JP2016135775A - Novel heterocyclic compound and organic light-emitting element containing the same - Google Patents

Novel heterocyclic compound and organic light-emitting element containing the same Download PDF

Info

Publication number
JP2016135775A
JP2016135775A JP2016005583A JP2016005583A JP2016135775A JP 2016135775 A JP2016135775 A JP 2016135775A JP 2016005583 A JP2016005583 A JP 2016005583A JP 2016005583 A JP2016005583 A JP 2016005583A JP 2016135775 A JP2016135775 A JP 2016135775A
Authority
JP
Japan
Prior art keywords
group
substituted
carbon atoms
unsubstituted
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016005583A
Other languages
Japanese (ja)
Other versions
JP6096942B2 (en
Inventor
ボン−ヒャン,イ
Bong-Hyang Lee
ヨン−テ,チェ
Yeong-Tae Choi
テ−ジョン,ユ
Taejung Yu
ビョン−ソン,ヤン
Byung-Sun Yang
セ−ジン,イ
Se-Jin Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SFC Co Ltd
Original Assignee
SFC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SFC Co Ltd filed Critical SFC Co Ltd
Publication of JP2016135775A publication Critical patent/JP2016135775A/en
Application granted granted Critical
Publication of JP6096942B2 publication Critical patent/JP6096942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a novel heterocyclic compound which can be used for an electron transport layer or a luminous layer of an organic light-emitting element, has a long life and a low-voltage drive characteristic, and is excellent in luminous efficacy; and an organic light-emitting element containing the same.SOLUTION: The heterocyclic compound is represented by the chemical formula in the figure.SELECTED DRAWING: None

Description

本発明は、新規なヘテロ環式化合物及びこれを含む有機発光素子に関する。   The present invention relates to a novel heterocyclic compound and an organic light emitting device including the same.

一般に、有機発光現象とは、有機物質を利用して電気エネルギーを光エネルギーに転換させる現象をいう。有機発光現象を利用する有機発光素子は、通常、陽極、陰極及びこれらの間に配置される有機物層を含む構造を有する。
ここで、有機物層は、有機発光素子の効率及び安定性を高めるために、それぞれ異なる物質で構成された多層の構造を有する場合が多く、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層などから構成される。このような有機発光素子の構造において両電極の間に電圧をかけると、陽極からは正孔が、陰極からは電子が有機物層にそれぞれ注入され、注入された正孔と電子とが出会ったときにエキシトン(exciton)が形成され、このエキシトンが再び基底状態に落ちるときに光が出る。
有機発光素子において、発光材料は、発光メカニズムによって、電子の一重項励起状態に由来する蛍光材料と、電子の三重項励起状態に由来するリン光材料に分類される。
In general, the organic light emission phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic substance. An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer disposed therebetween.
Here, in order to increase the efficiency and stability of the organic light emitting device, the organic material layer often has a multilayer structure composed of different materials, for example, a hole injection layer, a hole transport layer, a light emitting layer. , An electron transport layer, an electron injection layer, and the like. When a voltage is applied between both electrodes in such an organic light emitting device structure, holes are injected from the anode and electrons are injected from the cathode into the organic material layer, and the injected holes and electrons meet. Excitons are formed in the light, and light is emitted when the excitons fall back to the ground state.
In an organic light emitting device, a light emitting material is classified into a fluorescent material derived from an electron singlet excited state and a phosphorescent material derived from an electron triplet excited state according to a light emission mechanism.

一方、発光材料として一つの物質のみを使用する場合、分子間相互作用によって最大発光波長が長波長に移動し、色純度が低下したり発光減衰効果により素子の効率が減少したりする問題が発生するので、色純度を増加させ且つエネルギー転移による発光効率を増加させるために、発光材料としてホスト−ドーパントシステムを使用することができる。
有機発光素子に電流を加えると、陽極と陰極からそれぞれ正孔と電子が注入され、注入された正孔と電子はそれぞれの正孔輸送層と電子輸送層を経て発光層で再結合して発光励起子を形成する。こうして形成された発光励起子は基底状態に転移しながら光を放出する。前記光は発光メカニズムによって一重項励起子を利用する蛍光と三重項励起子を利用するリン光に分けられ、前記蛍光及びリン光は有機発光素子の発光源として使用できる。
On the other hand, when only one substance is used as the light emitting material, the maximum emission wavelength shifts to a long wavelength due to intermolecular interaction, and the color purity is lowered, and the efficiency of the device is reduced due to the light emission attenuation effect. Thus, a host-dopant system can be used as the luminescent material in order to increase color purity and increase luminous efficiency due to energy transfer.
When an electric current is applied to the organic light emitting device, holes and electrons are injected from the anode and the cathode, respectively, and the injected holes and electrons recombine in the light emitting layer through the hole transport layer and the electron transport layer, respectively. Form photoexcitons. The luminescent excitons thus formed emit light while transitioning to the ground state. The light is divided into fluorescence using singlet excitons and phosphorescence using triplet excitons according to a light emission mechanism, and the fluorescence and phosphorescence can be used as a light emitting source of an organic light emitting device.

一重項励起子のみを使用する蛍光は、一重項励起子の発生確率が25%であって発光効率に限界が存在するが、三重項励起子を利用することが可能なリン光は、発光効率が蛍光に比べて著しいため、多くの研究が続けられている。   Fluorescence using only singlet excitons has a singlet exciton generation probability of 25%, and there is a limit in light emission efficiency. However, phosphorescence that can use triplet excitons has a light emission efficiency. Much research has been continued since is significantly more significant than fluorescence.

前記リン光発光体のホスト材料としては、現在までにCBPが最も広く知られており、BCP、BAlqなどの正孔遮断層を適用した有機発光素子が公知になっている。
しかし、既存のリン光発光材料を用いた素子は、蛍光発光材料を用いた素子に比べて効率は高いが、リン光発光材料のホストとして使用されていたBAlq又はCBPなどの従来の材料の場合、蛍光材料を用いた素子に比べて駆動電圧が高いため、電力効率(lm/w)の面で大きな利点がなく、寿命の面でも満足すべきではないという欠点がある。また、このようなリン光材料を用いて発光素子として使用するために、韓国公開特許第10−2011−0013220号公報(2011.02.09)では、6員の芳香族環又は6員のヘテロ芳香族環の骨格に芳香族へテロ環が導入された有機化合物について開示されており、日本特開2010−166070号公報(2010.7.29)では、置換もしくは無置換のピリミジン又はキナゾリン骨格にアリール又はヘテロアリール環が結合された有機化合物について開示されている。
To date, CBP is the most widely known host material for the phosphorescent emitter, and organic light-emitting devices to which a hole blocking layer such as BCP or BAlq is applied are known.
However, although the element using the existing phosphorescent light emitting material is higher in efficiency than the element using the fluorescent light emitting material, the conventional material such as BAlq or CBP used as the host of the phosphorescent light emitting material is used. Since the driving voltage is higher than that of an element using a fluorescent material, there is a disadvantage that there is no great advantage in terms of power efficiency (lm / w) and that it should not be satisfied in terms of life. In order to use such a phosphorescent material as a light-emitting element, Korean Published Patent No. 10-2011-0013220 (2011.02.09) discloses a 6-membered aromatic ring or a 6-membered hetero ring. An organic compound in which an aromatic heterocycle is introduced into the skeleton of an aromatic ring is disclosed. In Japanese Unexamined Patent Application Publication No. 2010-166070 (2010.7.29), a substituted or unsubstituted pyrimidine or quinazoline skeleton is disclosed. Organic compounds having aryl or heteroaryl rings attached are disclosed.

前記有機発光素子は、両電極から注入された電荷が発光層で再結合して発光が得られるが、電子の移動速度よりも正孔の移動速度が速いので、正孔の一部が発光層を抜け出すことによる効率の低下が問題となる。そのため、電子の移動速度の速い電子輸送材料が求められている。   In the organic light emitting device, the charges injected from both electrodes recombine in the light emitting layer to obtain light emission, but the hole moving speed is faster than the electron moving speed, so that a part of the holes are in the light emitting layer. Decrease in efficiency due to exiting is a problem. Therefore, an electron transport material having a high electron moving speed is demanded.

前記電子輸送能力及び正孔阻止能力に優れるとともに発光効率に優れ、薄膜状態での安定性が高い有機化合物を製造するために、韓国公開特許第10−2012−0104204号公報(2012.09.20)では、置換されたアントラセン環構造にピリドインドール誘導体が結合された有機化合物について開示されており、日本特開2010−168363号公報(2010.08.05)では、外部量子効率及び駆動電圧の特性において優れた、ピリジンナフチル基を有するアントラセン誘導体について開示されている。
しかし、前述したような有機発光素子用発光材料又は電子輸送材料を製造するための努力にも拘らず、未だに低駆動電圧化又は高発光効率化のための材料の開発が十分であるとは言えないため、低電圧で駆動が可能でありながらも発光効率に優れた発光材料又は電子輸送層用材料の開発の必要性は持続的に求められている実情である。
In order to produce an organic compound having excellent electron transport ability and hole blocking ability, and excellent luminous efficiency and high stability in a thin film state, Korean Patent Application Publication No. 10-2012-0104204 (2012.9.20) ) Discloses an organic compound in which a pyridoindole derivative is bonded to a substituted anthracene ring structure. In Japanese Unexamined Patent Application Publication No. 2010-168363 (2011.08.05), external quantum efficiency and driving voltage are disclosed. An anthracene derivative having a pyridine naphthyl group having excellent properties is disclosed.
However, despite the efforts to manufacture the light-emitting material or electron transport material for organic light-emitting elements as described above, it can still be said that the development of materials for lowering the drive voltage or higher light emission efficiency is still sufficient. Therefore, there is a continuous need for the development of a light emitting material or an electron transport layer material that is capable of being driven at a low voltage but has excellent light emission efficiency.

韓国公開特許第10−2011−0013220号公報(2011.02.09)Korean Published Patent No. 10-2011-0013220 (2011.02.09) 日本特開2010−166070号公報(2010.7.29)Japanese Unexamined Patent Application Publication No. 2010-166070 (2010.7.29) 韓国公開特許第10−2012−0104204号公報(2012.09.20)Korean Published Patent No. 10-2012-0104204 (2012.9.20) 日本特開2010−168363号公報(2010.08.05)Japanese Unexamined Patent Publication No. 2010-168363 (2011.08.05)

本発明が解決しようとする第一の技術的課題は、有機発光素子の発光層又は電子輸送層で使用でき、長寿命及び低電圧駆動特性を有し、発光効率に優れる新規なヘテロ環式化合物を提供することである。
本発明が解決しようする第二の技術的課題は、前記有機化合物を含む有機発光素子を提供することである。
The first technical problem to be solved by the present invention is a novel heterocyclic compound that can be used in a light emitting layer or an electron transport layer of an organic light emitting device, has a long life and low voltage driving characteristics, and is excellent in luminous efficiency. Is to provide.
The second technical problem to be solved by the present invention is to provide an organic light emitting device containing the organic compound.

本発明は、前記第一の技術的課題を達成するために、下記[化学式A]で表されるヘテロ環式化合物を提供する。
[化学式A]

Figure 2016135775
前記化学式Aにおいて、
Xは、S、O、NR、CR、SiR、GeR、Se、Te、及びBRよりなる群から選択され、前記RとR、RとR、RとRは、それぞれ互いに連結されて環を形成することができ、
はN又はCR’であり、TはN又はCR’’であり、TはN又はCR’’’であるが、TからTの少なくとも一つはNであり、
はN又はCR15であり、BはN又はCR16であり、BはN又はCR17であり、BはN又はCR18であり、
前記R、R’からR’’’、RからR、R11からR18は、それぞれ同一又は異なり、互いに独立して、水素、重水素、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の炭素数2〜30のアルケニル基、置換もしくは無置換の炭素数2〜30のアルキニル基、置換もしくは無置換の炭素数3〜30のシクロアルキル基、置換もしくは無置換の炭素数2〜30のヘテロシクロアルキル基、置換もしくは無置換の炭素数5〜30のシクロアルケニル基、置換もしくは無置換の炭素数1〜30のアルコキシ基、置換もしくは無置換の炭素数6〜30のアリールオキシ基、置換もしくは無置換の炭素数1〜30のアルキルチオキシ基、置換もしくは無置換の炭素数5〜30のアリールチオキシ基、置換もしくは無置換の炭素数1〜30のアルキルアミン基、置換もしくは無置換の炭素数5〜30のアリールアミン基、置換もしくは無置換の炭素数5〜50のアリール基、置換もしくは無置換の炭素数3〜50のヘテロアリール基、置換もしくは無置換の炭素数1〜30のシリル基、置換もしくは無置換の炭素数1〜30のカルボキシル基、チオール基、シアノ基、ヒドロキシ基、ニトロ基、ハロゲン基、セレン基、テルル基、アミノ基、置換もしくは無置換の炭素数1〜30のエーテル基、置換もしくは無置換の炭素数1〜30のエステル基の中から選択され、
前記R11からR18のうちのそれぞれが互いに隣接している場合、隣接する官能基は互いに連結されて脂環族又は芳香族の単環又は多環を形成することができ、
前記R11からR14のうちの互いに隣接している二つは、前記構造式Qの*に連結されて縮合環を形成する単結合であり、
連結基Yは、単結合、置換もしくは無置換の炭素数1〜20のアルキレン基、置換もしくは無置換の炭素数3〜20のシクロアルキレン基、置換もしくは無置換の炭素数1〜20のヘテロシクロアルキレン基、置換又は無置換の炭素数3〜20のシクロアルケニレン基、置換もしくは無置換の炭素数1〜20のヘテロシクロアルケニレン基、置換もしくは無置換の炭素数6〜60のアリーレン基、置換もしくは無置換の炭素数1〜60のヘテロアリーレン基の中から選択され、
前記R、R’からR’’’のうちのいずれか一つは、連結基Yに結合する単結合であり、
nは0〜2の整数であり、
Zは置換もしくは無置換の炭素数6〜50のアリール基又は置換もしくは無置換の炭素数2〜50のヘテロアリール基であるが、前記アリール基又はヘテロアリール基内の芳香族環のそれぞれの炭素は追加の縮合環を形成してさらに脂環族単環又は多環を形成することができ、前記さらに形成された脂環族の単環又は多環の炭素原子は、N、S、O、Se、Te、Si及びGeの中から選択される少なくとも一つのヘテロ原子で置換でき、
前記「置換もしくは無置換の」における「置換」は、重水素、シアノ基、ハロゲン基、ヒドロキシ基、ニトロ基、炭素数1〜24のアルキル基、炭素数1〜24のハロゲン化アルキル基、炭素数1〜24のアルケニル基、炭素数1〜24のアルキニル基、炭素数1〜24のヘテロアルキル基、炭素数6〜24のアリール基、炭素数6〜24のアリールアルキル基、炭素数2〜24のヘテロアリール基、又は炭素数2〜24のヘテロアリールアルキル基、炭素数1〜24のアルコキシ基、炭素数1〜24のアルキルアミノ基、炭素数1〜24のアリールアミノ基、炭素数1〜24のヘテロアリールアミノ基、炭素数1〜24のアルキルシリル基、炭素数1〜24のアリールシリル基、及び炭素数1〜24のアリールオキシ基よりなる群から選ばれた1つ以上の置換基で置換されることを意味する。 In order to achieve the first technical problem, the present invention provides a heterocyclic compound represented by the following [Chemical Formula A].
[Chemical Formula A]
Figure 2016135775
In the chemical formula A,
X is selected from the group consisting of S, O, NR 1 , CR 2 R 3 , SiR 4 R 5 , GeR 6 R 7 , Se, Te, and BR 8 , and R 2 and R 3 , R 4 and R 5 , R 6 and R 7 can be connected to each other to form a ring,
T 1 is N or CR ′, T 2 is N or CR ″, T 3 is N or CR ′ ″, but at least one of T 1 to T 3 is N;
B 1 is N or CR 15 ; B 2 is N or CR 16 ; B 3 is N or CR 17 ; B 4 is N or CR 18 ;
R, R ′ to R ′ ″, R 1 to R 8 , R 11 to R 18 are the same or different, and independently of each other, hydrogen, deuterium, substituted or unsubstituted C 1-30. Alkyl group, substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, substituted or unsubstituted A heterocycloalkyl group having 2 to 30 carbon atoms, a substituted or unsubstituted cycloalkenyl group having 5 to 30 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted carbon group having 6 to 6 carbon atoms. 30 aryloxy groups, substituted or unsubstituted alkylthioxy groups having 1 to 30 carbon atoms, substituted or unsubstituted arylthioxy groups having 5 to 30 carbon atoms, substituted or unsubstituted A prime alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl amine group having 5 to 30 carbon atoms, a substituted or unsubstituted aryl group having 5 to 50 carbon atoms, a substituted or unsubstituted hetero group having 3 to 50 carbon atoms Aryl group, substituted or unsubstituted silyl group having 1 to 30 carbon atoms, substituted or unsubstituted carboxyl group having 1 to 30 carbon atoms, thiol group, cyano group, hydroxy group, nitro group, halogen group, selenium group, tellurium Selected from a group, an amino group, a substituted or unsubstituted ether group having 1 to 30 carbon atoms, a substituted or unsubstituted ester group having 1 to 30 carbon atoms,
When each of R 11 to R 18 is adjacent to each other, adjacent functional groups may be linked to each other to form an alicyclic or aromatic monocyclic or polycyclic ring;
Two of R 11 to R 14 that are adjacent to each other are single bonds that are connected to * in the structural formula Q to form a condensed ring;
The linking group Y is a single bond, a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms, a substituted or unsubstituted heterocycle having 1 to 20 carbon atoms. An alkylene group, a substituted or unsubstituted cycloalkenylene group having 3 to 20 carbon atoms, a substituted or unsubstituted heterocycloalkenylene group having 1 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, substituted or Selected from unsubstituted C 1-60 heteroarylene groups;
Any one of R, R ′ to R ′ ″ is a single bond bonded to the linking group Y;
n is an integer from 0 to 2,
Z is a substituted or unsubstituted aryl group having 6 to 50 carbon atoms or a substituted or unsubstituted heteroaryl group having 2 to 50 carbon atoms, and each carbon of the aromatic ring in the aryl group or heteroaryl group. Can form an additional condensed ring to further form an alicyclic monocyclic or polycyclic ring, and the further formed alicyclic monocyclic or polycyclic carbon atoms include N, S, O, Can be substituted with at least one heteroatom selected from Se, Te, Si and Ge;
“Substitution” in the above “substituted or unsubstituted” means deuterium, cyano group, halogen group, hydroxy group, nitro group, alkyl group having 1 to 24 carbon atoms, halogenated alkyl group having 1 to 24 carbon atoms, carbon C1-C24 alkenyl group, C1-C24 alkynyl group, C1-C24 heteroalkyl group, C6-C24 aryl group, C6-C24 arylalkyl group, C2-C2 24 heteroaryl group, or C2-C24 heteroarylalkyl group, C1-C24 alkoxy group, C1-C24 alkylamino group, C1-C24 arylamino group, C1-C1 Selected from the group consisting of ˜24 heteroarylamino groups, C1-C24 alkylsilyl groups, C1-C24 arylsilyl groups, and C1-C24 aryloxy groups It means substituted with one or more substituents.

また、本発明は、前記第二の課題を達成するために、第1電極、前記第1電極に対向する第2電極、及び前記第1電極と前記第2電極との間に介在された有機層を含み、前記有機層が本発明のヘテロ環式化合物を1種以上含む有機発光素子を提供する。   In order to achieve the second object, the present invention provides a first electrode, a second electrode facing the first electrode, and an organic intervening between the first electrode and the second electrode. Provided is an organic light-emitting device including a layer, wherein the organic layer includes at least one heterocyclic compound of the present invention.

本発明に係るヘテロ環式化合物は、リン光ホスト又は電子輸送層用材料として使用される場合に長寿命及び低電圧駆動の特性を有し、発光効率に優れる特性を有しているため、安定的で優れた素子の製造に利用できる。   The heterocyclic compound according to the present invention has long life and low voltage drive characteristics when used as a phosphorescent host or electron transport layer material, and has excellent light emission efficiency. It can be used for the manufacture of special and excellent devices.

本発明の一具体例に係る有機発光素子の概略図である。It is the schematic of the organic light emitting element which concerns on one specific example of this invention.

以下、本発明をさらに詳細に説明する。
本発明における化合物内の置換基の説明において、前記「置換もしくは無置換の炭素数1〜30のアルキル基」、「置換もしくは無置換の炭素数5〜50のアリール基」などにおける前記アルキル基又はアリール基の範囲を考慮するとき、前記炭素数1〜30のアルキル基及び炭素数5〜50のアリール基の炭素数の範囲は、それぞれ、前記置換基が置換された部分を考慮せずに無置換のものと見たときのアルキル部分又はアリール部分を構成する全体炭素数を意味する。例えば、パラ位にブチル基が置換されたフェニル基は、炭素数4のブチル基で置換された炭素数6のアリール基に該当するものと見るべきである。
Hereinafter, the present invention will be described in more detail.
In the description of the substituent in the compound of the present invention, the alkyl group in the above-mentioned “substituted or unsubstituted alkyl group having 1 to 30 carbon atoms”, “substituted or unsubstituted aryl group having 5 to 50 carbon atoms” or the like, When considering the range of the aryl group, the ranges of the carbon number of the alkyl group having 1 to 30 carbon atoms and the aryl group having 5 to 50 carbon atoms are not considered without considering the portion where the substituent is substituted. The total number of carbon atoms constituting the alkyl or aryl moiety when viewed as a substituted one. For example, a phenyl group in which a butyl group is substituted at the para position should be regarded as corresponding to an aryl group having 6 carbon atoms substituted with a butyl group having 4 carbon atoms.

また、本発明の化合物で使用されるアリール基は、一つの水素除去によって芳香族炭化水素から誘導された有機ラジカルであって、5〜7員、好ましくは5又は6員を含む単環又は融合環系を含む。前記アリール基に置換基がある場合、隣接する置換基と互いに融合(fused)して環をさらに形成することができる。
前記アリールの具体的な例として、フェニル、ナフチル、ビフェニル、テルフェニル、アントリル、インデニル、フルオレニル、フェナントリル、トリフェニレニル、ピレニル、ペリレニル、クリセニル、ナフタセニル、フルオランテニルなどを含むが、これに限定されない。
前記アリール基のうちの一つ以上の水素原子は、重水素原子、ハロゲン原子、ヒドロキシ基、ニトロ基、シアノ基、シリル基、アミノ基(−NH、−NH(R)、−N(R’)(R”)、R’及びR”は互いに独立して炭素数1〜10のアルキル基であり、この場合、「アルキルアミノ基」という)、アミジノ基、ヒドラジン基、ヒドラゾン基、カルボキシル基、スルホン酸基、リン酸基、炭素数1〜24のアルキル基、炭素数1〜24のハロゲン化アルキル基、炭素数1〜24のアルケニル基、炭素数1〜24のアルキニル基、炭素数1〜24のヘテロアルキル基、炭素数6〜24のアリール基、炭素数6〜24のアリールアルキル基、炭素数2〜24のヘテロアリール基又は炭素数2〜24のヘテロアリールアルキル基で置換できる。
The aryl group used in the compound of the present invention is an organic radical derived from an aromatic hydrocarbon by one hydrogen removal, and is a monocyclic or fused group containing 5 to 7 members, preferably 5 or 6 members. Includes ring systems. When the aryl group has a substituent, it can be fused with an adjacent substituent to further form a ring.
Specific examples of the aryl include, but are not limited to, phenyl, naphthyl, biphenyl, terphenyl, anthryl, indenyl, fluorenyl, phenanthryl, triphenylenyl, pyrenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, and the like.
One or more hydrogen atoms of the aryl group may be a deuterium atom, a halogen atom, a hydroxy group, a nitro group, a cyano group, a silyl group, an amino group (—NH 2 , —NH (R), —N (R ') (R "), R' and R" are each independently an alkyl group having 1 to 10 carbon atoms, in this case, referred to as "alkylamino group"), amidino group, hydrazine group, hydrazone group, carboxyl group , Sulfonic acid group, phosphoric acid group, alkyl group having 1 to 24 carbon atoms, halogenated alkyl group having 1 to 24 carbon atoms, alkenyl group having 1 to 24 carbon atoms, alkynyl group having 1 to 24 carbon atoms, carbon number 1 It can be substituted with a -24 heteroalkyl group, an aryl group with 6-24 carbon atoms, an arylalkyl group with 6-24 carbon atoms, a heteroaryl group with 2-24 carbon atoms, or a heteroarylalkyl group with 2-24 carbon atoms.

本発明の化合物で使用される置換基たるヘテロアリール基は、前記アリール基でそれぞれの環内にN、O、P、Se、Te、Si、Ge又はSの中から選ばれた1〜4個のヘテロ原子を含むことが可能な炭素数2〜24のヘテロ芳香族有機ラジカルを意味し、前記環は、融合して環を形成することができる。そして、前記ヘテロアリール基の一つ以上の水素原子は、前記アリール基の場合と同様の置換基で置換可能である。   The heteroaryl group as a substituent used in the compound of the present invention is 1 to 4 selected from N, O, P, Se, Te, Si, Ge or S in each ring in the aryl group. A heteroaromatic organic radical having 2 to 24 carbon atoms that can contain a heteroatom, and the rings can be fused to form a ring. One or more hydrogen atoms of the heteroaryl group can be substituted with the same substituent as in the aryl group.

本発明で使用される置換基であるアルキル基の具体的な例としては、メチル、エチル、プロピル、イソプロピル、イソブチル、sec−ブチル、tert−ブチル、ペンチル、iso−アミル、ヘキシルなどを挙げることができ、前記アルキル基のうち一つ以上の水素原子は、前記アリール基の場合と同様の置換基で置換可能である。
本発明の化合物で使用される置換基であるアルコキシ基の具体的な例としては、メトキシ、エトキシ、プロポキシ、イソブチルオキシ、sec−ブチルオキシ、ペンチルオキシ、iso−アミルオキシ、ヘキシルオキシなどを挙げることができ、前記アルコキシ基のうち1つ以上の水素原子は、前記アリール基の場合と同様の置換基で置換可能である。
本発明の化合物で使用される置換基であるシリル基の具体的な例としては、トリメチルシリル、トリエチルシリル、トリフェニルシリル、トリメトキシシリル、ジメトキシフェニルシリル、ジフェニルメチルシリル、シリル、ジフェニルビニルシリル、メチルシクロブチルシリル、ジメチルフリルシリルなどを挙げることができ、前記シリル基のうち1つ以上の水素原子は、前記アリール基の場合と同様の置換基で置換可能である。
Specific examples of the alkyl group which is a substituent used in the present invention include methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl and the like. In addition, one or more hydrogen atoms in the alkyl group may be substituted with the same substituent as in the aryl group.
Specific examples of the alkoxy group which is a substituent used in the compound of the present invention include methoxy, ethoxy, propoxy, isobutyloxy, sec-butyloxy, pentyloxy, iso-amyloxy, hexyloxy and the like. In the alkoxy group, one or more hydrogen atoms can be substituted with the same substituent as in the aryl group.
Specific examples of the silyl group which is a substituent used in the compound of the present invention include trimethylsilyl, triethylsilyl, triphenylsilyl, trimethoxysilyl, dimethoxyphenylsilyl, diphenylmethylsilyl, silyl, diphenylvinylsilyl, methyl Examples thereof include cyclobutylsilyl and dimethylfurylsilyl. One or more hydrogen atoms in the silyl group can be substituted with the same substituent as in the aryl group.

本発明は、前記化学式Aで表される化合物であって、前記TからTを含む2つの縮合環構造と、構造式Qを含む2つの縮合環構造とが互いに縮合した構造を有し、前記TからTを含む芳香族環炭素に連結基Yが結合された形態を有することを技術的特徴とする。
本発明において、このような構造を有するヘテロ環式化合物の場合、これはリン光ホストであって、発光層用途だけでなく、電子輸送層又は電子注入層用材料として使用することができる。一実施例として、前記化学式Aにおいて、T及びTがそれぞれ窒素原子であり、TがCR”であって、置換基R”が連結基Yに連結される単結合とすることができる。すなわち、キナゾリン環を有する構造における二つの窒素原子の間に位置した芳香族環の炭素が前記連結基Yに連結できる。
The present invention is a compound represented by the chemical formula A, which has a structure in which two condensed ring structures including the T 1 to T 3 and two condensed ring structures including the structural formula Q are condensed with each other. The present invention is characterized by having a form in which a linking group Y is bonded to an aromatic ring carbon containing T 1 to T 3 .
In the present invention, in the case of a heterocyclic compound having such a structure, this is a phosphorescent host and can be used not only as a light emitting layer but also as an electron transport layer or electron injection layer material. As an example, in Formula A, T 1 and T 3 are each a nitrogen atom, T 2 is CR ″, and the substituent R ″ is a single bond connected to the linking group Y. . That is, an aromatic ring carbon positioned between two nitrogen atoms in a structure having a quinazoline ring can be linked to the linking group Y.

本発明の前記化学式A内の前記連結基Yは、それぞれ同一又は異なり、互いに独立して単結合であるか、あるあるいは下記構造式1から構造式9の中から選ばれるいずれか一つとすることができる。

Figure 2016135775
ここで、前記構造式1から構造式9における芳香族環の炭素位は水素又は重水素が結合できる。 The linking groups Y in the chemical formula A of the present invention are the same or different and are each independently a single bond, or are any one selected from the following structural formulas 1 to 9. Can do.
Figure 2016135775
Here, hydrogen or deuterium can be bonded to the carbon position of the aromatic ring in the structural formulas 1 to 9.

より好ましくは、本発明において、前記化学式Aの置換基R、R’からR’’’、R11からR18は、それぞれ同一又は異なり、互いに独立して、水素、重水素、置換もしくは無置換の炭素数1〜20のアルキル基;置換もしくは無置換の炭素数3〜20のシクロアルキル基;置換もしくは無置換の炭素数5〜20のアリール基;置換もしくは無置換の炭素数2〜20のヘテロアリール基;の中から選ばれる一つであり、
前記nはそれぞれ0又は1である。
More preferably, in the present invention, the substituents R, R ′ to R ′ ″ and R 11 to R 18 in the chemical formula A are the same or different and independently of one another, hydrogen, deuterium, substituted or unsubstituted. A substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms; a substituted or unsubstituted aryl group having 5 to 20 carbon atoms; a substituted or unsubstituted carbon group having 2 to 20 carbon atoms; A heteroaryl group; one selected from
The n is 0 or 1, respectively.

また、本発明において、前記[化学式A]におけるB1からB4がいずれも窒素原子でなくてもよい。すなわち、前記構造式Qにおける6角環をなす芳香族環は炭化水素のみからなってもよい。
また、本発明において、前記[化学式A]におけるZは置換もしくは無置換の炭素数2〜50のヘテロアリール基であってもよい。
すなわち、前記[化学式A]で表される化合物は、連結基Yを挟んでいる2つのヘテロアリール基からなってもよい。この場合、連結基Yの上部側のヘテロアリール基は、T1からT3を含まない6角環が、Xを含む5員環及びB1からB4を含む6員環の炭化水素環と縮合されているか、あるいはXを含む5員環及びB1からB4を含む6員環のヘテロ環と縮合されていることを特徴とする。
より具体的に、前記[化学式A]のZは、下記構造式Aから構造式Eの中から選ばれるいずれか一つで表示されるヘテロアリール基とすることができる。

Figure 2016135775
前記構造式AからEにおいて
WはNR24であるが、R24は、単結合;又は置換もしくは無置換の炭素数5〜20のアリーレン基;置換もしくは無置換の炭素数2〜20のヘテロアリーレン基;の中から選ばれる1つであり、
21からR23は、それぞれ同一又は異なり、互いに独立して、水素、重水素;置換もしくは無置換の炭素数1〜20のアルキル基;置換もしくは無置換の炭素数3〜20のシクロアルキル基;置換もしくは無置換の炭素数5〜20のアリール基;置換もしくは無置換の炭素数2〜20のヘテロアリール基;の中から選ばれる1つであり、
前記構造式Aから構造式Eにおいて、
前記*は、連結基Yに結合される結合サイトを意味し、
前記環状基AからDは、それぞれ互いに同一又は異なり、5員環又は6員環の脂環族又は芳香族単環、又は多環を形成することが可能な炭素数4〜20の炭化水素環基とすることができる。
本発明において、前記[化学式A]におけるZは置換もしくは無置換の炭素数6〜50のアリール基とすることができる。 In the present invention, any one of B1 to B4 in [Chemical Formula A] may not be a nitrogen atom. That is, the aromatic ring constituting the hexagonal ring in the structural formula Q may be composed of only hydrocarbons.
In the present invention, Z in [Chemical Formula A] may be a substituted or unsubstituted heteroaryl group having 2 to 50 carbon atoms.
That is, the compound represented by [Chemical Formula A] may be composed of two heteroaryl groups sandwiching the linking group Y. In this case, in the heteroaryl group on the upper side of the linking group Y, is a hexagonal ring not containing T1 to T3 condensed with a 5-membered ring containing X and a 6-membered hydrocarbon ring containing B1 to B4? Or a 5-membered ring containing X and a 6-membered heterocycle containing B1 to B4.
More specifically, Z in [Chemical Formula A] can be a heteroaryl group represented by any one selected from Structural Formula A to Structural Formula E below.
Figure 2016135775
In the structural formulas A to E, W is NR 24 , but R 24 is a single bond; or a substituted or unsubstituted arylene group having 5 to 20 carbon atoms; a substituted or unsubstituted heteroarylene having 2 to 20 carbon atoms; One selected from the group;
R 21 to R 23 are the same or different and independently of each other, hydrogen, deuterium; a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms; a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms A substituted or unsubstituted aryl group having 5 to 20 carbon atoms; a substituted or unsubstituted heteroaryl group having 2 to 20 carbon atoms;
In Structural Formula A to Structural Formula E,
* Means a binding site bonded to the linking group Y;
The cyclic groups A to D are the same as or different from each other, and a hydrocarbon ring having 4 to 20 carbon atoms capable of forming a 5-membered or 6-membered alicyclic or aromatic monocyclic or polycyclic ring. It can be based.
In the present invention, Z in [Chemical Formula A] can be a substituted or unsubstituted aryl group having 6 to 50 carbon atoms.

一実施例として、本発明の前記ヘテロ環式化合物は、下記[化学式1]から[化学式249]で表される群から選ぶことができる。

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775
Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775
Figure 2016135775

Figure 2016135775
Figure 2016135775
Figure 2016135775

Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775

Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
As an example, the heterocyclic compound of the present invention can be selected from the group represented by the following [Chemical Formula 1] to [Chemical Formula 249].
Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775
Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775
Figure 2016135775

Figure 2016135775
Figure 2016135775
Figure 2016135775

Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775

Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775

本発明は、第1電極;前記第1電極に対向する第2電極;前記第1電極と前記第2電極との間に介在される有機層;を含み、前記有機層が本発明における前記ヘテロ環式化合物を1種以上含む有機発光素子を提供する。
本発明において、「(有機層が)有機化合物を1種以上含む」とは、「(有機層が)本発明の範疇に属する1種の有機化合物又は該有機化合物の範疇に属する互いに異なる2種以上の化合物を含むことができる」と解釈できる。
前記有機層は、正孔注入層、正孔輸送層、正孔注入機能及び正孔輸送機能を同時に有する機能層、発光層、電子輸送層、及び電子注入層の少なくとも一つを含むことができる。このとき、前記第1電極と前記第2電極との間に介在された有機層が発光層を含み、前記発光層は、ホストとドーパントからなり、本発明における前記ヘテロ環式化合物がホストとして使用できる。
本発明において、前記発光層には、ホストと共に、ドーパント材料が使用できる。前記発光層がホスト及びドーパントを含む場合、ドーパントの含量は、通常、ホスト約100質量部を基準として約0.01〜約20重量部の範囲から選択でき、これに限定されない。
The present invention includes a first electrode; a second electrode facing the first electrode; an organic layer interposed between the first electrode and the second electrode; and the organic layer is the hetero in the present invention. Provided is an organic light-emitting device containing at least one cyclic compound.
In the present invention, “(the organic layer) contains one or more organic compounds” means “(the organic layer) is one organic compound belonging to the category of the present invention or two different organic compounds belonging to the category of the organic compound”. It can be interpreted that the above-mentioned compounds can be included.
The organic layer may include at least one of a hole injection layer, a hole transport layer, a functional layer having a hole injection function and a hole transport function at the same time, a light emitting layer, an electron transport layer, and an electron injection layer. . At this time, the organic layer interposed between the first electrode and the second electrode includes a light emitting layer, the light emitting layer is composed of a host and a dopant, and the heterocyclic compound in the present invention is used as a host. it can.
In the present invention, a dopant material can be used for the light emitting layer together with the host. When the light emitting layer includes a host and a dopant, the dopant content can be selected from a range of about 0.01 to about 20 parts by weight based on about 100 parts by weight of the host, but is not limited thereto.

本発明における前記ヘテロ環式化合物がホストとして使用される場合、前記有機層は正孔阻止層又は電子阻止層をさらに含むことができる。
本発明において、前記第1電極と前記第2電極との間に介在された有機層が電子輸送層を含み、本発明における前記ヘテロ環式化合物は電子輸送層用に使用できる。
When the heterocyclic compound according to the present invention is used as a host, the organic layer may further include a hole blocking layer or an electron blocking layer.
In the present invention, the organic layer interposed between the first electrode and the second electrode includes an electron transport layer, and the heterocyclic compound in the present invention can be used for the electron transport layer.

本発明において、有機発光素子の電子輸送層材料としては、電子注入電極(Cathode)から注入された電子を安定的に輸送する機能を果たすものであって、公知の電子輸送物質を利用することができる。公知の電子輸送物質の例としては、キノリン誘導体、特にトリス(8−キノリノラト)アルミニウム(Alq3)、TAZ、Balq、ベリリウムビス(ベンゾキノリ−10−ノエート)(beryllium bis(benzoquinolin−10−olate:Bebq2)、ADN、化合物201、化合物202、オキサジアゾール誘導体であるPBD、BMD、BNDなどの材料を使用することもできるが、これに限定されるものではない。

Figure 2016135775
In the present invention, as the electron transport layer material of the organic light emitting device, it functions to stably transport electrons injected from an electron injection electrode (Cathode), and a known electron transport material can be used. it can. Examples of known electron transporting materials include quinoline derivatives, particularly tris (8-quinolinolato) aluminum (Alq3), TAZ, Balq, beryllium bis (benzoquinolin-10-noate) (beryllium bis (benzoquinolin-10-olate: Bebq2) , ADN, Compound 201, Compound 202, and materials such as PBD, BMD, and BND which are oxadiazole derivatives can be used, but are not limited thereto.
Figure 2016135775

以下、本発明の有機発光素子を図1に基づいて説明する。
図1は本発明の有機発光素子の構造を示す断面図である。本発明に係る有機発光素子は、アノード20、正孔輸送層40、有機発光層50、電子輸送層60及びカソード80を含み、必要に応じて正孔注入層30と電子注入層70をさらに含むことができ、それ以外にも1層又は2層の中間層をさらに形成することも可能であり、正孔阻止層又は電子阻止層をさらに形成することもできる。
Hereinafter, the organic light emitting device of the present invention will be described with reference to FIG.
FIG. 1 is a cross-sectional view showing the structure of the organic light emitting device of the present invention. The organic light emitting device according to the present invention includes an anode 20, a hole transport layer 40, an organic light emitting layer 50, an electron transport layer 60, and a cathode 80, and further includes a hole injection layer 30 and an electron injection layer 70 as necessary. In addition, one or two intermediate layers can be further formed, and a hole blocking layer or an electron blocking layer can be further formed.

図1を参照して本発明の有機発光素子及びその製造方法について説明する。
まず、基板10の上部にアノード電極用物質をコートしてアノード20を形成する。ここで、基板10としては、通常の有機EL素子で使われる基板を使用するが、透明性、表面平滑性、取り扱い容易性及び防水性に優れる有機基板又は透明プラスチック基板が好ましい。アノード電極用物質としては、透明で伝導性に優れる酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化スズ(SnO)、酸化亜鉛(ZnO)などを使用する。
前記アノード20電極の上部に正孔注入層物質を真空熱蒸着又はスピンコートして正孔注入層30を形成する。その次に、前記正孔注入層30の上部に正孔輸送層物質を真空熱蒸着又はスピンコートして正孔輸送層40を形成する。
前記正孔注入層の材料は、当業界で通常使用されるものである限り、特に制限されずに使用することができ、例えば、2−TNATA[4,4’,4”−tris(2−naphthylphenyl−phenylamino)−triphenylamine]、NPD[N,N’−di(1−naphthyl)−N,N’−diphenylbenzidine)]、TPD[N,N’−diphenyl−N,N’−bis(3−methylphenyl)−1,1’−biphenyl−4,4’−diamine]、DNTPD[N,N’−diphenyl−N,N’−bis−[4−(phenyl−m−tolyl−amino)−phenyl]−biphenyl−4,4’−diamine]などを使用することができる。しかし、本発明は必ずしもこれに限定されるものではない。
With reference to FIG. 1, the organic light emitting device of the present invention and the manufacturing method thereof will be described.
First, an anode 20 is formed by coating an anode electrode material on the substrate 10. Here, as the substrate 10, a substrate used in a normal organic EL element is used, but an organic substrate or a transparent plastic substrate excellent in transparency, surface smoothness, ease of handling and waterproofness is preferable. As the anode electrode material, indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2 ), zinc oxide (ZnO) and the like which are transparent and excellent in conductivity are used.
A hole injection layer material is formed on the anode 20 electrode by vacuum thermal evaporation or spin coating. Next, a hole transport layer 40 is formed on the hole injection layer 30 by vacuum thermal deposition or spin coating with a hole transport layer material.
The material of the hole injection layer can be used without particular limitation as long as it is usually used in the art. For example, 2-TNATA [4,4 ′, 4 ″ -tris (2- naphthylphenyl-phenylamino) -triphenylamine], NPD [N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine)], TPD [N, N′-diphenyl-N, N′-bis (3-methyl) ) -1,1′-biphenyl-4,4′-diamine], DNTPD [N, N′-diphenyl-N, N′-bis- [4- (phenyl-m-tolyl-amino) -phenyl] -biphenyl -4,4'-diamin] etc. can be used. However, the present invention is not necessarily limited to this.

前記正孔輸送層の材料としては、当業界で通常使用されるものである限り、特に制限されず、例えば、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1−ビフェニル]−4,4’−ジアミン(TPD)又はN,N’−ジ(ナフタレン−1−イル)−N,N’−ジフェニルベンジジン(a−NPD)などを使用することができる。しかし、本発明は必ずしもこれに限定されるものではない。
次いで、前記正孔輸送層40の上部に有機発光層50を積層し、前記有機発光層50の上部に選択的に、正孔阻止層(図示せず)を真空蒸着方法又はスピンコート方法で薄膜として形成することができる。前記正孔阻止層は、正孔が有機発光層を通過してカソードに流入する場合には、素子の寿命及び効率が減少するため、HOMO(Highest Occupied Molecular Orbital)レベルが非常に低い物質を使用することにより、このような問題を防止する役割を果たす。このとき、使用される正孔阻止物質は、特に制限されないが、電子輸送能力を有しながら発光化合物よりも高いイオン化ポテンシャルを有しなければならず、代表的にBAlq、BCP、TPBIなどが使用できる。
The material for the hole transport layer is not particularly limited as long as it is usually used in the art. For example, N, N′-bis (3-methylphenyl) -N, N′-diphenyl- [ 1,1-biphenyl] -4,4′-diamine (TPD) or N, N′-di (naphthalen-1-yl) -N, N′-diphenylbenzidine (a-NPD) or the like can be used. . However, the present invention is not necessarily limited to this.
Next, an organic light emitting layer 50 is stacked on the hole transport layer 40, and a hole blocking layer (not shown) is selectively formed on the organic light emitting layer 50 by a vacuum deposition method or a spin coating method. Can be formed as The hole blocking layer uses a material having a very low HOMO (High Occupied Molecular Orbital) level because the lifetime and efficiency of the device is reduced when holes pass through the organic light emitting layer and flow into the cathode. This serves to prevent such problems. At this time, the hole blocking material to be used is not particularly limited, but it must have an ionization potential higher than that of the light emitting compound while having an electron transport capability, and typically BAlq, BCP, TPBI, etc. are used. it can.

前記正孔阻止層に使用される物質として、BAlq、BCP、Bphen、TPBI、NTAZ、BeBq、OXD−7、Liq、及び化学式1001から化学式1007の中から選ばれるいずれか一つが使用できるが、これに限定されるものではない。

Figure 2016135775
Figure 2016135775
As the material used for the hole blocking layer, BAlq, BCP, Bphen, TPBI, NTAZ, BeBq 2 , OXD-7, Liq, and any one selected from Chemical Formula 1001 to Chemical Formula 1007 can be used. It is not limited to this.
Figure 2016135775
Figure 2016135775

このような正孔阻止層上に電子輸送層60を真空蒸着方法又はスピンコート法によって蒸着した後、電子注入層70を形成し、前記電子注入層70の上部にカソード形成用金属を真空熱蒸着してカソード80電極を形成することにより、有機EL素子が完成される。ここで、カソード形成用金属としては、リチウム(Li)、マグネシウム(Mg)、アルミニウム(Al)、アルミニウム−リチウム(Al−Li)、カルシウム(Ca)、マグネシウム−インジウム(Mg−In)、マグネシウム−銀(Mg−Ag)などを使用することができ、前面発光素子を得るためには、ITO、IZOを用いた透過型カソードを使用することができる。
前記発光層は、ホストとドーパントからなってもよい。
After the electron transport layer 60 is deposited on the hole blocking layer by a vacuum deposition method or a spin coating method, an electron injection layer 70 is formed, and a cathode forming metal is vacuum thermal deposited on the electron injection layer 70. By forming the cathode 80 electrode, the organic EL element is completed. Here, as a metal for cathode formation, lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium- Silver (Mg—Ag) or the like can be used, and a transmissive cathode using ITO or IZO can be used to obtain a front light emitting element.
The light emitting layer may comprise a host and a dopant.

本発明の具体的な例によれば、前記発光層の厚さは50〜2,000オングストロームであることが好ましい。
このとき、発光層がリン光を活用する場合に使用されるリン光ドーパントとしては、下記一般式(A−1)で表される化合物の中から選ばれる1種以上の化合物とすることができる。
[一般式A−1]
ML
ここで、Mは第7族、第8族、第9族、第10族、第11族、第13族、第14族、第15族及び第16族の金属よりなる群から選択され、好ましくは、Ir、Pt、Pd、Rh、Re、Os、Tl、Pb、Bi、In、Sn、Sb、Te、Au及びAgから選択される。L、L及びLは、リガンドであって、互いに同一又は異なり、それぞれ独立して下記構造式Dから選ばれるいずれか一つが挙げられるが、これに限定されるものではない。下記構造式D内の「*」は、金属イオンMに配位するサイトを表現する。
[構造式D]

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775
Figure 2016135775
According to a specific example of the present invention, the thickness of the light emitting layer is preferably 50 to 2,000 angstroms.
At this time, as a phosphorescence dopant used when a light emitting layer utilizes phosphorescence, it can be set as 1 or more types of compounds chosen from the compounds represented by the following general formula (A-1). .
[General Formula A-1]
ML 1 L 2 L 3
Here, M is selected from the group consisting of metals of Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, Group 15, Group 16, and Group 16, preferably Is selected from Ir, Pt, Pd, Rh, Re, Os, Tl, Pb, Bi, In, Sn, Sb, Te, Au, and Ag. L 1 , L 2 and L 3 are ligands which are the same or different from each other, and include any one independently selected from the following structural formula D, but are not limited thereto. “*” In the following structural formula D represents a site coordinated to the metal ion M.
[Structural Formula D]
Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775
Figure 2016135775

前記構造式Dにおいて、前記Rは、互いに同一又は異なり、それぞれ独立して、水素、重水素、ハロゲン、シアノ基、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の炭素数6〜50のアリール基、置換もしくは無置換の炭素数5〜50のヘテロアリール基、置換もしくは無置換の炭素数1〜30のアルコキシ基、置換もしくは無置換の炭素数3〜30のシクロアルキル基、置換もしくは無置換の炭素数2〜30のアルケニル基、置換もしくは無置換の炭素数1〜30のアルキルアミノ基、置換もしくは無置換の炭素数1〜30のアルキルシリル基、置換もしくは無置換の炭素数6〜30のアリールアミノ基、及び置換もしくは無置換の炭素数6から30のアリールシリル基の中から選ばれるいずれか一つであることができ;
前記Rは、それぞれ独立して、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、炭素数6〜40のアリール基、炭素数3〜20のヘテロアリール基、シアノ基、ハロゲン基、重水素及び水素の中から選ばれる1種以上の置換基でさらに置換でき;
また、前記Rは、それぞれの隣接している置換基とアルキレン又はアルケニレンで連結されて脂環族環及び単環又は多環の芳香族環を形成することができ;
前記Lは、隣接している置換体とアルキレン又はアルケニレンで連結されてスピロ環又は融合環を形成することができる。
In the structural formula D, the R's are the same or different from each other, and each independently represents hydrogen, deuterium, halogen, cyano group, substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, substituted or unsubstituted carbon. An aryl group having 6 to 50 carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, and a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms Group, substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, substituted or unsubstituted alkylsilyl group having 1 to 30 carbon atoms, substituted or unsubstituted Or an arylamino group having 6 to 30 carbon atoms and a substituted or unsubstituted arylsilyl group having 6 to 30 carbon atoms. It can be;
Each R is independently an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, a heteroaryl group having 3 to 20 carbon atoms, a cyano group, Can be further substituted with one or more substituents selected from among halogen groups, deuterium and hydrogen;
R may be linked to each adjacent substituent with alkylene or alkenylene to form an alicyclic ring and a monocyclic or polycyclic aromatic ring;
L may be linked to an adjacent substituent by alkylene or alkenylene to form a spiro ring or a fused ring.

一例として、前記[一般式A−1]で表示されるドーパントは、下記化合物の中から選択されたいずれか一つとすることができる。

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775
As an example, the dopant represented by [General Formula A-1] may be any one selected from the following compounds.
Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

前記発光層は、前記ドーパントとホスト以外にも、様々なホストと様々なドーパント物質をさらに含むことができる。   The light emitting layer may further include various hosts and various dopant materials in addition to the dopant and the host.

本発明において、前記正孔注入層、正孔輸送層、電子阻止層、発光層、正孔阻止層、電子輸送層及び電子注入層から選ばれた一つ以上の層は、単分子蒸着方式又は溶液工程によって形成できる。ここで、前記蒸着方式は、前記それぞれの層を形成するための材料として使用される物質を真空又は低圧状態で加熱などによって蒸発させて薄膜を形成する方法を意味し、前記溶液工程は、前記それぞれの層を形成するための材料として使用される物質を溶媒と混合し、これをインクジェット印刷、ロールツーロールコート、スクリーン印刷、スプレーコート、ディップコート、スピンコートなどの方法によって薄膜を形成する方法を意味する。   In the present invention, the one or more layers selected from the hole injection layer, the hole transport layer, the electron blocking layer, the light emitting layer, the hole blocking layer, the electron transport layer, and the electron injection layer may be a single molecule deposition method or It can be formed by a solution process. Here, the vapor deposition method means a method of forming a thin film by evaporating a substance used as a material for forming each of the layers by heating or the like in a vacuum or low pressure state, and the solution step includes A method of forming a thin film by mixing a substance used as a material for forming each layer with a solvent and using the method such as ink jet printing, roll-to-roll coating, screen printing, spray coating, dip coating, or spin coating. Means.

本発明における前記有機発光素子は、平板ディスプレイ装置;フレキシブルディスプレイ装置;単色又は白色の平板照明用装置;及び単色又は白色のフレキシブル照明用装置;から選ばれるいずれか一つの装置に使用できる。   The organic light emitting device according to the present invention can be used in any one device selected from a flat display device; a flexible display device; a monochromatic or white flat illumination device; and a monochromatic or white flexible illumination device.

以下、好適な実施例を挙げて本発明をさらに詳細に説明する。これらの実施例は本発明をより具体的に説明するためのもので、本発明の範囲を限定するものではないことは、当業界における通常の知識を有する者には自明であろう。
(実施例)
合成例1.[化学式1]の合成
合成例1−1.<1−a>の合成
下記反応式1によって<1−a>を合成した。
[反応式1]

Figure 2016135775
<1−a>
乾燥した2Lの反応器にジベンゾフラン60g(357mmol)を窒素気流下でテトラヒドロフラン480mLに溶かした後、−78℃で攪拌しながら1.6Mn−ブチルリチウム289mL(464mmol)をゆっくり滴加する。滴加が完了したら、常温で12時間撹拌する。その後、再び−78℃でホウ酸トリメチル48.2g(464mmol)をゆっくり滴加した後、常温に昇温して1時間撹拌する。反応終了の後、2N塩酸水溶液250mLを常温で滴加した後、pH2に作り、30分間撹拌する。その後、酢酸エチルと水で抽出し、有機層を減圧濃縮し、ジクロロメタンとヘプタンで再結晶して<1−a>65gを得た。(収率85%) Hereinafter, the present invention will be described in more detail with reference to preferred examples. It will be apparent to those skilled in the art that these examples are intended to illustrate the present invention more specifically and are not intended to limit the scope of the present invention.
(Example)
Synthesis Example 1 Synthesis of [Chemical Formula 1]
Synthesis Example 1-1. <1-a> Synthesis <1-a> was synthesized according to the following Reaction Scheme 1.
[Reaction Formula 1]
Figure 2016135775
<1-a>
In a dry 2 L reactor, 60 g (357 mmol) of dibenzofuran is dissolved in 480 mL of tetrahydrofuran under a nitrogen stream, and then 289 mL (464 mmol) of 1.6 Mn-butyllithium is slowly added dropwise with stirring at −78 ° C. When the addition is complete, stir at ambient temperature for 12 hours. Thereafter, 48.2 g (464 mmol) of trimethyl borate is slowly added again at −78 ° C., and then the mixture is heated to room temperature and stirred for 1 hour. After completion of the reaction, 250 mL of 2N aqueous hydrochloric acid solution is added dropwise at room temperature, and then the pH is adjusted to 2 and stirred for 30 minutes. Thereafter, the mixture was extracted with ethyl acetate and water, the organic layer was concentrated under reduced pressure, and recrystallized with dichloromethane and heptane to obtain <1-a> 65 g. (Yield 85%)

合成例1−2.<1−b>の合成
下記反応式2によって<1−b>を合成した。
[反応式2]

Figure 2016135775
<1−b>
乾燥した2Lの反応器に<1−a>64g(302mmol)、硝酸ビスマス(III)五水和物102.5g(211mmol)及びトルエン640mlを入れ、6時間還流撹拌する。温度を降温した後、固体が生成されると、ジクロロメタンで濾過して除去する。濾液を濃縮してカラムクロマトグラフィーで分離することにより、<1−b>48gを得た。(収率74%) Synthesis example 1-2. Synthesis of <1-b><1-b> was synthesized according to the following reaction formula 2.
[Reaction Formula 2]
Figure 2016135775
<1-b>
<1-a> 64 g (302 mmol), 102.5 g (211 mmol) of bismuth (III) nitrate pentahydrate and 640 ml of toluene are placed in a dry 2 L reactor and stirred at reflux for 6 hours. When the temperature is lowered and a solid is formed, it is removed by filtration with dichloromethane. The filtrate was concentrated and separated by column chromatography to obtain <1-b> 48 g. (Yield 74%)

合成例1−3.<1−c>の合成
下記反応式3によって<1−c>を合成した。
[反応式3]

Figure 2016135775
<1−c>
乾燥した2Lの反応器にシアン化カリウム15.8g(243mmol)、水酸化カリウム24.7g(441mmol)、シアノ酢酸エチル74.8g(661mmol)及びジメチルホルムアミド380mlを入れて攪拌する。20℃で<1−b>47g(220mmol)をジメチルホルムアミド90mlに溶かして滴加する。60℃で12時間還流撹拌する。5%水酸化ナトリウム250mlを入れ、2時間還流撹拌する。反応終了の後、水1500mLに反応液をゆっくり入れて結晶化し、濾過する。濾過された固体をテトラヒドロフランに溶かしてカラムクロマトグラフィーで分離することにより、<1−c>11gを得た。(収率24%) Synthesis example 1-3. Synthesis of <1-c><1-c> was synthesized according to the following reaction formula 3.
[Reaction Formula 3]
Figure 2016135775
<1-c>
To a dry 2 L reactor, 15.8 g (243 mmol) of potassium cyanide, 24.7 g (441 mmol) of potassium hydroxide, 74.8 g (661 mmol) of ethyl cyanoacetate and 380 ml of dimethylformamide are stirred. At 20 ° C., 47 g (220 mmol) of <1-b> is dissolved in 90 ml of dimethylformamide and added dropwise. Stir at reflux at 60 ° C. for 12 hours. Add 250 ml of 5% sodium hydroxide and stir at reflux for 2 hours. After completion of the reaction, the reaction solution is slowly put into 1500 mL of water to crystallize and filtered. The filtered solid was dissolved in tetrahydrofuran and separated by column chromatography to obtain <1-c> 11 g. (Yield 24%)

合成例1−4.<1−d>の合成
下記反応式4によって<1−d>を合成した。
[反応式4]

Figure 2016135775
<1−d>
乾燥した500mlの反応器に<1−c>11g(48mmol)とテトラヒドロフラン55mlを入れて攪拌する。0℃で3Mフェニルマグネシウムブロミド37ml(101mmol)及びテトラヒドロフラン33mlをゆっくり滴加した後、2時間還流撹拌する。0℃で6N塩酸を滴加した後、1時間還流撹拌する。常温で6N水酸化ナトリウムを入れてpH8に合わせ、水と酢酸エチルで抽出する。有機層を濃縮した後、ジクロロメタンとヘプタンで再結晶して<1−d>14.5gを得た。(収率96%) Synthesis example 1-4. Synthesis of <1-d><1-d> was synthesized according to the following reaction formula 4.
[Reaction Formula 4]
Figure 2016135775
<1-d>
<1-c> 11 g (48 mmol) and tetrahydrofuran 55 ml are placed in a dry 500 ml reactor and stirred. At 0 ° C., 37 ml (101 mmol) of 3M phenylmagnesium bromide and 33 ml of tetrahydrofuran are slowly added dropwise and stirred at reflux for 2 hours. 6N hydrochloric acid is added dropwise at 0 ° C., and the mixture is stirred at reflux for 1 hour. 6N sodium hydroxide is added at room temperature to adjust to pH 8, and the mixture is extracted with water and ethyl acetate. The organic layer was concentrated and recrystallized with dichloromethane and heptane to obtain 14.5 g of <1-d>. (Yield 96%)

合成例1−5.<1−e>の合成
下記反応式5によって<1−e>を合成した。
[反応式5]

Figure 2016135775
<1−e>
300mLの反応器に<1−d>14g(49mmol)、尿素11.7g(195mmol)及び酢酸70mLを入れて12時間還流撹拌する。反応終了の後、過量の水を反応物に入れて析出させた後、濾過する。メタノールで熱くスラリー化した後、濾過・乾燥して<1−e>9.3gを得た。(収率61%) Synthesis Example 1-5. Synthesis of <1-e><1-e> was synthesized according to the following reaction formula 5.
[Reaction Formula 5]
Figure 2016135775
<1-e>
<1-d> 14 g (49 mmol), urea 11.7 g (195 mmol), and acetic acid 70 mL are placed in a 300 mL reactor, and stirred at reflux for 12 hours. After completion of the reaction, an excessive amount of water is added to the reaction product to precipitate it, and then filtered. After slurrying hot with methanol, filtration and drying were performed to obtain 9.3 g of <1-e>. (Yield 61%)

合成例1−6.<1−f>の合成
下記反応式6によって<1−f>を合成した。
[反応式6]

Figure 2016135775
<1−f>
300mLの反応器に<1−e>9.0g(29mmol)及びオキシ塩化リン45mLを入れて12時間還流撹拌する。反応終了の後、0℃の過量の水に反応物をゆっくり入れて固体を析出させた後、濾過する。固体をジクロロベンゼンに溶かして熱い状態で減圧濾過した後、再結晶して<1−f>7.0gを得た。(収率73%) Synthesis Example 1-6. Synthesis of <1-f><1-f> was synthesized according to the following reaction formula 6.
[Reaction Formula 6]
Figure 2016135775
<1-f>
In a 300 mL reactor, 9.0 g (29 mmol) of <1-e> and 45 mL of phosphorus oxychloride are added and stirred at reflux for 12 hours. After completion of the reaction, the reaction product is slowly put into an excessive amount of water at 0 ° C. to precipitate a solid, followed by filtration. The solid was dissolved in dichlorobenzene, filtered under reduced pressure in a hot state, and recrystallized to obtain 7.0 g of <1-f>. (Yield 73%)

合成例1−7.<化学式1>の合成
下記反応式7によって<化学式1>を合成した。
[反応式7]

Figure 2016135775
<化学式1>
乾燥した500mLの反応器にカルバゾール5g(30mmol)とジメチルホルムアミド50mLを入れて攪拌した後、60%水素化ナトリウム3.9g(100mmol)を入れ、1時間撹拌する。<1−f>12.9g(39mmol)をジメチルホルムアミド40mLに溶かして反応物に1時間滴加した後、3時間撹拌する。反応終了の後、水300mLに反応液を注いで結晶化し、濾過する。ジクロロメタンと酢酸エチルで再結晶して<化学式1>8.0gを得た。(収率58%)
MS[M] 461.15 Synthesis Example 1-7. Synthesis of <Chemical Formula 1><Chemical Formula 1> was synthesized according to Reaction Formula 7 below.
[Reaction Scheme 7]
Figure 2016135775
<Chemical Formula 1>
Carbazole 5 g (30 mmol) and dimethylformamide 50 mL are added to a dry 500 mL reactor, and then 3.9 g (100 mmol) of 60% sodium hydride is added and stirred for 1 hour. <1-f> 12.9 g (39 mmol) is dissolved in 40 mL of dimethylformamide and added dropwise to the reaction for 1 hour, followed by stirring for 3 hours. After completion of the reaction, the reaction solution is poured into 300 mL of water to crystallize and filter. Recrystallization from dichloromethane and ethyl acetate gave 8.0 g of <Chemical Formula 1>. (Yield 58%)
MS [M] + 461.15

合成例2.化学式28の合成
合成例2−1.<2−a>の合成
下記反応式8によって<2−a>を合成した。
[反応式8]

Figure 2016135775
<2−a>
合成例1−3で<1−b>の代わりに2−ニトロジベンゾチオフェンを使用した以外は同様の方法で合成して<2−a>14gを得た。(収率15%) Synthesis Example 2 Synthesis of Chemical Formula 28
Synthesis Example 2-1. Synthesis of <2-a><2-a> was synthesized according to the following reaction formula 8.
[Reaction Formula 8]
Figure 2016135775
<2-a>
Synthesis was performed in the same manner except that 2-nitrodibenzothiophene was used instead of <1-b> in Synthesis Example 1-3 to obtain <2-a> 14 g. (Yield 15%)

合成例2−2.<2−b>の合成
下記反応式9によって<2−b>を合成した。
[反応式9]

Figure 2016135775
<2−b>
合成例1−4で<1−c>の代わりに<2−a>を使用した以外は同様の方法で合成して<2−b>18gを得た。(収率95%) Synthesis example 2-2. Synthesis of <2-b><2-b> was synthesized according to the following reaction formula 9.
[Reaction Scheme 9]
Figure 2016135775
<2-b>
<2-b> 18 g was obtained by synthesizing in the same manner except that <2-a> was used instead of <1-c> in Synthesis Example 1-4. (Yield 95%)

合成例2−3.<2−c>の合成
下記反応式10によって<2−c>を合成した。
[反応式10]

Figure 2016135775
<2−c>
合成例1−5で<1−d>の代わりに<2−b>を使用した以外は同様の方法で合成して<2−c>11.7gを得た。(収率60%) Synthesis example 2-3. Synthesis of <2-c><2-c> was synthesized according to the following reaction formula 10.
[Reaction Scheme 10]
Figure 2016135775
<2-c>
Synthesis was performed in the same manner as in Synthesis Example 1-5 except that <2-b> was used instead of <1-d> to obtain <2-c> 11.7 g. (Yield 60%)

合成例2−4.<2−d>の合成
下記反応式11によって<2−d>を合成した。
[反応式11]

Figure 2016135775
<2−d>
合成例1−6で<1−e>の代わりに<2−c>を使用した以外は同様の方法で合成して<2−d>8.8gを得た。(収率72%) Synthesis Example 2-4. <2-d> Synthesis <2-d> was synthesized according to the following Reaction Scheme 11.
[Reaction Formula 11]
Figure 2016135775
<2-d>
Synthesis was performed in the same manner as in Synthesis Example 1-6 except that <2-c> was used instead of <1-e> to obtain <2-d> 8.8 g. (Yield 72%)

合成例2−5.<化学式28>の合成
下記反応式12によって<化学式28>を合成した。
[反応式12]

Figure 2016135775
<化学式28>
合成例1−7でカルバゾールと<1−f>の代わりに3−フェニルカルバゾールと<2−d>を使用した以外は同様の方法で合成して<化学式28>5.4gを得た。(収率48%)
MS[M] 553.16 Synthesis Example 2-5. Synthesis of <Chemical Formula 28><Chemical Formula 28> was synthesized according to the following Reaction Formula 12.
[Reaction Scheme 12]
Figure 2016135775
<Formula 28>
Synthesis was performed in the same manner as in Synthesis Example 1-7 except that 3-phenylcarbazole and <2-d> were used instead of carbazole and <1-f> to obtain 5.4 g of <Chemical Formula 28>. (Yield 48%)
MS [M] + 553.16

合成例3.化学式64の合成
合成例3−1.<3−a>の合成
下記反応式13によって<3−a>を合成した。
[反応式13]

Figure 2016135775
<3−a>
乾燥した1Lの反応器に4−ブロモジベンゾチオフェン50g(190mmol)とトルエン500mlを入れて溶かした後、アセトアミド22.1g(380mmol)、炭酸カリウム52.5g(380mmol)、銅ヨウ化物54.3g(285mmol)、シス −トランス−1,2−ジアミンシクロヘキサン65.1g(570mmol)をゆっくり入れる。12時間還流撹拌する。反応終結の後、カラムクロマトグラフィーで分離して<3−a>7.2gを得た。(収率16%) Synthesis Example 3 Synthesis of Chemical Formula 64
Synthesis Example 3-1. Synthesis of <3-a><3-a> was synthesized according to the following reaction formula 13.
[Reaction Formula 13]
Figure 2016135775
<3-a>
After dissolving 50 g (190 mmol) of 4-bromodibenzothiophene and 500 ml of toluene in a dry 1 L reactor, 22.1 g (380 mmol) of acetamide, 52.5 g (380 mmol) of potassium carbonate, 54.3 g of copper iodide ( 285 mmol), 65.1 g (570 mmol) of cis-trans-1,2-diaminecyclohexane are slowly added. Stir at reflux for 12 hours. After completion of the reaction, it was separated by column chromatography to obtain 7.2 g of <3-a>. (Yield 16%)

合成例3−2.<3−b>の合成
下記反応式14によって<3−b>を合成した。
[反応式14]

Figure 2016135775
<3−b>
300mLの反応器に<3−a>7.2g(3mmol)と酢酸100mlを入れて溶した後、臭素4.8g(3mmol)をゆっくり滴加する。12時間撹拌する。反応終結の後、反応物を水に注いで固体を析出させた後、濾過する。水で固体を十分に洗浄し、乾燥して<3−b>9.0gを得た。(収率94%) Synthesis Example 3-2. Synthesis of <3-b><3-b> was synthesized according to the following reaction formula 14.
[Reaction Scheme 14]
Figure 2016135775
<3-b>
After dissolving 7.2 g (3 mmol) of <3-a> and 100 ml of acetic acid in a 300 mL reactor, 4.8 g (3 mmol) of bromine is slowly added dropwise. Stir for 12 hours. After completion of the reaction, the reaction product is poured into water to precipitate a solid, and then filtered. The solid was washed thoroughly with water and dried to obtain 9.0 g of <3-b>. (Yield 94%)

合成例3−3.<3−c>の合成
下記反応式15によって<3−c>を合成した。
[反応式15]

Figure 2016135775
<3−c>
500mLの反応器に<3−b>9.0g(28mmol)、水酸化カリウム12.6g(225mmol)、エタノール70ml、テトラヒドロフラン30ml及び水30mlを入れ、12時間還流撹拌する。反応終結の後、減圧濃縮し、反応物を水に注いで固体を析出させた後、濾過する。再結晶した後、<3−c>7.2gを得た。(収率92%) Synthesis Example 3-3. Synthesis of <3-c><3-c> was synthesized according to the following reaction formula 15.
[Reaction Scheme 15]
Figure 2016135775
<3-c>
In a 500 mL reactor, 9.0 g (28 mmol) of <3-b>, 12.6 g (225 mmol) of potassium hydroxide, 70 ml of ethanol, 30 ml of tetrahydrofuran and 30 ml of water are stirred for 12 hours under reflux. After completion of the reaction, the mixture is concentrated under reduced pressure, and the reaction product is poured into water to precipitate a solid, followed by filtration. After recrystallization, 7.2 g of <3-c> was obtained. (Yield 92%)

合成例3−4.<3−d>の合成
下記反応式16によって<3−d>を合成した。
[反応式16]

Figure 2016135775
<3−d>
300mLの反応器に<3−c>13g(49mmol)とハイポリン酸200mlを入れて攪拌する。100℃で加熱して30分撹拌する。常温から0℃に降温した後、亜硝酸ナトリウムをゆっくり入れる。0℃で4時間攪拌した後、水を注いで固体を析出し、濾過する。カラムクロマトグラフィーで分離して<3−d>11.6gを得た。(収率94%) Synthesis Example 3-4. Synthesis of <3-d><3-d> was synthesized according to the following reaction formula 16.
[Reaction Scheme 16]
Figure 2016135775
<3-d>
<3-c> 13 g (49 mmol) and 200 ml of hypopolynic acid are placed in a 300 mL reactor and stirred. Heat at 100 ° C. and stir for 30 minutes. After cooling from room temperature to 0 ° C, sodium nitrite is slowly added. After stirring at 0 ° C. for 4 hours, water is poured to precipitate a solid, which is filtered. Separation by column chromatography gave <3-d> 11.6 g. (Yield 94%)

合成例3−5.<3−e>の合成
下記反応式17によって<3−e>を合成した。
[反応式17]

Figure 2016135775
<3−e>
合成例1−1でジベンゾフランの代わりに<3−d>を使用した以外は同様の方法で合成して<3−e>32gを得た。(収率82%) Synthesis Example 3-5. Synthesis of <3-e><3-e> was synthesized according to the following reaction formula 17.
[Reaction Scheme 17]
Figure 2016135775
<3-e>
Synthesis was performed in the same manner except that <3-d> was used instead of dibenzofuran in Synthesis Example 1-1 to obtain <3-e> 32 g. (Yield 82%)

合成例3−6.<3−f>の合成
下記反応式18によって<3−f>を合成した。
[反応式18]

Figure 2016135775
<3−f>
合成例1−2で<1−a>の代わりに<3−e>を使用した以外は同様の方法で合成して<3−f>23.1gを得た。(収率71%) Synthesis Example 3-6. Synthesis of <3-f> <3-f> was synthesized according to the following reaction formula 18.
[Reaction Scheme 18]
Figure 2016135775
<3-f>
Synthesis was performed in the same manner as in Synthesis Example 1-2 except that <3-e> was used instead of <1-a> to obtain <3-f> 23.1 g. (Yield 71%)

合成例3−7.<3−g>の合成
下記反応式19によって<3−g>を合成した。
[反応式19]

Figure 2016135775
<3−g>
合成例1−3で<1−b>の代わりに<3−f>を使用した以外は同様の方法で合成して<3−g>6.4gを得た。(収率28%) Synthesis Example 3-7. Synthesis of <3-g><3-g> was synthesized according to the following reaction formula 19.
[Reaction Scheme 19]
Figure 2016135775
<3-g>
Synthesis was performed in the same manner except that <3-f> was used in place of <1-b> in Synthesis Example 1-3 to obtain <3-g> 6.4 g. (Yield 28%)

合成例3−8.<3−h>の合成
下記反応式20によって<3−h>を合成した。
[反応式20]

Figure 2016135775
<3−h>
合成例1−4で<1−c>の代わりに<3−g>を使用した以外は同様の方法で合成して<3−h>6.9gを得た。(収率80%) Synthesis Example 3-8. Synthesis of <3-h><3-h> was synthesized according to the following reaction formula 20.
[Reaction Scheme 20]
Figure 2016135775
<3-h>
Synthesis was performed in the same manner as in Synthesis Example 1-4 except that <3-g> was used instead of <1-c> to obtain <3-h> 6.9 g. (Yield 80%)

合成例3−9.<3−i>の合成
下記反応式21によって<3−i>を合成した。
[反応式21]

Figure 2016135775
<3−i>
合成例1−5で<1−d>の代わりに<3−h>を使用した以外は同様の方法で合成して<3−i>6.6gを得た。(収率88%) Synthesis Example 3-9. Synthesis of <3-i><3-i> was synthesized according to the following reaction formula 21.
[Reaction formula 21]
Figure 2016135775
<3-i>
Synthesis was performed in the same manner as in Synthesis Example 1-5, except that <3-h> was used instead of <1-d> to obtain 6.6 g of <3-i>. (Yield 88%)

合成例3−10.<3−j>の合成
下記反応式22によって<3−j>を合成した。
[反応式22]

Figure 2016135775
<3−j>
合成例1−6で<1−e>の代わりに<3−i>を使用した以外は同様の方法で合成して<3−j>6.2gを得た。(収率89%) Synthesis Example 3-10. Synthesis of <3-j><3-j> was synthesized according to the following reaction formula 22.
[Reaction Scheme 22]
Figure 2016135775
<3-j>
Synthesis was performed in the same manner as in Synthesis Example 1-6 except that <3-i> was used instead of <1-e> to obtain <3-j> 6.2 g. (Yield 89%)

合成例3−11.<化学式64>の合成
下記反応式23によって<化学式64>を合成した。
[反応式23]

Figure 2016135775
<3−j> <化学式64>
乾燥した250mLの反応器に3−(9H−カルバゾール−9−イル)フェニルボロン酸5g(17mmol)、<3−j>6g(17mmol)、炭酸カリウム4.8g(35mmol)、テトラキストリフェニルホスフィンパラジウム0.4g(0.3mmol)、水10mL、トルエン25mL及び1,4−ジオキサン25mLを入れ、12時間還流撹拌する。反応終結の後、反応物を層分離して有機層を減圧濃縮する。カラムクロマトグラフィーで分離して<化学式64>5.7gを得た。(収率59%)
MS[M] 553.16 Synthesis Example 3-11. Synthesis of <Chemical Formula 64><Chemical Formula 64> was synthesized according to the following Reaction Formula 23.
[Reaction Scheme 23]
Figure 2016135775
<3-j><Chemical formula 64>
In a dry 250 mL reactor, 5 g (17 mmol) 3- (9H-carbazol-9-yl) phenylboronic acid, 6 g (17 mmol) <3-j>, 4.8 g (35 mmol) potassium carbonate, tetrakistriphenylphosphine palladium 0.4 g (0.3 mmol), 10 mL of water, 25 mL of toluene and 25 mL of 1,4-dioxane are added and stirred at reflux for 12 hours. After completion of the reaction, the reaction product is separated into layers, and the organic layer is concentrated under reduced pressure. Separation by column chromatography gave 5.7 g of <chemical formula 64>. (Yield 59%)
MS [M] + 553.16

合成例4.化学式96の合成
合成例4−1.<4−a>の合成
下記反応式24によって<4−a>を合成した。
[反応式24]

Figure 2016135775
<4−a>
合成例1−3で<1−b>の代わりに3−ニトロジベンゾフランを使用した以外は同様の方法で合成して<4−a>18.2gを得た。(収率27%) Synthesis Example 4 Synthesis of Chemical Formula 96
Synthesis Example 4-1. Synthesis of <4-a><4-a> was synthesized according to the following reaction formula 24.
[Reaction Scheme 24]
Figure 2016135775
<4-a>
Synthesis was performed in the same manner as in Synthesis Example 1-3 except that 3-nitrodibenzofuran was used instead of <1-b> to obtain <4-a> 18.2 g. (Yield 27%)

合成例4−2.<4−b>の合成
下記反応式25によって<4−b>を合成した。
[反応式25]

Figure 2016135775
<4−b>
合成例1−4で<1−c>の代わりに<4−a>を使用した以外は同様の方法で合成して<4−b>22gを得た。(収率88%) Synthesis example 4-2. Synthesis of <4-b><4-b> was synthesized according to the following reaction formula 25.
[Reaction Scheme 25]
Figure 2016135775
<4-b>
<4-b> 22g was obtained by the same synthesis except that <4-a> was used instead of <1-c> in Synthesis Example 1-4. (Yield 88%)

合成例4−3.<4−c>の合成
下記反応式26によって<4−c>を合成した。
[反応式26]

Figure 2016135775
<4−c>
合成例1−5で<1−d>の代わりに<4−b>を使用した以外は同様の方法で合成して<4−c>17.1gを得た。(収率72%) Synthesis Example 4-3. <4-c> Synthesis <4-c> was synthesized according to the following Reaction Scheme 26.
[Reaction Formula 26]
Figure 2016135775
<4-c>
Synthesis was performed in the same manner as in Synthesis Example 1-5 except that <4-b> was used instead of <1-d> to obtain <1-c> 17.1 g. (Yield 72%)

合成例4−4.<4−d>の合成
下記反応式27によって<4−d>を合成した。
[反応式27]

Figure 2016135775
<4−d>
合成例1−6で<1−e>の代わりに<4−c>を使用した以外は同様の方法で合成して<4−d>14.3gを得た。(収率79%) Synthesis Example 4-4. Synthesis of <4-d><4-d> was synthesized according to the following reaction formula 27.
[Reaction Formula 27]
Figure 2016135775
<4-d>
Synthesis was performed in the same manner as in Synthesis Example 1-6 except that <4-c> was used instead of <1-e> to obtain <4-d> 14.3 g. (Yield 79%)

合成例4−5.<4−e>の合成
下記反応式28によって<4−e>を合成した。
[反応式28]

Figure 2016135775
<4−e>
合成例1−1でジベンゾフランの代わりに2−ブロモジベンゾチオフェンを使用した以外は同様の方法で合成して<4−e>50gを得た。(収率82%) Synthesis Example 4-5. <4-e> Synthesis <4-e> was synthesized according to the following reaction formula 28.
[Reaction formula 28]
Figure 2016135775
<4-e>
<4-e> 50 g was obtained by synthesizing in the same manner except that 2-bromodibenzothiophene was used instead of dibenzofuran in Synthesis Example 1-1. (Yield 82%)

合成例4−6.<4−f>の合成
下記反応式29によって<4−f>を合成した。
[反応式29]

Figure 2016135775
<4−f>
合成例3−11で<3−j>、3−(9H−カルバゾール−9−イル)フェニルボロン酸の代わりに<4−e>、3−ブロモカルバゾールを使用した以外は同様の方法で合成して<4−f>32gを得た。(収率84%) Synthesis Example 4-6. <4-f> Synthesis <4-f> was synthesized according to the following reaction formula 29.
[Reaction Formula 29]
Figure 2016135775
<4-f>
Synthesis was performed in the same manner as in Synthesis Example 3-11 except that <4-e> and 3-bromocarbazole were used instead of <3-j> and 3- (9H-carbazol-9-yl) phenylboronic acid. <4-f> was obtained 32 g. (Yield 84%)

合成例4−7.<化学式96>の合成
下記反応式30によって<化学式96>を合成した。
[反応式30]

Figure 2016135775
<4−f> <化学式96>
合成例1−7でカルバゾールと<1−f>の代わりに<4−f>と<4−d>を使用した以外は同様の方法で合成して<化学式96>4.3gを得た。(収率33%)
MS[M] 643.17 Synthesis Example 4-7. Synthesis of <Chemical Formula 96><Chemical Formula 96> was synthesized according to Reaction Formula 30 below.
[Reaction Scheme 30]
Figure 2016135775
<4-f><Chemical formula 96>
Synthesis was performed in the same manner as in Synthesis Example 1-7 except that <4-f> and <4-d> were used instead of carbazole and <1-f> to obtain 4.3 g of <chemical formula 96>. (Yield 33%)
MS [M] + 643.17

合成例5.化学式125の合成
合成例5−1.<5−a>の合成
下記反応式31によって<5−a>を合成した。
[反応式31]

Figure 2016135775
<5−a>
合成例1−2で<1−a>の代わりに<4−e>を使用した以外は同様の方法で合成して<5−a>31.2gを得た。(収率62%) Synthesis Example 5 Synthesis of Chemical Formula 125
Synthesis example 5-1. Synthesis of <5-a><5-a> was synthesized according to the following reaction formula 31.
[Reaction Formula 31]
Figure 2016135775
<5-a>
Synthesis was performed in the same manner as in Synthesis Example 1-2 except that <4-e> was used instead of <1-a> to obtain <5-a> 31.2 g. (Yield 62%)

合成例5−2.<5−b>の合成
下記反応式32によって<5−b>を合成した。
[反応式32]

Figure 2016135775
<5−b>
合成例1−3で<1−b>の代わりに<5−a>を使用した以外は同様の方法で合成して<5−b>8.0gを得た。(収率26%) Synthesis example 5-2. <5-b> Synthesis <5-b> was synthesized according to the following reaction formula 32.
[Reaction formula 32]
Figure 2016135775
<5-b>
<5-b> 8.0 g was obtained by synthesizing in the same manner except that <5-a> was used instead of <1-b> in Synthesis Example 1-3. (Yield 26%)

合成例5−3.<5−c>の合成
下記反応式33によって<5−c>を合成した。
[反応式33]

Figure 2016135775
<5−c>
合成例1−4で<1−c>の代わりに<5−b>を使用した以外は同様の方法で合成して<5−c>8.2gを得た。(収率76%) Synthesis Example 5-3. Synthesis of <5-c><5-c> was synthesized according to the following reaction formula 33.
[Reaction Scheme 33]
Figure 2016135775
<5-c>
<5-c> 8.2 g was obtained by synthesizing in the same manner except that <5-b> was used instead of <1-c> in Synthesis Example 1-4. (Yield 76%)

合成例5−4.<5−d>の合成
下記反応式34によって<5−d>を合成した。
[反応式34]

Figure 2016135775
<5−d>
合成例1−5で<1−d>の代わりに<5−c>を使用した以外は同様の方法で合成して<5−d>7.6gを得た。(収率86%) Synthesis Example 5-4. Synthesis of <5-d><5-d> was synthesized according to the following reaction formula 34.
[Reaction formula 34]
Figure 2016135775
<5-d>
Synthesis was performed in the same manner as in Synthesis Example 1-5 except that <5-c> was used instead of <1-d> to obtain 7.6 g of <5-d>. (Yield 86%)

合成例5−5.<5−e>の合成
下記反応式35によって<5−e>を合成した。
[反応式35]

Figure 2016135775
<5−e>
合成例1−6で<1−e>の代わりに<5−d>を使用した以外は同様の方法で合成して<5−e>6.7gを得た。(収率84%) Synthesis Example 5-5. Synthesis of <5-e><5-e> was synthesized according to the following reaction formula 35.
[Reaction formula 35]
Figure 2016135775
<5-e>
<5-e> 6.7 g was obtained by synthesizing in the same manner except that <5-d> was used instead of <1-e> in Synthesis Example 1-6. (Yield 84%)

合成例5−6.<5−f>の合成
下記反応式36によって<5−f>を合成した。
[反応式36]

Figure 2016135775
<5−f>
2Lの反応器に3,3−ジメチル−2,3−ジヒドロ−1H−インデン−1−オン60 g(375mmol)、フェニルヒドラジン塩酸塩87.5g(450mmol)、酢酸600mL及び塩酸30mLを入れて12時間還流撹拌する。反応終了の後、ジクロロメタンと水で抽出した後、有機層を減圧濃縮し、カラムクロマトグラフィーで分離して<5−f>57gを得た。(収率52%) Synthesis Example 5-6. Synthesis of <5-f><5-f> was synthesized according to the following reaction formula 36.
[Reaction formula 36]
Figure 2016135775
<5-f>
A 2 L reactor was charged with 60 g (375 mmol) of 3,3-dimethyl-2,3-dihydro-1H-inden-1-one, 87.5 g (450 mmol) of phenylhydrazine hydrochloride, 600 mL of acetic acid, and 30 mL of hydrochloric acid. Stir at reflux for hours. After completion of the reaction, the mixture was extracted with dichloromethane and water, and then the organic layer was concentrated under reduced pressure and separated by column chromatography to obtain <5-f> 57 g. (Yield 52%)

合成例5−7.<化学式125>の合成
下記反応式37によって<化学式125>を合成した。
[反応式37]

Figure 2016135775
<化学式125>
乾燥した100mLの反応器に<5−f>3.5g(15mmol)、<5−e>6.2g(18mmol)、トリス(ジベンジリデンアセトン)ジパラジウム0.3g(0.3mmol)、トリ−t−ブチルホスホニウムテトラフルオロボレート0.4g(2.0mmol)、ナトリウムt−ブトキシド2.9g(30mmol)及びキシレン18mLを入れ、窒素下で12時間還流撹拌する。反応終結の後、熱い状態で減圧濾過する。溶液を減圧乾燥した後、カラムクロマトグラフィーで分離して<化学式125>3.3gを得た。(収率41%)
MS[M] 543.18 Synthesis Example 5-7. Synthesis of <Chemical Formula 125><Chemical Formula 125> was synthesized according to Reaction Formula 37 below.
[Reaction formula 37]
Figure 2016135775
<Chemical formula 125>
<5-f> 3.5 g (15 mmol), <5-e> 6.2 g (18 mmol), tris (dibenzylideneacetone) dipalladium 0.3 g (0.3 mmol), tri- Add 0.4 g (2.0 mmol) of t-butylphosphonium tetrafluoroborate, 2.9 g (30 mmol) of sodium t-butoxide and 18 mL of xylene, and stir to reflux under nitrogen for 12 hours. After completion of the reaction, it is filtered under reduced pressure while hot. The solution was dried under reduced pressure and then separated by column chromatography to obtain 3.3 g of <Chemical Formula 125>. (Yield 41%)
MS [M] + 543.18

合成例6.化学式177の合成
合成例6−1.<6−a>の合成
下記反応式38によって<6−a>を合成した。
[反応式38]

Figure 2016135775
<6−a>
合成例5−6でフェニルヒドラジン塩酸塩の代わりに2−ナフチルヒドラジン塩酸塩を使用した以外は同様の方法で合成して<6−a>13gを得た。(収率49%) Synthesis Example 6 Synthesis of Formula 177
Synthesis Example 6-1. Synthesis of <6-a><6-a> was synthesized according to the following reaction formula 38.
[Reaction formula 38]
Figure 2016135775
<6-a>
Synthesis was performed in the same manner as in Synthesis Example 5-6 except that 2-naphthylhydrazine hydrochloride was used instead of phenylhydrazine hydrochloride to obtain <6-a> 13 g. (Yield 49%)

合成例6−2.<化学式177>の合成
下記反応式39によって<化学式177>を合成した。
[反応式39]

Figure 2016135775
<化学式177>
合成例5−7で<5−e>、<5−f>の代わりに<6−a>、<1−f>を使用した以外は同様の方法で合成して<化学式177>3.1gを得た。(収率30%)
MS[M] 577.22 Synthesis Example 6-2. Synthesis of <Chemical Formula 177><Chemical Formula 177> was synthesized according to Reaction Formula 39 below.
[Reaction formula 39]
Figure 2016135775
<Chemical formula 177>
Synthesis was performed in the same manner as in Synthesis Example 5-7 except that <6-a> and <1-f> were used instead of <5-e> and <5-f>. Got. (Yield 30%)
MS [M] + 577.22

合成例7.化学式181の合成
合成例7−1.<7−a>の合成
下記反応式40によって<7−a>を合成した。
[反応式40]

Figure 2016135775
<7−a>
合成例1−1でジベンゾフランの代わりに2−ブロモジベンゾフランを使用した以外は同様の方法で合成して<7−a>50gを得た。(収率83%) Synthesis Example 7 Synthesis of Chemical Formula 181
Synthesis Example 7-1. Synthesis of <7-a><7-a> was synthesized according to the following reaction formula 40.
[Reaction formula 40]
Figure 2016135775
<7-a>
Synthesis was performed in the same manner except that 2-bromodibenzofuran was used instead of dibenzofuran in Synthesis Example 1-1 to obtain <7-a> 50 g. (Yield 83%)

合成例7−2.<7−b>の合成
下記反応式41によって<7−b>を合成した。
[反応式41]

Figure 2016135775
<7−b>
合成例1−2で<1−a>の代わりに<7−a>を使用した以外は同様の方法で合成して<7−b>32.2gを得た。(収率64%) Synthesis Example 7-2. Synthesis of <7-b><7-b> was synthesized according to the following reaction formula 41.
[Reaction formula 41]
Figure 2016135775
<7-b>
Synthesis was performed in the same manner as in Synthesis Example 1-2 except that <7-a> was used instead of <1-a> to obtain <7-b> 32.2 g. (Yield 64%)

合成例7−3.<7−c>の合成
下記反応式42によって<7−c>を合成した。
[反応式42]

Figure 2016135775
<7−c>
合成例1−3で<1−b>の代わりに<7−b>を使用した以外は同様の方法で合成して<7−c>7.7gを得た。(収率25%) Synthesis Example 7-3. Synthesis of <7-c><7-c> was synthesized according to the following reaction formula 42.
[Reaction formula 42]
Figure 2016135775
<7-c>
<7-c> 7.7g was obtained by the same synthesis except that <7-b> was used instead of <1-b> in Synthesis Example 1-3. (Yield 25%)

合成例7−4.<7−d>の合成
下記反応式43によって<7−d>を合成した。
[反応式43]

Figure 2016135775
<7−d>
合成例1−4で<1−c>の代わりに<7−c>を使用した以外は同様の方法で合成して<7−d>8.0gを得た。(収率77%) Synthesis Example 7-4. Synthesis of <7-d><7-d> was synthesized according to the following reaction formula 43.
[Reaction formula 43]
Figure 2016135775
<7-d>
<7-d> 8.0 g was obtained by the same method except that <7-c> was used instead of <1-c> in Synthesis Example 1-4. (Yield 77%)

合成例7−5.<7−e>の合成
下記反応式44によって<7−e>を合成した。
[反応式44]

Figure 2016135775
<7−e>
合成例1−5で<1−d>の代わりに<7−d>を使用した以外は同様の方法で合成して<7−e>7.5gを得た。(収率86%) Synthesis Example 7-5. <7-e> Synthesis <7-e> was synthesized according to the following reaction formula 44.
[Reaction formula 44]
Figure 2016135775
<7-e>
Synthesis was performed in the same manner as in Synthesis Example 1-5 except that <7-d> was used instead of <1-d> to obtain <7-e> 7.5 g. (Yield 86%)

合成例7−6.<7−f>の合成
下記反応式45によって<7−f>を合成した。
[反応式45]

Figure 2016135775
<7−f>
合成例1−6で<1−e>の代わりに<7−e>を使用した以外は同様の方法で合成して<7−f>6.9gを得た。(収率87%) Synthesis Example 7-6. Synthesis of <7-f><7-f> was synthesized according to the following reaction formula 45.
[Reaction formula 45]
Figure 2016135775
<7-f>
Synthesis in the same manner as in Synthesis Example 1-6 except that <7-e> was used instead of <1-e> to obtain 6.9 g of <7-f>. (Yield 87%)

合成例7−7.<化学式181>の合成
下記反応式46によって<化学式181>を合成した。
[反応式46]

Figure 2016135775
<化学式181>
合成例5−7で<5−f>、<5−e>の代わりに<6−a>、<7−f>を使用した以外は同様の方法で合成して<化学式181>2.3gを得た。(収率25%)
MS[M] 577.22 Synthesis Example 7-7. Synthesis of <Chemical Formula 181><Chemical Formula 181> was synthesized according to Reaction Formula 46 below.
[Reaction formula 46]
Figure 2016135775
<Formula 181>
Synthesis was performed in the same manner as in Synthesis Example 5-7, except that <6-a> and <7-f> were used instead of <5-f> and <5-e>. Got. (Yield 25%)
MS [M] + 577.22

合成例8.化学式182の合成
合成例8−1.<8−a>の合成
下記反応式47によって<8−a>を合成した。
[反応式47]

Figure 2016135775
<8−a>
合成例4−1と同様の方法で合成して<8−a>12.1gを得た。(収率18%) Synthesis Example 8 Synthesis of Formula 182
Synthesis Example 8-1. Synthesis of <8-a><8-a> was synthesized according to the following reaction formula 47.
[Reaction formula 47]
Figure 2016135775
<8-a>
Synthesis in the same manner as in Synthesis Example 4-1 gave <8-a> 12.1 g. (Yield 18%)

合成例8−2.<8−b>の合成
下記反応式48によって<8−b>を合成した。
[反応式48]

Figure 2016135775
<8−b>
合成例1−4で<1−c>の代わりに<8−a>を使用した以外は同様の方法で合成して<8−b>14gを得た。(収率84%) Synthesis Example 8-2. Synthesis of <8-b><8-b> was synthesized according to the following reaction formula 48.
[Reaction Formula 48]
Figure 2016135775
<8-b>
Synthesis was performed in the same manner as in Synthesis Example 1-4 except that <8-a> was used instead of <1-c> to obtain <8-b> 14 g. (Yield 84%)

合成例8−3.<8−c>の合成
下記反応式49によって<8−c>を合成した。
[反応式49]

Figure 2016135775
<8−c>
合成例1−5で<1−d>の代わりに<8−b>を使用した以外は同様の方法で合成して<8−c>11.7gを得た。(収率77%) Synthesis Example 8-3. Synthesis of <8-c><8-c> was synthesized according to the following reaction formula 49.
[Reaction formula 49]
Figure 2016135775
<8-c>
Synthesis was performed in the same manner as in Synthesis Example 1-5, except that <8-b> was used instead of <1-d> to obtain <8-c> 11.7 g. (Yield 77%)

合成例8−4.<8−d>の合成
下記反応式50によって<8−d>を合成した。
[反応式50]

Figure 2016135775
<8−d>
合成例1−6で<1−e>の代わりに<8−c>を使用した以外は同様の方法で合成して<8−d>8.8gを得た。(収率71%) Synthesis Example 8-4. Synthesis of <8-d><8-d> was synthesized according to the following reaction formula 50.
[Reaction Formula 50]
Figure 2016135775
<8-d>
Synthesis was performed in the same manner as in Synthesis Example 1-6 except that <8-c> was used instead of <1-e> to obtain <8-d> 8.8 g. (Yield 71%)

合成例8−5.<8−e>の合成
下記反応式51によって<8−e>を合成した。
[反応式51]

Figure 2016135775
<8−e>
乾燥した1Lの反応器にジベンゾチオフェン50g(271mmol)とテトラヒドロフラン400mlを入れた後、−78℃で1.6Mn−ブチルリチウム178mL(285mmol)をゆっくり滴加し、1時間後にヨウ素69g(271mmol)をゆっくり入れた後、常温で24時間撹拌する。その後、チオ硫酸ナトリウム水溶液を入れる。抽出して有機層を集めて減圧蒸留した。ヘプタンで再結晶して生成された固体を濾過した後、乾燥して<8−e>52gを得た。(収率60%) Synthesis Example 8-5. Synthesis of <8-e><8-e> was synthesized according to the following reaction formula 51.
[Reaction Formula 51]
Figure 2016135775
<8-e>
After adding 50 g (271 mmol) of dibenzothiophene and 400 ml of tetrahydrofuran to a dry 1 L reactor, 178 mL (285 mmol) of 1.6Mn-butyllithium was slowly added dropwise at −78 ° C., and 69 g (271 mmol) of iodine was added after 1 hour. Stir slowly and then stir at room temperature for 24 hours. Thereafter, an aqueous sodium thiosulfate solution is added. The organic layer was collected by extraction and distilled under reduced pressure. The solid produced by recrystallization with heptane was filtered and then dried to obtain <8-e> 52 g. (Yield 60%)

合成例8−6.<8−f>の合成
下記反応式52によって<8−f>を合成した。
[反応式52]

Figure 2016135775
<8−f>
1Lの反応器に<8−e>52g(168mmol)、ヨウ化銅6.5g(34mmol)、トランス−4−ヒドロキシ−L−プロリン8.9g(68mmol)、炭酸カルシウム69.6g(504mmol)及びジメチルスルホキシド260mLを入れ、28%アンモニア水溶液167.9gをゆっくり入れる。100℃で12時間攪拌する。反応が終了すると、常温に冷ました後、酢酸エチルと蒸留水を用いて抽出する。有機層を減圧濃縮し、カラムクロマトグラフィーで分離して<8−f>10gを得た。(収率30%) Synthesis Example 8-6. Synthesis of <8-f><8-f> was synthesized according to the following reaction formula 52.
[Reaction Formula 52]
Figure 2016135775
<8-f>
<8-e> 52 g (168 mmol), copper iodide 6.5 g (34 mmol), trans-4-hydroxy-L-proline 8.9 g (68 mmol), calcium carbonate 69.6 g (504 mmol) and 1 L reactor Add 260 mL of dimethyl sulfoxide and slowly add 167.9 g of 28% aqueous ammonia solution. Stir at 100 ° C. for 12 hours. When the reaction is completed, the mixture is cooled to room temperature and extracted with ethyl acetate and distilled water. The organic layer was concentrated under reduced pressure and separated by column chromatography to obtain <8-f> 10 g. (Yield 30%)

合成例8−7.<8−g>の合成
下記反応式53によって<8−g>を合成した。
[反応式53]

Figure 2016135775
<8−g>
1Lの反応器に<8−f>10g(50mmol)と塩酸100mLを入れ、5℃に合わせる。亜硝酸ナトリウム3.45g(50mmol)と水20mLを混ぜてゆっくり入れる。5℃で2時間を維持した後、塩化スズ(II)二水和物56.6g(251mmol)と塩酸200mLを混ぜた溶液をゆっくり入れる。常温で3時間攪拌した後、濾過して<8−g>8gを得た。(収率63%) Synthesis Example 8-7. <8-g> Synthesis <8-g> was synthesized according to the following reaction scheme 53.
[Reaction formula 53]
Figure 2016135775
<8-g>
<8-f> 10 g (50 mmol) and hydrochloric acid 100 mL are put into a 1 L reactor and adjusted to 5 ° C. Mix slowly 3.45 g (50 mmol) of sodium nitrite and 20 mL of water. After maintaining at 5 ° C. for 2 hours, a solution of 56.6 g (251 mmol) of tin (II) chloride dihydrate and 200 mL of hydrochloric acid is slowly added. After stirring at room temperature for 3 hours, it was filtered to obtain <8-g> 8 g. (Yield 63%)

合成例8−8.<8−h>の合成
下記反応式54によって<8−h>を合成した。
[反応式54]

Figure 2016135775
<8−h>
合成例5−6でフェニルヒドラジン塩酸塩の代わりに<8−g>を使用した以外は同様の方法で合成して<8−h>4.9gを得た。(収率54%) Synthesis Example 8-8. <8-h> Synthesis <8-h> was synthesized according to the following reaction formula 54.
[Reaction formula 54]
Figure 2016135775
<8-h>
Synthesis in the same manner as in Synthesis Example 5-6 except that <8-g> was used instead of phenylhydrazine hydrochloride to obtain <8-h> 4.9 g. (Yield 54%)

合成例8−9.<化学式182>の合成
下記反応式55によって<化学式182>を合成した。
[反応式55]

Figure 2016135775
<化学式182>
合成例5−7で<5−f>、<5−e>の代わりに<8−h>、<8−d>を使用した以外は同様の方法で合成して<化学式182>3.2gを得た。(収率34%)
MS[M] 633.19 Synthesis Example 8-9. Synthesis of <Chemical Formula 182><Chemical Formula 182> was synthesized according to Reaction Formula 55 below.
[Reaction formula 55]
Figure 2016135775
<Formula 182>
Synthesis was carried out in the same manner as in Synthesis Example 5-7 except that <8-h> and <8-d> were used instead of <5-f> and <5-e>. Got. (Yield 34%)
MS [M] + 633.19

合成例9.化学式183の合成
合成例9−1.<9−a>の合成
下記反応式56によって<9−a>を合成した。
[反応式56]

Figure 2016135775
<9−a>
合成例1−1でジベンゾフランの代わりにジベンゾチオフェンを使用した以外は同様の方法で合成して<9−a>54gを得た。(収率87%) Synthesis Example 9 Synthesis of Chemical Formula 183
Synthesis Example 9-1. Synthesis of <9-a><9-a> was synthesized according to the following reaction formula 56.
[Reaction formula 56]
Figure 2016135775
<9-a>
<9-a> 54 g was obtained by synthesizing in the same manner except that dibenzothiophene was used instead of dibenzofuran in Synthesis Example 1-1. (Yield 87%)

合成例9−2.<9−b>の合成
下記反応式57によって<9−b>を合成した。
[反応式57]

Figure 2016135775
<9−b>
合成例1−2で<1−a>の代わりに<9−a>を使用した以外は同様の方法で合成して<9−b>44gを得た。(収率81%)
合成例9−3.<9−c>の合成
下記反応式58によって<9−c>を合成した。
[反応式58]
Figure 2016135775
<9−c>
合成例1−3で<1−b>の代わりに<9−b>を使用した以外は同様の方法で合成して<9−c>12.8gを得た。(収率30%)
合成例9−4.<9−d>の合成
下記反応式59によって<9−d>を合成した。
[反応式59]
Figure 2016135775
<9−d>
合成例1−4で<1−c>の代わりに<9−c>を使用した以外は同様の方法で合成して<9−d>13.7gを得た。(収率79%) Synthesis Example 9-2. Synthesis of <9-b><9-b> was synthesized according to the following reaction formula 57.
[Reaction Formula 57]
Figure 2016135775
<9-b>
Synthesis was performed in the same manner as in Synthesis Example 1-2 except that <9-a> was used instead of <1-a> to obtain <9-b> 44 g. (Yield 81%)
Synthesis Example 9-3. <9-c> Synthesis <9-c> was synthesized according to Reaction Formula 58 below.
[Reaction formula 58]
Figure 2016135775
<9-c>
<9-c> 12.8 g was obtained by synthesizing in the same manner except that <9-b> was used instead of <1-b> in Synthesis Example 1-3. (Yield 30%)
Synthesis Example 9-4. Synthesis of <9-d><9-d> was synthesized according to the following reaction formula 59.
[Reaction formula 59]
Figure 2016135775
<9-d>
<9-d> 13.7 g was obtained by synthesizing in the same manner except that <9-c> was used instead of <1-c> in Synthesis Example 1-4. (Yield 79%)

合成例9−5.<9−e>の合成
下記反応式60によって<9−e>を合成した。
[反応式60]

Figure 2016135775
<9−e>
合成例1−5で<1−d>の代わりに<9−d>を使用した以外は同様の方法で合成して<9−e>12.5gを得た。(収率86%) Synthesis Example 9-5. Synthesis of <9-e><9-e> was synthesized according to the following reaction formula 60.
[Reaction formula 60]
Figure 2016135775
<9-e>
Synthesis was performed in the same manner as in Synthesis Example 1-5 except that <9-d> was used instead of <1-d> to obtain <9-e> 12.5 g. (Yield 86%)

合成例9−6.<9−f>の合成
下記反応式61によって<9−f>を合成した。
[反応式61]

Figure 2016135775
<9−f>
合成例1−6で<1−e>の代わりに<9−e>を使用した以外は同様の方法で合成して<9−f>9.6gを得た。(収率72%) Synthesis Example 9-6. Synthesis of <9-f><9-f> was synthesized according to the following reaction formula 61.
[Reaction formula 61]
Figure 2016135775
<9-f>
Synthesis was performed in the same manner as in Synthesis Example 1-6 except that <9-e> was used instead of <1-e> to obtain 9.6 g of <9-f>. (Yield 72%)

合成例9−7.<化学式183>の合成
下記反応式62によって<化学式183>を合成した。
[反応式62]

Figure 2016135775
<化学式183>
合成例5−7で<5−f>、<5−e>の代わりに<6−a>、<9−f>を使用した以外は同様の方法で合成して<化学式183>4.2gを得た。(収率36%)
MS[M] 593.19 Synthesis Example 9-7. Synthesis of <Chemical Formula 183><Chemical Formula 183> was synthesized according to Reaction Formula 62 below.
[Reaction formula 62]
Figure 2016135775
<Chemical Formula 183>
Synthesis was carried out in the same manner as in Synthesis Example 5-7 except that <6-a> and <9-f> were used instead of <5-f> and <5-e>. Got. (Yield 36%)
MS [M] + 593.19

合成例10.化学式191の合成
合成例10−1.<10−a>の合成
下記反応式63によって<10−a>を合成した。
[反応式63]

Figure 2016135775
<10−a>
合成例3−1で4−ブロモジベンゾチオフェンの代わりに4−ブロモジベンゾフランを使用した以外は同様の方法で合成して<10−a>10.7gを得た。(収率20%) Synthesis Example 10 Synthesis of Chemical Formula 191
Synthesis Example 10-1. Synthesis of <10-a><10-a> was synthesized according to the following reaction formula 63.
[Reaction formula 63]
Figure 2016135775
<10-a>
<10-a> 10.7 g was obtained by synthesizing in the same manner except that 4-bromodibenzofuran was used instead of 4-bromodibenzothiophene in Synthesis Example 3-1. (Yield 20%)

合成例10−2.<10−b>の合成
下記反応式64によって<10−b>を合成した。
[反応式64]

Figure 2016135775
<10−b>
合成例3−2で<3−a>の代わりに<10−a>を使用した以外は同様の方法で合成して<10−b>13gを得た。(収率90%) Synthesis Example 10-2. <10-b> Synthesis <10-b> was synthesized according to the following reaction formula 64.
[Reaction formula 64]
Figure 2016135775
<10-b>
<10-b> 13g was obtained by the same synthesis except that <10-a> was used instead of <3-a> in Synthesis Example 3-2. (Yield 90%)

合成例10−3.<10−c>の合成
下記反応式65によって<10−c>を合成した。
[反応式65]

Figure 2016135775
<10−c>
合成例3−3で<3−b>の代わりに<10−b>を使用した以外は同様の方法で合成して<10−c>10.6gを得た。(収率95%) Synthesis Example 10-3. Synthesis of <10-c><10-c> was synthesized according to the following reaction formula 65.
[Reaction formula 65]
Figure 2016135775
<10-c>
Synthesis was performed in the same manner as in Synthesis Example 3-3 except that <10-b> was used instead of <3-b> to obtain <10-c> 10.6 g. (Yield 95%)

合成例10−4.<10−d>の合成
下記反応式66によって<10−d>を合成した。
[反応式66]

Figure 2016135775
<10−d>
合成例3−4で<3−c>の代わりに<10−c>を使用した以外は同様の方法で合成して<10−d>9.5gを得た。(収率95%) Synthesis Example 10-4. Synthesis of <10-d><10-d> was synthesized according to the following reaction formula 66.
[Reaction formula 66]
Figure 2016135775
<10-d>
Synthesis was performed in the same manner as in Synthesis Example 3-4 except that <10-c> was used instead of <3-c> to obtain 9.5 g of <10-d>. (Yield 95%)

合成例10−5.<10−e>の合成
下記反応式67によって<10−e>を合成した。
[反応式67]

Figure 2016135775
<10−e>
合成例1−1でジベンゾフランの代わりに<10−d>を使用した以外は同様の方法で合成して<10−e>7.1gを得た。(収率87%)

合成例10−6.<10−f>の合成
下記反応式68によって<10−f>を合成した。
[反応式68]
Figure 2016135775
<10−f>
合成例1−2で<1−a>の代わりに<10−e>を使用した以外は同様の方法で合成して<10−f>5.8gを得た。(収率81%) Synthesis Example 10-5. Synthesis of <10-e> <10-e> was synthesized according to the following reaction formula 67.
[Reaction formula 67]
Figure 2016135775
<10-e>
Synthesis was performed in the same manner except that <10-d> was used in place of dibenzofuran in Synthesis Example 1-1 to obtain <10-e> 7.1 g. (Yield 87%)

Synthesis Example 10-6. Synthesis of <10-f><10-f> was synthesized according to the following reaction formula 68.
[Reaction formula 68]
Figure 2016135775
<10-f>
<10-f> 5.8 g was obtained by the same synthesis except that <10-e> was used instead of <1-a> in Synthesis Example 1-2. (Yield 81%)

合成例10−7.<10−g>の合成
下記反応式69によって<10−g>を合成した。
[反応式69]

Figure 2016135775
<10−g>
合成例1−3で<1−b>の代わりに<10−f>を使用した以外は同様の方法で合成して<10−g>8.3gを得た。(収率28%) Synthesis Example 10-7. Synthesis of <10-g><10-g> was synthesized according to the following reaction formula 69.
[Reaction Formula 69]
Figure 2016135775
<10-g>
<10-g> 8.3 g was obtained in the same manner as in Synthesis Example 1-3 except that <10-f> was used instead of <1-b>. (Yield 28%)

合成例10−8.<10−h>の合成
下記反応式70によって<10−h>を合成した。
[反応式70]

Figure 2016135775
<10−h>
乾燥した2Lの反応器に<10−g>6.9g(33mmol)をテトラヒドロフラン120mLに溶かした後、攪拌する。0℃でフェニルマグネシウムブロミド22mL(66mmol)をゆっくり滴加する。滴加が完了すると、45℃で3時間撹拌する。その後、再び0℃で4−ブロモベンジルクロリド8.7g(40mmol)をゆっくり滴加した後、45℃で12時間攪拌する。反応終了の後、酢酸エチルと水で抽出し、カラムクロマトグラフィーで分離して<10−h>7.1gを得た。(収率48%) Synthesis Example 10-8. Synthesis of <10-h><10-h> was synthesized according to the following reaction formula 70.
[Reaction formula 70]
Figure 2016135775
<10-h>
<10-g> 6.9 g (33 mmol) is dissolved in 120 mL of tetrahydrofuran in a dry 2 L reactor and stirred. Slowly add dropwise 22 mL (66 mmol) of phenylmagnesium bromide at 0 ° C. When the addition is complete, stir at 45 ° C. for 3 hours. Thereafter, 8.7 g (40 mmol) of 4-bromobenzyl chloride is slowly added again at 0 ° C., and the mixture is stirred at 45 ° C. for 12 hours. After completion of the reaction, the mixture was extracted with ethyl acetate and water and separated by column chromatography to obtain 7.1 g of <10-h>. (Yield 48%)

合成例10−9.<10−i>の合成
下記反応式71によって<10−i>を合成した。
[反応式71]

Figure 2016135775
<10−i>
2Lの反応器に1,2−シクロヘキサンジオン50g(446mmol)、フェニルヒドラジニウムクロリド129g(892mmol)及び酢酸500mlを入れて2日間還流撹拌する。反応終了の後、過量の水に反応物をゆっくり注いで結晶を濾過して水で数回洗浄する。テトラヒドロフランで溶かし、熱いうちにシリカゲルで濾過し、再結晶して<10−i>78gを得た。(収率68%) Synthesis Example 10-9. Synthesis of <10-i><10-i> was synthesized according to the following reaction formula 71.
[Reaction formula 71]
Figure 2016135775
<10-i>
Into a 2 L reactor, 50 g (446 mmol) of 1,2-cyclohexanedione, 129 g (892 mmol) of phenylhydrazinium chloride and 500 ml of acetic acid are added and stirred at reflux for 2 days. After the reaction is complete, the reaction is slowly poured into an excess of water and the crystals are filtered and washed several times with water. It was dissolved in tetrahydrofuran, filtered through silica gel while hot, and recrystallized to obtain <10-i> 78 g. (Yield 68%)

合成例10−10.<10−j>の合成
下記反応式72によって<10−j>を合成した。
[反応式72]

Figure 2016135775
<10−j>
2Lの反応器に<10−i>78g(304mmol)、ヨードベンゼン55.9g(274mmol)、銅19.3g(304mmol)、18−クラウン−6−エーテル16.1g(61mmol)、炭酸カリウム84.1g(609mmol)及びジクロロベンゼン80mlを入れ、12時間還流撹拌する。反応終了の後、カラムクロマトグラフィーで分離して<10−j>70gを得た。(収率69%) Synthesis Example 10-10. <10-j> Synthesis <10-j> was synthesized according to Reaction Formula 72 below.
[Reaction formula 72]
Figure 2016135775
<10-j>
<10-i> 78 g (304 mmol), iodobenzene 55.9 g (274 mmol), copper 19.3 g (304 mmol), 18-crown-6-ether 16.1 g (61 mmol), potassium carbonate 84. 1 g (609 mmol) and 80 ml of dichlorobenzene are added and stirred at reflux for 12 hours. After completion of the reaction, separation by column chromatography gave <10-j> 70 g. (Yield 69%)

合成例10−11.<化学式191>の合成
下記反応式73によって<化学式191>を合成した。
[反応式73]

Figure 2016135775
<化学式191>
合成例5−7で<5−f>、<5−e>の代わりに<10−j>、<10−h>を使用した以外は同様の方法で合成して<化学式191>4.6gを得た。(収率42%)
MS[M] 702.24 Synthesis Example 10-11. Synthesis of <Chemical Formula 191><Chemical Formula 191> was synthesized according to Reaction Formula 73 below.
[Reaction formula 73]
Figure 2016135775
<Chemical Formula 191>
Synthesis was carried out in the same manner as in Synthesis Example 5-7 except that <10-j> and <10-h> were used instead of <5-f> and <5-e>. Got. (Yield 42%)
MS [M] + 702.24

合成例11.化学式218の合成
合成例11−1.<11−a>の合成
下記反応式74によって<11−a>を合成した。
[反応式74]

Figure 2016135775
<11−a>
合成例3−11で<3−j>、3−(9H−カルバゾール−9−イル)フェニルボロン酸の代わりに1−ブロモ−2−ヨードベンゼン、2−トリフェニレニルボロン酸を使用した以外は同様の方法で合成して<11−a>34gを得た。(収率84%) Synthesis Example 11 Synthesis of Chemical Formula 218
Synthesis Example 11-1. <11-a> Synthesis <11-a> was synthesized according to the following reaction formula 74.
[Reaction formula 74]
Figure 2016135775
<11-a>
<Synthesis Example 3-11> except that 1-bromo-2-iodobenzene and 2-triphenylenylboronic acid were used instead of <3-j> and 3- (9H-carbazol-9-yl) phenylboronic acid Synthesis was performed in the same manner to obtain <11-a> 34 g. (Yield 84%)

合成例11−2.<11−b>の合成
下記反応式75によって<11−b>を合成した。
[反応式75]

Figure 2016135775
<11−b>
乾燥した500mLの反応器に<11−a>34g(89mmol)、ビスピナコーラトジボロン33.8g(133mmol)、パラジウム(II)塩化−1,1’−ビス(ジフェニルホスフィノ)フェロセン1.9g(3mmol)、酢酸カリウム26.1g(266mmol)及びトルエン340mlを入れ、10時間還流撹拌する。反応終了の後、固体を濾過した後、濾液を減圧して濃縮する。ジクロロメタンとヘプタンでカラムクロマトグラフィーによって分離して<11−b>28gを得た。(収率73%) Synthesis Example 11-2. <11-b> Synthesis <11-b> was synthesized according to the following reaction formula 75.
[Reaction formula 75]
Figure 2016135775
<11-b>
<11-a> 34 g (89 mmol), bispinacolato diboron 33.8 g (133 mmol), palladium (II) chloride-1,1′-bis (diphenylphosphino) ferrocene 1.9 g in a dry 500 mL reactor (3 mmol), 26.1 g (266 mmol) of potassium acetate and 340 ml of toluene are added and stirred at reflux for 10 hours. After completion of the reaction, the solid is filtered, and the filtrate is concentrated under reduced pressure. Separation by column chromatography with dichloromethane and heptane gave <11-b> 28 g. (Yield 73%)

合成例11−3.<化学式218>の合成
下記反応式76によって<化学式218>を合成した。
[反応式76]

Figure 2016135775
<化学式218>
合成例3−11で<3−j>、3−(9H−カルバゾール−9−イル)フェニルボロン酸の代わりに<1−f>、<11−b>を使用した以外は同様の方法で合成して<化学式218>3.4gを得た。(収率38%)
MS[M] 598.20 Synthesis Example 11-3. Synthesis of <Chemical Formula 218><Chemical Formula 218> was synthesized according to Reaction Formula 76 below.
[Reaction formula 76]
Figure 2016135775
<Chemical formula 218>
Synthesis was performed in the same manner as in Synthesis Example 3-11 except that <1-f> and <11-b> were used instead of <3-j> and 3- (9H-carbazol-9-yl) phenylboronic acid. As a result, 3.4 g of <Chemical Formula 218> was obtained. (Yield 38%)
MS [M] + 598.20

合成例12.化学式220の合成
合成例12−1.<12−a>の合成
下記反応式77によって<12−a>を合成した。
[反応式77]

Figure 2016135775
<12−a>
合成例10−8で4−ブロモベンジルクロリドの代わりに3−ブロモベンジルクロリドを使用した以外は同様の方法で合成して<12−a>9.7gを得た。(収率45%) Synthesis Example 12 Synthesis of Chemical Formula 220
Synthesis Example 12-1. <12-a> Synthesis <12-a> was synthesized according to the following reaction formula 77.
[Reaction Scheme 77]
Figure 2016135775
<12-a>
<12-a> 9.7 g was obtained in the same manner as in Synthesis Example 10-8 except that 3-bromobenzyl chloride was used instead of 4-bromobenzyl chloride. (Yield 45%)

合成例12−2.<化学式220>の合成
下記反応式78によって<化学式220>を合成した。
[反応式78]

Figure 2016135775
<化学式220>
合成例3−11で<3−j>、3−(9H−カルバゾール−9−イル)フェニルボロン酸の代わりに<12−a>、10−フェニルアントラセン−9−ボロン酸を使用した以外は同様の方法で合成して<化学式220>3.3gを得た。(収率25%)
MS[M] 624.22 Synthesis Example 12-2. Synthesis of <Chemical Formula 220><Chemical Formula 220> was synthesized according to Reaction Formula 78 below.
[Reaction formula 78]
Figure 2016135775
<Chemical formula 220>
The same as in Synthesis Example 3-11 except that <12-a> and 10-phenylanthracene-9-boronic acid were used instead of <3-j> and 3- (9H-carbazol-9-yl) phenylboronic acid In this way, 3.3 g of <Chemical Formula 220> was obtained. (Yield 25%)
MS [M] + 624.22

合成例13.化学式223の合成
合成例13−1.<化学式223>の合成
下記反応式79によって<化学式223>を合成した。
[反応式79]

Figure 2016135775
<化学式223>
合成例3−11で<3−j>、3−(9H−カルバゾール−9−イル)フェニルボロン酸の代わりに<7−f>、9−フェナントラセニルボロン酸を使用した以外は同様の方法で合成して<化学式223>4.0gを得た。(収率51%)
MS[M] 472.16 Synthesis Example 13 Synthesis of Formula 223
Synthesis Example 13-1. Synthesis of <Chemical Formula 223><Chemical Formula 223> was synthesized according to Reaction Formula 79 below.
[Reaction Scheme 79]
Figure 2016135775
<Chemical Formula 223>
The same as in Synthesis Example 3-11 except that <7-f> and 9-phenanthracenylboronic acid were used instead of <3-j> and 3- (9H-carbazol-9-yl) phenylboronic acid. By the method, 4.0 g of <Chemical Formula 223> was obtained. (Yield 51%)
MS [M] + 472.16

合成例14.化学式224の合成
合成例14−1.<化学式224>の合成
下記反応式80によって<化学式224>を合成した。
[反応式80]

Figure 2016135775
<化学式224>
合成例3−11で<3−j>、3−(9H−カルバゾール−9−イル)フェニルボロン酸の代わりに<7−f>、4−(1−ナフチル)フェニルボロン酸を使用した以外は同様の方法で合成して<化学式224>5.7gを得た。(収率69%)
MS[M] 498.17 Synthesis Example 14 Synthesis of Formula 224
Synthesis Example 14-1. Synthesis of <Chemical Formula 224><Chemical Formula 224> was synthesized according to Reaction Formula 80 below.
[Reaction Formula 80]
Figure 2016135775
<Chemical formula 224>
Except that <7-f> and 4- (1-naphthyl) phenylboronic acid were used instead of <3-j> and 3- (9H-carbazol-9-yl) phenylboronic acid in Synthesis Example 3-11 Synthesis was performed in the same manner to obtain 5.7 g of <Chemical Formula 224>. (Yield 69%)
MS [M] + 498.17

合成例15.化学式227の合成
合成例15−1.<化学式227>の合成
下記反応式81によって<化学式227>を合成した。
[反応式81]

Figure 2016135775
<化学式227>
合成例3−11で<3−j>、3−(9H−カルバゾール−9−イル)フェニルボロン酸の代わりに<9−f>、2−トリフェニレニルボロン酸を使用した以外は同様の方法で合成して<化学式227>3.8gを得た。(収率45%)
MS[M] 538.15 Synthesis Example 15 Synthesis of Chemical Formula 227
Synthesis Example 15-1. Synthesis of <Chemical Formula 227><Chemical Formula 227> was synthesized according to Reaction Formula 81 below.
[Reaction Formula 81]
Figure 2016135775
<Chemical Formula 227>
The same method as in Synthesis Example 3-11 except that <9-f> and 2-triphenylenylboronic acid were used instead of <3-j> and 3- (9H-carbazol-9-yl) phenylboronic acid To obtain 3.8 g of <Chemical Formula 227>. (Yield 45%)
MS [M] + 538.15

実施例
実施例1〜実施例10(発光層の用途)
有機発光ダイオードの製造
ITOガラスの発光面積が2mm×2mmのサイズとなるようにパターニングした後、洗浄した。基板を真空チャンバーに装着した後、ベース圧力が1×10−6torrとなるようにした後、有機物を、前記ITOの上にDNTPD(700オングストローム)、NPD(300オングストローム)、本発明によって製造された化合物+RD−1(10%)(300オングストローム)、Liq(350オングストローム)、LiF(5オングストローム)、Al(1,000オングストローム)の順に成膜し、0.4mAで測定を行った。

Figure 2016135775
<DNTPD> <α−NPB>
Figure 2016135775
<RD−1> <化合物E> <Liq> Example
Examples 1 to 10 (use of light emitting layer)
Manufacture of organic light emitting diode It patterned, and it wash | cleaned so that the light emission area of ITO glass might become a size of 2 mm x 2 mm. After the substrate is mounted in the vacuum chamber, the base pressure is set to 1 × 10 −6 torr, and the organic material is formed on the ITO by DNTPD (700 Å), NPD (300 Å), and manufactured according to the present invention. Compound + RD-1 (10%) (300 angstrom), Liq (350 angstrom), LiF (5 angstrom), Al (1,000 angstrom) were formed in this order, and the measurement was performed at 0.4 mA.
Figure 2016135775
<DNTPD><α-NPB>
Figure 2016135775
<RD-1><CompoundE><Liq>

比較例1
比較例1のための有機発光ダイオード素子は、前記実施例の素子構造において発明によって製造された化合物の代わりに、一般にリン光ホスト物質として多く使われているBAlqを使用した以外は同様にして製作した。前記BAlqの構造は、次のとおりである。

Figure 2016135775
<BAlq>
前記実施例1から10、比較例1によって製造された有機電界発光素子に対して電圧、電流密度、輝度、色座標及び寿命を測定し、その結果を下記[表1]に示した。T95は、輝度が初期輝度(3000cd/m)で95%に減少するのにかかる時間を意味する。
Figure 2016135775
前記表1に示すように、本発明によって確保された有機化合物は、リン光発光性ホスト材料としてよく使われるBAlqより高効率、低駆動電圧及び長寿命を示す。 Comparative Example 1
The organic light emitting diode device for Comparative Example 1 was manufactured in the same manner except that BAlq, which is generally used as a phosphorescent host material, was used in place of the compound manufactured according to the invention in the device structure of the above embodiment. did. The structure of the BAlq is as follows.
Figure 2016135775
<BAlq>
The voltage, current density, luminance, color coordinates, and lifetime of the organic electroluminescent devices manufactured in Examples 1 to 10 and Comparative Example 1 were measured, and the results are shown in [Table 1] below. T 95 means the time taken for the luminance to decrease to 95% at the initial luminance (3000 cd / m 2 ).
Figure 2016135775
As shown in Table 1, the organic compound secured by the present invention exhibits higher efficiency, lower driving voltage and longer life than BAlq, which is often used as a phosphorescent host material.

実施例11〜15(電子輸送層の用途)
有機発光ダイオードの製造
ITOガラスの発光面積が2mm×2mmのサイズとなるようにパターニングした後、洗浄した。基板を真空チャンバーに装着し、ベース圧力が1×10−6torrとなるようにした後、有機物を前記ITOの上にDNTPD(700オングストローム、NPD(300オングストローム)、CBP+Ir(ppy)(10%)(300オングストローム)、本発明によって製造された化合物(350オングストローム)、LiF(5オングストローム)、Al(1,000オングストローム)の順に成膜し、0.4mAで測定を行った。
Examples 11 to 15 (use of electron transport layer)
Manufacture of organic light emitting diode It patterned, and it wash | cleaned so that the light emission area of ITO glass might become a size of 2 mm x 2 mm. After mounting the substrate in a vacuum chamber and adjusting the base pressure to 1 × 10 −6 torr, the organic substance was placed on the ITO with DNTPD (700 Å, NPD (300 Å), CBP + Ir (ppy) 3 (10% ) (300 angstroms), the compound produced according to the present invention (350 angstroms), LiF (5 angstroms), and Al (1,000 angstroms) were formed in this order, and measurement was performed at 0.4 mA.

比較例2
比較例2のための有機発光ダイオード素子は、前記実施例の素子構造において発明によって製造された化合物の代わりにLiqを使用した以外は同様にして製作した。

Figure 2016135775
前記表2に示すように、本発明によって確保された有機化合物は、電子輸送性材料としてよく使われるAlqに比べて駆動電圧が低く、発光効率に優れる特性を示す。
Comparative Example 2
The organic light emitting diode device for Comparative Example 2 was manufactured in the same manner except that Liq was used instead of the compound manufactured by the invention in the device structure of the above example.
Figure 2016135775
As shown in Table 2, the organic compound ensured by the present invention has a driving voltage lower than that of Alq 3 which is often used as an electron transporting material, and exhibits excellent light emission efficiency.

Claims (16)

下記[化学式A]で表されるヘテロ環式化合物。
[化学式A]
Figure 2016135775
前記化学式Aにおいて、
Xは、S、O、NR、CR、SiR、GeR、Se、Te、及びBRよりなる群から選択され、前記RとR、RとR、RとRは、それぞれ互いに連結されて環を形成することができ、
T1はN又はCR’であり、T2はN又はCR’’であり、T3はN又はCR’’’であるが、T1からT3の少なくとも一つはNであり、
B1はN又はCR15であり、B2はN又はCR16であり、B3はN又はCR17であり、B4はN又はCR18であり、
前記R、R’からR’’’、RからR、R11からR18は、それぞれ同一又は異なり、互いに独立して、水素、重水素、置換もしくは無置換の炭素数1〜30のアルキル基、置換もしくは無置換の炭素数2〜30のアルケニル基、置換もしくは無置換の炭素数2〜30のアルキニル基、置換もしくは無置換の炭素数3〜30のシクロアルキル基、置換もしくは無置換の炭素数2〜30のヘテロシクロアルキル基、置換もしくは無置換の炭素数5〜30のシクロアルケニル基、置換もしくは無置換の炭素数1〜30のアルコキシ基、置換もしくは無置換の炭素数6〜30のアリールオキシ基、置換もしくは無置換の炭素数1〜30のアルキルチオキシ基、置換もしくは無置換の炭素数5〜30のアリールチオキシ基、置換もしくは無置換の炭素数1〜30のアルキルアミン基、置換もしくは無置換の炭素数5〜30のアリールアミン基、置換もしくは無置換の炭素数5〜50のアリール基、置換もしくは無置換の炭素数3〜50のヘテロアリール基、置換もしくは無置換の炭素数1〜30のシリル基、置換もしくは無置換の炭素数1〜30のカルボキシル基、チオール基、シアノ基、ヒドロキシ基、ニトロ基、ハロゲン基、セレン基、テルル基、アミノ基、置換もしくは無置換の炭素数1〜30のエーテル基、置換もしくは無置換の炭素数1〜30のエステル基の中から選択され、
前記R11からR18のうちのそれぞれが互いに隣接している場合、隣接する官能基は互いに連結されて脂環族又は芳香族の単環又は多環を形成することができ、
前記R11からR14のうちの互いに隣接している二つは、前記構造式Qの*に連結されて縮合環を形成する単結合であり、
連結基Yは、単結合、置換もしくは無置換の炭素数1〜20のアルキレン基、置換もしくは無置換の炭素数3〜20のシクロアルキレン基、置換もしくは無置換の炭素数1〜20のヘテロシクロアルキレン基、置換又は無置換の炭素数3〜20のシクロアルケニレン基、置換もしくは無置換の炭素数1〜20のヘテロシクロアルケニレン基、置換もしくは無置換の炭素数6〜60のアリーレン基、置換もしくは無置換の炭素数1〜60のヘテロアリーレン基の中から選択され、
前記R、R’からR’’’のうちのいずれか一つは、連結基Yに結合する単結合であり、
nは0〜2の整数であり、
Zは、置換もしくは無置換の炭素数6〜50のアリール基、又は置換もしくは無置換の炭素数2〜50のヘテロアリール基であるが、前記アリール基又はヘテロアリール基内の芳香族環のそれぞれの炭素は追加の縮合環を形成してさらに脂環族単環又は多環を形成することができ、前記さらに形成された脂環族の単環又は多環の炭素原子は、N、S、O、Se、Te、Si及びGeの中から選択される少なくとも一つのヘテロ原子で置換でき、
前記「置換もしくは無置換の」における「置換」は、重水素、シアノ基、ハロゲン基、ヒドロキシ基、ニトロ基、炭素数1〜24のアルキル基、炭素数1〜24のハロゲン化アルキル基、炭素数1〜24のアルケニル基、炭素数1〜24のアルキニル基、炭素数1〜24のヘテロアルキル基、炭素数6〜24のアリール基、炭素数6〜24のアリールアルキル基、炭素数2〜24のヘテロアリール基、又は炭素数2〜24のヘテロアリールアルキル基、炭素数1〜24のアルコキシ基、炭素数1〜24のアルキルアミノ基、炭素数1〜24のアリールアミノ基、炭素数1〜24のヘテロアリールアミノ基、炭素数1〜24のアルキルシリル基、炭素数1〜24のアリールシリル基、及び炭素数1〜24のアリールオキシ基よりなる群から選ばれた1つ以上の置換基で置換されることを意味する。
A heterocyclic compound represented by the following [Chemical Formula A].
[Chemical Formula A]
Figure 2016135775
In the chemical formula A,
X is selected from the group consisting of S, O, NR 1 , CR 2 R 3 , SiR 4 R 5 , GeR 6 R 7 , Se, Te, and BR 8 , and R 2 and R 3 , R 4 and R 5 , R 6 and R 7 can be connected to each other to form a ring,
T1 is N or CR ′, T2 is N or CR ″, T3 is N or CR ′ ″, but at least one of T1 to T3 is N;
B1 is N or CR15, B2 is N or CR16, B3 is N or CR17, B4 is N or CR18,
R, R ′ to R ′ ″, R 1 to R 8 , R 11 to R 18 are the same or different, and independently of each other, hydrogen, deuterium, substituted or unsubstituted C 1-30. Alkyl group, substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, substituted or unsubstituted A heterocycloalkyl group having 2 to 30 carbon atoms, a substituted or unsubstituted cycloalkenyl group having 5 to 30 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, a substituted or unsubstituted carbon group having 6 to 6 carbon atoms. 30 aryloxy groups, substituted or unsubstituted alkylthioxy groups having 1 to 30 carbon atoms, substituted or unsubstituted arylthioxy groups having 5 to 30 carbon atoms, substituted or unsubstituted A prime alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl amine group having 5 to 30 carbon atoms, a substituted or unsubstituted aryl group having 5 to 50 carbon atoms, a substituted or unsubstituted hetero group having 3 to 50 carbon atoms Aryl group, substituted or unsubstituted silyl group having 1 to 30 carbon atoms, substituted or unsubstituted carboxyl group having 1 to 30 carbon atoms, thiol group, cyano group, hydroxy group, nitro group, halogen group, selenium group, tellurium Selected from a group, an amino group, a substituted or unsubstituted ether group having 1 to 30 carbon atoms, a substituted or unsubstituted ester group having 1 to 30 carbon atoms,
When each of R 11 to R 18 is adjacent to each other, adjacent functional groups may be linked to each other to form an alicyclic or aromatic monocyclic or polycyclic ring;
Two of R 11 to R 14 that are adjacent to each other are single bonds that are connected to * in the structural formula Q to form a condensed ring;
The linking group Y is a single bond, a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms, a substituted or unsubstituted heterocycle having 1 to 20 carbon atoms. An alkylene group, a substituted or unsubstituted cycloalkenylene group having 3 to 20 carbon atoms, a substituted or unsubstituted heterocycloalkenylene group having 1 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, substituted or Selected from unsubstituted C 1-60 heteroarylene groups;
Any one of R, R ′ to R ′ ″ is a single bond bonded to the linking group Y;
n is an integer from 0 to 2,
Z is a substituted or unsubstituted aryl group having 6 to 50 carbon atoms or a substituted or unsubstituted heteroaryl group having 2 to 50 carbon atoms, and each of the aromatic rings in the aryl group or heteroaryl group Can form an additional condensed ring to further form an alicyclic monocyclic or polycyclic ring, and the further formed alicyclic monocyclic or polycyclic carbon atoms include N, S, Can be substituted with at least one heteroatom selected from O, Se, Te, Si and Ge;
“Substitution” in the above “substituted or unsubstituted” means deuterium, cyano group, halogen group, hydroxy group, nitro group, alkyl group having 1 to 24 carbon atoms, halogenated alkyl group having 1 to 24 carbon atoms, carbon C1-C24 alkenyl group, C1-C24 alkynyl group, C1-C24 heteroalkyl group, C6-C24 aryl group, C6-C24 arylalkyl group, C2-C2 24 heteroaryl group, or C2-C24 heteroarylalkyl group, C1-C24 alkoxy group, C1-C24 alkylamino group, C1-C24 arylamino group, C1-C1 Selected from the group consisting of ˜24 heteroarylamino groups, C1-C24 alkylsilyl groups, C1-C24 arylsilyl groups, and C1-C24 aryloxy groups It means substituted with one or more substituents.
前記化学式Aにおいて、T1及びT3がそれぞれ窒素原子であり、T2がCR”であって、置換基R”が連結基Yに連結される単一結合である請求項1に記載のヘテロ環式化合物。   The heterocyclic compound according to claim 1, wherein, in the chemical formula A, T1 and T3 are each a nitrogen atom, T2 is CR ", and the substituent R" is a single bond connected to the linking group Y. . 前記連結基Yは、それぞれ同一又は異なり、互いに独立して単一結合であるか、あるいは下記構造式1から構造式9の中から選ばれるいずれか一つである請求項1に記載のヘテロ環式化合物。
Figure 2016135775
前記構造式1から構造式9における芳香族環の炭素位は水素又は重水素が結合される。
2. The heterocycle according to claim 1, wherein the linking groups Y are the same or different and are each independently a single bond, or one selected from the following structural formulas 1 to 9. Formula compound.
Figure 2016135775
In the structural formulas 1 to 9, hydrogen or deuterium is bonded to the carbon position of the aromatic ring.
[化学式A]の置換基R、R’からR’’’、R11からR18は、それぞれ同一又は異なり、互いに独立して、水素、重水素、置換もしくは無置換の炭素数1〜20のアルキル基;置換もしくは無置換の炭素数3〜20のシクロアルキル基;置換もしくは無置換の炭素数5〜20のアリール基;置換もしくは無置換の炭素数2〜20のヘテロアリール基;の中から選択される一つであり、
前記nはそれぞれ0又は1であることを特徴とする、請求項1に記載のヘテロ環式化合物。
The substituents R, R ′ to R ′ ″, R 11 to R 18 in [Chemical Formula A] are the same or different, and independently of each other, hydrogen, deuterium, substituted or unsubstituted C 1-20. An alkyl group; a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms; a substituted or unsubstituted aryl group having 5 to 20 carbon atoms; a substituted or unsubstituted heteroaryl group having 2 to 20 carbon atoms; One that is selected,
The heterocyclic compound according to claim 1, wherein each n is 0 or 1.
前記[化学式A]におけるB1からB4がいずれも窒素原子ではない請求項1に記載のヘテロ環式化合物。   The heterocyclic compound according to claim 1, wherein none of B1 to B4 in [Chemical Formula A] is a nitrogen atom. 前記[化学式A]におけるZが置換もしくは無置換の炭素数2〜50のヘテロアリール基である請求項1に記載のヘテロ環式化合物。   2. The heterocyclic compound according to claim 1, wherein Z in [Chemical Formula A] is a substituted or unsubstituted heteroaryl group having 2 to 50 carbon atoms. 前記Zが、下記構造式Aから構造式Eの中から選択されるいずれか一つで表示されるヘテロアリール基であることを特徴とする、請求項6に記載のヘテロ環式化合物。
Figure 2016135775
前記構造式AからEにおいて
WはNR24であるが、R24は、単結合;又は置換もしくは無置換の炭素数5〜20のアリール基;置換もしくは無置換の炭素数2〜20のヘテロアリール基;の中から選択される1つであり、
21からR23は、それぞれ同一又は異なり、互いに独立して、水素、重水素;置換もしくは無置換の炭素数1〜20のアルキル基;置換もしくは無置換の炭素数3〜20のシクロアルキル基;置換もしくは無置換の炭素数5〜20のアリール基;置換もしくは無置換の炭素数2〜20のヘテロアリール基;の中から選択される1つであり、
前記構造式Aから構造式Eにおいて、
前記*は、連結基Yに結合される結合サイトを意味し、
前記環状基AからDは、それぞれ互いに同一又は異なり、5員環又は6員環の脂環族又は芳香族単環又は多環を形成することが可能な炭素数4〜20の炭化水素環基である。
The heterocyclic compound according to claim 6, wherein Z is a heteroaryl group represented by any one selected from Structural Formula A to Structural Formula E below.
Figure 2016135775
In the structural formulas A to E, W is NR 24 , and R 24 is a single bond; or a substituted or unsubstituted aryl group having 5 to 20 carbon atoms; a substituted or unsubstituted heteroaryl having 2 to 20 carbon atoms; One selected from the group;
R 21 to R 23 are the same or different and independently of each other, hydrogen, deuterium; a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms; a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms A substituted or unsubstituted aryl group having 5 to 20 carbon atoms; a substituted or unsubstituted heteroaryl group having 2 to 20 carbon atoms;
In Structural Formula A to Structural Formula E,
* Means a binding site bonded to the linking group Y;
The cyclic groups A to D are the same or different from each other, and a hydrocarbon ring group having 4 to 20 carbon atoms capable of forming a 5-membered or 6-membered alicyclic or aromatic monocyclic or polycyclic ring. It is.
[化学式A]におけるZが置換もしくは無置換の炭素数6〜50のアリール基であることを特徴とする、請求項1に記載のヘテロ環式化合物。   The heterocyclic compound according to claim 1, wherein Z in [Chemical Formula A] is a substituted or unsubstituted aryl group having 6 to 50 carbon atoms. 下記[化学式1]から[化学式249]から選ばれるいずれか一つで表示される、請求項1に記載のヘテロ環式化合物。
Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775
Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775
Figure 2016135775

Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
The heterocyclic compound according to claim 1, which is represented by any one selected from the following [Chemical Formula 1] to [Chemical Formula 249].
Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775
Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775

Figure 2016135775
Figure 2016135775

Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
Figure 2016135775
第1電極、
前記第1電極に対向する第2電極、及び
前記第1電極と前記第2電極との間に介在された有機層を含み、
前記有機層が請求項1〜9の中から選ばれるいずれか一項のヘテロ環式化合物を1種以上含む有機発光素子。
A first electrode,
A second electrode facing the first electrode, and an organic layer interposed between the first electrode and the second electrode,
The organic light emitting element in which the said organic layer contains 1 or more types of the heterocyclic compounds as described in any one of Claims 1-9.
前記有機層は、正孔注入層、正孔輸送層、正孔注入機能及び正孔輸送機能を同時に有する機能層、発光層、電子輸送層、及び電子注入層の少なくとも一つを含む請求項10に記載の有機発光素子。   The organic layer includes at least one of a hole injection layer, a hole transport layer, a functional layer having a hole injection function and a hole transport function simultaneously, a light emitting layer, an electron transport layer, and an electron injection layer. The organic light-emitting device described in 1. 前記第1電極と前記第2電極との間に介在された有機層が発光層を含み、
前記発光層は、ホストとドーパントからなり、前記ヘテロ環式化合物がホストとして使用される請求項11に記載の有機発光素子。
The organic layer interposed between the first electrode and the second electrode includes a light emitting layer,
The organic light emitting device according to claim 11, wherein the light emitting layer includes a host and a dopant, and the heterocyclic compound is used as a host.
前記有機層は正孔阻止層又は電子阻止層をさらに含む請求項12に記載の有機発光素子。   The organic light emitting device according to claim 12, wherein the organic layer further comprises a hole blocking layer or an electron blocking layer. 前記それぞれの層の中から選ばれた一つ以上の層が蒸着工程又は溶液工程によって形成される請求項11に記載の有機発光素子。   The organic light emitting device according to claim 11, wherein one or more layers selected from the respective layers are formed by a vapor deposition process or a solution process. 前記有機発光素子は、平板ディスプレイ装置、フレキシブルディスプレイ装置、単色又は白色の平板照明用装置、及び単一又は白色のフレキシブル照明用装置から選ばれるいずれか一つの装置に使用される請求項10に記載の有機発光素子。   11. The organic light emitting device according to claim 10, wherein the organic light emitting device is used in any one device selected from a flat display device, a flexible display device, a monochromatic or white flat illumination device, and a single or white flexible illumination device. Organic light emitting device. 前記第1電極と前記第2電極との間に介在された有機層が電子輸送層を含み、
前記ヘテロ環式化合物が電子輸送層用に使用される請求項11に記載の有機発光素子。
The organic layer interposed between the first electrode and the second electrode includes an electron transport layer,
The organic light-emitting device according to claim 11, wherein the heterocyclic compound is used for an electron transport layer.
JP2016005583A 2015-01-20 2016-01-14 Novel heterocyclic compound and organic light-emitting device containing the same Active JP6096942B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150009127A KR102377221B1 (en) 2015-01-20 2015-01-20 Novel heterocyclic compounds and organic light-emitting diode including the same
KR10-2015-0009127 2015-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017017259A Division JP6371872B2 (en) 2015-01-20 2017-02-02 Novel heterocyclic compound and organic light-emitting device containing the same

Publications (2)

Publication Number Publication Date
JP2016135775A true JP2016135775A (en) 2016-07-28
JP6096942B2 JP6096942B2 (en) 2017-03-15

Family

ID=56512913

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016005583A Active JP6096942B2 (en) 2015-01-20 2016-01-14 Novel heterocyclic compound and organic light-emitting device containing the same
JP2017017259A Active JP6371872B2 (en) 2015-01-20 2017-02-02 Novel heterocyclic compound and organic light-emitting device containing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017017259A Active JP6371872B2 (en) 2015-01-20 2017-02-02 Novel heterocyclic compound and organic light-emitting device containing the same

Country Status (2)

Country Link
JP (2) JP6096942B2 (en)
KR (1) KR102377221B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180053903A1 (en) * 2016-08-17 2018-02-22 Semiconductor Energy Laboratory Co., Ltd. Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
CN109694371A (en) * 2018-11-26 2019-04-30 浙江华显光电科技有限公司 A kind of phosphorescence host compound and its organic electroluminescence device using the compound
US10971687B2 (en) 2017-12-14 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11462696B2 (en) 2018-01-19 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
JP2023518069A (en) * 2020-03-19 2023-04-27 エスエフシー カンパニー リミテッド Organic light-emitting device using polycyclic aromatic derivative compound

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102377221B1 (en) * 2015-01-20 2022-03-22 에스에프씨주식회사 Novel heterocyclic compounds and organic light-emitting diode including the same
KR101900370B1 (en) 2015-05-13 2018-09-19 삼성에스디아이 주식회사 Compound for ORGANIC OPTOELECTRIC DEVICE, ORGANIC OPTOELECTRIC DEVICE AND DISPLAY DEVICE
CN109476678B (en) * 2017-02-14 2021-06-01 株式会社Lg化学 Heterocyclic compound and organic light-emitting element comprising same
CN109593097B (en) * 2018-11-26 2021-11-02 浙江华显光电科技有限公司 Phosphorescent host compound and organic electroluminescent device using same
CN112110900A (en) * 2020-09-09 2020-12-22 浙江华显光电科技有限公司 Organic electroluminescent compound and organic light-emitting device using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665162A1 (en) * 1990-07-30 1992-01-31 Univ Caen 6H-Pyrido[3,2-b]carbazole derivatives, process for their preparation and their application in therapeutics
KR20110058250A (en) * 2009-11-26 2011-06-01 덕산하이메탈(주) Compound containing 5-membered heterocycle and organic electronic element using the same, terminal thereof
WO2011140829A1 (en) * 2010-05-14 2011-11-17 The University Of Hong Kong Solid supported gold nanoparticles, methods of use thereof, and methods for making same
KR20130066554A (en) * 2011-12-12 2013-06-20 제일모직주식회사 Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
KR20130110347A (en) * 2012-03-29 2013-10-10 에스에프씨 주식회사 Indenophenanthrene derivatives and organic light emitting diodes comprising the derivatives
KR20140078096A (en) * 2012-12-17 2014-06-25 에스에프씨 주식회사 Aromatic amine derivatives having fluorenyl moiety and organic light-emitting diode including the same
KR20140120089A (en) * 2013-04-02 2014-10-13 에스에프씨 주식회사 An organoelectro luminescent compounds and organoelectro luminescent device using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU492517A1 (en) * 1974-04-12 1975-11-25 The method of obtaining 1- / -aminophenyl / -3 - / -aminophenyl / -7n-pyrmdo- / 2,3-s / carbazole
CN102197027A (en) * 2008-08-22 2011-09-21 株式会社Lg化学 Material for organic electronic device, and organic electronic device using the same
JP5556168B2 (en) 2008-12-25 2014-07-23 Jnc株式会社 Anthracene derivative having pyridylnaphthyl group and organic electroluminescent device
KR20110013220A (en) 2009-07-31 2011-02-09 다우어드밴스드디스플레이머티리얼 유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR101791276B1 (en) 2009-11-12 2017-10-27 호도가야 가가쿠 고교 가부시키가이샤 Compound having a substituted anthracene ring structure and pyridoindole ring structure, and organic electroluminescent element
JP5120398B2 (en) 2010-03-04 2013-01-16 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
KR101517093B1 (en) * 2012-06-07 2015-05-06 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
WO2014002871A1 (en) * 2012-06-28 2014-01-03 Jnc株式会社 Electron transport material and organic electroluminescent element using same
KR102169447B1 (en) * 2013-05-31 2020-10-23 에스에프씨 주식회사 An organoelectro luminescent compounds and organoelectro luminescent device using the same
JP2015127312A (en) * 2013-12-27 2015-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. Carbazole derivative and organic light-emitting element
KR102377221B1 (en) * 2015-01-20 2022-03-22 에스에프씨주식회사 Novel heterocyclic compounds and organic light-emitting diode including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665162A1 (en) * 1990-07-30 1992-01-31 Univ Caen 6H-Pyrido[3,2-b]carbazole derivatives, process for their preparation and their application in therapeutics
KR20110058250A (en) * 2009-11-26 2011-06-01 덕산하이메탈(주) Compound containing 5-membered heterocycle and organic electronic element using the same, terminal thereof
WO2011140829A1 (en) * 2010-05-14 2011-11-17 The University Of Hong Kong Solid supported gold nanoparticles, methods of use thereof, and methods for making same
KR20130066554A (en) * 2011-12-12 2013-06-20 제일모직주식회사 Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
KR20130110347A (en) * 2012-03-29 2013-10-10 에스에프씨 주식회사 Indenophenanthrene derivatives and organic light emitting diodes comprising the derivatives
KR20140078096A (en) * 2012-12-17 2014-06-25 에스에프씨 주식회사 Aromatic amine derivatives having fluorenyl moiety and organic light-emitting diode including the same
KR20140120089A (en) * 2013-04-02 2014-10-13 에스에프씨 주식회사 An organoelectro luminescent compounds and organoelectro luminescent device using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUMAR, AREPALLI SATEESH; NAGARAJAN, RAJAGOPAL: "Copper- or palladium-catalyzed amidation and cyclization route for the synthesis of pyrimido[4,5-b]c", SYNTHESIS, vol. 45(20), JPN6016043099, 2013, pages 2893 - 2903, ISSN: 0003498359 *
SRIDHARAN, MAKUTESWARAN; PRASAD, KARNAM JAYARAMPILLAI RAJENDRA: "Synthetic utility of 2-furylmethylene-2,3,4,9-tetrahydrocarbazol-1-ones: syntheses of pyrazolo, isox", JOURNAL OF CHEMICAL RESEARCH, vol. 35(1), JPN6016043100, 2011, pages 53 - 59, ISSN: 0003498360 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180053903A1 (en) * 2016-08-17 2018-02-22 Semiconductor Energy Laboratory Co., Ltd. Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
US10734589B2 (en) * 2016-08-17 2020-08-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US20200358003A1 (en) 2016-08-17 2020-11-12 Semiconductor Energy Laboratory Co., Ltd. Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device and Lighting Device
US11121326B2 (en) 2016-08-17 2021-09-14 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device and lighting device
JP2022110006A (en) * 2016-08-17 2022-07-28 株式会社半導体エネルギー研究所 Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
JP7358552B2 (en) 2016-08-17 2023-10-10 株式会社半導体エネルギー研究所 Organic compounds, light emitting elements, light emitting devices, electronic equipment and lighting devices
US10971687B2 (en) 2017-12-14 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11462696B2 (en) 2018-01-19 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US12096690B2 (en) 2018-01-19 2024-09-17 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN109694371A (en) * 2018-11-26 2019-04-30 浙江华显光电科技有限公司 A kind of phosphorescence host compound and its organic electroluminescence device using the compound
JP2023518069A (en) * 2020-03-19 2023-04-27 エスエフシー カンパニー リミテッド Organic light-emitting device using polycyclic aromatic derivative compound
JP7506166B2 (en) 2020-03-19 2024-06-25 エスエフシー カンパニー リミテッド Organic light-emitting devices using polycyclic aromatic derivative compounds

Also Published As

Publication number Publication date
JP6096942B2 (en) 2017-03-15
JP6371872B2 (en) 2018-08-08
KR102377221B1 (en) 2022-03-22
JP2017088614A (en) 2017-05-25
KR20160089655A (en) 2016-07-28

Similar Documents

Publication Publication Date Title
KR102206195B1 (en) organic light-emitting diode with High efficiency
KR102444324B1 (en) Novel heterocyclic compounds and organic light-emitting diode including the same
KR102230153B1 (en) Heterocyclic compound comprising aromatic amine group and organic light-emitting diode including the same
JP6371872B2 (en) Novel heterocyclic compound and organic light-emitting device containing the same
CN107004776B (en) Organic light emitting element with high efficiency and long lifetime
JP6533825B2 (en) Fused fluorene derivatives containing a heterocycle
KR101817775B1 (en) Novel compounds for organic light-emitting diode and organic light-emitting diode including the same
KR102436175B1 (en) Novel aromatic compounds for organic light-emitting diode and organic light-emitting diode including the same
KR20210030291A (en) An electroluminescent compound and an electroluminescent device comprising the same
KR101792175B1 (en) Spiro compound and organic electroluminescent devices comprising the same
CN113227066B (en) Compound for organic light-emitting element and long-life organic light-emitting element comprising same
KR102656066B1 (en) Novel amine compounds for organic light-emitting diode and organic light-emitting diode including the same
KR102266642B1 (en) Novel aromatic amine compounds for organic light-emitting diode and organic light-emitting diode including the same
JP7266713B2 (en) Compound for organic light emitting device and organic light emitting device containing the same
CN107459523B (en) Novel heterocyclic compound and organic light-emitting element comprising same
KR102215776B1 (en) Novel heterocyclic compounds and organic light-emitting diode including the same
KR102716116B1 (en) Novel organic compounds and organic light-emitting diode therewith
KR102438615B1 (en) An organic light emitting compound and an organic light emitting diode comprising the same
JP2023521739A (en) Novel anthracene compound and organic light-emitting device containing the same
KR20160123561A (en) Novel heterocyclic compounds and organic light-emitting diode including the same
KR20150115033A (en) Novel aromatic compounds for organic light-emitting diode and organic light-emitting diode including the same
KR101554591B1 (en) Organic light-emitting diode including aryl substituted antracene derivatives
KR20180010409A (en) Novel anthracene derivatives and organic light-emitting diode therewith
KR102418819B1 (en) Novel heterocyclic compounds and organic light-emitting diode including the same
KR20160090242A (en) Novel antracene derivatives for organic light-emitting diode and organic light-emitting diode including the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170216

R150 Certificate of patent or registration of utility model

Ref document number: 6096942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250