JP2014212723A - Apparatus and method for aquaculture of aquatic organism, and apparatus and method for hydroponic culture of plant - Google Patents
Apparatus and method for aquaculture of aquatic organism, and apparatus and method for hydroponic culture of plant Download PDFInfo
- Publication number
- JP2014212723A JP2014212723A JP2013091924A JP2013091924A JP2014212723A JP 2014212723 A JP2014212723 A JP 2014212723A JP 2013091924 A JP2013091924 A JP 2013091924A JP 2013091924 A JP2013091924 A JP 2013091924A JP 2014212723 A JP2014212723 A JP 2014212723A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen gas
- aquaculture
- plant
- water
- aquatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/80—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
- Y02A40/81—Aquaculture, e.g. of fish
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/60—Fishing; Aquaculture; Aquafarming
Landscapes
- Farming Of Fish And Shellfish (AREA)
- Hydroponics (AREA)
Abstract
Description
本発明は、一般に広く用いられる水素ガスを用いて簡便な方法で、水棲生物を養殖するための装置とこれを用いた水棲生物の養殖方法、ならびに植物を水耕栽培する装置とこれを用いた植物の水耕栽培方法に関する。 The present invention provides a device for cultivating aquatic organisms, a method for cultivating aquatic organisms using the same, and a device for hydroponically cultivating a plant using a hydrogen gas that is widely used in a simple manner. The present invention relates to a hydroponics method for plants.
近年、例えば水産養殖現場では、その対象の魚介類やその餌料となる水棲生物の培養および飼育を行っているが、その際にしばしば魚病対策や出荷量の歩留まりの向上のために動物医薬品などを用いることがある。しかしながら、これが飼育コストの上昇や薬害による食品安全性の面で問題となっている。 In recent years, for example, at aquaculture sites, the target fish and shellfish and the aquatic organisms that serve as their feed have been cultured and bred. In such cases, animal drugs, etc. are often used to combat fish diseases and improve yields. May be used. However, this is a problem in terms of food safety due to an increase in breeding costs and chemical damage.
一方、健康産業分野では、水素を用いた商品の市場が活況を呈しており、水素水や水素サプリメントがその中心となっている。
水素の効能は、太田らの研究(非特許文献1)によれば、水素はラット中の酸素ラジカルを減らし、治療的抗酸化作用を示すことが判ってきている。そして、現在では細胞や組織を介した抗酸化ストレス効果、抗炎症作用、抗アレルギー作用、エネルギー代謝亢進作用などが確認されてきている。
On the other hand, in the health industry field, the market for products using hydrogen is booming, with hydrogen water and hydrogen supplements at the center.
According to a study by Ota et al. (Non-patent Document 1), it has been found that hydrogen reduces oxygen radicals in rats and exhibits a therapeutic antioxidant effect. At present, antioxidative stress effect, anti-inflammatory effect, anti-allergic effect, energy metabolism enhancing effect and the like via cells and tissues have been confirmed.
このような人への水素の効能が明らかになっているが、人の健康分野以外の動植物に関しては、魚類などの水棲生物や植物に適用した例がある(特許文献1)。特許文献1によると、水素の効能は、植物に対しては循環養液の細菌増殖抑制や根腐れ防止など、また水産を対象としては飼育水環境の悪化抑制や魚病予防などとされており、いずれも生産性向上を期待している。
しかしながら、特許文献1は、水素ガスそのものを用いた技術ではなく、水素と酸素とが混合された水素酸素混成ガスを用いるものであり、この混成ガスを製造するための装置が複雑で、かつコストがかかるという問題点もある。
Although the effect of hydrogen on humans has been clarified, there is an example in which animals and plants other than the human health field are applied to aquatic organisms and plants such as fish (Patent Document 1). According to Patent Document 1, the effect of hydrogen is considered to be suppression of bacterial growth and prevention of root rot of circulating nutrient solution for plants, and suppression of deterioration of breeding water environment and prevention of fish diseases for fisheries. Both are expecting improved productivity.
However, Patent Document 1 uses a hydrogen-oxygen mixed gas in which hydrogen and oxygen are mixed, not a technique using the hydrogen gas itself, and an apparatus for producing the mixed gas is complicated and costly. There is also a problem that it takes.
本発明は、水素ガスそのものを用いて、水産施設のほか、水棲生物を飼育している設備や業界にも利用でき、さらに陸上の屋内、屋外の施設のほか、海面でも利用可能であり、さらにまた、植物の水耕栽培にも応用可能な、水棲生物養殖装置および水棲生物養殖方法、ならびに植物水耕栽培装置および植物水耕栽培方法を提供することにある。 The present invention uses hydrogen gas itself, can be used for fisheries facilities, equipment for breeding aquatic organisms and industry, and can also be used on land, indoor and outdoor facilities, and also on the sea surface. Another object of the present invention is to provide a water tank bioculture device and a water tank bioculture method, a plant hydroponic culture apparatus and a plant hydroponic method that can be applied to hydroponics of plants.
本発明は、少なくとも、水棲生物を養殖するための養殖用水を貯える装置と、この養殖用水に水素ガスを供給する水素ガス供給装置と、この水素ガスを養殖用水に吹き込むための吹き込み装置を備えてなる、水棲生物養殖装置に関する。
また、本発明は、上記水棲生物養殖装置を用い、養殖用水を貯える装置内で水棲生物を養殖する、水棲生物養殖方法に関する。
次に、本発明は、少なくとも、植物を水耕栽培するための培養液を貯える装置と、この培養液に水素ガスを供給する水素ガス供給装置と、この水素ガスを培養液に吹き込むための吹き込み装置を備えてなる、植物水耕栽培装置に関する。
また、本発明は、上記植物水耕栽培装置を用い、培養液を貯える装置内で植物を水耕栽培する、植物水耕栽培方法に関する。
The present invention includes at least an apparatus for storing aquaculture water for aquaculture of aquatic organisms, a hydrogen gas supply apparatus for supplying hydrogen gas to the aquaculture water, and a blowing apparatus for blowing the hydrogen gas into the aquaculture water. The present invention relates to aquatic aquaculture equipment.
The present invention also relates to a method for culturing aquatic organisms, wherein the aquatic organism culturing apparatus is used to cultivate aquatic organisms in an apparatus for storing aquaculture water.
Next, the present invention provides at least a device for storing a culture solution for hydroponically cultivating a plant, a hydrogen gas supply device for supplying hydrogen gas to the culture solution, and a blow for blowing the hydrogen gas into the culture solution. The present invention relates to a plant hydroponic cultivation apparatus.
Moreover, this invention relates to the plant hydroponics method of using the said plant hydroponics apparatus and hydroponically cultivating a plant in the apparatus which stores a culture solution.
本発明によれば、水素ガスそのものを用いて、プランクトンなどの水棲生物に対して水素自体が飢餓の影響を緩和する、ないしは餓死する時期を遅延させる(延命)効果がある。また、本発明によれば、水産施設のほか、水棲生物を飼育している設備や業界にも利用でき、さらに陸上の屋内、屋外の施設のほか、海面でも利用可能であり、さらにまた、植物の水耕栽培にも応用可能な、水棲生物養殖装置および水棲生物養殖方法、ならびに植物水耕栽培装置および植物水耕栽培方法を提供することができる。 According to the present invention, hydrogen gas itself has the effect of alleviating the effects of starvation on aquatic organisms such as plankton or delaying the time of starvation (life extension). Further, according to the present invention, it can be used not only for fisheries facilities but also for equipment and industry for breeding aquatic organisms, and also for indoor and outdoor facilities on land, and also at sea level. It is possible to provide an aquatic organism culture device and an aquatic organism cultivation method, a plant hydroponics device, and a plant hydroponics method that can be applied to hydroponics of the plant.
<水棲生物養殖装置>
本発明における水棲生物養殖装置は、少なくとも、水棲生物を養殖するための養殖用水を貯える装置と、この養殖用水に水素ガスを供給する水素ガス供給装置と、この水素ガスを養殖用水に吹き込むための吹き込み装置を備えている。
<Aquatic aquaculture equipment>
The aquatic aquaculture apparatus according to the present invention includes at least an apparatus for storing aquaculture water for aquaculture of aquatic organisms, a hydrogen gas supply apparatus for supplying hydrogen gas to the aquaculture water, and for blowing this hydrogen gas into the aquaculture water. A blowing device is provided.
養殖用水を貯える装置:
本発明における養殖用水を貯える装置としては、まず水棲生物養殖用水槽が挙げられる。水棲生物養殖用水槽とは、魚介類などを飼育するための水槽である。この水槽は、特に構造が限定されないが、残餌、魚介類の糞等の沈降性懸濁物質を一箇所に集めて排出する機能を備えたものが好ましい。例えば、平面形状が円形又は多角形で、中心部に円筒状排水部を有し、下方へ流出する水流の負圧を利用して底部の沈降性懸濁物質を中央部に集め、沈降性懸濁物質濃縮水として、上澄み液の水流と分けて、流出される水槽が、特に好ましく用いられる。このような水槽であれば、懸濁物質を含む水槽からの流出水を効率良く排出することができる。
Equipment for storing aquaculture water:
As an apparatus for storing the aquaculture water in the present invention, a water tank for aquatic aquaculture is first mentioned. An aquatic aquaculture tank is a tank for raising seafood and the like. The structure of the aquarium is not particularly limited, but it is preferable to have a function of collecting and discharging sedimentary suspended solids such as residual food and fish and shellfish in one place. For example, the planar shape is circular or polygonal, it has a cylindrical drainage part in the center, and the sedimentary suspended solids at the bottom are collected in the central part using the negative pressure of the water flowing out downward, and the sedimentary suspension is collected. As the turbid substance concentrated water, a water tank that flows out separately from the water stream of the supernatant is particularly preferably used. With such a water tank, the outflow water from the water tank containing suspended solids can be efficiently discharged.
水槽の構成部材についても特に限定されないが、基礎及び支柱をコンクリート、鉄骨等で形成し、基礎上及び支柱内に強化プラスチック製の壁枠を設置し、壁枠内面に防水シートを張設して水槽とし、シート底面と基礎との間に発泡プラスチック製の断熱材を組み込んだ水槽とするものが好ましい。もちろん、一体的に製造された鉄筋コンクリート製の水槽、或いは、中心軸を通る平面で分割した強化プラスチック製又は鉄筋コンクリート製の部材を組み合わせ、接合部を接着剤やシーリング剤で防水した水槽でもかまわない。
本発明における養殖用水を貯える装置としては、上記の養殖用水槽のほか、既製の樹脂製やガラス製の水槽、生けすなどであってもよい。
There are no particular restrictions on the components of the aquarium, but the foundation and struts are made of concrete, steel, etc., a reinforced plastic wall frame is installed on the foundation and in the strut, and a waterproof sheet is stretched on the inner surface of the wall frame. A water tank is preferable, which is a water tank in which a heat insulating material made of foam plastic is incorporated between the bottom of the sheet and the foundation. Of course, a water tank made of reinforced concrete manufactured integrally or a water tank made of reinforced plastic or reinforced concrete divided by a plane passing through the central axis and waterproofed with an adhesive or a sealing agent may be used.
As an apparatus for storing the aquaculture water in the present invention, in addition to the aquaculture tank described above, a ready-made resin or glass aquarium, or a living aquarium may be used.
水素ガス供給装置:
水素ガスの製造方法は、数種類あるが、最も知られている方法は、水の電気分解である。この方法は、古くより工業的に製造する方法としても使われている。すなわち、普通の水を電気分解すると、陽極側(+:プラス極)から酸素ガスが発生し、陰極側(−:マイナス極)より水素ガスが発生する。水でなく食塩水を分解すると、水素と塩素と苛性ソーダ(水酸化ナトリウム:NaOH)ができる。ただし、水の電気分解には大量の電力を必要とすることや、純度が高いものの割高なため工業的には水蒸気改質法などが利用されている。
例えば、重い油に水素ガスを吹き込むと、重い油が分解して軽質油に変化する。これと同じように、軽質油に水蒸気を吹き込むと、油が分解して水素ガスができる。メタンガスのような炭化水素のガスに水蒸気を吹き込んでも同じように水素ガスを得ることができる。メタンガスの場合、水素と一酸化炭素、水素と炭酸ガスに分解する。
CH4+H2O→CO+3H2
CH4+2H2O→CO2+4H2
本発明に用いられる水素ガスは、コスト面より、水棲生物養殖装置の規模によっては、このような炭化水素類の水蒸気改質によって得られるものが好ましい。
かかる水素ガスの供給装置としては、例えば水素ボンベ、水素ガス製造装置などが挙げられる。
この水素ガス供給装置は、例えば図示しない配管によって、水棲生物養殖用水槽内に設置された水素ガス吹き込み装置(散気管)と連結している。
Hydrogen gas supply device:
There are several methods for producing hydrogen gas, but the most known method is electrolysis of water. This method has also been used as a method for industrial production since ancient times. That is, when ordinary water is electrolyzed, oxygen gas is generated from the anode side (+: positive electrode), and hydrogen gas is generated from the cathode side (−: negative electrode). Decomposing salt solution instead of water produces hydrogen, chlorine, and caustic soda (sodium hydroxide: NaOH). However, water electrolysis requires a large amount of electric power, and since it is high in purity, it is industrially used, such as a steam reforming method.
For example, when hydrogen gas is blown into heavy oil, the heavy oil decomposes and changes to light oil. Similarly, when water vapor is blown into light oil, the oil decomposes and hydrogen gas is generated. Even when water vapor is blown into a hydrocarbon gas such as methane gas, hydrogen gas can be obtained in the same manner. In the case of methane gas, it decomposes into hydrogen and carbon monoxide and hydrogen and carbon dioxide.
CH 4 + H 2 O → CO + 3H 2
CH 4 + 2H 2 O → CO 2 + 4H 2
From the viewpoint of cost, the hydrogen gas used in the present invention is preferably obtained by steam reforming of such hydrocarbons depending on the scale of the aquatic aquaculture apparatus.
Examples of the hydrogen gas supply device include a hydrogen cylinder and a hydrogen gas production device.
This hydrogen gas supply device is connected to a hydrogen gas blowing device (aeration pipe) installed in an aquatic aquaculture tank, for example, by a pipe (not shown).
水素ガス吹き込み装置:
水素ガス吹き込み装置としては、特に限定されない。例えば、多数個の微細な通気孔が穿孔された散気管(ディフューザ)を、水槽の中や生けすの中などの養殖水域または取替用養殖用水のストックタンク中に配置し、該管を通して水素ガスを供給し、通気孔から微細な気泡として養殖用水に散気する方法、養殖用水を循環させるポンプ等を利用して水素ガスを巻き込む方法が挙げられる。なお、散気管は通気孔が穿孔されたものであれば特に制限されないが、微細な気泡を散気できるという観点から、通気孔の形成された円筒状の通気管と、この通気管の外周面に沿って、焼結金属、アルミナ、セラミックスなどの粒子を集積形成させた多孔体とから構成されるものが好ましい。
Hydrogen gas blowing device:
The hydrogen gas blowing device is not particularly limited. For example, an air diffuser (diffuser) with a large number of fine vent holes is placed in an aquaculture area such as in an aquarium or in a living area, or in a stock tank for replacement aquaculture water. Examples include a method of supplying gas and diffusing into the aquaculture water as fine bubbles from a vent, and a method of entraining hydrogen gas using a pump for circulating the aquaculture water. The air diffuser tube is not particularly limited as long as the air hole is perforated, but from the viewpoint that fine bubbles can be diffused, the cylindrical air tube formed with the air hole and the outer peripheral surface of the air vent tube And a porous body in which particles of sintered metal, alumina, ceramics, and the like are integrated and formed are preferable.
<水棲生物養殖方法>
本発明の水棲生物養殖方法では、水素ガスを水棲生物養殖用水に吹き込む。養殖用水は、水棲生物の種類に応じて適宜選択することができ、海水、汽水、淡水などが挙げられる。なお、養殖用水にはミネラル分などが含まれていてもよいし、含まれていなくてもよい
<Aquaculture method>
In the aquatic aquaculture method of the present invention, hydrogen gas is blown into aquatic aquaculture water. Aquaculture water can be appropriately selected according to the type of aquatic organisms, and examples include seawater, brackish water, and fresh water. The aquaculture water may or may not contain minerals.
水素ガスの供給量(VVH:1時間当たり槽容量当たりの気体供給量(m3/m3/H))は、水棲生物の種類、水棲生物を生息させるための水槽の形状等によって適宜選択でき、特に制限されないが、通常、0.005〜0.5/H、好ましくは0.02〜0.1/Hである。0.005/H未満では、水素の効果が得られ難くなることがあり、一方0.5/Hを超えると、効果の程度に変わりがなくなり水素ガスが無駄となることがある。水素ガスの供給は、連続的に行ってもよいし、間欠的に行ってもよい。水素ガスの供給量は、例えば流量調節弁などで容易にコントロールすることができる。
本発明において、水素ガスを供給する手段は、特に限定されない。一番手短な例は、水素ガスボンベであり、そのほか、水素ガス製造装置から供給する手段であってもよい。
Hydrogen gas supply volume (VVH: gas supply volume per hour (m 3 / m 3 / H)) can be appropriately selected depending on the type of aquatic organisms, the shape of the aquarium for inhabiting aquatic organisms, etc. Although not particularly limited, it is usually 0.005 to 0.5 / H, preferably 0.02 to 0.1 / H. If it is less than 0.005 / H, the effect of hydrogen may be difficult to obtain. On the other hand, if it exceeds 0.5 / H, the degree of effect remains unchanged and hydrogen gas may be wasted. The supply of hydrogen gas may be performed continuously or intermittently. The supply amount of hydrogen gas can be easily controlled by, for example, a flow rate adjusting valve.
In the present invention, the means for supplying hydrogen gas is not particularly limited. The shortest example is a hydrogen gas cylinder, and in addition, means for supplying from a hydrogen gas production apparatus may be used.
なお、本発明に用いられる水棲生物養殖装置には、ろ過装置、水温計および水温調節器、pH測定器、照明装置、ポンプ、配管などの水棲生物を飼育するために従来から使われている器具および装置がさらに含まれていてもよい。 In addition, the aquatic aquaculture apparatus used in the present invention includes instruments conventionally used for breeding aquatic organisms such as filtration devices, water thermometers and water temperature controllers, pH measuring devices, lighting devices, pumps, and piping. And a device may further be included.
本発明の水棲生物養殖装置および養殖方法を適用可能な水棲生物は特に制限されない。例えば、アルテミア、シオミズツボワムシ、クロレラなどのプランクトン類や、イセエビ、クルマエビ、タラバガニ、タカアシガニ、ズワイガニなどの甲殻類;イカ、タコ;マグロ、サケ、タラ、ヒラメ、カレイ、タイ、カツオ、ウナギ、フグ、マスなどの食用魚類;アワビ、サザエ、シジミ、ハマグリ、アサリなどの貝類;エンゼルフィッシュ、ネオンテトラ、鯉、金魚などの観賞用魚類;ディスカス、アロワナ、コリドラスなどの熱帯魚;イルカ、オルカ、トド、アシカ、ラッコなどの水棲哺乳類;マツモ、パールグラス、キクモ、セリ、クロモ、スターレンジなどの水草;ワカメ、コンブ、アサオ、ヒジキ、スギノリ、モズクなどの海藻;アマモ、スガモなどの海草などが挙げられる。 The aquatic organisms to which the aquatic organism aquaculture apparatus and the cultivation method of the present invention can be applied are not particularly limited. For example, planktons such as artemia, hornworm, chlorella, shellfish such as lobster, tiger prawn, king crab, king crab, snow crab; squid, octopus; tuna, salmon, cod, flounder, flounder, Thailand, skipjack, eel, Food fish such as pufferfish, trout; shellfish such as abalone, turban shell, clam, clam, clam; ornamental fish such as angelfish, neon tetra, coral, goldfish; tropical fish such as discus, arowana, corydoras; dolphin, orca, todo, Aquatic mammals such as sea lions and sea otters; aquatic plants such as matsumo, pearl grass, chrysanthemum, seri, chromo, and star range; seaweeds such as seaweed, kombu, asao, hijiki, cedar, and mozuku; .
<植物水耕栽培装置と植物水耕栽培方法>
本発明では、上記の水棲生物養殖装置(方法)と同様に、水素ガスを植物水耕栽培装置(方法)に応用することができる。
すなわち、本発明の植物水耕栽培装置は、少なくとも、植物を水耕栽培するための培養液を貯える装置と、この培養液に水素ガスを供給する水素ガス供給装置と、この水素ガスを培養液に吹き込むための吹き込み装置を備えており、また、本発明の植物水耕栽培方法は、この植物水耕栽培装置を用い、培養液を貯える装置内で植物を水耕栽培するものである。
<Plant hydroponics device and plant hydroponics method>
In the present invention, hydrogen gas can be applied to a plant hydroponic cultivation apparatus (method) in the same manner as the above-described aquatic organism cultivation apparatus (method).
That is, the plant hydroponic cultivation apparatus of the present invention comprises at least a device for storing a culture solution for hydroponically cultivating a plant, a hydrogen gas supply device for supplying hydrogen gas to the culture solution, and the hydrogen gas as a culture solution. The plant hydroponic cultivation method of the present invention uses this plant hydroponic cultivation apparatus and hydroponically cultivates the plant in the apparatus for storing the culture solution.
本発明に用いられる培養液は、従来の水耕栽培に用いられる培養液の中から、栽培される植物に応じて適宜選択すればよい。培養液には、原料水と、必要に応じて植物の栄養素になる有機肥料や無機肥料などが含まれている。さらに、培養液には、殺菌剤、殺虫剤、発根剤などが必要に応じて含まれていてもよい。培養液に用いる原料水は、植物の生育を害しないものであれば、特に制限されない。なお、本発明においては、培養液中の原料水以外の成分は、水素ガスを吹き込んだ後に、添加してもよい。 What is necessary is just to select the culture solution used for this invention suitably from the culture solutions used for the conventional hydroponics according to the plant cultivated. The culture solution contains raw water and, if necessary, organic fertilizers and inorganic fertilizers that become plant nutrients. Furthermore, a bactericide, an insecticide, a rooting agent, etc. may be contained in the culture solution as needed. The raw material water used for the culture solution is not particularly limited as long as it does not impair plant growth. In the present invention, components other than the raw material water in the culture solution may be added after blowing hydrogen gas.
なお、本発明に用いられる培養液を貯える装置は、水耕栽培の形態に応じて適宜選択してもよい。例えば、湛液型水耕では、栽培ベッド自身が培養液を貯える手段として用いられる。薄膜水耕では、傾斜面に供給するための培養液を貯留しているタンク等を用いることができる。 In addition, you may select suitably the apparatus which stores the culture solution used for this invention according to the form of hydroponics. For example, in submerged hydroponics, the cultivation bed itself is used as a means for storing the culture solution. In thin film hydroponics, a tank or the like storing a culture solution to be supplied to the inclined surface can be used.
水素ガス供給装置、および水素ガス吹き込み装置は、上記水棲生物養殖装置において説明したものと同様のものである。水素ガスの供給量(VVH)は、植物の種類、培養液を貯える水槽の形状等によって適宜選択でき、特に制限されない。 The hydrogen gas supply device and the hydrogen gas blowing device are the same as those described in the aquatic organism aquaculture device. The supply amount of hydrogen gas (VVH) can be appropriately selected depending on the type of plant, the shape of a water tank for storing a culture solution, and the like, and is not particularly limited.
本発明の水耕栽培装置では、植物の種類に応じて、土以外の固形培地を備えていてもよい。固形培地としては、ロックウール、バーミキュライトなどの礫、砂などが挙げられる。さらに、本発明の水耕栽培装置には、照明装置、水温計および水温調節器、pH測定器、寒暖計、湿度計、ポンプ、配管、防霜ファン、温室、ろ過装置などの水耕栽培に従来から用いられている器具または装置を設けることができる。 In the hydroponic cultivation apparatus of the present invention, a solid medium other than soil may be provided depending on the type of plant. Examples of solid media include rock wool, gravel such as vermiculite, and sand. Furthermore, the hydroponic cultivation apparatus of the present invention is conventionally used for hydroponic cultivation such as lighting devices, water thermometers and water temperature controllers, pH measuring devices, thermometers, hygrometers, pumps, piping, anti-frost fans, greenhouses, and filtration devices. An instrument or device used from
本発明の水耕栽培装置(および方法)に適用可能な植物は、特に限定されない。例えば、レタス、ルバーブ、水菜、ハーブ、大根菜、わさび菜、べんり菜、青梗菜、パクチョイ、キャベツ、アブラナ、春菊、空芯菜、小松菜、白菜、セルタス、ターサイ、ミツバ、野沢菜、ほうれん草、ネギなどの葉菜類、唐辛子、パプリカ、メロン、ゴーヤ、スイカ、カボチャ、ブルーベリー、イチゴ、ナス、トマト、ブドウなどの果菜類、ブロッコリー、カリフラワー、フキノトウなどの花菜類、モヤシ、枝豆などの豆類、バラなどの花卉類、稲、麦などの穀類、レンコンなどの根菜類、ヒヤシンス、クロカッス、チューリップなどの球根類が挙げられる。 The plant applicable to the hydroponic cultivation apparatus (and method) of the present invention is not particularly limited. For example, lettuce, rhubarb, mizuna, herb, radish, wasabi, bonsai, bokusai, pakchoi, cabbage, rape, spring chrysanthemum, empty core, komatsuna, Chinese cabbage, sertus, tarsai, honey, nozawana, spinach Leafy vegetables such as green onions, chili, paprika, melon, bitter gourd, watermelon, pumpkin, blueberry, strawberry, eggplant, tomato, grape and other fruit vegetables, broccoli, cauliflower, Fukinoto and other legumes, coconut, green soybeans, roses And cereals such as rice and wheat, root vegetables such as lotus root, and bulbs such as hyacinth, crocus and tulip.
本発明の水耕栽培方法では、前記植物の根を、培養液に溶解してなる液に接触させつつ、当該培養液に水素ガスを吹き込み、植物を育成する。液を根に接触させる方法としては、例えば、根を液に浸漬する方法、根に液を噴霧する方法、固体培地表面や傾斜面に根を張らせ、そこに液を流す方法、ロックウール(岩綿)などの固形培地の毛細管現象を利用して液を根回りに供給する方法などがある。 In the hydroponics method of the present invention, a plant is grown by blowing hydrogen gas into the culture solution while contacting the plant root with a solution obtained by dissolving the plant root in the culture solution. Examples of the method of bringing the liquid into contact with the root include, for example, a method in which the root is immersed in the liquid, a method in which the liquid is sprayed on the root, a method in which the root is stretched on the surface of the solid medium or the inclined surface, and the liquid is allowed to flow there. There is a method of supplying the liquid around the root using the capillary action of a solid medium such as Iwako).
以下、実施例を挙げて本発明をさらに具体的に説明する。
実施例1(アルテミアの幼生ノープリウスの飼育実験)
<実験内容>
アルテミア(Artemia salina)の幼生ノープリウスを対象に、飼育環境水中への水素ガス供給の効果を検証することを目的に飼育実験を実施した。
孵化したノープリウス(Nauplius)は、第3脱皮を終える約3日後には卵黄を消費し終え捕食を開始するが、ここで無給餌を続けると飢餓になり約1週間ほどで餓死する。
本実験では、飼育環境へ水素ガスを供給した区と供給しない対照区を設定し、両実験区で孵化した幼生の無給餌飼育を行い、主に飢餓に突入し減少していく生存個体数に注目し、水素供給が延命効果もたらすか否かを検証した。飼育はバッチ式とし、無給餌条件で行った。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1 (Artemia larva Nauplius rearing experiment)
<Experiment details>
A breeding experiment was conducted to verify the effect of hydrogen gas supply to the breeding environment water on Artemia salina larval nauplius.
The hatched Nauplius consumes the yolk and starts predation about 3 days after the third molting, but if it continues to feed without food, it will starve and die in about a week.
In this experiment, we set up a zone where hydrogen gas was supplied to the breeding environment and a control zone where it was not supplied, and larvae hatched in both experimental zones were fed without feeding. Attention was paid to verifying whether hydrogen supply would have a life-prolonging effect. Breeding was carried out in a batch system and was performed under no-feeding conditions.
<実験方法>
(1)材料
アルテミア耐久卵:テトラジャパン社 テトラ ブラインシュリンプエッグス
人工海水:ベルテックジャパン社 ベルソルトプレミアム(粉末;水道水で溶解)
(2)装置
飼育水槽:3リットルガラスビーカ
水素供給:水素ガスボンベ/マスフローコントローラ/ディフューザ(焼結金属;SUS製)
水素供給量:VVH(※1)=0.02,0.1,0.3/H
※1)VVH:1時間当たり槽容量当たりの気体供給量(m3/m3/H)
曝気:エアポンプ/ディフューザ(エアストーン)
温度調節器:サーモスタット
実験装置の概略図を図1に示す。
<Experiment method>
(1) Materials Artemia Endurance Egg: Tetra Japan Tetra Brine Shrimp Egg Artificial Seawater: Vertec Japan Bel Salt Premium (powder; dissolved in tap water)
(2) Equipment Breeding tank: 3 liter glass beaker Hydrogen supply: Hydrogen gas cylinder / mass flow controller / diffuser (sintered metal; made of SUS)
Hydrogen supply volume: VVH (* 1) = 0.02, 0.1, 0.3 / H
* 1) VVH: Gas supply volume per tank capacity per hour (m 3 / m 3 / H)
Aeration: Air pump / diffuser (air stone)
Temperature controller: Thermostat A schematic diagram of the experimental apparatus is shown in FIG.
(3)実験手順
(a)孵化
20g/L濃度の人工海水5Lに耐久卵1gを接種し、曝気を行いながら水温28℃で1〜2日間培養した後に飼育に供した。
(b)飼育
3Lビーカを飼育水槽として水素供給区および対照区の2区(各1槽)を設定し、水温調節(25〜28℃)、曝気、開放を共通飼育条件とした。
充分に孵化個体が得られた(a)を(c)の計数手順により個体数計数した後に初期個体数を設定して2槽に同量とり、適宜人工海水(20g/L濃度)を補充して3Lとした。
初期個体数は、40,000〜60,000個体/槽を目安にした。
水素供給区には、水素ガスをボンベからマスフローコントローラで流量調節して定流量供給した。
飼育中に蒸発していく水分は、その都度蒸発分を水道水で補充した。
飼育中に死滅していく個体は除去せずそのまま飼育を継続し、何れかの実験区で生存個体の目視確認が困難となった時点でバッチ飼育を終了した。
(c)計数
曝気によって幼生が均一に分散浮遊している飼育水の一定量をとり、その中の生存している個体数を目視により計数し、これを複数回行ったその平均値を生存個体数とした。
幼生の生死の判定は、主に遊泳および触角の活動の有無を基準とした。
(3) Experimental procedure (a) Hatching
1 g of durable eggs were inoculated into 5 L of artificial seawater at a concentration of 20 g / L, and cultured for 1 to 2 days at a water temperature of 28 ° C. while aerated, followed by breeding.
(B) Rearing
Two sections (one tank each) of a hydrogen supply section and a control section were set using a 3L beaker as a breeding tank, and water temperature control (25-28 ° C), aeration, and release were used as common breeding conditions.
After sufficiently counting hatched individuals (a) according to the counting procedure of (c), set the initial number of individuals, take the same amount in 2 tanks, and replenish artificial seawater (20 g / L concentration) as appropriate 3L.
The initial population was 40,000-60,000 individuals / tank.
Hydrogen gas was supplied to the hydrogen supply zone at a constant flow rate by adjusting the flow rate of hydrogen gas from a cylinder with a mass flow controller.
Water that evaporates during breeding was supplemented with tap water each time.
Individuals dying during breeding were not removed and breeding was continued as they were, and batch breeding was terminated when it was difficult to visually check the surviving individuals in any experimental section.
(C) Counting Take a certain amount of breeding water in which larvae are uniformly dispersed and floated by aeration, visually count the number of surviving individuals, and calculate the average value obtained by performing this multiple times. It was a number.
Judgment of life and death of larvae was mainly based on the presence or absence of swimming and antennal activity.
<結果>
結果を表1〜2に示す。
対照区では、全体を通して生存個体数は飼育開始から概ね3日目にかけて70%程度まで低下し、以降飢餓に突入すると30%を下回る程度にまで急激に低下する傾向を示した。
一方、バッチNo.1の水素供給区では、飢餓突入後も生存個体数の減少傾向が緩やかで、9日目までほぼ直線的に推移し、対照区との明瞭な差異が示された(図2)。
そして全てのバッチにおいて、飼育終了時の生存個体数は水素供給区が優勢だった。
<Result>
The results are shown in Tables 1-2.
In the control group, the number of surviving individuals decreased to about 70% from the start of breeding to about 70% throughout the beginning of the breeding, and then showed a tendency to rapidly drop to below 30% when hunger started.
On the other hand, batch no. In the 1 hydrogen supply zone, the number of surviving individuals decreased gradually even after the hunger rush, and it remained almost linear until the 9th day, showing a clear difference from the control zone (Fig. 2).
In all batches, the number of surviving animals at the end of the breeding period was predominant in the hydrogen supply area.
<効果>
本実施例では、アルテミアの幼生ノープリウスに対して水素が飢餓の影響を緩和する、ないしは餓死する時期を遅延させる延命効果があった。
このことから、本発明によれば、水素ガスそのものを用いて、水産施設のほか、水棲生物を飼育している設備や業界にも利用でき、さらに陸上の屋内、屋外の施設のほか、海面でも利用可能であり、さらにまた、植物の水耕栽培にも応用可能な、水棲生物養殖装置および水棲生物養殖方法、ならびに植物水耕栽培装置および植物水耕栽培方法を提供することができる。
<Effect>
In this example, hydrogen had a life prolonging effect on Artemia larva Nauplius, which alleviated the effect of starvation or delayed the time of starvation.
Therefore, according to the present invention, hydrogen gas itself can be used not only for fisheries facilities but also for equipment and industry for breeding aquatic organisms. Furthermore, in addition to indoor and outdoor facilities on land, also at sea level. Further, it is possible to provide an aquatic organism culture device and an aquatic organism cultivation method, a plant hydroponics device and a plant hydroponics method that can be used and can also be applied to hydroponics of plants.
本発明の水棲生物養殖装置を用いて育てた水棲生物は、延命効果があり、また病気に罹りにくく、繁殖力が旺盛であり、健康体を維持でき、水替えの頻度を少なくできることが期待されており、水棲生物の養殖に有用である。また、本発明の水耕栽培装置を用いて栽培される植物は、根腐れなどを起こさず、花や実などの生育に優れており、花の寿命を長くできることが期待されており、植物の水耕栽培にも有用である。 The aquatic organisms grown using the aquatic aquaculture device of the present invention are expected to have a life-prolonging effect, are less susceptible to diseases, have a strong fertility, can maintain a healthy body, and can reduce the frequency of water changes. It is useful for aquatic aquaculture. In addition, plants cultivated using the hydroponic cultivation apparatus of the present invention do not cause root rot, are excellent in the growth of flowers and fruits, and are expected to extend the life of flowers, It is also useful for hydroponics.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013091924A JP2014212723A (en) | 2013-04-25 | 2013-04-25 | Apparatus and method for aquaculture of aquatic organism, and apparatus and method for hydroponic culture of plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013091924A JP2014212723A (en) | 2013-04-25 | 2013-04-25 | Apparatus and method for aquaculture of aquatic organism, and apparatus and method for hydroponic culture of plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014212723A true JP2014212723A (en) | 2014-11-17 |
Family
ID=51939103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013091924A Pending JP2014212723A (en) | 2013-04-25 | 2013-04-25 | Apparatus and method for aquaculture of aquatic organism, and apparatus and method for hydroponic culture of plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014212723A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105052837A (en) * | 2015-07-29 | 2015-11-18 | 通威股份有限公司 | Breeding method of larval stage feed of coregonus peled fry |
JP6043001B1 (en) * | 2016-01-19 | 2016-12-14 | S.P.エンジニアリング株式会社 | Hydrogen water generator for biological growth |
CN117530208A (en) * | 2023-11-09 | 2024-02-09 | 广东省农业科学院动物科学研究所 | Fish hunger stress resistant cultivation method based on photovoltaic hydrogen production |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003088736A (en) * | 2001-09-17 | 2003-03-25 | Kiyoshi Sato | Apparatus and method for increasing concentration of dissolved gas |
JP2006212015A (en) * | 2005-02-07 | 2006-08-17 | Toshiyasu Takura | Electrolyte type water tank pump |
JP2007203277A (en) * | 2006-01-31 | 2007-08-16 | Life Guard Product:Kk | Gas-liquid mixing apparatus |
JP2009022211A (en) * | 2007-07-19 | 2009-02-05 | Nobutaka Matsuo | Aquatic life cultivating device and hydroponic apparatus |
JP2011193851A (en) * | 2010-03-23 | 2011-10-06 | Hiroshima Prefecture | Method and apparatus for avoiding photooxidation trouble of vegetable |
JP2012034649A (en) * | 2010-08-10 | 2012-02-23 | Mebiol Kk | Plant cultivation system and plant cultivation method |
-
2013
- 2013-04-25 JP JP2013091924A patent/JP2014212723A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003088736A (en) * | 2001-09-17 | 2003-03-25 | Kiyoshi Sato | Apparatus and method for increasing concentration of dissolved gas |
JP2006212015A (en) * | 2005-02-07 | 2006-08-17 | Toshiyasu Takura | Electrolyte type water tank pump |
JP2007203277A (en) * | 2006-01-31 | 2007-08-16 | Life Guard Product:Kk | Gas-liquid mixing apparatus |
JP2009022211A (en) * | 2007-07-19 | 2009-02-05 | Nobutaka Matsuo | Aquatic life cultivating device and hydroponic apparatus |
JP2011193851A (en) * | 2010-03-23 | 2011-10-06 | Hiroshima Prefecture | Method and apparatus for avoiding photooxidation trouble of vegetable |
JP2012034649A (en) * | 2010-08-10 | 2012-02-23 | Mebiol Kk | Plant cultivation system and plant cultivation method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105052837A (en) * | 2015-07-29 | 2015-11-18 | 通威股份有限公司 | Breeding method of larval stage feed of coregonus peled fry |
JP6043001B1 (en) * | 2016-01-19 | 2016-12-14 | S.P.エンジニアリング株式会社 | Hydrogen water generator for biological growth |
JP2017127807A (en) * | 2016-01-19 | 2017-07-27 | S.P.エンジニアリング株式会社 | Living things raising hydrogen water producing apparatus |
CN117530208A (en) * | 2023-11-09 | 2024-02-09 | 广东省农业科学院动物科学研究所 | Fish hunger stress resistant cultivation method based on photovoltaic hydrogen production |
CN117530208B (en) * | 2023-11-09 | 2024-05-24 | 广东省农业科学院动物科学研究所 | Fish hunger stress resistant cultivation method based on photovoltaic hydrogen production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101270631B1 (en) | Multi complex tank for an aquaculture using the bio-flac | |
CN103081838B (en) | Closed seawater ecological cycle cultivation method and device system thereof | |
US20170127656A1 (en) | Algae Farm | |
JP7169502B2 (en) | aquaculture method of aquatic animals | |
TW201635899A (en) | Method for cultivating oysters on land | |
CN104686427B (en) | A kind of intensive ecological cultivation method of Sungkiang weever | |
CN102696516A (en) | Low-salinity pomfret aquiculture method | |
CN103964577A (en) | Algae screen system for indoor small-scale aquaculture water treatment | |
CN206629767U (en) | A kind of grouper industrial aquaculture system | |
CN104542381A (en) | Industrial circulating water shrimp culturing method capable of increasing efficiency | |
CN112358054A (en) | Ecological reef device for purifying water quality by utilizing algae, spirochaeta symbiotic system | |
CN105660466B (en) | A kind of method for controlling illumination to cultivate grouper fry | |
KR20080057849A (en) | Photobioreactor and household culture method of arithrospira kctc 11039bp to remove carbon dioxide | |
CN102919188B (en) | Culture system capable of meeting biological functions of ecosystem and suitable for small coral reef ecological enjoying pot | |
CN106797896A (en) | A kind of new seawater cleaning mode and its application in scientific research is cultivated with coral | |
CN203942940U (en) | The water circulation system in a kind of refined fish hatch fish roe pond | |
JP2011244795A (en) | Method for producing on land of sand-submerged bivalves, such as littleneck clam | |
JP2014212723A (en) | Apparatus and method for aquaculture of aquatic organism, and apparatus and method for hydroponic culture of plant | |
KR20170029280A (en) | the rearing system using the food chain structure | |
CN102657120A (en) | Method for breeding pelagic-period larva of octopus vulgaris in aerial fog manner | |
JP2016208890A (en) | Abalone culturing method and system for same | |
CN105248343B (en) | A kind of coral sexual propagation system | |
CN109892261B (en) | Artificial breeding method of Babuyan jellyfishes | |
CN216452710U (en) | Brocade carp and vegetable symbiotic recirculating aquaculture system | |
CN101273715A (en) | Method and field for cultivating Octopus variabilis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160928 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170502 |