JP2016081801A - Electrode for positive electrode, and nonaqueous electrolyte power storage device - Google Patents
Electrode for positive electrode, and nonaqueous electrolyte power storage device Download PDFInfo
- Publication number
- JP2016081801A JP2016081801A JP2014213534A JP2014213534A JP2016081801A JP 2016081801 A JP2016081801 A JP 2016081801A JP 2014213534 A JP2014213534 A JP 2014213534A JP 2014213534 A JP2014213534 A JP 2014213534A JP 2016081801 A JP2016081801 A JP 2016081801A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- discharge
- storage element
- active material
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、正極用電極、及びこれを用いた非水電解液蓄電素子に関する。 The present invention relates to a positive electrode and a non-aqueous electrolyte storage element using the same.
近年、携帯機器の小型化、高性能化に伴い、高いエネルギー密度を持つ非水電解液二次電池が普及している。また、電気自動車への応用展開を目指して非水電解液二次電池の重量エネルギー密度を向上させる試みが進められている。
従来、リチウムコバルト複合酸化物等の正極と、炭素の負極と、非水溶媒にリチウム塩を溶解させた非水電解液とを有するリチウムイオン二次電池が多く使用されている。
一方、正極に導電性高分子、炭素質材料等の材料を用い、非水電解液中のアニオンを、正極へ挿入したり脱離させたりし、非水電解液中のリチウムイオンを、炭素質材料からなる負極へ挿入したり脱離させたりして充放電を行う非水電解液二次電池(以下、「デュアルカーボン電池」と称することがある)が知られている(非特許文献1参照)。
In recent years, with the miniaturization and high performance of portable devices, non-aqueous electrolyte secondary batteries having a high energy density have become widespread. Attempts have also been made to improve the weight energy density of non-aqueous electrolyte secondary batteries with the aim of developing applications in electric vehicles.
Conventionally, a lithium ion secondary battery having a positive electrode such as a lithium cobalt composite oxide, a carbon negative electrode, and a nonaqueous electrolytic solution in which a lithium salt is dissolved in a nonaqueous solvent has been widely used.
On the other hand, materials such as conductive polymers and carbonaceous materials are used for the positive electrode, and anions in the non-aqueous electrolyte are inserted into or removed from the positive electrode, and lithium ions in the non-aqueous electrolyte are converted into carbonaceous materials. A non-aqueous electrolyte secondary battery (hereinafter sometimes referred to as “dual carbon battery”) that is charged and discharged by being inserted into or removed from a negative electrode made of a material is known (see Non-Patent Document 1). ).
前記デュアルカーボン電池では、例えば、下記反応式に示すように、非水電解液中から正極にPF6 −等のアニオンが挿入され、非水電解液中から負極にLi+が挿入されることにより充電が行われ、正極からPF6 −等のアニオンが脱離し、負極からLi+が脱離することにより放電が行われる。
前記デュアルカーボン電池の放電容量は、正極のアニオン吸蔵量、正極のアニオン放出可能量、負極のカチオン吸蔵量、負極のカチオン放出可能量、非水電解液中のアニオン量及びカチオン量で決まる。このため、前記デュアルカーボン電池の放電容量を増加させるためには、正極活物質及び負極活物質のほか、リチウム塩を含む非水電解液の量も増やす必要がある(非特許文献1参照)。
前記デュアルカーボン電池は、5V以上の高電圧充電が可能であるが、高電圧下では電解液の分解が多くなり充放電効率が悪くなるが、電解液と電極が接する表面積を小さくすれば、電解液の反応面積が小さくなり充放電効率を向上させることができる。反応面積を小さくするには、表面積が小さい活物質を選ぶか、電極内の導電助剤の量を減らせばよいが、電池の性能は活物質に依存するため、活物質を変えることは難しい。
したがって、充放電効率の向上には電解液界面付近の電極内の導電助剤を減らすことが有効である。ただし、電池の能力を引き出すためには、集電体と電極の導電パスが十分でなければならないため、電解液と電極界面には最低限の導電助剤が存在し、集電体と電極界面には十分存在していることが電池の特性向上に有効である。
The discharge capacity of the dual carbon battery is determined by the anion storage amount of the positive electrode, the anion release amount of the positive electrode, the cation storage amount of the negative electrode, the cation release amount of the negative electrode, the anion amount and the cation amount in the non-aqueous electrolyte. For this reason, in order to increase the discharge capacity of the dual carbon battery, in addition to the positive electrode active material and the negative electrode active material, it is necessary to increase the amount of the non-aqueous electrolyte containing a lithium salt (see Non-Patent Document 1).
The dual carbon battery can be charged at a high voltage of 5 V or more. However, under a high voltage, the decomposition of the electrolytic solution is increased and the charge / discharge efficiency is deteriorated. The reaction area of the liquid is reduced, and charge / discharge efficiency can be improved. In order to reduce the reaction area, an active material having a small surface area may be selected or the amount of the conductive aid in the electrode may be reduced. However, since the performance of the battery depends on the active material, it is difficult to change the active material.
Therefore, to improve the charge / discharge efficiency, it is effective to reduce the conductive assistant in the electrode near the electrolyte interface. However, in order to bring out the capacity of the battery, the conductive path between the current collector and the electrode must be sufficient, so there is a minimum amount of conductive aid at the electrolyte and electrode interface, and the current collector and electrode interface. It is effective to improve the characteristics of the battery.
また、前記デュアルカーボン電池には、自己放電の抑制という課題がある。自己放電の抑制には電解液と電極の界面の抵抗を大きくして、電極内のイオンを出にくくさせることが有効である。
公知技術として、特許文献1に、集電体表面に電着塗装法で導電性被膜を形成し、電極と集電体の密着性を上げて内部抵抗を下げた発明が開示されている。
特許文献2には、電極内の導電助剤の含有率を変えて、蓄電素子の高出力を可能にした発明が開示されている。
非特許文献2には、アルミニウム集電体にカーボンの下地層を適用し、電池の内部抵抗を低減させる技術が開示されている。
Further, the dual carbon battery has a problem of suppressing self-discharge. In order to suppress self-discharge, it is effective to increase the resistance at the interface between the electrolyte and the electrode so that ions in the electrode are not easily emitted.
As a known technique, Patent Document 1 discloses an invention in which a conductive film is formed on the surface of a current collector by an electrodeposition coating method to increase the adhesion between the electrode and the current collector, thereby reducing the internal resistance.
Patent Document 2 discloses an invention in which the content of the conductive additive in the electrode is changed to enable high output of the power storage element.
Non-Patent Document 2 discloses a technique for reducing the internal resistance of a battery by applying a carbon base layer to an aluminum current collector.
本発明は、非水電解液蓄電素子の容量を落とすことなく充放電効率を向上させ、自己放電を抑制することができる正極用電極の提供を目的とする。
なお、前記特許文献1〜2の発明は、本発明とは課題及び構成が異なり本発明の課題の解決は期待できない。また、前記非特許文献2には、本発明の課題に関する記載はなく、本発明の課題を解決できるかどうか不明である。
An object of this invention is to provide the electrode for positive electrodes which can improve charging / discharging efficiency and suppress self-discharge, without reducing the capacity | capacitance of a non-aqueous electrolyte storage element.
Note that the inventions of Patent Documents 1 and 2 are different from the present invention in subject and configuration, and cannot solve the problem of the present invention. Moreover, the said nonpatent literature 2 does not have description regarding the subject of this invention, and it is unknown whether the subject of this invention can be solved.
上記課題は、次の1)の発明によって解決される。
1) 正極集電体上に、アニオンを挿入及び脱離可能なソフトカーボンからなる正極活物質と導電助剤を少なくとも含有する正極材層を形成した、非水電解液蓄電素子の正極用電極であって、正極材層の厚み方向の単位面積当たりの導電助剤の量が、正極集電体界面>電解液界面であることを特徴とする正極用電極。
The above problem is solved by the following invention 1).
1) A positive electrode for a non-aqueous electrolyte storage element in which a positive electrode active material composed of soft carbon capable of inserting and releasing anions and a positive electrode material layer containing at least a conductive additive are formed on a positive electrode current collector. The positive electrode is characterized in that the amount of the conductive additive per unit area in the thickness direction of the positive electrode material layer is positive electrode collector interface> electrolyte interface.
本発明によれば、非水電解液蓄電素子の容量を落とすことなく充放電効率を向上させ、自己放電を抑制することができる正極用電極を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the electrode for positive electrodes which can improve charging / discharging efficiency and suppress self-discharge can be provided, without reducing the capacity | capacitance of a non-aqueous-electrolyte electrical storage element.
以下、上記本発明1)について詳しく説明するが、その実施の形態には次の2)〜6)も含まれるので、これらについても併せて説明する。
2) 正極集電体側に、正極活物質を含まず導電助剤を含む正極材層を形成し、その上に正極活物質を含み導電助剤を含まない正極材層を形成したことを特徴とする1)に記載の正極用電極。
3) 正極集電体側に、正極活物質と導電助剤を含む正極材層を形成し、その上に正極活物質を含み導電助剤を含まない正極材層を形成したことを特徴とする1)に記載の正極用電極。
4) 少なくとも、正極、負極及び非水電解液を有し、前記正極として1)〜3)のいずれかに記載の正極用電極を用いたことを特徴とする非水電解液蓄電素子。
5) 前記非水電解液に含まれる電解質塩の濃度が、2mol/L以上であることを特徴とする4)に記載の非水電解液蓄電素子。
6) 前記正極の使用電圧範囲が、2.5V〜5.5V vs Li/Li+であることを特徴とする5)に記載の非水電解液蓄電素子。
Hereinafter, the present invention 1) will be described in detail, but the following 2) to 6) are also included in the embodiment, and these will also be described together.
2) A positive electrode material layer that does not include a positive electrode active material and includes a conductive additive is formed on the positive electrode current collector side, and a positive electrode material layer that includes a positive electrode active material and does not include a conductive additive is formed thereon. The electrode for positive electrodes as described in 1).
3) A positive electrode material layer containing a positive electrode active material and a conductive auxiliary agent is formed on the positive electrode current collector side, and a positive electrode material layer containing a positive electrode active material and no conductive auxiliary agent is formed thereon 1 The electrode for positive electrodes as described in).
4) A non-aqueous electrolyte storage element comprising at least a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode according to any one of 1) to 3) is used as the positive electrode.
5) The nonaqueous electrolyte storage element according to 4), wherein the concentration of the electrolyte salt contained in the nonaqueous electrolyte is 2 mol / L or more.
6) The working voltage range of the positive electrode is 2.5 V to 5.5 V vs Li / Li + , and the nonaqueous electrolyte storage element according to 5).
<正極用電極の構成>
図1は本発明の正極用電極の構成を示す模式図である。
図1に示すように、本発明の正極用電極は、正極集電体上に、アニオンを挿入及び脱離可能なソフトカーボンからなる正極活物質と導電助剤を少なくとも含む正極材層を有し、該正極材層における導電助剤の分布状態(電極厚み方向の単位面積当たりの導電助剤の量)が、正極集電体界面>電解液界面であることを特徴とする。この特徴により、従来の正極用電極に比べて電解液と正極用電極の界面に存在する導電助剤が少なくなるので充放電効率が向上し、該界面の抵抗が大きくなるので自己放電が抑制される。
正極材層における正極集電体界面と電解液界面の導電助剤の量の差は大きい方が好ましい。また、正極集電体界面の正極材層が正極活物質を含まず導電助剤を含む正極材で構成されていてもよいし、電解液界面の正極材層が正極活物質を含み導電助剤を含まない正極材で構成されていてもよい。
<Configuration of positive electrode>
FIG. 1 is a schematic diagram showing the configuration of the positive electrode of the present invention.
As shown in FIG. 1, the positive electrode of the present invention has a positive electrode material layer containing at least a positive electrode active material made of soft carbon capable of inserting and removing anions and a conductive additive on a positive electrode current collector. The distribution state of the conductive additive in the positive electrode material layer (the amount of conductive additive per unit area in the electrode thickness direction) is positive electrode collector interface> electrolyte interface. This feature improves the charge / discharge efficiency by reducing the amount of conductive additive present at the interface between the electrolyte and the positive electrode compared to the conventional positive electrode, and suppresses self-discharge because the resistance at the interface increases. The
It is preferable that the difference in the amount of the conductive additive between the positive electrode current collector interface and the electrolyte solution interface in the positive electrode material layer is large. Further, the positive electrode material layer at the positive electrode current collector interface may be composed of a positive electrode material that does not contain a positive electrode active material and contains a conductive additive, or the positive electrode material layer at the electrolyte solution interface contains a positive electrode active material and a conductive additive. You may be comprised with the positive electrode material which does not contain.
上記のような正極剤層は、例えば正極活物質を含まず導電助剤を含むスラリー状の正極材組成物(1)又は正極活物質と導電助剤を含むスラリー状の正極材組成物(2)、及び正極活物質を含み導電助剤を含まないか又は導電助剤の含有量が(2)よりも少ないスラリー状の正極材組成物(3)を用意し、正極集電体上に正極材組成物(1)又は(2)を塗布し、次いで、その上に正極材組成物(3)を塗布し乾燥することにより形成できる。上記正極材組成物(1)〜(3)からなる各層の厚みには特に制限はなく、目的に応じて適宜変更することができる。
また、必要に応じて、正極集電体界面>電解液界面となるように導電助剤の含有量を変化させた3層以上の積層構成の正極剤層とすることも可能である。
The positive electrode layer as described above is, for example, a slurry-like positive electrode material composition (1) that does not contain a positive electrode active material and contains a conductive additive, or a slurry-like positive electrode material composition (2 that contains a positive electrode active material and a conductive additive). And a slurry-like positive electrode material composition (3) which contains a positive electrode active material and does not contain a conductive additive or contains a conductive auxiliary agent less than (2), and a positive electrode on the positive electrode current collector It can be formed by applying the material composition (1) or (2), and then applying the positive electrode material composition (3) thereon and drying it. There is no restriction | limiting in particular in the thickness of each layer which consists of said positive electrode material composition (1)-(3), According to the objective, it can change suitably.
Moreover, it is also possible to set it as the positive electrode agent layer of the 3 or more layer structure which changed content of the conductive support agent so that it might become positive electrode collector interface> electrolyte solution interface as needed.
<非水電解液蓄電素子>
本発明の非水電解液蓄電素子は、正極、負極、非水電解液、セパレータ、及びその他の部材からなる。
<正極>
正極(正極用電極)の構成は前述したとおりであり、少なくとも正極材層と正極集電体を有する。
正極の形状には特に制限はなく、目的に応じて適宜選択することができ、例えば平板状などが挙げられる。
<Non-aqueous electrolyte storage element>
The non-aqueous electrolyte storage element of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte, a separator, and other members.
<Positive electrode>
The configuration of the positive electrode (positive electrode) is as described above, and includes at least a positive electrode material layer and a positive electrode current collector.
There is no restriction | limiting in particular in the shape of a positive electrode, According to the objective, it can select suitably, For example, flat form etc. are mentioned.
<<正極材>>
正極材には特に制限はなく、目的に応じて適宜選択できるが、アニオンを挿入及び脱離可能なソフトカーボンからなる正極活物質と導電助剤を少なくとも含み、必要に応じて、バインダ、増粘剤などを含む。
<< Positive electrode material >>
The positive electrode material is not particularly limited and may be appropriately selected depending on the purpose. However, it includes at least a positive electrode active material composed of soft carbon capable of inserting and removing anions and a conductive additive, and optionally includes a binder and a thickening agent. Including agents.
−正極活物質−
正極活物質としては、X線回折で測定した(002)面の面間隔d(002)が0.34nm〜0.36nmであるソフトカーボンを用いる。d(002)が0.34nmより小さいと一般的に黒鉛の性質を示し、高容量であるが、負荷特性、特に大電流充電特性に乏しくなる。一方、d(002)が0.36nmより大きいと、一般的に難黒鉛化炭素、又は活性炭の性質を示し、アニオンは表面に吸着するだけで層間への挿入が起こり難く、容量の高いものが得られない。
上記ソフトカーボンとしては、コークスやメゾフェースピッチ等を2000℃以下程度の温度で焼成したものが挙げられる。
-Positive electrode active material-
As the positive electrode active material, soft carbon whose (002) plane spacing d (002) measured by X-ray diffraction is 0.34 nm to 0.36 nm is used. If d (002) is smaller than 0.34 nm, it generally exhibits the properties of graphite and has a high capacity, but it has poor load characteristics, particularly large current charging characteristics. On the other hand, when d (002) is larger than 0.36 nm, it generally exhibits the properties of non-graphitized carbon or activated carbon, and the anion is only adsorbed on the surface and hardly intercalates between the layers. I can't get it.
Examples of the soft carbon include those obtained by firing coke, meso-face pitch or the like at a temperature of about 2000 ° C. or less.
−導電助剤−
導電助剤としては、例えば、銅、アルミニウム等の金属材料、カーボンブラック、アセチレンブラック等の炭素質材料、などが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
-Conductive aid-
As a conductive support agent, carbonaceous materials, such as metal materials, such as copper and aluminum, carbon black, and acetylene black, etc. are mentioned, for example. These may be used individually by 1 type and may use 2 or more types together.
−バインダ−
バインダとしては、正極用電極作製時に使用する溶媒や電解液、印加される電位に対して安定な材料であれば特に制限はなく、目的に応じて適宜選択することができる。
その例としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダ、スチレン−ブタジエンゴム(SBR)、イソプレンゴム、ポリアクリル酸エステルなどが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
-Binder-
The binder is not particularly limited as long as it is a material that is stable with respect to a solvent, an electrolytic solution, and an applied potential that are used in the production of the positive electrode, and can be appropriately selected according to the purpose.
Examples thereof include fluorine-based binders such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), isoprene rubber, and polyacrylate. These may be used individually by 1 type and may use 2 or more types together.
−増粘剤−
増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸スターチ、カゼイン、などが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
-Thickener-
Examples of the thickener include carboxymethyl cellulose (CMC), methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphate starch, and casein. These may be used individually by 1 type and may use 2 or more types together.
<<正極集電体>>
正極集電体の材質、形状、大きさ、構造には特に制限はなく、目的に応じて適宜選択することができる。
正極集電体の材質は、導電性材料で形成され、印加される電位に対して安定であれば特に制限はなく、目的に応じて適宜選択することができる。その例としては、ステンレススチール、ニッケル、アルミニウム、チタン、タンタル、などが挙げられる。これらの中でも、ステンレススチール、アルミニウムが特に好ましく、製箔が容易で安価なアルミニウムが特に好ましい。
正極集電体の形状には特に制限はなく、目的に応じて適宜選択することができる。
正極集電体の大きさは、非水電解液蓄電素子に使用可能な大きさであれば、特に制限はなく、目的に応じて適宜選択することができる。
<< Positive electrode current collector >>
The material, shape, size, and structure of the positive electrode current collector are not particularly limited and can be appropriately selected according to the purpose.
The material of the positive electrode current collector is not particularly limited as long as it is made of a conductive material and is stable with respect to the applied potential, and can be appropriately selected according to the purpose. Examples thereof include stainless steel, nickel, aluminum, titanium, tantalum, and the like. Among these, stainless steel and aluminum are particularly preferable, and aluminum that is easy to manufacture foil and inexpensive is particularly preferable.
There is no restriction | limiting in particular in the shape of a positive electrode electrical power collector, According to the objective, it can select suitably.
The size of the positive electrode current collector is not particularly limited as long as it is a size that can be used for the nonaqueous electrolyte storage element, and can be appropriately selected according to the purpose.
−正極の作製方法−
正極は、正極活物質、導電助剤、更に必要に応じてバインダ、増粘剤、溶媒等を加えてスラリー状とした正極材組成物を正極集電体上に塗布し乾燥することにより製造できる。導電助剤のみからなる層や導電助剤の含有量が異なる層を形成する場合は、適宜導電助剤の含有量を変えた正極材組成物を用意すればよい。
前記溶媒としては特に制限はなく、目的に応じて適宜選択することができ、例えば、水系溶媒、有機系溶媒、などが挙げられる。前記水系溶媒としては、例えば、水、アルコール、などが挙げられる。前記有機系溶媒としては、例えば、N−メチル−2−ピロリドン(NMP)、トルエン、などが挙げられる。
なお、前記正極活物質をそのままロール成形してシート電極としたり、圧縮成形によりペレット電極とすることもできる。
-Method for producing positive electrode-
The positive electrode can be produced by applying a positive electrode active material, a conductive additive, and, if necessary, a positive electrode material composition in a slurry form by adding a binder, a thickener, a solvent, and the like onto the positive electrode current collector and drying it. . In the case of forming a layer consisting of only a conductive aid or a layer having a different content of the conductive aid, a positive electrode material composition in which the content of the conductive aid is appropriately changed may be prepared.
There is no restriction | limiting in particular as said solvent, According to the objective, it can select suitably, For example, an aqueous solvent, an organic solvent, etc. are mentioned. Examples of the aqueous solvent include water, alcohol, and the like. Examples of the organic solvent include N-methyl-2-pyrrolidone (NMP), toluene, and the like.
In addition, the positive electrode active material can be roll-formed as it is to form a sheet electrode, or a pellet electrode by compression molding.
<負極>
負極には特に制限はなく、目的に応じて適宜選択することができ、例えば、負極集電体上に負極活物質を有する負極材層を形成した負極、などが挙げられる。
負極の形状には特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、などが挙げられる。
<Negative electrode>
There is no restriction | limiting in particular in a negative electrode, According to the objective, it can select suitably, For example, the negative electrode which formed the negative electrode material layer which has a negative electrode active material on a negative electrode collector etc. are mentioned.
There is no restriction | limiting in particular in the shape of a negative electrode, According to the objective, it can select suitably, For example, flat form etc. are mentioned.
<<負極材>>
負極材は、負極活物質を少なくとも含み、更に必要に応じてバインダ、導電助剤などを含む。
<< Anode Material >>
The negative electrode material includes at least a negative electrode active material, and further includes a binder, a conductive auxiliary agent, and the like as necessary.
−負極活物質−
負極活物質としては、少なくとも非水溶媒系で機能する物質であれば特に制限はなく、目的に応じて適宜選択することができる。その例としては、人造黒鉛や天然黒鉛等の黒鉛(グラファイト)、ハードカーボン、ソフトカーボン、コークス、チタン酸リチウム、スピネル化合物などが挙げられる。これらの中でも、人造黒鉛、天然黒鉛、ハードカーボン、ソフトカーボンが特に好ましい。
-Negative electrode active material-
The negative electrode active material is not particularly limited as long as it is a substance that functions at least in a non-aqueous solvent system, and can be appropriately selected according to the purpose. Examples thereof include graphite (graphite) such as artificial graphite and natural graphite, hard carbon, soft carbon, coke, lithium titanate, spinel compound, and the like. Among these, artificial graphite, natural graphite, hard carbon, and soft carbon are particularly preferable.
−バインダ−
バインダとしては特に制限はなく、目的に応じて適宜選択することができる。その例としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダ、エチレン−プロピレン−ブタジエンゴム(EPBR)、スチレン−ブタジエンゴム(SBR)、イソプレンゴム、カルボキシメチルセルロース(CMC)、などが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、PVDF、PTFE等のフッ素系バインダとCMCが好ましく、他のバインダに比べて繰り返し充放電回数が向上する点からCMCが特に好ましい。
-Binder-
There is no restriction | limiting in particular as a binder, According to the objective, it can select suitably. Examples include fluorine-based binders such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), ethylene-propylene-butadiene rubber (EPBR), styrene-butadiene rubber (SBR), isoprene rubber, carboxymethylcellulose (CMC). ), Etc. These may be used individually by 1 type and may use 2 or more types together. Among these, fluorine-based binders such as PVDF and PTFE and CMC are preferable, and CMC is particularly preferable because the number of repeated charge / discharge cycles is improved as compared with other binders.
−導電助剤−
導電助剤としては、例えば、銅、アルミニウム等の金属材料、カーボンブラック、アセチレンブラック等の炭素質材料、などが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
-Conductive aid-
As a conductive support agent, carbonaceous materials, such as metal materials, such as copper and aluminum, carbon black, and acetylene black, etc. are mentioned, for example. These may be used individually by 1 type and may use 2 or more types together.
<<負極集電体>>
負極集電体の材質、形状、大きさ、構造には特に制限はなく、目的に応じて適宜選択することができる。
負極集電体の材質は、導電性材料で形成されたものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、ステンレススチール、ニッケル、アルミニウム、銅、などが挙げられる。これらの中でも、ステンレススチールや銅が特に好ましい。
負極集電体の形状には特に制限はなく、目的に応じて適宜選択することができる。
負極集電体の大きさは、非水電解液蓄電素子に使用可能な大きさであれば特に制限はなく、目的に応じて適宜選択することができる。
<< Negative electrode current collector >>
The material, shape, size, and structure of the negative electrode current collector are not particularly limited and can be appropriately selected depending on the purpose.
The material of the negative electrode current collector is not particularly limited as long as it is formed of a conductive material, and can be appropriately selected according to the purpose. Examples thereof include stainless steel, nickel, aluminum, and copper. . Among these, stainless steel and copper are particularly preferable.
There is no restriction | limiting in particular in the shape of a negative electrode electrical power collector, According to the objective, it can select suitably.
The size of the negative electrode current collector is not particularly limited as long as it is a size that can be used for the nonaqueous electrolyte storage element, and can be appropriately selected according to the purpose.
−負極の作製方法−
負極は、負極活物質に、必要に応じてバインダ、導電助剤、溶媒等を加えてスラリー状とした負極材組成物を、負極集電体上に塗布し乾燥することにより製造できる。
前記溶媒としては、前記正極の作製方法の場合と同様の溶媒を用いることができる。
また、負極活物質にバインダ、導電助剤等を加えたものをそのままロール成形してシート電極としたり、圧縮成形によりペレット電極としたり、蒸着、スパッタ、メッキ等の手法で負極集電体上に負極活物質の薄膜を形成することもできる。
-Negative electrode manufacturing method-
The negative electrode can be produced by applying a negative electrode material composition in the form of a slurry by adding a binder, a conductive additive, a solvent and the like to the negative electrode active material as necessary, and drying the composition.
As the solvent, the same solvent as in the method for manufacturing the positive electrode can be used.
In addition, a negative electrode active material added with a binder, a conductive additive, etc. can be roll-formed as it is to form a sheet electrode, a pellet electrode by compression molding, or vapor deposition, sputtering, plating, etc. on the negative electrode current collector A thin film of a negative electrode active material can also be formed.
<非水電解液>
非水電解液は、非水溶媒、及び電解質塩を含有する電解液である。
<Non-aqueous electrolyte>
The nonaqueous electrolytic solution is an electrolytic solution containing a nonaqueous solvent and an electrolyte salt.
<<非水溶媒>>
非水溶媒としては特に制限はなく、目的に応じて適宜選択することができるが、非プロトン性有機溶媒が好適である。
前記非プロトン性有機溶媒としては、鎖状カーボネート、環状カーボネート等のカーボネート系有機溶媒が用いられ、低粘度な溶媒が好ましい。これらの中でも、低粘度で電解質塩の溶解力が高い点から、鎖状カーボネートが好ましい。
前記鎖状カーボネートとしては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、などが挙げられ、適宜混合して使用することができる。これらの中でもDMCが好ましい。
前記鎖状カーボネートの含有量には特に制限はなく、目的に応じて適宜選択することができる。
<< Non-aqueous solvent >>
There is no restriction | limiting in particular as a non-aqueous solvent, Although it can select suitably according to the objective, An aprotic organic solvent is suitable.
As the aprotic organic solvent, carbonate-based organic solvents such as chain carbonates and cyclic carbonates are used, and low viscosity solvents are preferred. Among these, a chain carbonate is preferable from the viewpoint of low viscosity and high electrolyte salt dissolving power.
Examples of the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like. Among these, DMC is preferable.
There is no restriction | limiting in particular in content of the said chain carbonate, According to the objective, it can select suitably.
前記環状カーボネートとしては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、などが挙げられる。
前記環状カーボネートのECと、前記鎖状カーボネートのDMCの混合溶媒を用いる場合の混合割合には特に制限はなく、目的に応じて適宜選択することができるが、質量比でEC:DMC=3:10〜1:99が好ましく、3:10〜1:20がより好ましい。
Examples of the cyclic carbonate include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), and the like.
The mixing ratio in the case of using a mixed solvent of EC of the cyclic carbonate and DMC of the chain carbonate is not particularly limited and can be appropriately selected according to the purpose. However, EC: DMC = 3: 10 to 1:99 are preferable, and 3:10 to 1:20 are more preferable.
なお、前記非水溶媒としては、必要に応じて、環状エステル、鎖状エステル等のエステル系有機溶媒、環状エーテル、鎖状エーテル等のエーテル系有機溶媒、などを用いることができる。
前記環状エステルとしては、例えば、γ−ブチロラクトン(γBL)、2−メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン、などが挙げられる。
前記鎖状エステルとしては、例えば、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル(酢酸メチル、酢酸エチル等)、ギ酸アルキルエステル(ギ酸メチル、ギ酸エチル等)、などが挙げられる。
前記環状エーテルとしては、例えば、テトラヒドロフラン、アルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソラン、などが挙げられる。
前記鎖状エーテルとしては、例えば、1,2−ジメトシキエタン(DME)、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル、などが挙げられる。
In addition, as said non-aqueous solvent, ester type organic solvents, such as cyclic ester and chain ester, ether type organic solvents, such as cyclic ether and chain ether, etc. can be used as needed.
Examples of the cyclic ester include γ-butyrolactone (γBL), 2-methyl-γ-butyrolactone, acetyl-γ-butyrolactone, and γ-valerolactone.
Examples of the chain ester include propionic acid alkyl ester, malonic acid dialkyl ester, acetic acid alkyl ester (methyl acetate, ethyl acetate, etc.), formic acid alkyl ester (methyl formate, ethyl formate, etc.), and the like.
Examples of the cyclic ether include tetrahydrofuran, alkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane, and the like.
Examples of the chain ether include 1,2-dimethoxyethane (DME), diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, and tetraethylene glycol dialkyl ether.
<<電解質塩>>
電解質塩としては、ハロゲン原子を含み、非水溶媒に溶解し、高いイオン伝導度を示すものであれば特に制限はないが、リチウムと種々のアニオンからなる塩が好ましい。
前記アニオンとしては、例えば、Cl−、Br−、I−、ClO4 −、BF4 −、PF6 −、SbF6 −、CF3SO3 −、(CF3SO2)2N−、(C2F5SO2)2N−、などが挙げられる。
<< Electrolyte salt >>
The electrolyte salt is not particularly limited as long as it contains a halogen atom, dissolves in a non-aqueous solvent, and exhibits high ionic conductivity, but a salt composed of lithium and various anions is preferable.
Examples of the anion include Cl − , Br − , I − , ClO 4 − , BF 4 − , PF 6 − , SbF 6 − , CF 3 SO 3 − , (CF 3 SO 2 ) 2 N − , (C 2 F 5 SO 2 ) 2 N − , and the like.
前記リチウム塩としては、特に制限はなく、目的に応じて適宜選択することができる。その例としては、ヘキサフルオロリン酸リチウム(LiPF6)、過塩素酸リチウム(LiClO4)、塩化リチウム(LiCl)、ホウ弗化リチウム(LiBF4)、六弗化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、リチウムビストリフルオロメチルスルホニルイミド〔LiN(C2F5SO2)2〕、リチウムビスファーフルオロエチルスルホニルイミド〔LiN(CF2F5SO2)2〕、などが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、炭素電極中へのアニオンの吸蔵量の大きさの観点から、LiPF6が特に好ましい。 There is no restriction | limiting in particular as said lithium salt, According to the objective, it can select suitably. Examples thereof include lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium chloride (LiCl), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), tri Lithium fluorometasulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide [LiN (C 2 F 5 SO 2 ) 2 ], lithium bisfurfluoroethylsulfonylimide [LiN (CF 2 F 5 SO 2 ) 2 ] , Etc. These may be used individually by 1 type and may use 2 or more types together. Among these, LiPF 6 is particularly preferable from the viewpoint of the amount of occlusion of anions in the carbon electrode.
本発明の非水電解液蓄電素子ではアニオンとカチオンの共挿入により充電を行う。したがって電解質塩の濃度は、エネルギー密度向上の点から、非水溶媒中に2mol/L以上とすることが好ましい。また、非水電解液の粘度が高くなってイオン伝導度が大きくなり高抵抗化することがないように5mol/L以下が好ましい。特に蓄電素子の容量と出力の両立の点から、2.5〜4mol/Lが好ましい。
例えば、セパレータの気孔率が限りなく0に近いと仮定した場合、活物質比容量180mAh、直径16mm、厚さ150μmの電極において、正極の気孔率0.5、負極の気孔率0.6としたときに、正極に保持できる電解液は0.01mL、負極に保持できる電解液は0.016mLとなり、正極と負極に保持している電解液から蓄電素子の充電時必要な電解質67μmolを得るには、最低2.6mol/Lの電解質濃度の電解液が必要である。
In the nonaqueous electrolyte storage element of the present invention, charging is performed by co-insertion of an anion and a cation. Therefore, the concentration of the electrolyte salt is preferably 2 mol / L or more in the non-aqueous solvent from the viewpoint of improving the energy density. Moreover, 5 mol / L or less is preferable so that the viscosity of the non-aqueous electrolyte does not increase to increase the ionic conductivity and increase the resistance. In particular, 2.5 to 4 mol / L is preferable from the viewpoint of both the capacity and output of the electricity storage element.
For example, assuming that the porosity of the separator is as close to 0 as possible, in an electrode having an active material specific capacity of 180 mAh, a diameter of 16 mm, and a thickness of 150 μm, the positive electrode has a porosity of 0.5 and the negative electrode has a porosity of 0.6. Sometimes, the electrolyte that can be held on the positive electrode is 0.01 mL, and the electrolyte that can be held on the negative electrode is 0.016 mL. From the electrolyte held on the positive electrode and the negative electrode, 67 μmol of the electrolyte required for charging the storage element can be obtained. An electrolyte solution having an electrolyte concentration of at least 2.6 mol / L is required.
<<添加剤>>
添加剤としては、ハロゲン原子を含むアニオンを化学的に結合可能な部位を有する化合物であるトリスヘキサフルオロイソプロピルボレート(THFIPB)やトリスペンタフルオロフェニルボラン(TPFPB)が好ましい。また、負極表面に相間固体電解質(SEI)を形成する化合物としては、環状カーボネートが好ましく、特に負極に良好なSEIを形成するフルオロエチレンカーボネート(FEC)やECが好ましい。
前記ハロゲン原子を含むアニオンを結合可能な部位を有する化合物の含有量は、目的に応じて適宜選択することができる。
なお、非水電解液蓄電素子の内部にハロゲン原子を含むアニオンを結合可能な部位を有する化合物が含まれているか否かは、非水電解液蓄電素子を分解し、非水電解液をガスクロマトグラフィーなどで分析することにより確認できる。
<< Additives >>
As the additive, trishexafluoroisopropyl borate (THFIPB) and trispentafluorophenylborane (TPFPB), which are compounds having a site capable of chemically binding an anion containing a halogen atom, are preferable. Moreover, as a compound which forms interphase solid electrolyte (SEI) on the negative electrode surface, a cyclic carbonate is preferable and especially fluoroethylene carbonate (FEC) and EC which form favorable SEI on a negative electrode are preferable.
The content of the compound having a moiety capable of binding an anion containing a halogen atom can be appropriately selected according to the purpose.
Whether or not a compound having a portion capable of binding an anion containing a halogen atom is contained in the nonaqueous electrolyte storage element is determined by decomposing the nonaqueous electrolyte storage element and gas chromatography. It can be confirmed by analyzing with a graph.
<セパレータ>
セパレータは、正極と負極の短絡を防ぐために正極と負極の間に設けられる。
セパレータの材質、形状、大きさ、構造には特に制限はなく、目的に応じて適宜選択することができる。
セパレータの材質としては、例えば、クラフト紙、ビニロン混抄紙、合成パルプ混抄紙等の紙、セロハン、ポリエチレングラフト膜、ポリプロピレンメルトブロー不織布等のポリオレフィン不織布、ポリアミド不織布、ガラス繊維不織布、などが挙げられる。
セパレータの形状としては、例えば、シート状、などが挙げられる。
セパレータの大きさは、非水電解液蓄電素子に使用可能な大きさであれば特に制限はなく、目的に応じて適宜選択することができる。
セパレータの構造は、単層構造でも積層構造でもよい。
<Separator>
The separator is provided between the positive electrode and the negative electrode in order to prevent a short circuit between the positive electrode and the negative electrode.
There is no restriction | limiting in particular in the material of a separator, a shape, a magnitude | size, and a structure, According to the objective, it can select suitably.
Examples of the material of the separator include paper such as kraft paper, vinylon mixed paper, synthetic pulp mixed paper, cellophane, polyethylene graft film, polyolefin nonwoven fabric such as polypropylene melt blown nonwoven fabric, polyamide nonwoven fabric, and glass fiber nonwoven fabric.
Examples of the shape of the separator include a sheet shape.
The size of the separator is not particularly limited as long as it is a size that can be used for the nonaqueous electrolyte storage element, and can be appropriately selected according to the purpose.
The structure of the separator may be a single layer structure or a laminated structure.
<その他の部材>
その他の部材としては特に制限はなく、目的に応じて適宜選択することができ、例えば、電池缶、電極取り出し線、などが挙げられる。
<Other members>
There is no restriction | limiting in particular as another member, According to the objective, it can select suitably, For example, a battery can, an electrode extraction line, etc. are mentioned.
<非水電解液蓄電素子の製造方法>
本発明の非水電解液蓄電素子は、前述した正極、負極、非水電解液と、必要に応じて用いられるセパレータとを、適切な形状に組み立てることにより製造できる。更に、必要に応じて電池外装缶等の他の構成部材を用いることも可能である。
前記組み立て方法には特に制限はなく、通常採用されている方法の中から適宜選択することができる。
前記非水電解液蓄電素子の形状には特に制限はなく、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。
その例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、シート電極及びセパレータを積層したラミネートセルタイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ、などが挙げられる。
<Method for Manufacturing Nonaqueous Electrolyte Storage Element>
The non-aqueous electrolyte storage element of the present invention can be produced by assembling the positive electrode, the negative electrode, the non-aqueous electrolyte, and the separator used as necessary into an appropriate shape. Furthermore, other constituent members such as a battery outer can can be used as necessary.
There is no restriction | limiting in particular in the said assembly method, It can select suitably from the methods employ | adopted normally.
There is no restriction | limiting in particular in the shape of the said nonaqueous electrolyte storage element, It can select suitably from the various shapes generally employ | adopted according to the use.
Examples include a cylinder type in which a sheet electrode and a separator are spiraled, a laminate cell type in which a sheet electrode and a separator are stacked, an inside-out structure cylinder type in which a pellet electrode and a separator are combined, a coin in which a pellet electrode and a separator are stacked. Type, etc.
<非水電解液蓄電素子の運転方法>
本発明の非水電解液蓄電素子の使用電圧範囲は、2.5V〜5.5V vs Li/Li+が望ましい。2.5V vs Li/Li+未満の電圧では、十分な蓄電素子の容量を得ることができず、5.5V vs Li/Li+を超える電圧では、電解液の分解反応が優勢となり、蓄電素子が壊れてしまうためである。
<Operation method of nonaqueous electrolyte storage element>
The working voltage range of the nonaqueous electrolyte storage element of the present invention is preferably 2.5 V to 5.5 V vs Li / Li + . When the voltage is less than 2.5 V vs Li / Li + , sufficient capacity of the power storage element cannot be obtained, and when the voltage exceeds 5.5 V vs Li / Li + , the decomposition reaction of the electrolyte is dominant, and the power storage element Because it will break.
<非水電解液蓄電素子の用途>
本発明の非水電解液蓄電素子の用途には特に制限はなく、各種用途に用いることができる。その例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ、などが挙げられる。
<Application of non-aqueous electrolyte storage element>
There is no restriction | limiting in particular in the use of the nonaqueous electrolyte storage element of this invention, It can use for various uses. Examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, and transceivers. Electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, motors, lighting equipment, toys, game machines, watches, strobes, cameras, etc.
以下、実施例及び比較例を示して本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、例中の「%」は「質量%」である。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further more concretely, this invention is not limited at all by these Examples. In the examples, “%” is “mass%”.
比較例1
―正極Aの作製―
(正極Aは本発明の要件を満たさず、電極厚み方向の単位面積当たりの導電助剤の量が、集電体界面=電解液界面である。)
<<正極材組成物A>>
増粘剤のカルボキシメチルセルロース(CMC)2%水溶液19g、導電助剤の20%アセチレンブラック水分散液(御国色素社製)3.75g、正極活物質のソフトカーボン粉末(日立化成社製SMC)10g、アクリレート系バインダ(JSR社製:TRD202A)0.746gに、純水2gを加えて混練し、スラリー状の正極材組成物A(スラリーA)を作製した。
Comparative Example 1
-Fabrication of positive electrode A-
(The positive electrode A does not satisfy the requirements of the present invention, and the amount of the conductive additive per unit area in the electrode thickness direction is the current collector interface = electrolyte interface).
<< Positive electrode material composition A >>
19% 2% aqueous solution of carboxymethylcellulose (CMC) as a thickener, 3.75 g of 20% acetylene black aqueous dispersion (manufactured by Mikuni Dye Co., Ltd.) as a conductive additive, 10 g of soft carbon powder of positive electrode active material (SMC manufactured by Hitachi Chemical Co., Ltd.) Then, 2 g of pure water was added to 0.746 g of an acrylate binder (manufactured by JSR: TRD202A) and kneaded to prepare a slurry-like positive electrode material composition A (slurry A).
<<正極材層A及び正極Aの作製>>
スラリーAをアルミニウム箔集電体上に塗布し、室温で2時間乾燥させ、更に120℃で5分間温風乾燥させて正極材層Aを形成した。次いで、得られた積層体を直径16mmの丸型に打ち抜き加工して正極Aを作製した。正極A中の正極活物質の質量は20mg、正極材層Aの平均厚みは142μmであった。
<< Preparation of Positive Electrode Material Layer A and Positive Electrode A >>
Slurry A was applied onto an aluminum foil current collector, dried at room temperature for 2 hours, and further dried with warm air at 120 ° C. for 5 minutes to form positive electrode material layer A. Next, the obtained laminate was punched into a round shape with a diameter of 16 mm to produce a positive electrode A. The mass of the positive electrode active material in the positive electrode A was 20 mg, and the average thickness of the positive electrode material layer A was 142 μm.
−負極Aの作製−
負極活物質の炭素粉末(黒鉛:日立化成工業社製、MAGD)10g、導電助剤の20%アセチレンブラック水分散液(御国色素社製)2.5gに水を加えて混練し、更に増粘材のCMC2%水溶液を10g加えて混練し、スラリー状の負極材層組成物を作製した。次いで、このスラリーを銅箔集電体上に塗布し、室温で2時間乾燥させ、更に、120℃で5分間乾燥させて負極材層を形成した。次いで、得られた積層体を直径16mmの丸型に打ち抜き加工して負極Aを作製した。負極A中の炭素粉末(黒鉛)の質量は20mg、負極材層の平均厚みは130μmであった。
-Production of negative electrode A-
Carbon is added to 10 g of carbon powder of negative electrode active material (graphite: manufactured by Hitachi Chemical Co., Ltd., MAGD) and 2.5 g of 20% acetylene black aqueous dispersion of conductive additive (manufactured by Mikuni Dye Co., Ltd.). 10 g of a CMC 2% aqueous solution of the material was added and kneaded to prepare a slurry-like negative electrode material layer composition. Next, this slurry was applied onto a copper foil current collector, dried at room temperature for 2 hours, and further dried at 120 ° C. for 5 minutes to form a negative electrode material layer. Next, the obtained laminate was punched into a round shape with a diameter of 16 mm to produce a negative electrode A. The mass of the carbon powder (graphite) in the negative electrode A was 20 mg, and the average thickness of the negative electrode material layer was 130 μm.
<非水電解液>
ジメチルカーボネート(DMC)とエチレンカーボネート(EC)とフルオロエチレンカーボネート(FEC)の混合物〔DMC/EC/FEC=96/2/2(vol%)〕に、2.0mol/LのLiPF6を溶解させた非水電解液を作製した。
<Non-aqueous electrolyte>
2.0 mol / L LiPF 6 was dissolved in a mixture of dimethyl carbonate (DMC), ethylene carbonate (EC) and fluoroethylene carbonate (FEC) [DMC / EC / FEC = 96/2/2 (vol%)]. A non-aqueous electrolyte was prepared.
<セパレータ>
ガラス製セパレータ、GA−100 GLASS FIBER(GF) FILTER(ADVANTEC社製)を用意した。
<Separator>
A glass separator, GA-100 GLASS FIBER (GF) FILTER (manufactured by ADVANTEC) was prepared.
<正極Aを使用した非水電解液蓄電素子(二次電池)Aの充放電効率の測定>
コイン型蓄電素子作製用の缶(2032型、宝泉社製)に、正極A、前記セパレータ、前記非水電解液、及び負極Aを入れ、非水電解液蓄電素子Aを作製した。
この蓄電素子Aについて、試験装置としてTOSCAT−3100(東洋システム社製)を用いて、以下の充放電試験を行った。
蓄電素子Aに、室温(25℃)下、0.5mA/cm2:2mAの定電流で充電終止電圧5.2Vまで充電した。次いで、0.5mA/cm2:2mAの定電流で放電終止電圧3.0Vまで放電した。これを1サイクルとして、10サイクル充放電を行った。
各サイクルにおける放電容量を図2に示す。
また、各サイクルにおける放電容量/充電容量の値が充放電効率であり、これを表1、及び図3に示す。
<Measurement of Charge / Discharge Efficiency of Nonaqueous Electrolyte Storage Element (Secondary Battery) A Using Positive Electrode A>
The positive electrode A, the separator, the non-aqueous electrolyte solution, and the negative electrode A were placed in a can for producing a coin-type electricity storage device (2032 type, manufactured by Hosen Co., Ltd.) to prepare a non-aqueous electrolyte storage device A.
About this electrical storage element A, the following charging / discharging tests were done using TOSCAT-3100 (made by Toyo System Co., Ltd.) as a test apparatus.
The storage element A was charged to a charge end voltage of 5.2 V at a constant current of 0.5 mA / cm 2 : 2 mA at room temperature (25 ° C.). Next, the battery was discharged to a final discharge voltage of 3.0 V with a constant current of 0.5 mA / cm 2 : 2 mA. This was defined as one cycle, and 10 cycles of charge / discharge were performed.
The discharge capacity in each cycle is shown in FIG.
Moreover, the value of the discharge capacity / charge capacity in each cycle is the charge / discharge efficiency, which is shown in Table 1 and FIG.
<正極Aを使用した非水電解液蓄電素子(二次電池)Aの自己放電の測定>
前記蓄電素子Aについて、前記と同じ試験装置を用いて、以下の試験を行った。
蓄電素子Aに、室温(25℃)下、0.5mA/cm2:2mAの定電流で充電終止電圧5.2Vまで充電した。次いで、0.5mA/cm2:2mAの定電流で放電終止電圧3.0Vまで放電した。このときの放電容量を放電容量X1とする。
その後、0.5mA/cm2:2mAの定電流で、充電終止電圧5.2Vまで放置した後、更に6時間放置した。その後、0.5mA/cm2:2mAの定電流で放電終止電圧3Vまで放電した。このときの放電容量を放電容量Y1とする。
放電容量X1/放電容量Y1が、6時間自己放電での容量維持率である。
次に、室温(25℃)下、0.5mA/cm2:2mAの定電流で充電終止電圧5.2Vまで充電した。次いで、0.5mA/cm2:2mAの定電流で放電終止電圧3.0Vまで放電した。このときの放電容量を放電容量X2とする。
その後、0.5mA/cm2:2mAの定電流で、充電終止電圧5.2Vまで放置した後、更に12時間放置した。その後、0.5mA/cm2:2mAの定電流で、放電終止電圧3Vまで放電した。このときの放電容量を放電容量Y2とする。
放電容量X2/放電容量Y2が、12時間自己放電での容量維持率である。
上記試験の結果、6時間自己放電での容量維持率は86.34%、12時間自己放電での容量維持率は79.41%であった。これを図4に示す。
<Measurement of Self-Discharge of Nonaqueous Electrolyte Storage Element (Secondary Battery) A Using Positive Electrode A>
About the said electrical storage element A, the following tests were done using the same test apparatus as the above.
The storage element A was charged to a charge end voltage of 5.2 V at a constant current of 0.5 mA / cm 2 : 2 mA at room temperature (25 ° C.). Next, the battery was discharged to a final discharge voltage of 3.0 V with a constant current of 0.5 mA / cm 2 : 2 mA. The discharge capacity at this time is defined as a discharge capacity X1.
Thereafter, the battery was allowed to stand at a constant current of 0.5 mA / cm 2 : 2 mA up to a charge end voltage of 5.2 V, and then further left for 6 hours. Thereafter, the battery was discharged at a constant current of 0.5 mA / cm 2 : 2 mA to a final discharge voltage of 3V. The discharge capacity at this time is defined as a discharge capacity Y1.
The discharge capacity X1 / discharge capacity Y1 is a capacity maintenance rate in 6 hours self-discharge.
Next, the battery was charged to a charge end voltage of 5.2 V at a constant current of 0.5 mA / cm 2 : 2 mA at room temperature (25 ° C.). Next, the battery was discharged to a final discharge voltage of 3.0 V with a constant current of 0.5 mA / cm 2 : 2 mA. The discharge capacity at this time is defined as a discharge capacity X2.
Thereafter, the battery was allowed to stand at a constant current of 0.5 mA / cm 2 : 2 mA up to a charge end voltage of 5.2 V, and then further left for 12 hours. Thereafter, the battery was discharged to a final discharge voltage of 3 V at a constant current of 0.5 mA / cm 2 : 2 mA. The discharge capacity at this time is defined as a discharge capacity Y2.
The discharge capacity X2 / discharge capacity Y2 is the capacity retention rate in 12 hours self-discharge.
As a result of the above test, the capacity retention rate in 6 hours self-discharge was 86.34%, and the capacity retention rate in 12 hours self-discharge was 79.41%. This is shown in FIG.
実施例1
−正極Bの作製−
<<正極材組成物B>>
増粘剤のCMC2%水溶液19g、正極活物質のソフトカーボン粉末(日立化成社製SMC)10g、アクリレート系バインダ(JSR社製:TRD202A)0.746gに、純水2gを加えて混練し、スラリー状の正極材組成物B(スラリーB)を作製した。
Example 1
-Production of positive electrode B-
<< Positive electrode material composition B >>
A slurry of CMC 2% aqueous solution of thickener 19 g, soft carbon powder of positive electrode active material (SMC manufactured by Hitachi Chemical Co., Ltd.) 10 g, 0.746 g of acrylate binder (manufactured by JSR: TRD202A) 0.76 g of pure water, kneaded and kneaded into slurry -Shaped positive electrode material composition B (slurry B) was produced.
<<正極材層B及び正極Bの作製>>
比較例1で作製したスラリーAをアルミニウム箔集電体上に塗布し、120℃で5分間温風乾燥させた後、その上にスラリーBを塗布し、室温で2時間乾燥させ、更に120℃で5分間温風乾燥させて2層構造の正極材層Bを形成した。次いで、得られた積層体を直径16mmの丸型に打ち抜き加工して正極Bを作製した。正極B中の正極材組成物Aの厚みは35μm、正極材組成物Bの厚みは125μmであった。また正極B中の正極活物質の質量は20mg、正極材層Bの平均厚みは141μmであった。
<< Preparation of Positive Electrode Material Layer B and Positive Electrode B >>
The slurry A produced in Comparative Example 1 was applied onto an aluminum foil current collector, dried with warm air at 120 ° C. for 5 minutes, then coated with the slurry B, dried at room temperature for 2 hours, and further dried at 120 ° C. Was dried with warm air for 5 minutes to form a positive electrode material layer B having a two-layer structure. Next, the obtained laminate was punched into a round shape with a diameter of 16 mm to produce a positive electrode B. The thickness of the positive electrode material composition A in the positive electrode B was 35 μm, and the thickness of the positive electrode material composition B was 125 μm. Moreover, the mass of the positive electrode active material in the positive electrode B was 20 mg, and the average thickness of the positive electrode material layer B was 141 μm.
<正極Bを使用した非水電解液蓄電素子(二次電池)Bの充放電効率の測定>
比較例1の蓄電素子Aにおける正極Aを正極Bに変えた点以外は、比較例1と同様にして非水電解液蓄電素子Bを作製し、充放電試験を行った。
各サイクルにおける放電容量を図2に示す。
また、各サイクルにおける充放電効率を表1及び図3に示す。
<Measurement of Charge / Discharge Efficiency of Nonaqueous Electrolyte Storage Element (Secondary Battery) B Using Positive Electrode B>
Except that the positive electrode A in the electricity storage device A of Comparative Example 1 was changed to the positive electrode B, a non-aqueous electrolyte electricity storage device B was prepared in the same manner as in Comparative Example 1, and a charge / discharge test was performed.
The discharge capacity in each cycle is shown in FIG.
The charge / discharge efficiency in each cycle is shown in Table 1 and FIG.
<正極Bを使用した非水電解液蓄電素子(二次電池)Bの自己放電の測定>
前記蓄電素子Bについて、比較例1と同様にして試験を行った。
即ち、蓄電素子Bに、室温(25℃)下、0.5mA/cm2:2mAの定電流で充電終止電圧5.2Vまで充電した。次いで、0.5mA/cm2:2mAの定電流で放電終止電圧3.0Vまで放電した。このときの放電容量を放電容量X3とする。
その後、0.5mA/cm2:2mAの定電流で、充電終止電圧5.2Vまで放置した後、更に6時間放置した。その後、0.5mA/cm2:2mAの定電流で放電終止電圧3Vまで放電した。このときの放電容量を放電容量Y3とする。
放電容量X3/放電容量Y3が、6時間自己放電での容量維持率である。
次に、室温(25℃)下、0.5mA/cm2:2mAの定電流で充電終止電圧5.2Vまで充電した。次いで、0.5mA/cm2:2mAの定電流で放電終止電圧3.0Vまで放電した。このときの放電容量を放電容量X4とする。
その後、0.5mA/cm2:2mAの定電流で、充電終止電圧5.2Vまで放置した後、更に12時間放置した。その後、0.5mA/cm2:2mAの定電流で、放電終止電圧3Vまで放電した。このときの放電容量を放電容量Y4とする。
放電容量X4/放電容量Y4が、12時間自己放電での容量維持率である。
上記試験の結果、6時間自己放電での容量維持率は91.96%、12時間自己放電での容量維持率は88.67%であった。これを図4に示す。
<Measurement of Self-Discharge of Nonaqueous Electrolyte Storage Element (Secondary Battery) B Using Positive Electrode B>
The electricity storage device B was tested in the same manner as in Comparative Example 1.
That is, the battery element B was charged to a charge end voltage of 5.2 V at a constant current of 0.5 mA / cm 2 : 2 mA at room temperature (25 ° C.). Next, the battery was discharged to a final discharge voltage of 3.0 V with a constant current of 0.5 mA / cm 2 : 2 mA. The discharge capacity at this time is defined as a discharge capacity X3.
Thereafter, the battery was allowed to stand at a constant current of 0.5 mA / cm 2 : 2 mA up to a charge end voltage of 5.2 V, and then further left for 6 hours. Thereafter, the battery was discharged at a constant current of 0.5 mA / cm 2 : 2 mA to a final discharge voltage of 3V. The discharge capacity at this time is defined as a discharge capacity Y3.
The discharge capacity X3 / discharge capacity Y3 is the capacity retention rate in self-discharge for 6 hours.
Next, the battery was charged to a charge end voltage of 5.2 V at a constant current of 0.5 mA / cm 2 : 2 mA at room temperature (25 ° C.). Next, the battery was discharged to a final discharge voltage of 3.0 V with a constant current of 0.5 mA / cm 2 : 2 mA. The discharge capacity at this time is defined as a discharge capacity X4.
Thereafter, the battery was allowed to stand at a constant current of 0.5 mA / cm 2 : 2 mA up to a charge end voltage of 5.2 V, and then further left for 12 hours. Thereafter, the battery was discharged to a final discharge voltage of 3 V at a constant current of 0.5 mA / cm 2 : 2 mA. The discharge capacity at this time is defined as a discharge capacity Y4.
The discharge capacity X4 / discharge capacity Y4 is the capacity retention rate in 12 hours self-discharge.
As a result of the above test, the capacity retention rate at 6 hours self-discharge was 91.96%, and the capacity retention rate at 12 hours self-discharge was 88.67%. This is shown in FIG.
実施例2
−正極Cの作製−
<<正極材層C及び正極Cの作製>>
導電助剤の20%アセチレンブラック水分散液(御国色素社製)をアルミニウム箔集電体上に塗布し、120℃で5分間温風乾燥させた後、その上に実施例1で作製したスラリーBを塗布し、室温で2時間乾燥させ、更に120℃で5分間温風乾燥させて2層構造の正極材層Cを形成した。次いで、得られた積層体を直径16mmの丸型に打ち抜き加工して正極Cを作製した。正極C中のアセチレンブラック層の厚みは20μm、正極材組成物Bの厚みは145μmであった。また、正極C中の正極活物質の質量は20mg、正極材層の平均厚みは、145μmであった。
Example 2
-Production of positive electrode C-
<< Preparation of Positive Material Layer C and Positive Electrode C >>
A 20% acetylene black aqueous dispersion of conductive additive (manufactured by Mikuni Dye Co., Ltd.) was applied onto an aluminum foil current collector, dried with warm air at 120 ° C. for 5 minutes, and then the slurry produced in Example 1 thereon. B was applied, dried at room temperature for 2 hours, and further dried with warm air at 120 ° C. for 5 minutes to form a positive electrode material layer C having a two-layer structure. Next, the obtained laminate was punched into a round shape with a diameter of 16 mm to produce a positive electrode C. The thickness of the acetylene black layer in the positive electrode C was 20 μm, and the thickness of the positive electrode material composition B was 145 μm. Moreover, the mass of the positive electrode active material in the positive electrode C was 20 mg, and the average thickness of the positive electrode material layer was 145 μm.
<正極Cを使用した非水電解液蓄電素子(二次電池)Cの充放電効率の測定>
比較例1の蓄電素子Aにおける正極Aを正極Cに変えた点以外は、比較例1と同様にして非水電解液蓄電素子Cを作製し、充放電試験を行った。
各サイクルにおける放電容量を図2に示す。
また、各サイクルにおける充放電効率を表1及び図3に示す。
<Measurement of Charge / Discharge Efficiency of Nonaqueous Electrolyte Storage Element (Secondary Battery) C Using Positive Electrode C>
Except that the positive electrode A in the electricity storage device A of Comparative Example 1 was changed to the positive electrode C, a nonaqueous electrolyte electricity storage device C was prepared in the same manner as in Comparative Example 1, and a charge / discharge test was performed.
The discharge capacity in each cycle is shown in FIG.
The charge / discharge efficiency in each cycle is shown in Table 1 and FIG.
<正極Cを使用した非水電解液蓄電素子(二次電池)Cの自己放電の測定>
前記蓄電素子Cについて、比較例1と同様にして試験を行った。
即ち、蓄電素子Cに、室温(25℃)下、0.5mA/cm2:2mAの定電流で充電終止電圧5.2Vまで充電した。次いで、0.5mA/cm2:2mAの定電流で放電終止電圧3.0Vまで放電した。このときの放電容量を放電容量X5とする。
その後、0.5mA/cm2:2mAの定電流で、充電終止電圧5.2Vまで放置した後、更に6時間放置した。その後、0.5mA/cm2:2mAの定電流で放電終止電圧3Vまで放電した。このときの放電容量を放電容量Y5とする。
放電容量X5/放電容量Y5が、6時間自己放電での容量維持率である。
次に、室温(25℃)下、0.5mA/cm2:2mAの定電流で充電終止電圧5.2Vまで充電した。次いで、0.5mA/cm2:2mAの定電流で放電終止電圧3.0Vまで放電した。このときの放電容量を放電容量X6とする。
その後、0.5mA/cm2:2mAの定電流で、充電終止電圧5.2Vまで放置した後、更に12時間放置した。その後、0.5mA/cm2:2mAの定電流で、放電終止電圧3Vまで放電した。このときの放電容量を放電容量Y6とする。
放電容量X6/放電容量Y6が、12時間自己放電での容量維持率である。
上記試験の結果、6時間自己放電での容量維持率は92.23%、12時間自己放電での容量維持率は90.19%であった。これを図4に示す。
<Measurement of Self-Discharge of Nonaqueous Electrolyte Storage Element (Secondary Battery) C Using Positive Electrode C>
The storage element C was tested in the same manner as in Comparative Example 1.
That is, the storage element C was charged to a charge end voltage of 5.2 V at a constant current of 0.5 mA / cm 2 : 2 mA at room temperature (25 ° C.). Next, the battery was discharged to a final discharge voltage of 3.0 V with a constant current of 0.5 mA / cm 2 : 2 mA. The discharge capacity at this time is defined as a discharge capacity X5.
Thereafter, the battery was allowed to stand at a constant current of 0.5 mA / cm 2 : 2 mA up to a charge end voltage of 5.2 V, and then further left for 6 hours. Thereafter, the battery was discharged at a constant current of 0.5 mA / cm 2 : 2 mA to a final discharge voltage of 3V. The discharge capacity at this time is defined as a discharge capacity Y5.
The discharge capacity X5 / discharge capacity Y5 is the capacity retention rate in self-discharge for 6 hours.
Next, the battery was charged to a charge end voltage of 5.2 V at a constant current of 0.5 mA / cm 2 : 2 mA at room temperature (25 ° C.). Next, the battery was discharged to a final discharge voltage of 3.0 V with a constant current of 0.5 mA / cm 2 : 2 mA. The discharge capacity at this time is defined as a discharge capacity X6.
Thereafter, the battery was allowed to stand at a constant current of 0.5 mA / cm 2 : 2 mA up to a charge end voltage of 5.2 V, and then further left for 12 hours. Thereafter, the battery was discharged to a final discharge voltage of 3 V at a constant current of 0.5 mA / cm 2 : 2 mA. The discharge capacity at this time is defined as a discharge capacity Y6.
The discharge capacity X6 / discharge capacity Y6 is the capacity retention rate in 12 hours self-discharge.
As a result of the above test, the capacity retention rate at 6 hours self-discharge was 92.23%, and the capacity retention rate at 12 hours self-discharge was 90.19%. This is shown in FIG.
本発明の正極用電極を用いた非水電解液蓄電素子は、比較例の非水電解液蓄電素子に比べて、図2から分かるように放電容量を同程度維持し、図4から分かるように容量維持率が高く自己放電を抑制できる上に、表1及び図3から分かるように充放電効率が良い。
このように、本発明の正極用電極を用いると、非水電解液蓄電素子の容量を落とすことなく、充放電効率の向上と自己放電の抑制を実現できる。
これは、本発明の正極用電極では、電解液との界面に存在する導電助剤が少ないため、該界面における電解液の反応が少ないことによると考えられる。
As can be seen from FIG. 2, the nonaqueous electrolyte storage element using the positive electrode of the present invention maintains the same discharge capacity as can be seen from FIG. 2, as can be seen from FIG. The capacity retention rate is high and self-discharge can be suppressed, and charge and discharge efficiency is good as can be seen from Table 1 and FIG.
As described above, when the positive electrode of the present invention is used, it is possible to improve the charge / discharge efficiency and suppress self-discharge without reducing the capacity of the nonaqueous electrolyte storage element.
This is presumably because the electrode for positive electrode of the present invention has a small amount of conductive additive present at the interface with the electrolytic solution, and therefore the reaction of the electrolytic solution at the interface is small.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014213534A JP2016081801A (en) | 2014-10-20 | 2014-10-20 | Electrode for positive electrode, and nonaqueous electrolyte power storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014213534A JP2016081801A (en) | 2014-10-20 | 2014-10-20 | Electrode for positive electrode, and nonaqueous electrolyte power storage device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016081801A true JP2016081801A (en) | 2016-05-16 |
Family
ID=55956466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014213534A Pending JP2016081801A (en) | 2014-10-20 | 2014-10-20 | Electrode for positive electrode, and nonaqueous electrolyte power storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016081801A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106125009A (en) * | 2016-08-31 | 2016-11-16 | 深圳天珑无线科技有限公司 | Battery performance detection method and battery performance detection device |
JP2023512389A (en) * | 2021-03-19 | 2023-03-27 | 積水化学工業株式会社 | Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same |
WO2024047853A1 (en) * | 2022-09-01 | 2024-03-07 | ビークルエナジージャパン株式会社 | Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery |
-
2014
- 2014-10-20 JP JP2014213534A patent/JP2016081801A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106125009A (en) * | 2016-08-31 | 2016-11-16 | 深圳天珑无线科技有限公司 | Battery performance detection method and battery performance detection device |
CN106125009B (en) * | 2016-08-31 | 2019-07-12 | 四川苏格通讯技术有限公司 | Battery performance detection method and battery performance detection device |
JP2023512389A (en) * | 2021-03-19 | 2023-03-27 | 積水化学工業株式会社 | Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same |
WO2024047853A1 (en) * | 2022-09-01 | 2024-03-07 | ビークルエナジージャパン株式会社 | Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5758753B2 (en) | Non-aqueous electrolyte secondary battery | |
KR101732292B1 (en) | Nonaqueous electrolytic storage element | |
JP6227864B2 (en) | Non-aqueous electrolyte storage element | |
JP2014112524A (en) | Nonaqueous electrolyte electricity storage element | |
JP2013243127A (en) | Nonaqueous electrolyte electricity storage element | |
JP2014130719A (en) | Nonaqueous electrolyte storage element | |
JP2016058241A (en) | Nonaqueous electrolyte power storage element | |
JP2016173985A (en) | Nonaqueous electrolyte power storage device | |
JPWO2016143423A1 (en) | Non-aqueous electrolyte storage element | |
JP2017220311A (en) | Nonaqueous electrolyte power storage element | |
JP2017050131A (en) | Nonaqueous electrolyte power storage device and charging/discharging method thereof | |
JP2016091652A (en) | Nonaqueous electrolyte power storage device | |
JP2016167443A (en) | Nonaqueous electrolyte power storage element | |
JP2016046042A (en) | Nonaqueous electrolyte power storage device | |
JP2016081801A (en) | Electrode for positive electrode, and nonaqueous electrolyte power storage device | |
JP2018152158A (en) | Operation method of nonaqueous power storage device | |
JP2017228513A (en) | Nonaqueous electrolyte storage element | |
JP2019164986A (en) | Positive electrode, nonaqueous power storage element and coating liquid for positive electrode mixture material | |
JP2016058252A (en) | Nonaqueous electrolyte power storage device and lithium ion secondary battery | |
JP2014235884A (en) | Nonaqueous electrolyte electricity-storage device, and method for manufacturing the same | |
JP6915798B2 (en) | Non-aqueous power storage element | |
JP2016167403A (en) | Nonaqueous electrolyte power storage element | |
JP2016213260A (en) | Method for charging power storage element including nonaqueous electrolyte solution, method for manufacturing power storage element, and device for charging secondary battery | |
JP2016149276A (en) | Electrode for positive electrode, and nonaqueous electrolyte power storage device | |
JP6967473B2 (en) | Non-aqueous electrolyte storage element |