JP2017205691A - Sludge dehydrator and cleaning method therefor - Google Patents

Sludge dehydrator and cleaning method therefor Download PDF

Info

Publication number
JP2017205691A
JP2017205691A JP2016098527A JP2016098527A JP2017205691A JP 2017205691 A JP2017205691 A JP 2017205691A JP 2016098527 A JP2016098527 A JP 2016098527A JP 2016098527 A JP2016098527 A JP 2016098527A JP 2017205691 A JP2017205691 A JP 2017205691A
Authority
JP
Japan
Prior art keywords
sludge
concentrated
separation liquid
dehydrated
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016098527A
Other languages
Japanese (ja)
Other versions
JP6466366B2 (en
Inventor
将貴 松成
Masaki Matsunari
将貴 松成
正宏 若菜
Masahiro Wakana
正宏 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2016098527A priority Critical patent/JP6466366B2/en
Publication of JP2017205691A publication Critical patent/JP2017205691A/en
Application granted granted Critical
Publication of JP6466366B2 publication Critical patent/JP6466366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sludge dehydrator and a sludge dehydration method capable of eliminating needs for stopping utilization of a device for cleaning a dehydration separation liquid receiver or largely reducing cleaning frequency by preventing accumulation of sludge residue.SOLUTION: A concentration part B for separating aggregated sludge into concentrated sludge and concentrated separation liquid, a dehydration machine A for receiving the concentrated sludge from the concentration part and separating into a dehydration cake and a dehydration separation liquid, a dehydration separation liquid receiver for receiving the dehydration separation liquid from the dehydration part and a concentrated separation liquid for sending the concentrated separation liquid from the concentration part to the dehydration separation liquid receiver are provided, and the concentrated separation liquid is used as a cleaning liquid of the dehydration separation liquid receiver.SELECTED DRAWING: Figure 1

Description

本発明は、汚泥処理に用いられる脱水装置に関し、特に、脱水処理後の脱水装置の洗浄機構を具備する脱水装置に関する。   The present invention relates to a dehydrator used for sludge treatment, and more particularly to a dehydrator equipped with a cleaning mechanism for a dehydrator after dehydration.

また、本発明は、汚泥処理に用いられる脱水装置の洗浄方法に関し、特に、脱水装置の脱水分離液受に堆積する汚泥残渣を洗浄する方法に関する。   The present invention also relates to a method for cleaning a dewatering device used for sludge treatment, and more particularly, to a method for cleaning sludge residue accumulated in a dewatering separation liquid receiver of a dewatering device.

脱水装置は、汚泥を脱水ケーキと脱水分離液とに固液分離する装置であり、脱水分離液は脱水分離液受に排出される。脱水分離液受には、脱水時に脱水部から落下した汚泥や脱水分離液に少量含まれる汚泥が堆積する(以後まとめて「汚泥残渣」という。)。特に、スクリュープレス型脱水機の場合には、脱水ケーキ出口に近いほど、脱水ケーキ自体に圧力がかかるため、スクリーン面から漏洩する汚泥残渣が多く、ケーキ塊となる汚泥残渣の堆積が多くなる。また、脱水分離液受のコーナー部にも汚泥残渣が堆積しやすい。汚泥残渣が脱水分離液受に堆積すると、脱水分離液受が腐食したり、あるいは悪臭が発生したりする。そこで、脱水分離液受に堆積した汚泥残渣を洗浄することが必要となる。   The dewatering device is a device that separates sludge into solid-liquid separation into a dehydrated cake and a dehydrated separated liquid, and the dehydrated separated liquid is discharged to a dehydrated separated liquid receiver. In the dewatered separation liquid receiver, sludge that has fallen from the dewatering section during dewatering and sludge contained in a small amount in the dewatered separation liquid accumulate (hereinafter collectively referred to as “sludge residue”). In particular, in the case of a screw press type dehydrator, the closer to the dehydrated cake exit, the more pressure is applied to the dehydrated cake itself, so that more sludge residue leaks from the screen surface and more accumulated sludge residue becomes cake lump. In addition, sludge residue tends to accumulate at the corner of the dehydrated liquid receiver. If the sludge residue accumulates in the dehydrated liquid receiver, the dewatered liquid container will corrode or generate a bad odor. Therefore, it is necessary to wash the sludge residue accumulated in the dehydrated liquid receiver.

汚泥残渣を洗浄するために、装置の運転を停止し、作業員が手動で洗浄する必要がある。装置の運転を停止した上での作業員による洗浄は、処理効率を低下させ、煩雑である。   In order to clean the sludge residue, it is necessary to stop the operation of the apparatus and manually clean the sludge residue. Cleaning by the operator after the operation of the apparatus is stopped reduces processing efficiency and is complicated.

特許3568778号公報Japanese Patent No. 3568778

本発明の目的は、汚泥残渣の堆積を防止して、脱水分離液受の洗浄のために装置の稼働を停止する必要性を排除もしくは洗浄頻度を大幅に減少することができる汚泥脱水装置及び汚泥脱水方法を提供することにある。   An object of the present invention is to prevent the accumulation of sludge residue, eliminate the need to stop the operation of the apparatus for cleaning the dewatered separation liquid receiver, or greatly reduce the frequency of cleaning, and sludge It is to provide a dehydration method.

本発明によれば、濃縮分離液を脱水分離液受に直接供給して、脱水分離液受に汚泥が堆積することを防止することができる汚泥脱水装置及び汚泥脱水方法が提供される。   According to the present invention, there is provided a sludge dewatering apparatus and a sludge dewatering method that can directly supply a concentrated separation liquid to a dewatering separation liquid receiver and prevent sludge from accumulating in the dewatering separation liquid receiver.

本発明の実施態様は以下のとおりである。
[1]凝集汚泥を濃縮汚泥と濃縮分離液とに分離する濃縮部と、
当該濃縮部からの濃縮汚泥を受け入れて、脱水ケーキと脱水分離液とに分離する脱水部と、
当該脱水部からの脱水分離液を受け入れる脱水分離液受と、
当該脱水分離液受に、当該濃縮部からの濃縮分離液を送液する濃縮分離液配管と、
を具備し、
濃縮分離液を当該脱水分離液受の洗浄液として用いることを特徴とする、汚泥脱水装置。
[2]前記濃縮分離液配管は前記脱水分離液受の側壁面に取り付けられており、前記流出口の中心軸と前記濃縮分離液配管の中心軸との取り付け角度は90度以上180度以下であることを特徴とする、[1]に記載の汚泥脱水装置。
[3]前記濃縮分離液配管の流出口は、前記脱水分離液受の長手軸の全長の20%以下の距離だけ当該長手軸の中点から離隔した位置に取り付けられていることを特徴とする、[1]又は[2]に記載の汚泥脱水装置。
[4]前記脱水部は、
液体透過性筒と、
当該液体透過性筒内に長手方向に摺動可能に嵌合されており、先端部から一定距離にわたり一様な直径を有する大径端部、基端部から一定距離に渡り一様な直径を有する小径端部、及び当該大径端部と小径端部との間のテーパード形状部から構成され、当該テーパード形状部、及び当該テーパード形状に接する当該大径端部の一部の円周上に螺旋状に設けられている羽根を有するスクリュー軸と、
当該スクリュー軸の当該テーパード形状部の当該小径端部側の位置で、当該液体透過性筒を貫通して設けられている濃縮汚泥投入口と、
当該液体透過性筒の内壁及び当該スクリュー軸のテーパード形状部の間に形成される螺旋状の濃縮汚泥移送圧縮通路と、
当該液体透過性筒の内壁及び当該大径端部の間に形成される圧縮室と、
当該圧縮室から脱水ケーキを排出する脱水ケーキ排出口と、
を具備する軸摺動式スクリュープレス脱水部であり、
前記脱水分離液受は、当該液体透過性筒の下方に位置づけられている、[1]〜[3]のいずれかに記載の汚泥脱水装置。
[5]前記濃縮部は、
凝集汚泥を受け入れる凝集汚泥投入口と、
投入された凝集汚泥を濃縮しながら順次搬送する圧搾部を備える案内部材と、
圧搾により固液分離された濃縮汚泥を前記脱水部に送る濃縮汚泥排出口と、
圧搾により固液分離された濃縮分離液を前記脱水分離液受に送る濃縮分離液配管に連結されている濃縮分離液受と、
を具備する、[1]〜[4]のいずれかに記載の汚泥脱水装置。
[6]前記濃縮部及び前記脱水部は、それぞれ独立の濃縮装置及び脱水装置であって、当該濃縮装置からの濃縮分離液配管は当該脱水装置の脱水分離液受に取り付けられていることを特徴とする[1]〜[5]のいずれかに記載の汚泥脱水装置。
[7]凝集汚泥を濃縮汚泥と濃縮分離液とに分離し、
当該濃縮汚泥を脱水ケーキと脱水分離液とに分離し、
当該濃縮分離液を脱水分離液受に流出させ、
当該脱水分離液を脱水分離液受に落下させ、
汚泥残渣が脱水分離液受に堆積することを防止することを特徴とする汚泥脱水方法。
Embodiments of the present invention are as follows.
[1] A concentration unit that separates the aggregated sludge into concentrated sludge and concentrated separated liquid;
A dehydration unit that receives the concentrated sludge from the concentration unit and separates it into a dehydrated cake and a dehydrated separation liquid;
A dehydrated liquid receiver that receives the dehydrated liquid separated from the dewatering section;
Concentrated separation liquid piping for sending the concentrated separation liquid from the concentration section to the dehydration separation liquid receiver,
Comprising
A sludge dewatering apparatus, wherein the concentrated separation liquid is used as a washing liquid for the dehydrated separation liquid receiver.
[2] The concentrated separation liquid pipe is attached to a side wall surface of the dehydrated separation liquid receiver, and an attachment angle between the central axis of the outlet and the central axis of the concentrated separation liquid pipe is 90 degrees or more and 180 degrees or less. The sludge dewatering device according to [1], characterized in that it exists.
[3] The outlet of the concentrated separation liquid pipe is attached to a position separated from the midpoint of the longitudinal axis by a distance of 20% or less of the total length of the longitudinal axis of the dehydrated separation liquid receiver. The sludge dewatering device according to [1] or [2].
[4] The dehydrating unit includes:
A liquid permeable tube;
The liquid permeable cylinder is slidably fitted in the longitudinal direction, and has a large diameter end portion having a uniform diameter over a certain distance from the distal end portion and a uniform diameter over a certain distance from the base end portion. A small-diameter end portion and a tapered shape portion between the large-diameter end portion and the small-diameter end portion, and on the circumference of the tapered shape portion and a part of the large-diameter end portion in contact with the tapered shape. A screw shaft having spirally provided blades;
At a position on the small diameter end side of the tapered portion of the screw shaft, a concentrated sludge inlet provided through the liquid permeable tube,
A spiral concentrated sludge transfer compression passage formed between the inner wall of the liquid permeable tube and the tapered portion of the screw shaft;
A compression chamber formed between the inner wall of the liquid permeable tube and the large diameter end;
A dewatering cake discharge port for discharging the dewatering cake from the compression chamber;
A shaft slide type screw press dewatering section comprising:
The sludge dewatering device according to any one of [1] to [3], wherein the dewatering separation liquid receiver is positioned below the liquid permeable cylinder.
[5] The concentration unit includes
An agglomerated sludge inlet for accepting the agglomerated sludge;
A guide member provided with a pressing part that sequentially conveys the aggregated sludge that has been charged, and
A concentrated sludge discharge port for sending the concentrated sludge separated into solid and liquid by pressing to the dehydration unit;
A concentrated liquid receiver connected to a concentrated liquid pipe for sending the concentrated liquid separated by squeezing to the dehydrated liquid receiver;
The sludge dewatering device according to any one of [1] to [4].
[6] The concentrating section and the dehydrating section are independent concentrating apparatuses and dehydrating apparatuses, respectively, and a concentrated separation liquid pipe from the concentrating apparatus is attached to a dehydrated liquid receiver of the dehydrating apparatus. The sludge dewatering device according to any one of [1] to [5].
[7] Separating the aggregated sludge into concentrated sludge and concentrated separation liquid,
The concentrated sludge is separated into a dehydrated cake and a dehydrated separation liquid,
The concentrated separation liquid is allowed to flow into the dehydrated separation liquid receiver,
The dehydrated separation liquid is dropped into the dehydrated separation liquid receiver,
A sludge dewatering method characterized by preventing sludge residue from accumulating in a dewatered separation liquid receiver.

本発明によれば、脱水分離液受における汚泥残渣の堆積を防止し、脱水分離液受の腐食や悪臭の発生などを防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, accumulation of the sludge residue in a dehydration separation liquid receptacle can be prevented, and generation | occurrence | production of corrosion, bad odor, etc. of a dehydration separation liquid receptacle can be prevented.

特に、濃縮部からの濃縮分離液の流出口を脱水部内の脱水分離液受の所定範囲に設け、濃縮分離液が流出される方向を規制し、脱水分離液受内に濃縮分離液の旋回流を発生させ、汚泥残渣が堆積しやすい脱水分離液受のコーナー部にまで濃縮分離液を行き渡らせることによって、汚泥残渣の堆積を防止するか若しくは汚泥残渣の堆積物を洗浄することができる。   In particular, the outlet of the concentrated separation liquid from the concentration section is provided in a predetermined range of the dehydrated separation liquid receiver in the dehydration section, the direction in which the concentrated separation liquid flows out is regulated, and the swirling flow of the concentrated separation liquid in the dehydration separation liquid receiver And the concentrated separation liquid is distributed to the corner of the dehydrated separation liquid receiver where the sludge residue is likely to be deposited, thereby preventing the accumulation of the sludge residue or washing the sludge residue deposit.

本発明の洗浄方法における汚泥及び濃縮分離液の流れを示すフロー図である。It is a flowchart which shows the flow of the sludge and concentrated separation liquid in the washing | cleaning method of this invention. 図1の脱水分離液受での濃縮分離液の流れを示す平面図である。It is a top view which shows the flow of the concentrated separation liquid in the dehydration separation liquid receiver of FIG. 図2の脱水分離液受に対する濃縮分離液配管の取付け態様を示す斜視図である。It is a perspective view which shows the attachment aspect of the concentration separation liquid piping with respect to the dehydration separation liquid receiver of FIG. 本発明の汚泥脱水装置の脱水部である軸摺動式スクリュープレス型脱水機の一実施形態の一部縦断側面図である。It is a partial longitudinal side view of one embodiment of a shaft sliding screw press type dehydrator which is a dewatering part of the sludge dewatering device of the present invention. 図4の軸摺動式スクリュープレス型脱水機において、スクリュー軸を長手方向に前進させて、圧縮室を縮小させた場合の一部縦断側面図である。5 is a partially longitudinal side view of the shaft sliding screw press type dehydrator of FIG. 4 when the screw shaft is advanced in the longitudinal direction and the compression chamber is reduced. FIG. 本発明の汚泥脱水装置の濃縮部の一実施形態の縦断側面図である。It is a vertical side view of one Embodiment of the concentration part of the sludge dehydration apparatus of this invention. 図6のA−A線断面図である。It is the sectional view on the AA line of FIG. 図6の濃縮部の使用状態を示す縦断側面図である。It is a vertical side view which shows the use condition of the concentration part of FIG. 本発明の汚泥脱水装置の濃縮部の別の実施態様の断面図である。It is sectional drawing of another embodiment of the concentration part of the sludge dehydration apparatus of this invention. 本発明の汚泥脱水装置の濃縮部のまた別の実施態様の断面図である。It is sectional drawing of another embodiment of the concentration part of the sludge dehydration apparatus of this invention. 図10の濃縮部の濃縮汚泥排出口の部分拡大斜視図である。It is a partial expansion perspective view of the concentration sludge discharge port of the concentration part of FIG. 本発明の汚泥脱水装置の稼働時の液体透過性筒(スクリーン筒)と脱水分離液受の状態を示す写真である。It is a photograph which shows the state of the liquid-permeable pipe | tube (screen pipe | tube) at the time of operation of the sludge dehydration apparatus of this invention, and a dehydration separation liquid receiver. 従来の軸摺動式スクリュープレス型脱水機の稼働時の液体透過性筒(スクリーン筒)と脱水分離液受の状態を示す写真である。It is a photograph which shows the state of the liquid-permeable pipe | tube (screen pipe | tube) at the time of operation of the conventional shaft sliding type screw press type dehydrator, and a dehydration separation liquid receiver. 図13に示す軸摺動式スクリュープレス型脱水機の稼働を停止して、洗浄した後の液体透過性筒(スクリーン筒)と脱水分離液受の状態を示す写真である。14 is a photograph showing a state of a liquid permeable cylinder (screen cylinder) and a dehydrated separation liquid receiver after the operation of the shaft sliding screw press type dehydrator shown in FIG. 13 is stopped and washed.

好ましい実施態様Preferred embodiment

以下、添付図面を参照しながら本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.

図1は、本発明の汚泥脱水方法における汚泥及び濃縮分離液の流れを示すフロー図である。図1に示すフローにおいて、凝集汚泥は濃縮部又は濃縮機B(以下「濃縮部B」と略す。)に送られ、濃縮汚泥と濃縮分離液とに分けられる。濃縮汚泥は、脱水機A内の脱水部に送られ、脱水ケーキと脱水分離液とに分けられ、脱水分離液は脱水機A内の脱水分離液受に排出される。濃縮部Bからの濃縮分離液も、脱水機A内の脱水分離液受に送られる。脱水分離液受には、脱水部から落下する汚泥や脱水分離液に含まれる汚泥などの汚泥残渣が存在するが、濃縮部Bからの濃縮分離液を予め脱水分離液受に供給して流動させておくことにより、脱水処理時に落下する汚泥残渣を堆積させずに流し、あるいは脱水分離液受に堆積している汚泥残渣を洗浄することができる。   FIG. 1 is a flowchart showing the flow of sludge and concentrated separated liquid in the sludge dewatering method of the present invention. In the flow shown in FIG. 1, the coagulated sludge is sent to a concentrating section or a concentrator B (hereinafter abbreviated as “concentrating section B”), and is divided into a concentrated sludge and a concentrated separation liquid. The concentrated sludge is sent to a dehydrating section in the dehydrator A, divided into a dehydrated cake and a dehydrated separation liquid, and the dehydrated separation liquid is discharged to a dehydrated liquid receiver in the dehydrator A. The concentrated separation liquid from the concentration section B is also sent to the dehydrated liquid receiver in the dehydrator A. In the dewatering separation liquid receiver, there are sludge residues such as sludge falling from the dehydration part and sludge contained in the dehydration separation liquid. The concentrated separation liquid from the concentration part B is supplied to the dehydration separation liquid receiver and flowed in advance. In this case, sludge residues that fall during the dehydration process can be allowed to flow without being deposited, or sludge residues that have accumulated in the dewatered separation liquid receiver can be washed.

図2は脱水部内の脱水分離液受の平面図であり、図3は濃縮分離液配管の取付け態様を示す斜視図である。濃縮分離液流出口は、脱水分離液受の側壁面から脱水分離液受の底面中央部分に向かって濃縮分離液を供給するように、濃縮分離液配管の端部に所定角度を有して取り付けられている。濃縮分離液流出口は、脱水分離液受の長手軸の全長の30%以下、好ましくは20%以下、より好ましくは15%以下の距離だけ脱水分離液受の長手軸の中点から離れた位置の脱水分離液受壁面に取り付けられている。濃縮分離液は脱水分離液受に所定角度で流出した後、脱水分離液受の対面する側壁面に衝突して、進行方向左右に分かれて脱水分離液受全面に流動して、汚泥残渣が堆積しやすい脱水分離液受のコーナー部にも濃縮分離液が行き渡り、汚泥残渣を洗浄し、最終的には洗浄排液として脱水分離液受の排出口から排出される。濃縮分離液流出口は、脱水分離液受の4つの側壁面のいずれか1の側壁面に1箇所以上設けられていればよいが、脱水分離液受の排出口を中心として点対称となる対面する2つの側壁面にそれぞれ1つ以上取り付けられていると、濃縮分離液を向流で供給することができ、乱流を発生させることができるので、堆積した汚泥残渣を洗浄する効果がより高くなる。また、脱水分離液受が、排出口が最も低い位置となり側壁面が最も高い位置となるように斜度を有する構造である場合には、排出口に対して点対称であるが、長手方向の中心軸に対して面対称ではない位置に、各側壁面に2個以上の濃縮分離液流出口を取り付けることが好ましい。   FIG. 2 is a plan view of the dehydrated separation liquid receiver in the dehydration section, and FIG. 3 is a perspective view showing a manner of attaching the concentrated separation liquid piping. The concentrated separation liquid outlet is attached at an angle to the end of the concentrated separation liquid pipe so that the concentrated separation liquid is supplied from the side wall surface of the dehydrated separation liquid receiver toward the center of the bottom surface of the dehydrated separation liquid receiver. It has been. The concentrated separation liquid outlet is located at a distance of 30% or less, preferably 20% or less, more preferably 15% or less of the total length of the dehydrated liquid receiver longitudinal axis from the midpoint of the dehydrated liquid receiver longitudinal axis. Is attached to the wall surface of the dehydrated separation liquid. After the concentrated separation liquid flows out to the dehydration separation liquid receiver at a predetermined angle, it collides with the side wall surface facing the dehydration separation liquid receiver, separates into the left and right in the direction of travel, flows to the entire surface of the dehydration separation liquid receiver, and sludge residue accumulates. The concentrated separated liquid also spreads to the corner of the dehydrated liquid receiver, which is easy to perform, and the sludge residue is washed and finally discharged from the discharge port of the dehydrated liquid receiver as a washing waste liquid. The concentrated separation liquid outlet may be provided in one or more locations on any one of the four side wall surfaces of the dehydrated separation liquid receiver, but the concentric separation liquid outlet faces symmetrically about the discharge port of the dehydrated separation liquid receiver. When one or more are attached to each of the two side wall surfaces, the concentrated separation liquid can be supplied in a countercurrent and turbulent flow can be generated, so the effect of cleaning the accumulated sludge residue is higher. Become. In addition, in the case where the dehydrated separation liquid receiver has a structure that has an inclination so that the discharge port is at the lowest position and the side wall surface is at the highest position, it is point-symmetric with respect to the discharge port. Preferably, two or more concentrated separation liquid outlets are attached to each side wall surface at a position that is not plane-symmetric with respect to the central axis.

脱水部は、液体透過性筒と、液体透過性筒に摺動可能に嵌合されているスクリュー軸と、を具備する。脱水分離液受は液体透過性筒の下方に位置づけられる。スクリュー軸は、先端部から一定距離にわたり一様な直径を有する大径端部と、基端部から一定距離に渡り一様な直径を有する小径端部と、大径端部と小径端部との間のテーパード形状部とを有し、テーパード形状部、及びテーパード形状部に接する大径端部の一部の円周上に螺旋状に設けられている羽根を有する。液体透過性筒には、スクリュー軸のテーパード形状部の小径端部側の位置に、液体透過性筒を貫通して濃縮汚泥投入口が設けられている。液体透過性筒の内壁と、スクリュー軸のテーパード形状部と、の間には、螺旋状の濃縮汚泥移送圧縮通路が形成される。液体透過性筒の内壁と、大径端部との間には、圧縮室が形成される。濃縮汚泥投入口から圧縮室に向かって、スクリュー軸の直径が大きくなるため、濃縮汚泥移送圧縮通路は徐々に狭くなり、濃縮汚泥に対する圧縮力が強くなる。スクリュー軸を前進させることで、濃縮汚泥に対する圧縮力が徐々に強まり、濃縮汚泥は脱水される。圧縮室に到達すると、スクリュー軸を前進させて、圧縮室を狭くして、濃縮汚泥に対する圧縮力をさらに強めて、脱水ケーキを得る。圧縮室に連通して脱水ケーキ排出口を設け、圧縮室から脱水ケーキを排出する。   The dehydrating unit includes a liquid permeable cylinder and a screw shaft that is slidably fitted to the liquid permeable cylinder. The dehydrated liquid receiver is positioned below the liquid permeable cylinder. The screw shaft includes a large-diameter end portion having a uniform diameter over a certain distance from the distal end portion, a small-diameter end portion having a uniform diameter over a certain distance from the base end portion, and a large-diameter end portion and a small-diameter end portion. And a blade formed in a spiral shape on the circumference of a part of the large-diameter end portion in contact with the tapered shape portion and the tapered shape portion. The liquid permeable cylinder is provided with a concentrated sludge inlet through the liquid permeable cylinder at a position on the small diameter end side of the tapered portion of the screw shaft. A spiral concentrated sludge transfer / compression passage is formed between the inner wall of the liquid permeable cylinder and the tapered portion of the screw shaft. A compression chamber is formed between the inner wall of the liquid permeable cylinder and the large diameter end. Since the diameter of the screw shaft increases from the concentrated sludge inlet toward the compression chamber, the concentrated sludge transfer compression passage is gradually narrowed and the compressive force against the concentrated sludge is increased. By advancing the screw shaft, the compressive force on the concentrated sludge gradually increases, and the concentrated sludge is dehydrated. When the compression chamber is reached, the screw shaft is advanced, the compression chamber is narrowed, and the compression force against the concentrated sludge is further increased to obtain a dehydrated cake. A dewatering cake discharge port is provided in communication with the compression chamber, and the dewatering cake is discharged from the compression chamber.

脱水分離液受は、液体透過性筒の下方に位置づけられており、脱水処理時に分離された脱水分離液を受け入れる。   The dehydrated liquid receiver is positioned below the liquid permeable cylinder and receives the dehydrated liquid separated during the dehydration process.

図4及び5は、本発明の一実施形態であるスクリュープレス型脱水装置(脱水部)の一部縦断側面図である。   4 and 5 are partially longitudinal side views of a screw press type dehydrating apparatus (dehydrating unit) according to an embodiment of the present invention.

スクリュープレス型脱水装置には、後述する濃縮部からの濃縮汚泥を受け入れる投入口15と、脱水処理後の脱水ケーキを排出する脱水ケーキ排出口25と、スクリーン筒2の複数の小孔4を透過する脱水分離液を受け入れる脱水分離液受17が設けられている。脱水分離液受17の側壁面には、濃縮機からの濃縮分離液を送液する配管24が取り付けられている。脱水分離液受17は、スクリュー軸3の大径端部に近いテーパード形状部に対応する部分が最も低く、側壁面に接する部分が最も高くなるように0°以上45°以下、好ましくは2°以上20°以下の斜度を有し、最も低い位置に排出口26が設けられている。濃縮汚泥投入口からスクリュー軸3の小径端部側で脱水部に投入された濃縮汚泥は、スクリュー軸3の羽根によって搬送される間に圧縮されて脱水が進行し、小径端部側では脱水分離液受17に落下する残留汚泥が少なく、大径端部側に近づくにつれて脱水分離液受17に落下する残留汚泥が多くなるため、大径端部側の脱水分離液受17の底面の斜度をより大きくする。濃縮分離液配管24の濃縮分離液流出口24aは、脱水分離液受17の側壁面から排出口26の方向に向かって濃縮分離液を供給するように、配管24の中心軸に対して90度以上180度未満、好ましくは90度以上135度以下の所定角度で取り付けられている。濃縮分離液は、脱水分離液受17に流出した後、脱水分離液受17の全域に流動し、排出口26から排出される。   The screw press-type dewatering device permeates through an inlet 15 that receives concentrated sludge from a concentration section, which will be described later, a dehydrated cake discharge port 25 that discharges the dehydrated cake after dehydration, and a plurality of small holes 4 in the screen cylinder 2. A dehydrating / separating liquid receiver 17 is provided for receiving the dehydrating / separating liquid. On the side wall surface of the dehydrated separation liquid receiver 17, a pipe 24 for sending the concentrated separation liquid from the concentrator is attached. The dehydrated separation liquid receiver 17 has a portion corresponding to the tapered portion close to the large-diameter end of the screw shaft 3 being the lowest and a portion contacting the side wall surface being the highest, and is 0 ° to 45 °, preferably 2 °. The discharge port 26 is provided at the lowest position with an inclination of 20 ° or less. The concentrated sludge introduced into the dewatering part on the small-diameter end side of the screw shaft 3 from the concentrated sludge inlet is compressed and dewatered while being conveyed by the blades of the screw shaft 3, and dehydrated and separated on the small-diameter end side. The residual sludge that falls on the liquid receiver 17 is small, and the residual sludge that falls on the dehydrated separation liquid receiver 17 increases as it approaches the large diameter end portion. Therefore, the inclination of the bottom surface of the dehydrated separation liquid receiver 17 on the large diameter end portion side. To make it larger. The concentrated separator outlet 24 a of the concentrated separator pipe 24 is 90 degrees with respect to the central axis of the pipe 24 so as to supply the concentrated separator from the side wall surface of the dehydrated separator 17 toward the outlet 26. It is attached at a predetermined angle of not less than 180 degrees, preferably not less than 90 degrees and not more than 135 degrees. The concentrated separation liquid flows out to the dehydrated separation liquid receiver 17, then flows over the entire area of the dehydrated separation liquid receiver 17, and is discharged from the discharge port 26.

図4〜5を参照しながら、スクリュープレス型脱水装置の脱水部を詳細に説明する。   The dewatering part of the screw press type dewatering device will be described in detail with reference to FIGS.

図4及び5に示すスクリュープレス型脱水装置Aは、機台1の上に円筒形状のスクリーン筒2が水平に配置されて固定されており、スクリーン筒2に回転可能かつ軸芯方向に移動可能に同芯状に嵌合しているスクリュー軸3を具備する。スクリュー軸3は、軸芯方向に移動してスクリーン筒2に対する軸芯方向位置を変更することが可能である。スクリーン筒2の周壁には、多数の小孔4が貫通して設けられている。スクリュー軸3には、中央部にスクリュー羽根5が螺旋状に巻き付けられている。機台1の上には、スクリーン筒2の外部に、可動台6がスクリュー軸3の軸芯方向に沿って移動可能に設けられている。可動台6の上には、前側軸受板7と後側軸受板8が設立されており、前側軸受板7と後側軸受板8に、スクリーン筒2の閉鎖端板から突出したスクリュー軸3の小径端部を径方向と軸芯方向に軸受している。後側軸受板8の上には、減速機付きの可変速電動機9を取り付け、可変速電動機9の回転軸とスクリュー軸3の小径端部をチェン伝動機構10で連結する、スクリュー軸3の回転駆動装置が可動台6の上に構成されている。機台1の上には、固定板11が設立されており、固定板11には可動台6の移動方向に沿って油圧シリンダ12が固定され、油圧シリンダ12の先端から突出したピストンロッド13の先端を後側軸受板8に連結し、ピストンロッド13の前進、後進と所望位置での停止を制御する油圧回路を設けて、スクリュー軸3の軸芯方向位置変更装置が構成されている。油圧回路を操作してピストンロッド13を前進または後進させると、可動台6がスクリュー軸3の回転駆動装置9,10、軸受板7,8と一緒に前進または後進し、スクリュー軸3が前進または後進し、スクリーン筒2に対するスクリュー軸3の軸芯方向位置が変更される。スクリュー軸3の軸芯方向位置の変更は、簡単な操作で行なわれる。また、スクリュー軸3の軸芯方向位置を変更した際、その変更距離分、スクリュー軸3の回転駆動装置9,10の位置も変更される。スクリーン筒2とスクリュー軸3との間であって、羽根5があるスクリュー軸3のテーパード部分には、濃縮汚泥を移送しつつ圧縮する螺旋状の移送圧縮通路14が形成されている。移送圧縮通路14は、入口側より出口側の断面積が小さい。スクリーン筒2の上部には、濃縮汚泥を投入する投入口15が設けられている。投入口15は、移送圧縮通路14の入口側に接続されている。スクリーン筒2とスクリュー軸3との間であって、羽根5がないスクリュー軸3の大径端部には、移送圧縮通路14を通過した濃縮汚泥を更に圧縮する四角形断面の円環形状ないし円筒形状の圧縮室16が形成されている。圧縮室16は、移送圧縮通路14の出口を入口としている。スクリーン筒2の下には、濃縮汚泥から分離された液体をスクリーン筒2の小孔4を介してスクリーン筒2外部に流出させて集める脱水分離液受17が設けられている。機台1の上には、スクリーン筒2の開放端から突出したスクリュー軸3の大径端部を径方向にのみ軸受する軸受板18が設立されている。スクリュー軸3の大径端部には、三角形断面の円環形状の抵抗体19が嵌合され、軸受板18とスクリーン筒2の間で軸芯方向に移動可能にしている。抵抗体19は、軸芯方向に移動してスクリーン筒2に対する軸芯方向位置を変更することが可能である。抵抗体19は、スクリーン筒2の開放端即ち圧縮室16の出口に対面し、圧縮室16との距離に応じて圧縮室16出口の流出抵抗を増減する。軸受板18には、複数の油圧シリンダ20を抵抗体19の移動方向に沿って固定し、油圧シリンダ20のピストンロッド21を軸受板18に貫通し、ピストンロッド21の先端を抵抗体19に連結し、ピストンロッド21の前進、後進と所望位置での停止を制御する油圧回路を設けて、抵抗体19の軸芯方向位置変更装置を構成している。抵抗体19と圧縮室16出口の下には、圧縮室16の出口から抵抗体19によって抵抗を受けつつ流出する脱水ケーキの落下路22を設けている。このスクリュープレスにおいて、所望の脱水性能を得るため、圧縮室16の入口から出口までの長さを調整する場合は、スクリュー軸3の軸芯方向位置変更装置で、スクリュー軸3を軸芯方向に移動してスクリーン筒2に対するスクリュー軸3の軸芯方向位置を変更する。すると、圧縮室16の長さが増減する。スクリュー軸3の軸芯方向位置変更装置において、ピストンロッド13を前進させてその前進位置に停止させ、スクリュー軸3の軸芯方向位置を圧縮室16出口側に変更すると、図5に示すように、スクリーン筒2とスクリュー軸3の羽根5がない大径端部の嵌合長さが減少し、圧縮室16の長さが減少する。逆に、ピストンロッド13を後退させてその後退位置に停止させ、スクリュー軸3の軸芯方向位置を移送圧縮通路14入口側に変更すると、圧縮室16の長さが増加する。圧縮室16の長さを増加すると、スクリュー軸3の後退によって、スクリーン筒2の閉鎖端板とスクリュー軸3のスクリュー羽根5の間の空間が減少する。スクリーン筒2の閉鎖端板側の上部には、スクリュー軸3の後退時に、スクリーン筒2の閉鎖端板とスクリュー軸3のスクリュー羽根5の間の濃縮汚泥が逃げ込む空間23を設けているが、後退時のスクリュー軸3の回転数を早く設定することで濃縮汚泥を前方に送ることができるので空間23はなくてもよい。   The screw press type dehydrating apparatus A shown in FIGS. 4 and 5 has a cylindrical screen cylinder 2 arranged horizontally and fixed on a machine base 1, and is rotatable to the screen cylinder 2 and movable in the axial direction. Is provided with a screw shaft 3 fitted concentrically. The screw shaft 3 can move in the axial direction to change the axial direction position with respect to the screen cylinder 2. A large number of small holes 4 are provided through the peripheral wall of the screen cylinder 2. A screw blade 5 is spirally wound around the center of the screw shaft 3. On the machine base 1, a movable base 6 is provided outside the screen cylinder 2 so as to be movable along the axial direction of the screw shaft 3. A front bearing plate 7 and a rear bearing plate 8 are established on the movable base 6. The screw shaft 3 protruding from the closed end plate of the screen cylinder 2 is formed on the front bearing plate 7 and the rear bearing plate 8. The small-diameter end is supported in the radial direction and the axial direction. A variable speed electric motor 9 with a speed reducer is mounted on the rear bearing plate 8, and the rotation of the screw shaft 3 connects the rotation shaft of the variable speed electric motor 9 and the small-diameter end of the screw shaft 3 with a chain transmission mechanism 10. A driving device is configured on the movable table 6. A fixed plate 11 is established on the machine base 1, and a hydraulic cylinder 12 is fixed to the fixed plate 11 along the moving direction of the movable table 6, and a piston rod 13 protruding from the tip of the hydraulic cylinder 12 is provided. The tip end is connected to the rear bearing plate 8 and a hydraulic circuit for controlling the forward and backward movement of the piston rod 13 and the stop at a desired position is provided to constitute the axial direction changing device for the screw shaft 3. When the piston rod 13 is moved forward or backward by operating the hydraulic circuit, the movable base 6 moves forward or backward together with the rotary drive devices 9 and 10 and the bearing plates 7 and 8 of the screw shaft 3, and the screw shaft 3 moves forward or backward. It moves backward and the axial direction position of the screw shaft 3 with respect to the screen cylinder 2 is changed. The change of the axial direction position of the screw shaft 3 is performed by a simple operation. Moreover, when the axial direction position of the screw shaft 3 is changed, the positions of the rotary drive devices 9 and 10 of the screw shaft 3 are also changed by the changed distance. A spiral transfer compression passage 14 is formed between the screen cylinder 2 and the screw shaft 3 and in a tapered portion of the screw shaft 3 where the blades 5 are provided to compress the concentrated sludge while transferring it. The transfer compression passage 14 has a smaller sectional area on the outlet side than on the inlet side. In the upper part of the screen cylinder 2, an inlet 15 for introducing concentrated sludge is provided. The input port 15 is connected to the inlet side of the transfer compression passage 14. An annular shape or a cylinder having a rectangular cross section between the screen cylinder 2 and the screw shaft 3 and further compressing the concentrated sludge having passed through the transfer compression passage 14 at the large diameter end portion of the screw shaft 3 without the blade 5. A compression chamber 16 having a shape is formed. The compression chamber 16 uses the outlet of the transfer compression passage 14 as an inlet. Below the screen cylinder 2, a dehydrated liquid receiver 17 is provided for collecting the liquid separated from the concentrated sludge by flowing out of the screen cylinder 2 through the small holes 4 of the screen cylinder 2. On the machine base 1, a bearing plate 18 is established for bearing the large-diameter end of the screw shaft 3 protruding from the open end of the screen cylinder 2 only in the radial direction. An annular resistor 19 having a triangular cross section is fitted to the large-diameter end of the screw shaft 3 so as to be movable between the bearing plate 18 and the screen cylinder 2 in the axial direction. The resistor 19 can move in the axial direction and change the axial position relative to the screen cylinder 2. The resistor 19 faces the open end of the screen cylinder 2, that is, the outlet of the compression chamber 16, and increases or decreases the outflow resistance at the outlet of the compression chamber 16 according to the distance from the compression chamber 16. A plurality of hydraulic cylinders 20 are fixed to the bearing plate 18 along the moving direction of the resistor 19, the piston rod 21 of the hydraulic cylinder 20 passes through the bearing plate 18, and the tip of the piston rod 21 is connected to the resistor 19. In addition, a hydraulic circuit that controls the forward and backward movements of the piston rod 21 and the stop at the desired position is provided to constitute an axial position changing device for the resistor 19. Below the resistor 19 and the outlet of the compression chamber 16, a dewatering cake dropping path 22 that flows out while receiving resistance by the resistor 19 from the outlet of the compression chamber 16 is provided. In this screw press, in order to obtain a desired dewatering performance, when adjusting the length from the inlet to the outlet of the compression chamber 16, the screw shaft 3 is moved in the axial direction by the axial direction position changing device of the screw shaft 3. It moves and changes the axial direction position of the screw shaft 3 with respect to the screen cylinder 2. Then, the length of the compression chamber 16 increases or decreases. In the axial direction change device of the screw shaft 3, when the piston rod 13 is advanced and stopped at the advanced position, and the axial direction position of the screw shaft 3 is changed to the compression chamber 16 outlet side, as shown in FIG. The fitting length of the large-diameter end portion without the screen cylinder 2 and the blade 5 of the screw shaft 3 is reduced, and the length of the compression chamber 16 is reduced. Conversely, when the piston rod 13 is retracted and stopped at its retracted position, and the axial direction position of the screw shaft 3 is changed to the inlet side of the transfer compression passage 14, the length of the compression chamber 16 increases. When the length of the compression chamber 16 is increased, the space between the closed end plate of the screen cylinder 2 and the screw blades 5 of the screw shaft 3 decreases due to the retraction of the screw shaft 3. In the upper part of the screen tube 2 on the closed end plate side, a space 23 is provided in which concentrated sludge between the closed end plate of the screen tube 2 and the screw blades 5 of the screw shaft 3 escapes when the screw shaft 3 is retracted. Since the concentrated sludge can be sent forward by setting the rotational speed of the screw shaft 3 at the time of retraction early, the space 23 may not be provided.

本発明の汚泥脱水装置において用いられるスクリュープレス型脱水装置は、図4〜5に示す形態に限定されず、適宜の修正・変更がなされていてもよい。たとえば、スクリュー軸3を前後に摺動させる機構(可動台、前側軸受板、後側軸受板、可変速電動機、チェン伝導機構、固定板、油圧シリンダ)のうち、油圧シリンダ及び固定板をスクリーン筒に隣接して設け、油圧シリンダの先端から突出するピストンロッドを可動台に固定して、図4の後側軸受板8を不要として、コンパクトに変更することができる。   The screw press-type dewatering device used in the sludge dewatering device of the present invention is not limited to the form shown in FIGS. 4 to 5 and may be appropriately modified and changed. For example, among the mechanisms (movable base, front bearing plate, rear bearing plate, variable speed motor, chain transmission mechanism, fixed plate, hydraulic cylinder) for sliding the screw shaft 3 back and forth, the hydraulic cylinder and the fixed plate are connected to the screen cylinder. A piston rod that is provided adjacent to the hydraulic cylinder and protrudes from the tip of the hydraulic cylinder is fixed to the movable base, and the rear bearing plate 8 in FIG.

本発明の汚泥脱水装置において、濃縮分離液を脱水部下方の脱水分離液受に流出させることができれば濃縮機構は特に限定されず、通常の濃縮機構を用いることができる。   In the sludge dewatering apparatus of the present invention, the concentration mechanism is not particularly limited as long as the concentrated separation liquid can be discharged to the dewatering separation liquid receiver below the dehydration unit, and a normal concentration mechanism can be used.

図6は、本発明の汚泥脱水装置に用いることができる濃縮部の縦断側面図であり、図7は図6のA−A線断面図であり、図8は使用状態を示す縦断側面図である。   FIG. 6 is a longitudinal side view of a concentrating unit that can be used in the sludge dewatering apparatus of the present invention, FIG. 7 is a sectional view taken along line AA in FIG. 6, and FIG. 8 is a longitudinal side view showing a use state. is there.

図6〜8に示すように、濃縮部は、凝集汚泥を濃縮汚泥と濃縮分離液とに分離するスクリーン板101と、濃縮分離液を受け入れる排水室103と、排水室103の下端に設けられている排水口103aと、を具備し、排水口103aは、スクリュープレス型脱水機Aの脱水分離液受17に濃縮分離液を送液する濃縮分離液配管24に接続されている。   As shown in FIGS. 6 to 8, the concentrating unit is provided at the lower end of the drain chamber 103, the screen plate 101 that separates the aggregated sludge into the concentrated sludge and the concentrated separator, the drain chamber 103 that receives the concentrated separator. The drain outlet 103a is connected to a concentrated separation liquid pipe 24 for feeding the concentrated separated liquid to the dehydrated separation liquid receiver 17 of the screw press type dehydrator A.

図6〜8を参照しながら、濃縮部の構成を詳細に説明する。汚泥中の水が通過するスクリーン板101を斜めに配置し、スクリーン板101の上を上端から下端に汚泥が流れる溝形状の汚泥通路102を形成している。スクリーン板101は、楔形状断面の複数のワイヤを汚泥が流れる方向に沿って左右に隙間を置いて並列してなり、汚泥中の水がワイヤの間の隙間を通過するウェッジワイヤスクリーンである。スクリーン板101の傾斜角度は、水平面から40度である。汚泥通路102の下には、6に示すように、スクリーン板101を通過した水を集めて排出する排水室103を設けている。ブラシ装置は、汚泥通路102の左右の側壁の上に、スクリーン板101の上部の上を横断する駆動軸104と、スクリーン板101の下部の上を横断する従動軸105をそれぞれ軸受し、上下ないし前後に並列した駆動軸104と従動軸105の軸受内側の左右位置にそれぞれ鎖車106を固定し、駆動軸104と従動軸105の左側の鎖車106に無端の鎖107を、駆動軸104と従動軸105の右側の鎖車106に無端の鎖107を、それぞれ、噛み合わせて掛け渡し、左右の両鎖107にブラシ108の基板の基端側を固定して左右方向に掛け渡し、両鎖107の外周側に多数本のブラシ108を等間隔位置に並列して突出している。両鎖107の下側に位置する複数本のブラシ108は、それぞれ、汚泥通路102にその横断方向に沿って嵌合し、基板の先端側から突出した毛の先端がスクリーン板101に接触する。駆動軸104を図6に示す矢印方向に回転すると、駆動軸104を回って鎖107の下側に達したブラシ108は、スクリーン板101を掃きながら汚泥通路102を下り、スクリーン板101の下部に達すると、スクリーン板101から離れて従動軸105を回って鎖107の上側に至る。ブラシ駆動装置は、汚泥通路102の左右の側壁の上に、汚泥通路102とブラシ装置を跨ぐ門形状の取付枠109を固定し、取付枠109の天板の一端部上に減速機付きの電動機110を取り付け、電動機110の回転軸と駆動軸104の端を鎖伝動機構111で連結している。電動機110を駆動すると、駆動軸104が図6に示す矢印方向に回転する。洗浄水噴射装置は、取付枠109の天板の一端部下に給水管112を汚泥通路102に沿って固定し、給水管112の複数個所にそれぞれ散水管113の基端を連通して固定し、ブラシ108とスクリーン板101に洗浄水を噴射する複数本の散水管113を汚泥通路102の横断方向に沿って配置して並列している。給水管112は、図示しないが、ポンプを介して水源に接続している。ポンプを作動する電動機を分単位の設定時間毎に秒単位の設定時間の間駆動する電気制御回路を設けている。   The configuration of the concentration unit will be described in detail with reference to FIGS. The screen plate 101 through which the water in the sludge passes is disposed obliquely, and a groove-shaped sludge passage 102 is formed in which the sludge flows on the screen plate 101 from the upper end to the lower end. The screen plate 101 is a wedge wire screen in which a plurality of wires having a wedge-shaped cross section are arranged in parallel with a gap left and right along the direction in which the sludge flows, and water in the sludge passes through the gap between the wires. The inclination angle of the screen plate 101 is 40 degrees from the horizontal plane. Under the sludge passage 102, as shown in FIG. 6, a drainage chamber 103 for collecting and discharging water that has passed through the screen plate 101 is provided. The brush device has bearings on the left and right side walls of the sludge passage 102 for a drive shaft 104 that traverses the upper portion of the screen plate 101 and a driven shaft 105 that traverses the lower portion of the screen plate 101. A chain wheel 106 is fixed to the left and right positions inside the bearings of the drive shaft 104 and the driven shaft 105 arranged in parallel in the front-rear direction, and an endless chain 107 is connected to the drive wheel 104 and the left wheel wheel 106 of the driven shaft 105. An endless chain 107 is engaged with the chain wheel 106 on the right side of the driven shaft 105 and is passed over. The base end side of the substrate of the brush 108 is fixed to the left and right chains 107 and is passed over in the left and right direction. A large number of brushes 108 protrude in parallel at equal intervals on the outer peripheral side of 107. The plurality of brushes 108 positioned below the both chains 107 are fitted in the sludge passage 102 along the transverse direction, and the tips of the hairs protruding from the tip side of the substrate come into contact with the screen plate 101. When the drive shaft 104 is rotated in the direction of the arrow shown in FIG. 6, the brush 108 that has traveled around the drive shaft 104 and reached the lower side of the chain 107 descends the sludge passage 102 while sweeping the screen plate 101, and below the screen plate 101. When it reaches, it moves away from the screen plate 101, rotates around the driven shaft 105, and reaches the upper side of the chain 107. The brush drive device fixes a gate-shaped mounting frame 109 across the sludge passage 102 and the brush device on the left and right side walls of the sludge passage 102, and an electric motor with a speed reducer on one end of the top plate of the mounting frame 109. 110 is attached, and the rotating shaft of the electric motor 110 and the end of the drive shaft 104 are connected by a chain transmission mechanism 111. When the electric motor 110 is driven, the drive shaft 104 rotates in the arrow direction shown in FIG. The washing water injection device fixes the water supply pipe 112 along the sludge passage 102 under one end of the top plate of the mounting frame 109, and fixes the base end of the water spray pipe 113 to a plurality of locations of the water supply pipe 112, respectively. A plurality of water spray pipes 113 for injecting cleaning water onto the brush 108 and the screen plate 101 are arranged in parallel along the transverse direction of the sludge passage 102. Although not shown, the water supply pipe 112 is connected to a water source via a pump. An electric control circuit is provided that drives the motor that operates the pump for a set time in seconds every set time in minutes.

さらに図8に示すように、汚泥通路102の上端入口の上に凝集反応槽の流出口aを配置し、汚泥通路102の下端出口の下に、図4及び5に示すスクリュープレス型脱水装置の濃縮汚泥投入口15を配置する。ブラシ駆動装置の電動機110を駆動し、洗浄水噴射装置の電気制御回路を作動し、フロックが生成した汚泥を凝集反応槽の流出口aから汚泥通路102の上端入口に流す。すると、各ブラシ108は、順次、駆動軸104を回って、汚泥通路102の上部にその横断方向に沿って嵌合し、スクリーン板101を掃きながら汚泥通路102を下り、汚泥通路102の下部に達すると、スクリーン板101から離れて汚泥通路102を抜け出し、従動軸105を回る。一方、生成したフロックを含む汚泥Sは、汚泥通路102の上端入口から下端出口に向って汚泥通路102を流下するが、汚泥Sの自然流下速度より遅い速度でスクリーン板101を掃きながら汚泥通路102を下るブラシ108でせき止めされつつ汚泥通路102を流下する。スクリーン板101の上をブラシ108の移動速度で流れる汚泥Sは、その中の水がスクリーン板101を通過して排水室103に流入し、水分が減少して汚泥通路102の下部に達した汚泥Sは、その汚泥Sをせき止めていたブラシ108がスクリーン板101から離れて汚泥通路102を抜け出すと、汚泥通路102の下端出口からスクリュープレス型脱水装置の濃縮汚泥投入口15に落下する。洗浄水噴射装置の電気制御回路を作動してから分単位の設定時間が経過する毎に、秒単位の設定時間の間、各散水管113から洗浄水を噴射してブラシ108とスクリーン板101を洗浄し、洗浄水がスクリーン板101を通過して排水室103に流入し、スクリーン板101の目詰まりを除去する。本例の汚泥濃縮機において、汚泥通路102をブラシ108でせき止めされつつ流下する汚泥Sが汚泥通路2を流れる時間は、12秒位である。なお、汚泥Sが汚泥通路102を自然流下する従来の場合は、1〜3秒位である。従って、本例の汚泥濃縮機においては、汚泥Sがスクリーン板101の上を流れる時間が長くなるので、スクリーン板101を通過する水が多くなり、濃縮率が高くなる。また、洗浄水噴射装置が作動する間隔は、15〜90分、好ましくは30〜60分であり、洗浄水噴射装置が作動する時間は、5〜30秒、好ましくは10〜20秒である。なお、ブラシ108がスクリーン板101を常時掃かない従来の場合は、洗浄水噴射装置が作動する間隔10分であり、洗浄水噴射装置が作動する時間10秒である。従って、本例の汚泥濃縮機においては、洗浄水噴射装置が作動する間隔が長くなるので、洗浄水の使用量が減少する。   Further, as shown in FIG. 8, an outlet a of the agglomeration reaction tank is disposed on the upper end inlet of the sludge passage 102, and below the lower end outlet of the sludge passage 102, the screw press type dehydrator shown in FIGS. A concentrated sludge inlet 15 is disposed. The electric motor 110 of the brush driving device is driven, the electric control circuit of the washing water injection device is operated, and the sludge generated by the floc flows from the outlet a of the coagulation reaction tank to the upper end inlet of the sludge passage 102. Then, each brush 108 sequentially rotates around the drive shaft 104 and fits in the upper part of the sludge passage 102 along the transverse direction thereof, descends the sludge passage 102 while sweeping the screen plate 101, and lowers the sludge passage 102. When it reaches, it moves away from the screen plate 101, exits the sludge passage 102, and rotates around the driven shaft 105. On the other hand, the generated sludge S containing floc flows down the sludge passage 102 from the upper end inlet to the lower end outlet of the sludge passage 102, but the sludge passage 102 sweeps the screen plate 101 at a speed slower than the natural flow speed of the sludge S. The sludge passage 102 flows down while being dammed up by the brush 108 that goes down. The sludge S flowing on the screen plate 101 at the moving speed of the brush 108 passes through the screen plate 101 and flows into the drainage chamber 103, and the water content is reduced and the sludge reaches the lower part of the sludge passage 102. When the brush 108 that has blocked the sludge S leaves the screen plate 101 and exits the sludge passage 102, S falls from the lower end outlet of the sludge passage 102 to the concentrated sludge inlet 15 of the screw press type dehydrator. Each time a set time in minutes elapses after the electric control circuit of the cleaning water injection device is operated, the cleaning water is sprayed from each sprinkling tube 113 for a set time in seconds, and the brush 108 and the screen plate 101 are moved. Washing is performed, and the washing water passes through the screen plate 101 and flows into the drainage chamber 103 to remove clogging of the screen plate 101. In the sludge concentrator of this example, the time during which the sludge S flowing down while the sludge passage 102 is blocked by the brush 108 flows through the sludge passage 2 is about 12 seconds. In the conventional case where the sludge S naturally flows down the sludge passage 102, the time is about 1 to 3 seconds. Therefore, in the sludge concentrator of this example, since the time during which the sludge S flows on the screen plate 101 becomes longer, the amount of water passing through the screen plate 101 increases, and the concentration rate increases. The interval at which the cleaning water jetting device is operated is 15 to 90 minutes, preferably 30 to 60 minutes, and the time for the cleaning water jetting device to operate is 5 to 30 seconds, preferably 10 to 20 seconds. In the conventional case in which the brush 108 does not always sweep the screen plate 101, the interval at which the cleaning water injection device is activated is 10 minutes, and the time for which the cleaning water injection device is operated is 10 seconds. Therefore, in the sludge concentrator of the present example, the interval at which the cleaning water injection device operates is long, so that the amount of cleaning water used is reduced.

スクリーン板101の傾斜角度は40°に限定されるものではなく、水平面から20°程度であってもよい。スクリーン板101の傾斜が緩い場合には、スクリーン板101を掃きながら汚泥通路102を下るブラシ108でせき止めされつつ汚泥通路102を流下する汚泥Sは、多量の水分が減少して流動性が悪くなった部分がスクリーン板101の上に滞留してせき止めていたブラシ108から離れるが、スクリーン板101の上に滞留した汚泥Sは、次のブラシ108に押されてスクリーン板101の上を下り、スクリュープレス型脱水装置の濃縮汚泥投入口15に落下する。スクリーン板101の傾斜角度の大小に拘らず、汚泥Sが汚泥通路102を流下する速度は、汚泥通路102を下るブラシ108で制御されるので、スクリーン板101の傾斜角度を選択する範囲が広く、汚泥通路102を設計する自由度が高い。   The inclination angle of the screen plate 101 is not limited to 40 °, and may be about 20 ° from the horizontal plane. When the screen plate 101 has a gentle inclination, the sludge S flowing down the sludge passage 102 while being damped by the brush 108 that goes down the sludge passage 102 while sweeping the screen plate 101 is reduced in fluidity due to a decrease in a large amount of water. However, the sludge S staying on the screen plate 101 is pushed by the next brush 108 and descends on the screen plate 101, and the screw 108 It falls to the concentrated sludge inlet 15 of the press-type dewatering device. Regardless of the inclination angle of the screen plate 101, the speed at which the sludge S flows down the sludge passage 102 is controlled by the brush 108 that goes down the sludge passage 102, so the range for selecting the inclination angle of the screen plate 101 is wide. The degree of freedom in designing the sludge passage 102 is high.

スクリーン板101は、多数の孔を開けたパンチングメタル、その他のスクリーンやフィルタであってもよい。洗浄水噴射装置は、散水管113をスクリーン板101の下に配置して、スクリーン板101の下面に洗浄水を噴射する構成にしてもよい。   The screen plate 101 may be a punching metal having a large number of holes, other screens or filters. The cleaning water spraying device may be configured such that the sprinkling pipe 113 is disposed below the screen plate 101 and the cleaning water is sprayed onto the lower surface of the screen plate 101.

濃縮部Bのスクリーン板101にて分離された濃縮分離水は、排水室103の配水口103a及び配管(図示せず)からスクリュープレス型脱水装置下方の脱水分離液受17に送液される。このとき、配水管103aに接続する配管の流出口は、脱水分離液受17の長手軸の全長の20%以下の距離だけ長手軸の中点から離隔した位置となるように、濃縮分離液配管24は脱水分離液受17の側壁面に取り付けられている。濃縮分離液は、濃縮分離後直ちに、脱水分離液受17に流出して、脱水分離液受17の全面を流動する。脱水処理時にスクリーン筒2(液体透過性筒)を透過する分離液と共に落下する汚泥残渣は、脱水分離液受17の全面を流動している濃縮分離液中に落下して一緒に流されるため、堆積することが防止される。濃縮分離液、脱水分離液及び汚泥残渣は、最終的には洗浄排液として脱水分離液受17の排出口26から排出される。   The concentrated and separated water separated by the screen plate 101 of the concentration section B is sent from the water distribution port 103a and the piping (not shown) of the drainage chamber 103 to the dehydrated separator receiver 17 below the screw press type dehydrator. At this time, the outlet of the pipe connected to the water distribution pipe 103a is located at a position separated from the midpoint of the longitudinal axis by a distance of 20% or less of the total length of the longitudinal axis of the dehydrated separation liquid receiver 17 so as to be separated from the middle point of the longitudinal axis. Reference numeral 24 denotes a side wall surface of the dehydrated liquid receiver 17. The concentrated separation liquid flows out to the dehydrated liquid receiver 17 immediately after the concentrated separation and flows over the entire surface of the dehydrated liquid container 17. Since the sludge residue that falls together with the separation liquid that permeates the screen cylinder 2 (liquid permeable cylinder) during the dehydration process falls into the concentrated separation liquid flowing over the entire surface of the dehydration separation liquid receiver 17, Accumulation is prevented. The concentrated separated liquid, dehydrated separated liquid, and sludge residue are finally discharged from the outlet 26 of the dehydrated separated liquid receiver 17 as washing waste liquid.

図9に濃縮部の別の態様の全体断面図を示す。図9に示す濃縮部は、凝集汚泥を投入する凝集汚泥投入用ホッパ201と、投入された凝集汚泥を濃縮しながら順次搬送する複数の回転板204及び圧搾具215を備える案内部材203と、圧搾具により液体が除去された濃縮汚泥をスクリュープレス型脱水装置の濃縮汚泥投入口15に送る濃縮汚泥排出口206と、圧搾具により分離された濃縮分離液を受け入れる廃液口219と、を具備する。廃液口219は、濃縮分離液配管24に連結されている。   FIG. 9 shows an overall cross-sectional view of another aspect of the concentration unit. The concentrating unit shown in FIG. 9 includes an agglomerated sludge charging hopper 201 for injecting the agglomerated sludge, a guide member 203 having a plurality of rotating plates 204 and a pressing tool 215 for sequentially conveying the agglomerated sludge that has been charged, A concentrated sludge discharge port 206 for sending the concentrated sludge from which the liquid has been removed by the tool to the concentrated sludge inlet 15 of the screw press type dewatering device, and a waste liquid port 219 for receiving the concentrated separated liquid separated by the pressing tool. The waste liquid port 219 is connected to the concentrated separation liquid pipe 24.

図9を参照しながら、濃縮部を詳細に説明する。箱状の下部を構成するフレーム202a上に、薄板に囲まれたケーシング202bが取付けられている。201は凝集汚泥投入用ホッパである。ケーシング202b内には上方開放型の側壁が前後対向して左右方向に平行に設けられ、側壁205,205間は凝集汚泥を搬送しながら処理する溝状の搬送路を形成している。また側壁205,205間には多数の回転軸207が前後方向に且つ等間隔毎に軸支され、回転軸207には楕円形に形成された多数の回転板204が同一位相で一定間隔毎に一体的に軸装されている。回転板204は隣接する回転軸毎に位相が90°ずつずらされており、各軸が同時に同速で同方向に回転することにより、全体として上部外周面(送り面)はウェーブを形成するように搬送方向(左方向)に作動し、大きな掻き上げ力及び搬送力を発揮できる。各回転軸207上には、各軸の各回転板204の両側に挿入されるように板状部材からなる案内部材203が、挿脱可能に且つ搬送方向に沿って縦向きに収容支持されている。案内部材203の上端面は、回転板204の回転によって送られる凝集汚泥を送り方向にガイドする平滑なガイド面を形成し、各案内部材203同士の間には回転板204が挿入される空隙が形成され、隣接する2枚の回転板204の間には分離された液体を落下させる狭小なスリットが形成される。このスリットは、凝集汚泥を通過させず、液体を通過させる寸法であればよく、約0.5mm以上約4.0mm、好ましくは約0.8mm以上約2.0mm以下である。案内部材203は搬送路下の左右端に取付けられた受部208に係止されて支持されている。203bは受部208と係合し合うように形成されたフック部である。案内部材203の上端面は凝集汚泥を搬送方向に送る案内面となっており、その下端側は回転軸207を避けてさらにその下方に至るように、各回転軸対応位置に切欠203aが設けられている。各回転軸207の両端にはプーリ211がそれぞれ篏合され、前後両側において、交互に隣接プーリ211同士をタイミングベルト213で巻掛けることにより、下部フレーム202a内に設置されたモータ212により、各軸を同時に同速度で同一方向に正確に回転駆動できる構成となっている。214は駆動用モータ212側のプーリ211の1個を巻掛けるベルトである。各回転軸207はモータ212により例えば10〜50rpm位で緩速回転し、案内部材203上に投入された凝集汚泥は、各列の回転板204の周面に下方から持ち上げられながら案内部材203の上面に沿って排出口206の方向に送り出される。ケーシング202b上部には、先端にウエイト216が重量の増減調節が可能に載置されたステンレス板等からなるアーム217が、軸218により上下揺動可能に軸支させる圧搾具215が設けられている。該圧搾具215は回転板204周面の上下方向への運動に概ね追従して遥動し、凝集汚泥を押圧して脱水する。圧搾具215は凝集汚泥の種類や求められる濃縮度合等の必要性に応じて設けられ又は重量調節される。図9には、2つの圧搾具215を設けているが、1つの圧搾具でもよい。また、圧搾具215は、ウエイト216の代りに、アーム217の先端に回転自在に軸支され、凝集汚泥上面に転接して圧搾するローラー(固定しない)を設けたものを用いることもできる。あるいは、アーム217及びウエイト216の代わりにエアシリンダや油圧シリンダを用いてもよい。凝集汚泥は案内部材203及び回転板204の上面を移動する過程で、スリット内の回転板204と案内部材203との間の隙間及び隣接する回転板204同士の周面間の間隙から水その他の液体成分を下方に濾過して廃液口219より外部に排出し、案内部材203上に捕集された固体成分(濃縮汚泥)は回転板204の周面に送られながら順次濾過脱水されて排出口206より排出される。楕円形の回転板204を使用することにより、偏心回転する円板より掻き上げ搬送力が増大し且つ1回の回転で2回の掻き上げ搬送を行うので、搬送能力も増大するほか、隣接し合う楕円と楕円の面同士の間隙を常に一定に保つことができる。間隙を狭小且つ一定に保つことにより小径の固形物の捕集性や脱水性自体が向上するとともに、前方向の回転板204の持ち上げ方向の回転により、この部分への固形物の滞留がなく、従来のように固定板上に溜まった捕集物の除去の必要がなく、洗浄も容易である。多数の案内部材を凝集汚泥搬送方向に沿って格子状に並べることにより、搬送がスムースになり、板状部材を縦方向に用いるので、上部から強い押圧負荷を加えることができ、圧搾(濃縮)効果も高くできるという利点がある。また周面同士の間隔を常に狭小且つ一定にすることができるように回転板を楕円形にすることにより、未処理物が残らず、脱水力も1.2倍となり、濾過流量は一定となる。また回転板を楕円形状にすることにより起伏が大きくなるため濃縮汚泥の搬送性が向上し、円板に比して搬送能力が増大する。   The concentration unit will be described in detail with reference to FIG. A casing 202b surrounded by a thin plate is attached on a frame 202a constituting a box-like lower part. 201 is an agglomerated sludge charging hopper. Inside the casing 202b, an upper open side wall is provided in front and rear to be parallel to the left and right direction, and a groove-shaped transport path is formed between the side walls 205 and 205 for transporting the coagulated sludge. Further, a large number of rotating shafts 207 are supported between the side walls 205 and 205 in the front-rear direction and at equal intervals, and the rotating shaft 207 has a large number of ellipsoidal rotating plates 204 at the same phase and at regular intervals. The shaft is integrated. The rotating plate 204 is shifted in phase by 90 ° for each adjacent rotating shaft, and the upper outer peripheral surface (feeding surface) forms a wave as a whole by rotating each shaft simultaneously in the same direction at the same speed. It can operate in the transport direction (left direction) and can exert a large scraping force and transport force. On each rotary shaft 207, a guide member 203 made of a plate-like member is inserted and supported in a vertical direction along the transport direction so as to be inserted on both sides of each rotary plate 204 of each axis. Yes. The upper end surface of the guide member 203 forms a smooth guide surface that guides the coagulated sludge sent by the rotation of the rotating plate 204 in the feeding direction, and there is a gap into which the rotating plate 204 is inserted between the guide members 203. A narrow slit for dropping the separated liquid is formed between two adjacent rotating plates 204 formed. The slit may be of a size that allows liquid to pass without passing through the coagulated sludge, and is about 0.5 mm to about 4.0 mm, preferably about 0.8 mm to about 2.0 mm. The guide member 203 is locked and supported by a receiving portion 208 attached to the left and right ends under the conveyance path. Reference numeral 203b denotes a hook portion formed so as to engage with the receiving portion 208. The upper end surface of the guide member 203 is a guide surface for sending the coagulated sludge in the transport direction, and the lower end side thereof is provided with a notch 203a at each rotation axis corresponding position so as to avoid the rotation shaft 207 and further to the lower side. ing. Pulleys 211 are respectively engaged at both ends of each rotary shaft 207, and adjacent pulleys 211 are alternately wound around the front and rear sides by a timing belt 213, so that each shaft is driven by a motor 212 installed in the lower frame 202a. Can be rotated at the same speed and accurately in the same direction at the same time. Reference numeral 214 denotes a belt around which one of the pulleys 211 on the drive motor 212 side is wound. Each rotating shaft 207 is rotated slowly at a speed of, for example, about 10 to 50 rpm by the motor 212, and the aggregated sludge thrown on the guide member 203 is lifted from below to the circumferential surface of the rotating plate 204 of each row while being guided by the guide member 203. It is sent out in the direction of the discharge port 206 along the upper surface. The upper part of the casing 202b is provided with a squeezing tool 215 on which an arm 217 made of a stainless steel plate or the like, on which a weight 216 is mounted so that the weight can be increased or decreased, is pivotally supported by a shaft 218 so as to swing up and down. . The squeezing tool 215 swings following the movement of the peripheral surface of the rotating plate 204 in the vertical direction, and presses the coagulated sludge to dehydrate it. The pressing tool 215 is provided or weight-adjusted according to the necessity such as the type of coagulated sludge and the required degree of concentration. Although two pressing tools 215 are provided in FIG. 9, one pressing tool may be used. In addition, instead of the weight 216, the pressing tool 215 may be provided with a roller (not fixed) that is rotatably supported at the tip of the arm 217 and that is squeezed by rolling on the upper surface of the aggregated sludge. Alternatively, an air cylinder or a hydraulic cylinder may be used instead of the arm 217 and the weight 216. Aggregated sludge is in the process of moving on the upper surface of the guide member 203 and the rotating plate 204, water and other from the gap between the rotating plate 204 and the guide member 203 in the slit and the gap between the peripheral surfaces of the adjacent rotating plates 204. The liquid component is filtered downward and discharged from the waste liquid port 219 to the outside, and the solid component (concentrated sludge) collected on the guide member 203 is sequentially filtered and dehydrated while being sent to the peripheral surface of the rotating plate 204 and discharged. It is discharged from 206. By using the elliptical rotating plate 204, the lifting and conveying force is increased more than the eccentric rotating disc, and the conveying force is increased twice, so that the conveying ability is increased. The gap between the matching ellipses and the surfaces of the ellipses can always be kept constant. By keeping the gap narrow and constant, the collection and dewatering performance of the small-diameter solid material itself is improved, and there is no stagnation of the solid material in this part due to the rotation in the lifting direction of the front rotating plate 204, There is no need to remove the collected matter accumulated on the fixed plate as in the prior art, and cleaning is easy. By arranging a large number of guide members in a grid shape along the direction of transporting the coagulated sludge, the transport becomes smooth and the plate-shaped member is used in the vertical direction, so that a strong pressing load can be applied from the top, and compression (concentration) There is an advantage that the effect can be increased. Further, by making the rotating plate elliptical so that the distance between the peripheral surfaces can be always narrow and constant, no untreated material remains, the dehydrating power is 1.2 times, and the filtration flow rate is constant. Further, since the undulation is increased by making the rotating plate into an elliptical shape, the transportability of the concentrated sludge is improved, and the transport capability is increased as compared with the disk.

図10は、また別の構成を有する濃縮部320の断面図である。凝集汚泥投入用ホッパ321と、凝集汚泥移動手段322と、凝集汚泥移動手段322の上方に設けられた加圧手段328と、凝集汚泥移動手段322の下方に設けられた水捕捉手段323とを備え、加圧手段328は、凝集汚泥移動手段322の汚泥排出口326の手前に、ベルト324との間に隙間を設けるように、加圧板328Aを斜めに設置し、凝集汚泥が凝集汚泥移動手段322によって水平方向に汚泥排出口側に移動されてくると、加圧板328Aとベルト324との間の隙間を通過する際に上から加圧されるように構成されている。この際、加圧板328Aは、一つ或いは二つ以上設けてもよいし、また、加圧板328Aは、設置角度が固定されるように設けることもできるし、設置角度を随時変更できるように設けることもできるし、さらには、上下揺動可能に軸支することもできる。加圧板328Aの角度並びにベルト324との隙間の大きさを変更することにより、凝集汚泥に掛かる圧力を調整することができ、濃縮倍率を調整することができる。また、加圧板328Aの代わりに、例えばローラーを設置することもできる。濃縮された汚泥(濃縮汚泥)は濃縮汚泥排出口326から押し出し排出される。図11に示すように、濃縮汚泥排出口326には、櫛状の裁断刃331が水平方向に適宜間隔を置いて、刃が鉛直方向となるように設置されている。このような櫛状の裁断刃により、押し出されてくる濃縮汚泥に鉛直方向のスリットを形成することができる。裁断刃は櫛状に限定されず、例えば、上面視格子状に組まれた裁断刃、或いは、上面視した場合に濃縮汚泥の長さ方向又は幅方向に適宜間隔をおいて組まれた裁断刃を、濃縮汚泥に対して上方から昇降できる構成としてもよい。また、櫛状の裁断刃は鉛直方向に立設する態様に限定されず、±45°以内、好ましくは±30°以内の傾きを有していてもよい。加圧手段328によって凝集汚泥から分離された濃縮分離液は、濃縮部320底部の濃縮分離液排出口329から、濃縮分離液配管24に送られる。   FIG. 10 is a cross-sectional view of the concentration unit 320 having another configuration. Aggregated sludge charging hopper 321, aggregated sludge moving means 322, pressurizing means 328 provided above aggregated sludge moving means 322, and water capturing means 323 provided below aggregated sludge moving means 322. The pressurizing means 328 is provided with a pressure plate 328A obliquely so as to provide a gap with the belt 324 before the sludge discharge port 326 of the aggregated sludge moving means 322, and the aggregated sludge is moved to the aggregated sludge moving means 322. When the sludge is moved to the sludge discharge port side in the horizontal direction, the pressure is applied from above when passing through the gap between the pressure plate 328A and the belt 324. At this time, one or two or more pressure plates 328A may be provided, and the pressure plate 328A may be provided so that the installation angle is fixed, or provided so that the installation angle can be changed at any time. In addition, it can be pivotally supported so as to be swingable up and down. By changing the angle of the pressure plate 328A and the size of the gap with the belt 324, the pressure applied to the coagulated sludge can be adjusted, and the concentration ratio can be adjusted. Further, instead of the pressure plate 328A, for example, a roller may be installed. The concentrated sludge (concentrated sludge) is extruded and discharged from the concentrated sludge discharge port 326. As shown in FIG. 11, comb-shaped cutting blades 331 are installed in the concentrated sludge discharge port 326 so that the blades are in the vertical direction at appropriate intervals in the horizontal direction. With such a comb-shaped cutting blade, a vertical slit can be formed in the extruded concentrated sludge. The cutting blade is not limited to a comb shape, for example, a cutting blade assembled in a lattice shape when viewed from the top, or a cutting blade assembled at an appropriate interval in the length direction or width direction of the concentrated sludge when viewed from the top surface It is good also as a structure which can be raised / lowered from upper direction with respect to concentrated sludge. Further, the comb-shaped cutting blade is not limited to a mode in which the comb-shaped cutting blade is erected in the vertical direction, and may have an inclination within ± 45 °, preferably within ± 30 °. The concentrated separated liquid separated from the coagulated sludge by the pressurizing means 328 is sent to the concentrated separated liquid pipe 24 from the concentrated separated liquid discharge port 329 at the bottom of the concentrated section 320.

本発明の汚泥脱水装置を稼働した場合の脱水分離液受の状況(図12)と、従来の軸摺動式スクリュープレス型脱水装置を稼働した場合の脱水分離液受の状況(図13)とを対比して示す。従来の汚泥脱水装置の脱水分離液受には多量の汚泥残渣が確認できるが、本発明の汚泥脱水装置の脱水分離液受には汚泥残渣が確認できず、清浄であることがわかる。   The situation of the dehydrated separation liquid receiver when the sludge dewatering device of the present invention is operated (FIG. 12), and the situation of the dehydrated separation liquid receiver when the conventional shaft sliding screw press type dehydrator is operated (FIG. 13) Is shown in comparison. Although a large amount of sludge residue can be confirmed in the dewatering separation liquid receiver of the conventional sludge dewatering apparatus, no sludge residue can be confirmed in the dewatering separation liquid receiver of the sludge dewatering apparatus of the present invention.

図14には、図13に示す従来の軸摺動式スクリュープレス型脱水装置の稼働を停止して、洗浄作業を行った後の脱水分離液受の状況を示す。特にコーナー部や側壁面に汚泥残渣が残留していることがわかる。   FIG. 14 shows a state of receiving the dehydrated separation liquid after the operation of the conventional shaft sliding screw press type dehydrating apparatus shown in FIG. 13 is stopped and the cleaning operation is performed. In particular, it can be seen that sludge residues remain on the corners and side walls.

Claims (7)

凝集汚泥を濃縮汚泥と濃縮分離液とに分離する濃縮部と、
当該濃縮部からの濃縮汚泥を受け入れて、脱水ケーキと脱水分離液とに分離する脱水部と、
当該脱水部からの脱水分離液を受け入れる脱水分離液受と、
当該脱水分離液受に、当該濃縮部からの濃縮分離液を送液する濃縮分離液配管と、
を具備し、
濃縮分離液を当該脱水分離液受の洗浄液として用いることを特徴とする、汚泥脱水装置。
A concentration section for separating the agglomerated sludge into concentrated sludge and concentrated separation liquid;
A dehydration unit that receives the concentrated sludge from the concentration unit and separates it into a dehydrated cake and a dehydrated separation liquid;
A dehydrated liquid receiver that receives the dehydrated liquid separated from the dewatering section;
Concentrated separation liquid piping for sending the concentrated separation liquid from the concentration section to the dehydration separation liquid receiver,
Comprising
A sludge dewatering apparatus, wherein the concentrated separation liquid is used as a washing liquid for the dehydrated separation liquid receiver.
前記濃縮分離液配管は前記脱水分離液受けの側壁面に取り付けられており、前記流出口の中心軸と前記濃縮分離液配管の中心軸との取り付け角度は90度以上180度以下であることを特徴とする、請求項1に記載の汚泥脱水装置。   The concentrated separation liquid pipe is attached to the side wall surface of the dehydrated separation liquid receiver, and the attachment angle between the central axis of the outlet and the central axis of the concentrated separation liquid pipe is 90 degrees or more and 180 degrees or less. The sludge dewatering device according to claim 1, characterized in that it is characterized in that 前記濃縮分離液配管の流出口は、前記脱水分離液受の長手軸の全長の20%以下の距離だけ当該長手軸の中点から離隔した位置に取り付けられていることを特徴とする、請求項1又は2に記載の汚泥脱水装置。   The outlet of the concentrated separation liquid pipe is attached to a position separated from a midpoint of the longitudinal axis by a distance of 20% or less of the total length of the longitudinal axis of the dehydrated separation liquid receiver. The sludge dewatering device according to 1 or 2. 前記脱水部は、
液体透過性筒と、
当該液体透過性筒内に長手方向に摺動可能に嵌合されており、先端部から一定距離にわたり一様な直径を有する大径端部、基端部から一定距離に渡り一様な直径を有する小径端部、及び当該大径端部と小径端部との間のテーパード形状部から構成され、当該テーパード形状部、及び当該テーパード形状に接する当該大径端部の一部の円周上に螺旋状に設けられている羽根を有するスクリュー軸と、
当該スクリュー軸の当該テーパード形状部の当該小径端部側の位置で、当該液体透過性筒を貫通して設けられている濃縮汚泥投入口と、
当該液体透過性筒の内壁及び当該スクリュー軸のテーパード形状部の間に形成される螺旋状の濃縮汚泥移送圧縮通路と、
当該液体透過性筒の内壁及び当該大径端部の間に形成される圧縮室と、
当該圧縮室から脱水ケーキを排出する脱水ケーキ排出口と、
を具備する軸摺動式スクリュープレス脱水部であり、
前記脱水分離液受は、当該液体透過性筒の下方に位置づけられている、請求項1〜3のいずれかに記載の汚泥脱水装置。
The dehydrating part
A liquid permeable tube;
The liquid permeable cylinder is slidably fitted in the longitudinal direction, and has a large diameter end portion having a uniform diameter over a certain distance from the distal end portion and a uniform diameter over a certain distance from the base end portion. A small-diameter end portion and a tapered shape portion between the large-diameter end portion and the small-diameter end portion, and on the circumference of the tapered shape portion and a part of the large-diameter end portion in contact with the tapered shape. A screw shaft having spirally provided blades;
At a position on the small diameter end side of the tapered portion of the screw shaft, a concentrated sludge inlet provided through the liquid permeable tube,
A spiral concentrated sludge transfer compression passage formed between the inner wall of the liquid permeable tube and the tapered portion of the screw shaft;
A compression chamber formed between the inner wall of the liquid permeable tube and the large diameter end;
A dewatering cake discharge port for discharging the dewatering cake from the compression chamber;
A shaft slide type screw press dewatering section comprising:
The sludge dewatering device according to any one of claims 1 to 3, wherein the dewatered liquid receiver is positioned below the liquid permeable cylinder.
前記濃縮部は、
凝集汚泥を受け入れる凝集汚泥投入口と、
投入された凝集汚泥を濃縮しながら順次搬送する圧搾部を備える案内部材と、
圧搾により固液分離された濃縮汚泥を前記脱水部に送る濃縮汚泥排出口と、
圧搾により固液分離された濃縮分離液を前記脱水液受に送る濃縮分離液配管に連結されている濃縮分離液受と、
を具備する、請求項1〜4のいずれかに記載の汚泥脱水装置。
The concentration unit includes
An agglomerated sludge inlet for accepting the agglomerated sludge;
A guide member provided with a pressing part that sequentially conveys the aggregated sludge that has been charged, and
A concentrated sludge discharge port for sending the concentrated sludge separated into solid and liquid by pressing to the dehydration unit;
A concentrated liquid receiver connected to a concentrated liquid pipe that sends the concentrated liquid separated by squeezing to the dehydrated liquid receiver;
The sludge dewatering device according to claim 1, comprising:
前記濃縮部及び前記脱水部は、それぞれ独立の濃縮装置及び脱水装置であって、当該濃縮装置からの濃縮分離液配管は当該脱水装置の脱水分離液受に取り付けられていることを特徴とする請求項1〜5のいずれかに記載の汚泥脱水装置。   The concentrating unit and the dehydrating unit are respectively an independent concentrating device and a dehydrating device, and a concentrated separation liquid pipe from the concentrating device is attached to a dehydrated liquid receiver of the dehydrating device. Item 6. The sludge dewatering device according to any one of Items 1 to 5. 凝集汚泥を濃縮汚泥と濃縮分離液とに分離し、
当該濃縮汚泥を脱水ケーキと脱水分離液とに分離し、
当該濃縮分離液を脱水分離液受に流出させ、
当該脱水分離液を脱水分離液受に落下させ、
汚泥残渣が脱水分離液受に堆積することを防止することを特徴とする汚泥脱水方法。
Separating the coagulated sludge into concentrated sludge and concentrated separation liquid,
The concentrated sludge is separated into a dehydrated cake and a dehydrated separation liquid,
The concentrated separation liquid is allowed to flow into the dehydrated separation liquid receiver,
The dehydrated separation liquid is dropped into the dehydrated separation liquid receiver,
A sludge dewatering method characterized by preventing sludge residue from accumulating in a dewatered separation liquid receiver.
JP2016098527A 2016-05-17 2016-05-17 Sludge dewatering device and cleaning method thereof Active JP6466366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016098527A JP6466366B2 (en) 2016-05-17 2016-05-17 Sludge dewatering device and cleaning method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016098527A JP6466366B2 (en) 2016-05-17 2016-05-17 Sludge dewatering device and cleaning method thereof

Publications (2)

Publication Number Publication Date
JP2017205691A true JP2017205691A (en) 2017-11-24
JP6466366B2 JP6466366B2 (en) 2019-02-06

Family

ID=60416021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016098527A Active JP6466366B2 (en) 2016-05-17 2016-05-17 Sludge dewatering device and cleaning method thereof

Country Status (1)

Country Link
JP (1) JP6466366B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025906A (en) * 2018-08-09 2020-02-20 株式会社鶴見製作所 Multiple disk type dehydrater
CN115253482A (en) * 2022-08-16 2022-11-01 江西德力欧精密机械制造有限公司 Waste water filters reuse's copper mould processing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347796A (en) * 1998-06-11 1999-12-21 Yoshiro Aoyama Dehydration press
JP2005218888A (en) * 2004-02-03 2005-08-18 Kurita Water Ind Ltd Sludge dehydrator and sludge dehydration method
JP2005270806A (en) * 2004-03-24 2005-10-06 Ebara Corp Sludge thickening apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347796A (en) * 1998-06-11 1999-12-21 Yoshiro Aoyama Dehydration press
JP2005218888A (en) * 2004-02-03 2005-08-18 Kurita Water Ind Ltd Sludge dehydrator and sludge dehydration method
JP2005270806A (en) * 2004-03-24 2005-10-06 Ebara Corp Sludge thickening apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020025906A (en) * 2018-08-09 2020-02-20 株式会社鶴見製作所 Multiple disk type dehydrater
JP7103051B2 (en) 2018-08-09 2022-07-20 株式会社鶴見製作所 Multi-disc dehydrator
CN115253482A (en) * 2022-08-16 2022-11-01 江西德力欧精密机械制造有限公司 Waste water filters reuse's copper mould processing equipment

Also Published As

Publication number Publication date
JP6466366B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP3548888B2 (en) Continuous compression dewatering equipment
CN111807664B (en) Continuous sludge treatment system
CN103007614A (en) High-efficiency energy-saving belt filter press
JP2014151321A (en) Dewatering equipment
CN201052437Y (en) Combined frame belt filter press
CN113816582A (en) Pre-concentration type sludge press-filtration dehydration equipment and method
JP4582712B2 (en) Filtration device
CN108211478A (en) A kind of novel band vibrating roller press filtering device
CN112321128A (en) Novel sludge dewatering integration hydraulic means
JP6466366B2 (en) Sludge dewatering device and cleaning method thereof
KR102267921B1 (en) Sludge dewatering device with forced discharge structure of cake
CN215137550U (en) Vacuum dehydrator
CN118417056B (en) Production equipment and method for regenerated carbon black without pungent odor
CN108863009A (en) A kind of totally-enclosed heavy type belt concentration filter press
CN109126276B (en) Filtering process for rubber production process
CN216404165U (en) Sludge drying processing apparatus for hydraulic engineering
KR101437908B1 (en) Vertical type screw dehydrator
CN215403764U (en) Pre-concentration type sludge press-filtration dewatering equipment
CN117771803A (en) Woodenware coating filtering system and application method thereof
KR102369292B1 (en) Sludge Dewatering System
CN208406282U (en) A kind of novel band vibrating roller press filtering device
CN214808954U (en) Dead belt sludge dewaterer of anti-sticking
JP4347632B2 (en) Debris removal / dehydration system for wastewater
CN211876543U (en) Raw material dehydration device
CN211552372U (en) High-efficient vegetables vibration dehydrator is used in hot pot seasoning production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190109

R150 Certificate of patent or registration of utility model

Ref document number: 6466366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250