JP2015132488A - Ultrasonic flowmeter - Google Patents
Ultrasonic flowmeter Download PDFInfo
- Publication number
- JP2015132488A JP2015132488A JP2014002895A JP2014002895A JP2015132488A JP 2015132488 A JP2015132488 A JP 2015132488A JP 2014002895 A JP2014002895 A JP 2014002895A JP 2014002895 A JP2014002895 A JP 2014002895A JP 2015132488 A JP2015132488 A JP 2015132488A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- characteristic value
- unit
- abnormality determination
- detection unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
本発明は、超音波を利用してガス等の流体の流量を計測する超音波流量計に関するものであり、特に計測機能の異常判定機能を有する超音波流量計に関する。 The present invention relates to an ultrasonic flowmeter that measures the flow rate of a fluid such as a gas using ultrasonic waves, and more particularly to an ultrasonic flowmeter having an abnormality determination function of a measurement function.
近年、超音波が伝播路を伝達する時間を計測し、流体の移動速度を測定して流体の流量を計測する超音波流計がガスメータ等に利用されつつある。 2. Description of the Related Art In recent years, ultrasonic flow meters that measure the time during which ultrasonic waves travel through a propagation path and measure the flow rate of fluid by measuring the moving speed of the fluid are being used in gas meters and the like.
図8は、このようなタイプの超音波流量計の主要部断面図構成を示している。 FIG. 8 shows a cross-sectional configuration of the main part of this type of ultrasonic flowmeter.
図8に示す超音波流量計では、流量を測定すべき被測定対象である流体が管内を流れるように配置されている。管壁102には、一対の超音波送受波器101a、101bが相対して設置されている。超音波送受波器101a、101bは、電気機械変換素子として圧電セラミック等の圧電体を用いて構成されており、圧電ブザー、圧電発振子と同様に共振特性を示す。
In the ultrasonic flow meter shown in FIG. 8, the fluid to be measured whose flow rate is to be measured is arranged to flow in the pipe. On the
図8の例では、最初に、超音波送受波器101aが超音波送波器として用いられ、超音波送受波器101bが超音波受波器として用いられる。この段階においては、超音波送受波器101aの共振周波数近傍における周波数を持つ交流電圧を超音波送受波器101a内の圧電体に印加する。すると、超音波送受波器101aは超音波送波器として機能し、流体中に超音波を放射する。放射された超音波は、経路L1に伝播して、超音波受波器として機能する超音波送受波器101bに到達する。このとき、超音波送受波器101bは超音波受波器として機能し、超音波を受けて電圧に変換する。
In the example of FIG. 8, first, the
次に、超音波送受波器101bが超音波送波器として機能し、超音波送受波器101aが超音波受波器として機能する。すなわち、超音波送受波器101bの共振周波数近傍の周波数を持つ交流電圧を超音波送受波器101b内の圧電体に印加することにより、超音波送受波器101bから流体中に超音波を放射させる。放射された超音波は、経路L2を伝播して、超音波送受波器101aに到達する。超音波送受波器101aは伝播してきた超音波を受けて電圧に変換する。
Next, the
このように、超音波送受波器101aおよび101bは、送波器としての機能と受波器としての機能を交互に果たすために、一般に「超音波送受波器」と総称される。
As described above, the
図8に示す超音波流量計では、連続的に交流電圧を印加すると、超音波送受波器から連続的に超音波が放射されて伝播時間を測定することが困難になるので、通常は一定時間のみ超音波を送波するようバースト電圧信号が駆動電圧として用いられる。 In the ultrasonic flow meter shown in FIG. 8, when an alternating voltage is continuously applied, since ultrasonic waves are continuously emitted from the ultrasonic transducer and it becomes difficult to measure the propagation time, it is usually fixed time. The burst voltage signal is used as the drive voltage so that only ultrasonic waves are transmitted.
以下、上記超音波流量計の測定原理を、より詳細に説明する。まず、駆動用のバースト電圧信号を超音波送受波器101aに印加することにより、超音波送受波器101aから超音波バースト信号を放射する。これにより、超音波バースト信号は経路L1を伝播してt1時間後に超音波送受波器101bに到達する。経路L1の距離は、経路L2の距離と等しく、Lである。超音波送受波器101bは、伝達して来た超音波バースト信号のみを高いSN比で電気バースト信号に変換することができる。
Hereinafter, the measurement principle of the ultrasonic flowmeter will be described in more detail. First, an ultrasonic burst signal is radiated from the
図8において、管内を流れる流体の流速をV、流体中の超音波の速度をC、流体の流れる方向と超音波パルスの伝播方向の角度をθとする。超音波送受波器101aを超音波送
波器、超音波送受波器101bを超音波受波器として用いたときに、超音波送受波器101aからの超音波パルスが超音波送受波器101bに到達する時間をt1とすれば、(数式1)の関係が成立する。
In FIG. 8, the flow velocity of the fluid flowing in the pipe is V, the velocity of the ultrasonic wave in the fluid is C, and the angle between the direction of flow of the fluid and the propagation direction of the ultrasonic pulse is θ. When the
t1=L/(C+Vcosθ) ・・・数式1
t1 = L / (C + Vcos θ)
超音波送受波器101bを超音波送波器として用いたときに、超音波送受波器101bからの超音波パルスが超音波受波器となる超音波送受波器101aに到達する時間をt2とすれば、(数式2)の関係が成立する。
When the ultrasonic transmitter /
t2=L/(C−Vcosθ) ・・・数式2
t2 = L / (C−Vcos θ)
ここで伝播時間t1,t2の逆数の差は、(数式3)で示される。 Here, the difference between the reciprocals of the propagation times t1 and t2 is expressed by (Formula 3).
1/t1−1/t2=2Vcosθ/L ・・・数式3 1 / t1-1 / t2 = 2V cos θ / L (3)
また(数式3)を変形すると(数式4)が得られる。 Further, when (Equation 3) is modified, (Equation 4) is obtained.
V=L/2cosθ(1/t1−1/t2) ・・・数式4
V = L / 2 cos θ (1 / t1-1 / t2)
(数式4)によれば、超音波の伝播経路の距離Lと、伝播時間t1、t2とから、流体の平均流速Vを求めることができる。そして流速Vと、流路の断面積Sから(数式5)によって流量Qを算出することができる。 According to (Formula 4), the average flow velocity V of the fluid can be obtained from the distance L of the propagation path of the ultrasonic waves and the propagation times t1 and t2. Then, the flow rate Q can be calculated from the flow velocity V and the cross-sectional area S of the flow path by (Formula 5).
Q=SV ・・・数式5
Q =
このように超音波の伝播時間と、流路の断面積から流量を算出するため、超音波送受波器101a、101bや、流路等の経年変化によって計測誤差等の異常を生じる場合がある。計測誤差のある超音波流量計をガスメータ等に適用した場合、正しい計測値を得られず、また使用者が専門知識を持っていないため、各家庭で誤差等の異常を検知出来ない課題があった。
Thus, since the flow rate is calculated from the propagation time of the ultrasonic wave and the cross-sectional area of the flow path, abnormalities such as measurement errors may occur due to secular changes in the
このような課題に対して、超音波の伝播時間より算出した流体中の超音波音速と、温度より算出した音速の2つを比較することで異常診断を行う方法が開示されている(特許文献1)。 In order to solve such a problem, a method is disclosed in which an abnormality diagnosis is performed by comparing the ultrasonic velocity in the fluid calculated from the propagation time of the ultrasonic wave and the sound velocity calculated from the temperature (Patent Document). 1).
特許文献1の方法は、温度センサが必須であり、コスト高となる。また、異なる特性の流体を計測する場合や、僅かな計測誤差には対応が困難であるという課題があった。
In the method of
本発明は、上記従来技術の課題を解決することを目的とするもので、異なる特性の流体を計測する場合にも対応でき、僅かな計測誤差等の異常も検知できる超音波流量計を提供することにある。 The present invention aims to solve the above-described problems of the prior art, and provides an ultrasonic flowmeter that can cope with the measurement of fluids having different characteristics and can detect abnormalities such as slight measurement errors. There is.
本発明の超音波流量計は、流体の流れる流路と、流路に配置された第1の超音波送受波器、および第2の超音波送受波器と、前記第1および第2の超音波送受波器からの超音波信号を送受信する送受信部と、前記第1および第2の超音波送受波器間の超音波信号の伝播時間を計測する伝播時間計測部と、前記超音波信号の伝播時間から流体の流量を算出する流量算出部を有する超音波流量計であって、
前記第1の超音波送受波器から前記第2の超音波送受波器への超音波の伝播時間t1と、前記第2の超音波送受波器から前記第1の超音波送受波器への超音波の伝播時間t2とから、
A=1/t1+1/t2
によって算出される値Aを特性値とする特性値算出部と、超音波信号の強度を検知する信号強度検知部および/または流体温度を検知する温度検知部を有し、前記信号強度検知部の検知する信号強度および/または前記温度検知部の検知する流体温度と、前記特性値算出部により算出される特性値を保存するメモリ部と、前記メモリ部に格納されたデータから異常判定条件を生成する判定条件生成部と、異常判定条件と前記メモリ部に格納された特性値から異常判定を行う異常判定部とを備えるものである。
The ultrasonic flowmeter of the present invention includes a flow path through which a fluid flows, a first ultrasonic transducer and a second ultrasonic transducer disposed in the flow path, and the first and second ultrasonic transducers. A transmission / reception unit for transmitting / receiving an ultrasonic signal from the ultrasonic transducer, a propagation time measuring unit for measuring a propagation time of the ultrasonic signal between the first and second ultrasonic transducers, and the ultrasonic signal An ultrasonic flowmeter having a flow rate calculation unit for calculating a flow rate of a fluid from a propagation time,
Propagation time t1 of ultrasonic waves from the first ultrasonic transducer to the second ultrasonic transducer, and from the second ultrasonic transducer to the first ultrasonic transducer From the propagation time t2 of the ultrasonic wave,
A = 1 / t1 + 1 / t2
A characteristic value calculation unit having the value A calculated by the characteristic value, a signal intensity detection unit for detecting the intensity of the ultrasonic signal, and / or a temperature detection unit for detecting the fluid temperature. An abnormality determination condition is generated from the signal intensity to be detected and / or the fluid temperature detected by the temperature detection unit, the memory unit for storing the characteristic value calculated by the characteristic value calculation unit, and the data stored in the memory unit A determination condition generation unit for performing an abnormality determination based on the abnormality determination condition and the characteristic value stored in the memory unit.
本発明において、超音波信号の強度および/または温度を用いて、特性値から補正特性値を生成する特性値補正部を有し、補正特性値により異常判定を行うことが好ましい。 In the present invention, it is preferable to have a characteristic value correction unit that generates a correction characteristic value from the characteristic value using the intensity and / or temperature of the ultrasonic signal, and to perform abnormality determination based on the correction characteristic value.
本発明において、標準時を検知する標準時検知部を有し、前記標準時検知部の出力値に基づいて異常判定を行うことが好ましい。 In the present invention, it is preferable to have a standard time detection unit that detects standard time, and to perform abnormality determination based on an output value of the standard time detection unit.
本発明において、異常判定情報を表示する表示装置および/または異常判定情報を通信する通信装置を備えることが好ましい。 In the present invention, it is preferable to include a display device that displays abnormality determination information and / or a communication device that communicates abnormality determination information.
本発明の超音波流量計は、流体の変化や、僅かな計測誤差等を検知し、異常に対して早期に対応でき、専門知識を持たない利用者等の場合にも異常を検知しうる超音波流量計を提供できる。 The ultrasonic flowmeter of the present invention can detect changes in fluids, slight measurement errors, etc., can respond to abnormalities at an early stage, and can detect abnormalities even for users who do not have specialized knowledge. A sonic flow meter can be provided.
以下、添付の図面を参照しながら、本発明の実施の形態を説明する。本発明は、計測流体の特性が変わる、あるいは計測環境が変化するなど、異常判定条件を予め設定することが困難な場合や、経年的に発生する計測誤差等の異常を判定できる超音波流量計を提供すことを目的としたものである。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The present invention relates to an ultrasonic flowmeter capable of determining an abnormality such as a measurement error that occurs over time when it is difficult to preset an abnormality determination condition, such as when the characteristics of a measurement fluid change or the measurement environment changes. Is intended to provide.
(実施の形態1)
図1は、実施の形態1における超音波流量計の構成図である。図1において、1aおよび1bは超音波送受波器、2は流路、3は送受信部、4は伝播時間計測部、5は流量算出部、6は特性値算出部、7は信号強度検知部、8は温度検知部、9はメモリ部、10は判
定条件生成部、11は異常判定部である。
(Embodiment 1)
FIG. 1 is a configuration diagram of the ultrasonic flowmeter according to the first embodiment. In FIG. 1, 1a and 1b are ultrasonic transducers, 2 is a flow path, 3 is a transmission / reception unit, 4 is a propagation time measurement unit, 5 is a flow rate calculation unit, 6 is a characteristic value calculation unit, and 7 is a signal intensity detection unit. , 8 is a temperature detection unit, 9 is a memory unit, 10 is a determination condition generation unit, and 11 is an abnormality determination unit.
超音波送受波器1aおよび1bは、流路2の途中に流体の流れVに対して、角度θをもって距離Lで対向するように設けられており、送受信部3により送信信号を受け、一方の超音波送受波器より超音波を送信し、他方の超音波送受波器で超音波を受信し、受信した超音波信号を送受信部3に送信する。送受信部3からの超音波信号を受けた伝播時間計測部4では、一方の超音波送受波器1aから他方の超音波送受波器1bへの伝播時間t1と、他方の超音波送受波器1bから一方の超音波送受波器1aへの伝播時間t2をそれぞれ算出する。流量算出部5では、(数式1)から(数式5)を用いて流量を算出する。
The
特性値算出部6は、伝播時間計測部4からの伝播時間t1、t2から(数式6)に基づいて算出した値Aを特性値とする。
The characteristic
A=1/t1+1/t2 ・・・数式6
A = 1 / t1 + 1 /
信号強度検知部7は、送受信部3からの超音波信号の信号強度を検知し、メモリ部9に転送する。
The signal
温度検知部8では、図示していない温度センサからの流体の温度情報を検知し、メモリ部9に転送する。メモリ部9では、特性値算出部6、信号強度検知部7、および温度検知部8からの(特性値、信号強度、流体温度)の情報セットを、図2に示すように対応付けて保存する。
The
判定条件生成部10では、メモリ部9に保存された各情報に基づいて異常判定するための異常判定条件を生成し、メモリ部9に送信する。メモリ部9では、(特性値、信号強度、流体温度)の情報セットとは異なる場所に、異常判定条件を保存する。
The determination
異常判定部11では、メモリ部9に保存された異常判定条件と、(特性値、信号強度、流体温度)の情報セットとを比較し、正常状態、異常状態を判定する。異常状態と判定した場合には、表示装置(図示せず)にて異常判定情報を表示し、通信装置(図示せず)からガス事業者等に異常判定情報を通信する。本実施の形態では、異常判定情報を表示装置(図示せず)と通信装置(図示せず)により報知するよう構成しているが、表示装置と通信装置の一方のみを備えた構成としてもよい。
The
ここで、判定条件生成部10の動作について詳しく説明する。異常判定条件は、例えば、次のように決定する。超音波流量計は、工場等で計測性能が担保された状態で出荷されるため、初期的には計測誤差等の異常は生じていない。初期状態における超音波流量計の特性値を正常状態の基準値として設定し、基準値と、新たに取得された特性値に差が生じた場合に、異常と判定する。一例として、基準値を中央値とし、図3に示すように、基準値の−5%〜+5%までを正常範囲とし、それを外れた場合を異常と判断する条件等を設定することが出来る。
Here, the operation of the determination
この時、異常判定条件は、超音波の信号強度、流体温度と合わせて保存されており、異常判定の際には、信号強度、流体温度が同一の特性値を比較して、異常判定を行う。これは次のような理由による。 At this time, the abnormality determination conditions are stored together with the ultrasonic signal intensity and the fluid temperature, and the abnormality determination is performed by comparing characteristic values having the same signal intensity and fluid temperature in the abnormality determination. . This is due to the following reason.
特性値を算出する(数式6)を、(数式1)および(数式2)を用いて書き直すと、(数式7)のように記述できる。 When (Formula 6) for calculating the characteristic value is rewritten using (Formula 1) and (Formula 2), it can be described as (Formula 7).
A=2C/L ・・・数式7
A = 2C /
(数式7)に示すように、特性値は、流体の音速Cと、超音波送受波器1a、1b間の距離Lによって記述される。すなわち、流体の音速が変化すると、特性値が変化するため、同一音速における特性値で比較する必要がある。
As shown in (Formula 7), the characteristic value is described by the sound velocity C of the fluid and the distance L between the
流体の音速は、流体の種類と、流体温度によって変化する。このため、流体の種類と、流体温度が同一の場合での特性値を比較する事が必要である。 The sound speed of the fluid varies depending on the type of fluid and the fluid temperature. For this reason, it is necessary to compare the characteristic value when the fluid type and the fluid temperature are the same.
以上のように、初期状態の特性値から異常判定条件を設定し、流体の種類と、流体温度が同一の条件で得られた特性値を比較する事により、被測定対象の流体が未知で、計測環境が変動する場合でも、高精度に計測上の異常判定を行うことが出来る。 As described above, the abnormality determination condition is set from the characteristic value in the initial state, and the fluid to be measured is unknown by comparing the characteristic value obtained under the same condition with the fluid type and the fluid temperature. Even when the measurement environment fluctuates, it is possible to perform measurement abnormality determination with high accuracy.
同一条件における特性値が変動している場合は、流体に通常存在しないミスト、ダスト等の混入、超音波送受波器1a、1bの電気的特性の変化よる伝播時間t1、t2の変動、流路変形や、超音波送受波器1a、1bの取付け部の異常による距離Lの変動等の異常が発生していることが想定される。このような異常が生じると、流量計測ができない、あるいは計測誤差が発生するといった事象が発生する。
When the characteristic values under the same conditions fluctuate, fluctuations in propagation times t1 and t2 due to mixing of mist, dust, etc. that are not normally present in the fluid, changes in electrical characteristics of the
本実施の形態では、温度、信号強度のいずれもが一致した特性値を比較する方法について説明したが、利用環境によっては、温度、あるいは信号強度の一方のみを比較する方法で利用ことも可能である。 In this embodiment, the method of comparing characteristic values in which both the temperature and the signal intensity match is described. However, depending on the use environment, it is possible to use the method in which only one of the temperature and the signal intensity is compared. is there.
(実施の形態2)
図4は、実施の形態2における超音波流量計の構成図である。本実施の形態2における超音波流量計は、特性値補正部13を設けた他は、実施の形態1における超音波流量計と同様に構成している。
(Embodiment 2)
FIG. 4 is a configuration diagram of the ultrasonic flowmeter according to the second embodiment. The ultrasonic flowmeter according to the second embodiment is configured in the same manner as the ultrasonic flowmeter according to the first embodiment except that the characteristic
本実施の形態2の超音波流量計は、特性値補正部13によって異常判定条件を補正することにより、環境温度や流体の種類の変動が大きく、同一条件での特性値が得られ難く、異常判定が困難な場合に対応できる。具体的には、取得した特性値を信号強度、流体温度により補正した補正特性値を用い、異なる温度、異なる種類の流体で得られた特性値と比較して異常判定を行う。
In the ultrasonic flowmeter of the second embodiment, by correcting the abnormality determination condition by the characteristic
本実施の形態2における超音波流量計では、流体温度、信号強度に関わらず異常判定を行うことが可能となるため、流体の種類や、流体温度が大きく、頻繁に変動する環境下でも安定して異常判定を行うことが出来る。 In the ultrasonic flowmeter according to the second embodiment, it is possible to make an abnormality determination regardless of the fluid temperature and the signal strength. Therefore, the type of fluid and the fluid temperature are large and stable even in an environment that fluctuates frequently. Can be judged.
次に、具体的な特性値の補正方法について説明する。特性値は、(数式7)に示すように流体の音速Cが変動すると変動するため、流体の音速を、超音波の信号強度、流体温度より、仮想的に同一条件における音速値へと補正する。 Next, a specific characteristic value correction method will be described. Since the characteristic value fluctuates when the fluid sound velocity C varies as shown in (Formula 7), the fluid sound velocity is virtually corrected to the sound velocity value under the same conditions from the ultrasonic signal intensity and fluid temperature. .
流体種による補正は、超音波の信号強度を用いる。流体が気体の場合には、超音波信号の強度と、気体の平均分子量との間に相関があり、平均分子量と音速は相関がある。すなわち、超音波の信号強度と音速は相関があり、超音波信号の強度を用いて音速を補正することが可能である。具体的には、超音波の信号強度が標準条件より高い場合には、仮想的な標準条件より音速が高くなっているため、音速がより低くなるように補正し、補正特性値を導出する。超音波の信号強度が仮想的な標準条件より低い場合には、標準条件より音速が低くなっているため、音速がより高くなるように補正し、補正特性値を導出する。 The correction based on the fluid type uses the signal strength of ultrasonic waves. When the fluid is a gas, there is a correlation between the intensity of the ultrasonic signal and the average molecular weight of the gas, and there is a correlation between the average molecular weight and the speed of sound. That is, there is a correlation between the ultrasonic signal intensity and the sound speed, and the sound speed can be corrected using the ultrasonic signal intensity. Specifically, when the ultrasonic signal intensity is higher than the standard condition, the sound speed is higher than the virtual standard condition. Therefore, the correction is performed so that the sound speed is lower, and a correction characteristic value is derived. When the ultrasonic signal intensity is lower than the virtual standard condition, the sound speed is lower than the standard condition. Therefore, correction is performed so that the sound speed is higher, and a correction characteristic value is derived.
流体温度による補正の場合には、流体が気体の場合には、流体温度が上昇すると、音速
が高くなり、流体温度が低下すると、音速が低くなる。この特性を利用して標準条件における補正特性値を導出する。このようにして導出した補正特性値を図5に示すように、流体温度、信号強度、特性値と共にメモリ部9に保存する。
In the correction based on the fluid temperature, when the fluid is a gas, the sound speed increases as the fluid temperature increases, and the sound speed decreases as the fluid temperature decreases. Using this characteristic, a correction characteristic value under standard conditions is derived. The correction characteristic value derived in this way is stored in the
また、実施の形態1と同様に補正特性値の初期値を用いて、図6に示す判定条件を設定する。本実施の形態2においては、補正特性値を用いるため、流体温度、信号強度の情報に関わらず、全てのデータを用いて異常判定が可能であるため、判定条件を一条件だけ設定すればよく、計測環境が変動し続ける場合にも、適切なタイミングで異常を検知することが出来る。 Further, the determination condition shown in FIG. 6 is set using the initial value of the correction characteristic value as in the first embodiment. In the second embodiment, since the correction characteristic value is used, it is possible to determine abnormality using all data regardless of fluid temperature and signal intensity information. Therefore, only one determination condition needs to be set. Even when the measurement environment continues to fluctuate, an abnormality can be detected at an appropriate timing.
(実施の形態3)
図7は、実施の形態3における超音波流量計の構成を示す図である。本実施の形態3における超音波流量計は、標準時検知部14を設け、温度検知部、信号強度検知部を除去した他は、実施の形態1における超音波流量計と同様に構成した。
(Embodiment 3)
FIG. 7 is a diagram illustrating the configuration of the ultrasonic flowmeter according to the third embodiment. The ultrasonic flowmeter in the third embodiment is configured in the same manner as the ultrasonic flowmeter in the first embodiment except that the standard
流体温度の変動は、燃料用ガスメータなどにおいては、季節による周期性が大きく、そのため流体の音速Cの変動も一年ごとに周期的に変動する傾向がある。よって、異なる年度の同一月日における特性値を比較する、あるいは一年の特性値の変動パターンを異なる年度で比較することにより、異常判定を行うことが可能である。 The fluctuation of the fluid temperature has a large periodicity in the fuel gas meter or the like, and therefore, the fluctuation of the sound velocity C of the fluid also tends to fluctuate periodically every year. Therefore, it is possible to perform abnormality determination by comparing characteristic values in the same month and day in different years, or by comparing variation patterns of characteristic values in one year in different years.
本実施の形態3における標準時検知部14は、超音波流量計を設置した最初の一年間、毎日所定の時間に、日付情報と共に特性値算出部6にて算出する値Aと特性値としてメモリ部9に保存し、一年経過後は、所定の時間に算出する特性値とメモリ部9に保存した同一月日の特性値とを比較し、−5%〜+5%までを正常範囲とし、それを外れた場合を異常と判断する条件等を設定することが出来る。
The standard
超音波流量計は、工場等で計測性能が担保された状態で出荷されるため、初期的には計測誤差等の異常は生じていない。超音波流量計を設置した最初の一年間に算出した値Aに基づく特性値を初期状態における超音波流量計の正常状態の基準値として設定し、基準値と、新たに取得された特性値に差が生じた場合に、異常と判定する。 Since the ultrasonic flowmeter is shipped in a state where the measurement performance is ensured in a factory or the like, there is no abnormality such as a measurement error in the initial stage. The characteristic value based on the value A calculated in the first year when the ultrasonic flowmeter was installed is set as the reference value for the normal state of the ultrasonic flowmeter in the initial state, and the reference value and the newly acquired characteristic value When a difference occurs, it is determined as abnormal.
なお、この異常判定は、年度ごとの気候変動等の誤差を考慮して、異常判定が一定期間、例えば一週間連続して継続する場合に、異常を報知する構成とすることが好ましい。 In addition, it is preferable that the abnormality determination is configured to notify the abnormality when the abnormality determination continues for a certain period, for example, one week in consideration of errors such as climate change for each year.
本実施の形態3における異常判定方法では、年度ごとの異なる気候変動等の誤差要因はあるものの、信号強度検知部、温度検知部が不要のため、簡便に、低コストで異常判定を実現することが出来る。 In the abnormality determination method according to the third embodiment, although there are error factors such as climate change that vary from year to year, the signal intensity detection unit and the temperature detection unit are not required, so that abnormality determination can be realized simply and at low cost. I can do it.
以上、実施の形態1〜3のいずれの場合にも、異常判定部で検知した異常判定を、流量計に搭載された液晶等の表示部に表示して、利用者に分かりやすく通知する、あるいは通信機器等により、流量計の管理者等に通知して、早期に異常認知して、対応することが出来る超音波流量系システムを提供できる。 As described above, in any of the first to third embodiments, the abnormality determination detected by the abnormality determination unit is displayed on a display unit such as a liquid crystal mounted on the flow meter to notify the user in an easy-to-understand manner, or It is possible to provide an ultrasonic flow rate system capable of notifying a flowmeter administrator or the like by a communication device or the like, recognizing an abnormality at an early stage, and responding to the abnormality.
本発明の超音波流量計、および超音波流量計システムは、使用中に発生する計測誤差等の異常を高精度に検知することが出来る異常検知機能を持つものであり、長期に利用される、あるいは利用者が専門知識を有しない環境で利用される超音波流量計に特に有効に利用し得る。 The ultrasonic flowmeter and the ultrasonic flowmeter system of the present invention have an abnormality detection function capable of detecting an abnormality such as a measurement error occurring during use with high accuracy, and are used for a long period of time. Or it can utilize especially effectively for the ultrasonic flowmeter used in the environment where a user does not have technical knowledge.
1a、1b 超音波送受波器
2 流路
3 送受信部
4 伝播時間計測部
5 流量算出部
6 特性値算出部
7 信号強度検知部
8 温度検知部
9 メモリ部
10 判定条件生成部
11 異常判定部
13 特性値補正部
14 標準時検知部
101a、101b 超音波送受波器
102 管壁
DESCRIPTION OF
Claims (4)
前記第1の超音波送受波器から前記第2の超音波送受波器への超音波の伝播時間t1と、前記第2の超音波送受波器から前記第1の超音波送受波器への超音波の伝播時間t2とから、
A=1/t1+1/t2
によって算出される値Aを特性値とする特性値算出部と、
超音波信号の強度を検知する信号強度検知部および/または流体温度を検知する温度検知部を有し、
前記信号強度検知部の検知する信号強度および/または前記温度検知部の検知する流体温度と、前記特性値算出部により算出される特性値を保存するメモリ部と、
前記メモリ部に格納されたデータから異常判定条件を生成する判定条件生成部と、
異常判定条件と前記メモリ部に格納された特性値から異常判定を行う異常判定部と、
を備える超音波流量計。 A flow path through which fluid flows, a first ultrasonic transducer and a second ultrasonic transducer disposed in the flow path, and ultrasonic signals from the first and second ultrasonic transducers The flow rate of fluid is calculated from the transmission time of the ultrasonic signal, the propagation time measurement unit that measures the propagation time of the ultrasonic signal between the first and second ultrasonic transducers, and the propagation time of the ultrasonic signal An ultrasonic flowmeter having a flow rate calculation unit,
Propagation time t1 of ultrasonic waves from the first ultrasonic transducer to the second ultrasonic transducer, and from the second ultrasonic transducer to the first ultrasonic transducer From the propagation time t2 of the ultrasonic wave,
A = 1 / t1 + 1 / t2
A characteristic value calculation unit having the value A calculated by the characteristic value;
A signal intensity detection unit that detects the intensity of the ultrasonic signal and / or a temperature detection unit that detects the fluid temperature;
A memory unit for storing a signal intensity detected by the signal intensity detection unit and / or a fluid temperature detected by the temperature detection unit, and a characteristic value calculated by the characteristic value calculation unit;
A determination condition generation unit that generates an abnormality determination condition from the data stored in the memory unit;
An abnormality determination unit that performs abnormality determination from the abnormality determination condition and the characteristic value stored in the memory unit;
An ultrasonic flow meter comprising.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014002895A JP6405520B2 (en) | 2014-01-10 | 2014-01-10 | Ultrasonic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014002895A JP6405520B2 (en) | 2014-01-10 | 2014-01-10 | Ultrasonic flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015132488A true JP2015132488A (en) | 2015-07-23 |
JP6405520B2 JP6405520B2 (en) | 2018-10-17 |
Family
ID=53899805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014002895A Active JP6405520B2 (en) | 2014-01-10 | 2014-01-10 | Ultrasonic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6405520B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015215225A (en) * | 2014-05-09 | 2015-12-03 | アズビル株式会社 | Ultrasonic flow meter and propagation length abnormality detection method |
CN105534476A (en) * | 2015-12-05 | 2016-05-04 | 新乡医学院第一附属医院 | Early detection system for kidney diseases and injuries of department of pediatrics |
CN106885609A (en) * | 2017-03-03 | 2017-06-23 | 安徽水联水务科技有限公司 | A kind of Ultrasonic water meter temperature correction without temperature sensor |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11108720A (en) * | 1997-09-30 | 1999-04-23 | Yazaki Corp | Gas meter |
JP2005241581A (en) * | 2004-02-27 | 2005-09-08 | Tokimec Inc | Ultrasonic speed meter |
JP2007003131A (en) * | 2005-06-27 | 2007-01-11 | Matsushita Electric Ind Co Ltd | Hot water circulation system |
JP2008020187A (en) * | 2007-09-07 | 2008-01-31 | Matsushita Electric Ind Co Ltd | Fluid controller, and flow measuring instrument equipped with fluid controller |
JP2008111696A (en) * | 2006-10-30 | 2008-05-15 | Matsushita Electric Ind Co Ltd | Flow measuring device and fluid feeding system |
JP2010223855A (en) * | 2009-03-25 | 2010-10-07 | Panasonic Corp | Ultrasonic flowmeter |
JP2013088322A (en) * | 2011-10-19 | 2013-05-13 | Azbil Corp | Method for measuring flow velocity and flow volume |
WO2013172029A1 (en) * | 2012-05-17 | 2013-11-21 | パナソニック株式会社 | Flow rate measurement device |
US20150107370A1 (en) * | 2012-05-09 | 2015-04-23 | Endress + Hauser Flowtec Ag | Method for monitoring the operating state of an ultrasonic transducer in an ultrasonic, flow measuring device |
-
2014
- 2014-01-10 JP JP2014002895A patent/JP6405520B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11108720A (en) * | 1997-09-30 | 1999-04-23 | Yazaki Corp | Gas meter |
JP2005241581A (en) * | 2004-02-27 | 2005-09-08 | Tokimec Inc | Ultrasonic speed meter |
JP2007003131A (en) * | 2005-06-27 | 2007-01-11 | Matsushita Electric Ind Co Ltd | Hot water circulation system |
JP2008111696A (en) * | 2006-10-30 | 2008-05-15 | Matsushita Electric Ind Co Ltd | Flow measuring device and fluid feeding system |
JP2008020187A (en) * | 2007-09-07 | 2008-01-31 | Matsushita Electric Ind Co Ltd | Fluid controller, and flow measuring instrument equipped with fluid controller |
JP2010223855A (en) * | 2009-03-25 | 2010-10-07 | Panasonic Corp | Ultrasonic flowmeter |
JP2013088322A (en) * | 2011-10-19 | 2013-05-13 | Azbil Corp | Method for measuring flow velocity and flow volume |
US20150107370A1 (en) * | 2012-05-09 | 2015-04-23 | Endress + Hauser Flowtec Ag | Method for monitoring the operating state of an ultrasonic transducer in an ultrasonic, flow measuring device |
WO2013172029A1 (en) * | 2012-05-17 | 2013-11-21 | パナソニック株式会社 | Flow rate measurement device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015215225A (en) * | 2014-05-09 | 2015-12-03 | アズビル株式会社 | Ultrasonic flow meter and propagation length abnormality detection method |
CN105534476A (en) * | 2015-12-05 | 2016-05-04 | 新乡医学院第一附属医院 | Early detection system for kidney diseases and injuries of department of pediatrics |
CN106885609A (en) * | 2017-03-03 | 2017-06-23 | 安徽水联水务科技有限公司 | A kind of Ultrasonic water meter temperature correction without temperature sensor |
Also Published As
Publication number | Publication date |
---|---|
JP6405520B2 (en) | 2018-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2673598B1 (en) | Determining delay times for ultrasonic flow meters | |
EP2916110B1 (en) | Flow rate meter device and flow rate calculation method | |
CA2866536C (en) | Temperature verification for ultrasonic flow meters | |
US8700344B2 (en) | Ultrasonic flow meter | |
JP2012007977A (en) | Ultrasonic flow measuring device | |
JP6405520B2 (en) | Ultrasonic flow meter | |
JP2007187506A (en) | Ultrasonic flowmeter | |
US9435681B2 (en) | Method for in-situ calibrating a differential pressure plus sonar flow meter system using dry gas conditions | |
JP4561088B2 (en) | Ultrasonic flow meter | |
JP4792653B2 (en) | Flowmeter | |
JP4518120B2 (en) | Flowmeter | |
JP5141613B2 (en) | Ultrasonic flow meter | |
JP2007051913A (en) | Correction method for ultrasonic flowmeter | |
JP2003329502A (en) | Ultrasonic wave flowmeter and method of self-diagnosing the same | |
JP2018136276A (en) | Ultrasonic flowmeter | |
JP2007017157A (en) | Ultrasonic flowmeter | |
JP4561071B2 (en) | Flow measuring device | |
JP5229349B2 (en) | Fluid flow measuring device | |
JP6064160B2 (en) | Flow measuring device | |
JP5990770B2 (en) | Ultrasonic measuring device | |
RU2794501C2 (en) | Double sensor vortex flowmeter | |
JP7568445B2 (en) | Ultrasonic Flow Meter | |
US11473947B2 (en) | Dual sensor vortex flowmeter | |
JP6283565B2 (en) | Ultrasonic flow meter and propagation length abnormality detection method | |
JP7246021B2 (en) | ultrasonic flow meter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20160519 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160719 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180807 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180820 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6405520 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |