、室内熱交換器、室外熱交換器の順で冷媒が循環する冷媒回路と、
前記室外熱交換器に送風する室外ファンと、
室温を検出する室温検出手段と、
前記冷媒回路に備えられて前記圧縮機から吐出された冷媒の流れ方向を切り替える流路切替手段と、
除霜運転時に、前記室外ファンを停止させるとともに、前記圧縮機から吐出された冷媒を前記室外熱交換器に向かうよう前記流路切替手段を切り替える制御手段と、
を有する空気調和機であって、
前記制御手段は、暖房運転を開始した後、
前記室外熱交換器で霜が発生したことを検知すれば、前記室外熱交換器の除霜運転を実行し、当該除霜運転を行う毎に、除霜運転が終了した時刻での室温である除霜終了時室温を前記室温検出手段から取り込み、暖房運転時の設定温度あるいは前記除霜運転開始前の前記暖房運転時の室温と、取り込んだ除霜終了時室温の温度差を算出して記憶し、
2回目の除霜運転以降については、前回除霜運転を行った際に記憶した温度差に応じた加算温度を前記設定温度に加算して目標温度を設定し、除霜運転開始前の室温が前記目標温度となるように前記圧縮機を制御する除霜前室温調整運転を実行し、
前記除霜前室温調整運転を行っているときに前記除霜運転開始前の室温が前記目標温度に到達すれば、前記除霜運転を開始する、
ことを特徴とする空気調和機。
A refrigerant circuit in which refrigerant circulates in the order of a compressor, an indoor heat exchanger, and an outdoor heat exchanger during heating operation;
An outdoor fan that blows air to the outdoor heat exchanger;
Room temperature detection means for detecting room temperature;
A flow path switching means that is provided in the refrigerant circuit and switches a flow direction of the refrigerant discharged from the compressor;
Control means for switching the flow path switching means so that the outdoor fan is stopped and the refrigerant discharged from the compressor is directed to the outdoor heat exchanger during the defrosting operation;
An air conditioner having
The control means, after starting the heating operation,
When it is detected that frost is generated in the outdoor heat exchanger, the room temperature at the time when the defrosting operation is completed is performed each time the defrosting operation of the outdoor heat exchanger is performed and the defrosting operation is performed. The room temperature at the end of defrosting is taken in from the room temperature detecting means, and the temperature difference between the set temperature at the time of heating operation or the room temperature at the time of heating operation before the start of the defrosting operation and the room temperature at the time of completion of the defrosting taken in is calculated and stored. And
After the second defrosting operation, the target temperature is set by adding the added temperature corresponding to the temperature difference stored when the previous defrosting operation was performed to the set temperature, and the room temperature before the start of the defrosting operation is Performing a room temperature adjustment operation before defrosting to control the compressor to the target temperature,
If the room temperature before starting the defrosting operation reaches the target temperature when performing the room temperature adjustment operation before defrosting, the defrosting operation is started.
An air conditioner characterized by that.
前記制御手段が前記除霜前室温調整運転を実行するとき、
前記温度差を、前記除霜運転を行っている時間である除霜時間で除した温度変化率に応じた加算温度を前記設定温度に加算して目標温度を設定する、
ことを特徴とする請求項1に記載の空気調和機。
When the control means executes the room temperature adjustment operation before defrosting,
A target temperature is set by adding an additional temperature corresponding to a temperature change rate obtained by dividing the temperature difference by a defrosting time, which is a time during which the defrosting operation is performed, to the set temperature;
The air conditioner according to claim 1.
JP2016204760A 2016-10-19 2016-10-19 Air conditioner Pending JP2018066502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016204760A JP2018066502A (en) 2016-10-19 2016-10-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016204760A JP2018066502A (en) 2016-10-19 2016-10-19 Air conditioner

Publications (1)

Publication Number Publication Date
JP2018066502A true JP2018066502A (en) 2018-04-26

Family

ID=62085987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016204760A Pending JP2018066502A (en) 2016-10-19 2016-10-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP2018066502A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109612034A (en) * 2018-11-30 2019-04-12 广东美的制冷设备有限公司 Temprature control method, device and storage medium
CN109916000A (en) * 2019-03-20 2019-06-21 珠海格力电器股份有限公司 Defrosting control method and device for air conditioner, air conditioner and storage medium
WO2019198277A1 (en) * 2018-04-11 2019-10-17 シャープ株式会社 Air conditioning system
CN110470016A (en) * 2019-08-03 2019-11-19 青岛海尔空调器有限总公司 Control method and device, air-conditioning for air-conditioner defrosting
WO2019233069A1 (en) * 2018-06-06 2019-12-12 青岛海尔空调器有限总公司 Defrosting control method and apparatus for air conditioner, and storage medium
CN111076363A (en) * 2019-12-24 2020-04-28 珠海格力电器股份有限公司 Control method and device of air conditioner, air conditioning system, storage medium and processor
JP2021162183A (en) * 2020-03-30 2021-10-11 株式会社富士通ゼネラル Air conditioner
CN114294786A (en) * 2021-12-31 2022-04-08 上海儒竞智控技术有限公司 Optimization method, system, medium and terminal for defrosting entry conditions of air conditioner
CN115307273A (en) * 2022-08-16 2022-11-08 珠海格力电器股份有限公司 Defrosting control method and device based on fuzzy algorithm, air conditioner and storage medium
JP7579771B2 (en) 2021-11-19 2024-11-08 株式会社コロナ Air Conditioning System

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219266B2 (en) 2018-04-11 2023-02-07 シャープ株式会社 air conditioning system
CN112041619A (en) * 2018-04-11 2020-12-04 夏普株式会社 Air conditioning system
WO2019198277A1 (en) * 2018-04-11 2019-10-17 シャープ株式会社 Air conditioning system
JPWO2019198277A1 (en) * 2018-04-11 2021-04-15 シャープ株式会社 Air conditioning system
WO2019233069A1 (en) * 2018-06-06 2019-12-12 青岛海尔空调器有限总公司 Defrosting control method and apparatus for air conditioner, and storage medium
CN109612034A (en) * 2018-11-30 2019-04-12 广东美的制冷设备有限公司 Temprature control method, device and storage medium
CN109916000B (en) * 2019-03-20 2020-04-28 珠海格力电器股份有限公司 Defrosting control method and device for air conditioner, air conditioner and storage medium
CN109916000A (en) * 2019-03-20 2019-06-21 珠海格力电器股份有限公司 Defrosting control method and device for air conditioner, air conditioner and storage medium
CN110470016A (en) * 2019-08-03 2019-11-19 青岛海尔空调器有限总公司 Control method and device, air-conditioning for air-conditioner defrosting
CN111076363A (en) * 2019-12-24 2020-04-28 珠海格力电器股份有限公司 Control method and device of air conditioner, air conditioning system, storage medium and processor
JP2021162183A (en) * 2020-03-30 2021-10-11 株式会社富士通ゼネラル Air conditioner
JP7443887B2 (en) 2020-03-30 2024-03-06 株式会社富士通ゼネラル air conditioner
JP7579771B2 (en) 2021-11-19 2024-11-08 株式会社コロナ Air Conditioning System
CN114294786A (en) * 2021-12-31 2022-04-08 上海儒竞智控技术有限公司 Optimization method, system, medium and terminal for defrosting entry conditions of air conditioner
CN114294786B (en) * 2021-12-31 2023-03-14 上海儒竞智控技术有限公司 Optimization method, system, medium and terminal for defrosting entry conditions of air conditioner
CN115307273A (en) * 2022-08-16 2022-11-08 珠海格力电器股份有限公司 Defrosting control method and device based on fuzzy algorithm, air conditioner and storage medium

Similar Documents

Publication Publication Date Title
JP2018066502A (en) Air conditioner
JP5549773B1 (en) Air conditioner
JP5574028B1 (en) Air conditioner
JP5549771B1 (en) Air conditioner
JP5590195B1 (en) Air conditioner
JP6528623B2 (en) Air conditioner
KR20110095361A (en) Air conditioning device
JP2019078411A (en) Air conditioner
JP6870382B2 (en) Air conditioner
JP6135638B2 (en) Air conditioner
JP2017122557A (en) Air conditioner
JP6610287B2 (en) Air conditioner
JP6834616B2 (en) Air conditioner
JP2017067301A (en) Air conditioning device
JP2019116993A (en) Air conditioner
JP2018048752A (en) Air conditioner
JP2012083011A (en) Air conditioner
JP6965736B2 (en) Air conditioner
JP7009808B2 (en) Air conditioner
JP2018013301A (en) Air conditioner
JP2019138599A (en) Air conditioner
JP2016070575A (en) Air conditioning device
JP6428221B2 (en) Air conditioner
JP2017015294A (en) Air conditioning device
US10443901B2 (en) Indoor unit of air conditioner